Hybrid EEG/EOG-based brain/neural hand exoskeleton living activities after quadriplegia

Science Robotics

1,

DOI: 10.1126/scirobotics.aag3296

Citation Report

#	Article	IF	CITATIONS
1	Science for robotics and robotics for science. Science Robotics, 2016, 1, .	17.6	27
2	Neuroprosthetics: Restoring multi-joint motor control. Nature Biomedical Engineering, 2017, 1, .	22.5	7
3	Preliminary study on the design and control of a pneumatically-actuated hand rehabilitation device. , 2017, , .		15
4	Help, hope, and hype: Ethical dimensions ofneuroprosthetics. Science, 2017, 356, 1338-1339.	12.6	83
5	A Hybrid FPGA-Based System for EEG- and EMG-Based Online Movement Prediction. Sensors, 2017, 17, 1552.	3.8	36
6	Closed-Loop Hybrid Gaze Brain-Machine Interface Based Robotic Arm Control with Augmented Reality Feedback. Frontiers in Neurorobotics, 2017, 11, 60.	2.8	52
7	IPMC tape: Actuated athletic tape for motion and force assistance. , 2017, , .		0
8	Gaze controlled prosthetic arm with EMG and EEG input interface. , 2017, , .		3
9	Towards Robot-Assisted Post-Stroke Hand Rehabilitation: Fugl-Meyer Gesture Recognition Using sEMG. , 2017, , .		9
10	Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nature Electronics, 2018, 1, 183-190.	26.0	263
11	Sensitive Manipulation: Manipulation Through Tactile Feedback. International Journal of Humanoid Robotics, 2018, 15, 1850012.	1.1	15
12	Brainâ€computer interfaces for postâ€stroke motor rehabilitation: a metaâ€analysis. Annals of Clinical and Translational Neurology, 2018, 5, 651-663.	3.7	300
13	Design and validation of a miniaturized SEA transmission system. Mechatronics, 2018, 49, 149-156.	3.3	11
14	mano: A Wearable Hand Exoskeleton for Activities of Daily Living and Neurorehabilitation. IEEE Robotics and Automation Letters, 2018, 3, 500-507.	5.1	101
15	Passive Brain–Computer Interfaces. , 2018, , 69-86.		20
16	Interaction techniques for a neural-guided hand exoskeleton. Procedia Computer Science, 2018, 141, 442-446.	2.0	3
17	Three-Dimensional Brain–Computer Interface Control Through Simultaneous Overt Spatial Attentional and Motor Imagery Tasks. IEEE Transactions on Biomedical Engineering, 2018, 65, 2417-2427.	4.2	41
18	Smart Neuroprosthetics Becoming Smarter, but Not for Everyone?. EClinicalMedicine, 2018, 2-3, 11-12.	7.1	8

ATION REDO

#	Article	IF	CITATIONS
19	Biomechatronic design criteria of systems for robot-mediated rehabilitation therapy. , 2018, , 29-46.		11
20	Wearable Robotics for Upper-Limb Rehabilitation and Assistance. , 2018, , 23-69.		26
21	Assisting hand function after spinal cord injury with a fabric-based soft robotic glove. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 59.	4.6	155
22	Feasibility and safety of shared EEG/EOG and vision-guided autonomous whole-arm exoskeleton control to perform activities of daily living. Scientific Reports, 2018, 8, 10823.	3.3	61
23	Brain-Machine Interfaces: Powerful Tools for Clinical Treatment and Neuroscientific Investigations. Neuroscientist, 2019, 25, 139-154.	3.5	51
24	A Biomimetic Soft Lens Controlled by Electrooculographic Signal. Advanced Functional Materials, 2019, 29, 1903762.	14.9	50
25	Restoration of Finger and Arm Movements Using Hybrid Brain/Neural Assistive Technology in Everyday Life Environments. Springer Briefs in Electrical and Computer Engineering, 2019, , 53-61.	0.5	13
26	Myoelectric Control of a Soft Hand Exoskeleton Using Kinematic Synergies. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 1351-1361.	4.0	34
27	Single-Trial Classification of Different Movements on One Arm Based on ERD/ERS and Corticomuscular Coherence. IEEE Access, 2019, 7, 128185-128197.	4.2	38
28	Upper limb sensorimotor restoration through brain–computer interface technology in tetraparesis. Current Opinion in Biomedical Engineering, 2019, 11, 85-101.	3.4	13
29	User activity recognition system to improve the performance of environmental control interfaces: a pilot study with patients. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 10.	4.6	8
30	Eyes are faster than hands: A soft wearable robot learns user intention from the egocentric view. Science Robotics, 2019, 4, .	17.6	57
31	Noninvasive neuroimaging enhances continuous neural tracking for robotic device control. Science Robotics, 2019, 4, .	17.6	227
32	A novel hand exoskeleton with series elastic actuation for modulated torque transfer. Mechatronics, 2019, 61, 69-82.	3.3	49
33	Multi-walled Carbon Nanotube (MWCNT)/PDMS-based Flexible Sensor for Medical Applications. , 2019, ,		8
34	Hand Extension Robot Orthosis (HERO) Glove: Development and Testing With Stroke Survivors With Severe Hand Impairment. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 916-926.	4.9	45
35	Adapting Egocentric Visual Hand Pose Estimation Towards a Robot-Controlled Exoskeleton. Lecture Notes in Computer Science, 2019, , 241-256.	1.3	1
36	In-home and remote use of robotic body surrogates by people with profound motor deficits. PLoS ONE, 2019, 14, e0212904.	2.5	18

#	Article	IF	CITATIONS
37	Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 45.	4.6	84
38	Neurorehabilitation: Neural Plasticity and Functional Recovery 2018. Neural Plasticity, 2019, 2019, 1-3.	2.2	3
39	Physiological Responses During Hybrid BNCI Control of an Upper-Limb Exoskeleton. Sensors, 2019, 19, 4931.	3.8	16
40	Ensemble Learning Based Brain–Computer Interface System for Ground Vehicle Control. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 5392-5404.	9.3	19
41	A highly stretchable strain-insensitive temperature sensor exploits the Seebeck effect in nanoparticle-based printed circuits. Journal of Materials Chemistry A, 2019, 7, 24493-24501.	10.3	38
42	Development of 3D-printed myoelectric hand orthosis for patients with spinal cord injury. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 162.	4.6	61
43	Synchronization of Slow Cortical Rhythms During Motor Imagery-Based Brain–Machine Interface Control. International Journal of Neural Systems, 2019, 29, 1850045.	5.2	15
44	Biomechatronic Applications of Brain-Computer Interfaces. , 2019, , 129-175.		6
45	Structure design and control research of a novel underwater cable-driven manipulator for autonomous underwater vehicles. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2020, 234, 170-180.	0.5	8
46	A WiSARD Network Approach for a BCI-Based Robotic Prosthetic Control. International Journal of Social Robotics, 2020, 12, 749-764.	4.6	9
47	Hand Exoskeleton Systems—Overview. , 2020, , 149-175.		14
48	Electrode-free visual prosthesis/exoskeleton control using augmented reality glasses in a first proof-of-technical-concept study. Scientific Reports, 2020, 10, 16279.	3.3	10
49	Scalp electroencephalograms over ipsilateral sensorimotor cortex reflect contraction patterns of unilateral finger muscles. NeuroImage, 2020, 222, 117249.	4.2	9
50	Design and Control of an Index Finger Exoskeleton with Cable-Driven Translational Joints. , 2020, , .		5
51	Evaluation of performance and heart rate variability during intensive usage of a BCI-controlled hand exoskeleton. , 2020, , .		3
52	User-Driven Functional Movement Training With a Wearable Hand Robot After Stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 2265-2275.	4.9	21
53	3D Multi-Material Printing of an Anthropomorphic, Personalized Replacement Hand for Use in Neuroprosthetics Using 3D Scanning and Computer-Aided Design: First Proof-of-Technical-Concept Study. Prosthesis, 2020, 2, 362-370.	2.9	8
54	Feasibility and Safety of Bilateral Hybrid EEC/EOG Brain/Neural–Machine Interaction. Frontiers in Human Neuroscience, 2020, 14, 580105.	2.0	14

#	Article	IF	CITATIONS
55	Upregulating excitability of corticospinal pathways in stroke patients using TMS neurofeedback; A pilot study. NeuroImage: Clinical, 2020, 28, 102465.	2.7	9
56	Is an artificial limb embodied as a hand? Brain decoding in prosthetic limb users. PLoS Biology, 2020, 18, e3000729.	5.6	41
57	General principles of machine learning for brain-computer interfacing. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 168, 311-328.	1.8	10
58	Home-based rehabilitation using a soft robotic hand glove device leads to improvement in hand function in people with chronic spinal cord injury:a pilot study. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 40.	4.6	26
59	A Survey on the Use of Haptic Feedback for Brain-Computer Interfaces and Neurofeedback. Frontiers in Neuroscience, 2020, 14, 528.	2.8	46
60	Non-contact visual control of personalized hand prostheses/exoskeletons by tracking using augmented reality glasses. 3D Printing in Medicine, 2020, 6, 6.	3.1	10
61	Hand Extension Robot Orthosis (HERO) Grip Glove: enabling independence amongst persons with severe hand impairments after stroke. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 33.	4.6	35
62	Motor Imagery Based Continuous Teleoperation Robot Control with Tactile Feedback. Electronics (Switzerland), 2020, 9, 174.	3.1	29
63	Brain–machine interfaces. , 2020, , 1037-1045.		0
64	Improving Grasp Function After Spinal Cord Injury With a Soft Robotic Glove. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 1407-1415.	4.9	40
65	Minimizing Biosignal Recording Sites for Noninvasive Hybrid Brain/Neural Control. IEEE Systems Journal, 2021, 15, 1540-1546.	4.6	5
66	Continuous Finite-Time Torque Control for Flexible Assistance Exoskeleton with Delay Variation Input. Robotica, 2021, 39, 291-316.	1.9	4
67	Materials, Devices, and Systems of On‣kin Electrodes for Electrophysiological Monitoring and Human–Machine Interfaces. Advanced Science, 2021, 8, 2001938.	11.2	168
68	Modularization of 2- and 3-DoF Coupled Tendon-Driven Joints. IEEE Transactions on Robotics, 2021, 37, 905-917.	10.3	10
69	Noninvasive Brain–Machine Interfaces for Robotic Devices. Annual Review of Control, Robotics, and Autonomous Systems, 2021, 4, 191-214.	11.8	30
70	Restoring Activities of Daily Living Using an EEG/EOG-Controlled Semiautonomous and Mobile Whole-Arm Exoskeleton in Chronic Stroke. IEEE Systems Journal, 2021, 15, 2314-2321.	4.6	28
72	Optical brain imaging and its application to neurofeedback. NeuroImage: Clinical, 2021, 30, 102577.	2.7	23
73	DESIGN, DYNAMIC MODELING AND CONTROL OF WEARABLE FINGER ORTHOSIS. Journal of Mechanics in Medicine and Biology, 2021, 21, 2150006.	0.7	1

#	Article	IF	CITATIONS
74	Function block-based human-robot collaborative assembly driven by brainwaves. CIRP Annals - Manufacturing Technology, 2021, 70, 5-8.	3.6	18
75	Nanowireâ€Based Soft Wearable Human–Machine Interfaces for Future Virtual and Augmented Reality Applications. Advanced Functional Materials, 2021, 31, 2008347.	14.9	80
76	Adding Tactile Feedback and Changing ISI to Improve BCI Systems' Robustness: An Error-Related Potential Study. Brain Topography, 2021, 34, 467-477.	1.8	8
77	Exoskeletal Devices for Hand Assistance and Rehabilitation: A Comprehensive Analysis of State-of-the-Art Technologies. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 525-538.	3.2	33
78	Interfacing with Robots without the use of Touch or Speech. , 2021, , .		3
79	A set of electroencephalographic (EEG) data recorded during amplitude-modulated transcranial alternating current stimulation (AM-tACS) targeting 10-Hz steady-state visually evoked potentials (SSVEP). Data in Brief, 2021, 36, 107011.	1.0	Ο
80	Literature review on assistive devices available for quadriplegic people: Indian context. Disability and Rehabilitation: Assistive Technology, 2023, 18, 929-941.	2.2	2
81	Heart rate variability predicts decline in sensorimotor rhythm control. Journal of Neural Engineering, 2021, 18, 0460b5.	3.5	4
82	Challenges and Opportunities for the Future of Brain-Computer Interface in Neurorehabilitation. Frontiers in Neuroscience, 2021, 15, 699428.	2.8	21
83	Advancing sensory neuroprosthetics using artificial brain networks. Patterns, 2021, 2, 100304.	5.9	2
84	Review: Hand Exoskeleton Systems, Clinical Rehabilitation Practices, and Future Prospects. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 606-622.	3.2	28
85	A Modular Mobile Robotic Platform to Assist People with Different Degrees of Disability. Applied Sciences (Switzerland), 2021, 11, 7130.	2.5	5
86	A Review on Signal Processing Approaches to Reduce Calibration Time in EEG-Based Brain–Computer Interface. Frontiers in Neuroscience, 2021, 15, 733546.	2.8	9
87	Flexible Temperature Sensors. Frontiers in Chemistry, 2021, 9, 539678.	3.6	32
88	Design, manipulability analysis and optimization of an index finger exoskeleton for stroke rehabilitation. Mechanism and Machine Theory, 2022, 167, 104526.	4.5	31
89	Information and Communication Theoretical Understanding and Treatment of Spinal Cord Injuries: State-of-The-Art and Research Challenges. IEEE Reviews in Biomedical Engineering, 2023, 16, 332-347.	18.0	9
90	Brain–Computer Interfaces. , 2020, , 131-183.		53
91	Brain Computer Interface: A New Pathway to Human Brain. Learning and Analytics in Intelligent Systems, 2020, , 99-125.	0.6	3

	C	ITATION REPORT	
#	Article	IF	Citations
92	Neural-gesteuerte Robotik für Assistenz und Rehabilitation im Alltag. , 2020, , 117-131.		3
93	A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces. Scientific Data, 2018, 5, 180211.	5.3	94
95	Myoelectric untethered robotic glove enhances hand function and performance on daily living tasks after stroke. Journal of Rehabilitation and Assistive Technologies Engineering, 2020, 7, 205566832096405.	0.9	15
98	Neuromuscular Activation Based SEMG-Torque Hybrid Modeling and Optimization for Robot Assisted Neurorehabilitation. Lecture Notes in Computer Science, 2019, , 591-602.	1.3	2
99	Modularized Coupled Tendon-Driven Humanoid Robot Arm. Journal of the Robotics Society of Japan, 2020, 38, 657-666.	0.1	0
100	Improvement of hand functions of spinal cord injury patients with electromyography-driven hand exoskeleton: A feasibility study. Wearable Technologies, 2020, 1, .	3.1	7
102	Variation Trends of Fractal Dimension in Epileptic EEG Signals. Algorithms, 2021, 14, 316.	2.1	1
103	Physical and Cognitive Therapy Enhancement Using Game-Based Learning. Lecture Notes in Network and Systems, 2021, , 343-359.	IS 0.7	0
104	A Review of Human–Machine Cooperation in the Robotics Domain. IEEE Transactions on Human-Machine Systems, 2022, 52, 12-25.	3.5	27
105	Towards Applicability of Motor Imagery BCI: Study on Artificial EEG Data Generation Methods for Calibration Time Reduction. , 2020, , .		Ο
106	A New Delayless Adaptive Oscillator for Gait Assistance. , 2020, , .		7
107	Design and evaluation of a noninvasive tongue-computer interface for individuals with severe disabilities. , 2021, , .		2
108	Effects of Gaze Fixation on the Performance of a Motor Imagery-Based Brain-Computer Interface. Frontiers in Human Neuroscience, 2021, 15, 773603.	2.0	4
109	Motion intensity modeling and trajectory control of upper limb rehabilitation exoskeleton robot based on multi-modal information. Complex & Intelligent Systems, 0, , 1.	6.5	8
110	Motor Imagery Classification Using Inter-Task Transfer Learning via a Channel-Wise Variational Autoencoder-Based Convolutional Neural Network. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 226-237.	4.9	22
112	Soft Exoskeleton With Fully Actuated Thumb Movements for Grasping Assistance. IEEE Transactions on Robotics, 2022, 38, 2194-2207.	10.3	19
113	Flexible Electronics and Devices as Human–Machine Interfaces for Medical Robotics. Advanced Materials, 2022, 34, e2107902.	21.0	211
114	Drawnâ€onâ€5kin Sensors from Fully Biocompatible Inks toward Highâ€Quality Electrophysiology. S 2022, 18, .	mall, 10.0	12

#	Article	IF	CITATIONS
115	Adaptation Strategies for Personalized Gait Neuroprosthetics. Frontiers in Neurorobotics, 2021, 15, 750519.	2.8	1
116	Eyes-Free Tongue Gesture and Tongue Joystick Control of a Five DOF Upper-Limb Exoskeleton for Severely Disabled Individuals. Frontiers in Neuroscience, 2021, 15, 739279.	2.8	11
117	Design and Evaluation of a Hands-Free Video Game Controller for Individuals With Motor Impairments. Frontiers in Computer Science, 2021, 3, .	2.8	2
118	Highly Conformal Polymers for Ambulatory Electrophysiological Sensing. Macromolecular Rapid Communications, 2022, 43, e2200047.	3.9	9
119	Current State of Robotics in Hand Rehabilitation after Stroke: A Systematic Review. Applied Sciences (Switzerland), 2022, 12, 4540.	2.5	12
120	Recent advances in wearable exoskeletons for human strength augmentation. Flexible and Printed Electronics, 2022, 7, 023002.	2.7	5
121	Evolution of the Seebeck effect in nanoparticle-percolated networks under applied strain. Applied Materials Today, 2022, 28, 101503.	4.3	2
125	A Comprehensive Review of Endogenous EEG-Based BCIs for Dynamic Device Control. Sensors, 2022, 22, 5802.	3.8	16
126	Inter-subject Variability Evaluation of Continuous Elbow Angle from sEMG using BPNN. , 2022, , .		1
127	Execution and perception of upper limb exoskeleton for stroke patients: a systematic review. Intelligent Service Robotics, 2022, 15, 557-578.	2.6	6
128	Flexible electrodes for non-invasive brain–computer interfaces: A perspective. APL Materials, 2022, 10, .	5.1	4
129	Highly adhesive stretchable polymer and highly dynamic stable human electrophysiological monitoring. Scientia Sinica Chimica, 2022, , .	0.4	0
131	User Based Development and Test of the EXOTIC Exoskeleton: Empowering Individuals with Tetraplegia Using a Compact, Versatile, 5-DoF Upper Limb Exoskeleton Controlled through Intelligent Semi-Automated Shared Tongue Control. Sensors, 2022, 22, 6919.	3.8	10
132	Tongue control of a five-DOF upper-limb exoskeleton rehabilitates drinking and eating for individuals with severe disabilities. International Journal of Human Computer Studies, 2023, 170, 102962.	5.6	2
133	Feasibility of home hand rehabilitation using musicglove after chronic spinal cord injury. Spinal Cord Series and Cases, 2022, 8, .	0.6	3
134	Passive somatosensory training enhances piano skill in adolescent and adult pianists: A preliminary study. Annals of the New York Academy of Sciences, 2023, 1519, 167-172.	3.8	1
135	Touchless and nonverbal human-robot interfaces: An overview of the state-of-the-art. Smart Health, 2023, 27, 100365.	3.2	0
136	Gait Prediction and Assist Control of Lower Limb Exoskeleton Based on Inertia Measurement Unit. , 2022, , .		0

#	Article	IF	Citations
" 137	Designing Unpowered Shoulder Complex Exoskeleton via Contralateral Drive for Self-rehabilitation	5.0	3
137	of Post-stroke Hemiparesis. Journal of Bionic Engineering, 2023, 20, 992-1007.	3.0	3
138	Brain–Computer Interface-Controlled Exoskeletons in Clinical Neurorehabilitation: Ready or Not?. Neurorehabilitation and Neural Repair, 2022, 36, 747-756.	2.9	14
139	A Review of Brain Activity and EEG-Based Brain–Computer Interfaces for Rehabilitation Application. Bioengineering, 2022, 9, 768.	3.5	20
140	Noninvasive neuroimaging and spatial filter transform enable ultra low delay motor imagery EEG decoding. Journal of Neural Engineering, 2022, 19, 066034.	3.5	1
141	Electromagnetic Brain–Computer–Metasurface Holography. ACS Photonics, 2023, 10, 2249-2256.	6.6	5
142	Extended Control With Hybrid Gaze-BCI for Multi-Robot System Under Hands-Occupied Dual-Tasking. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 829-840.	4.9	1
143	Restoring Voluntary Bimanual Activities of Patients With Chronic Hemiparesis Through a Foot-Controlled Hand/Forearm Exoskeleton. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 769-778.	4.9	0
144	A review on the application of intelligent control strategies for post-stroke hand rehabilitation machines. Advances in Mechanical Engineering, 2023, 15, 168781322211480.	1.6	1
145	The Berlin Bimanual Test for Tetraplegia (BeBiTT): development, psychometric properties, and sensitivity to change in assistive hand exoskeleton application. Journal of NeuroEngineering and Rehabilitation, 2023, 20, .	4.6	2
146	On Understanding the Role of Exoskeleton Robots in Hand Rehabilitation: A Brief Review. , 2022, , .		0
147	3D Printed Dry Electrodes for Electrophysiological Signal Monitoring: A Review. Advanced Materials Technologies, 2023, 8, .	5.8	4
148	A Low-Complexity Brain–Computer Interface for High-Complexity Robot Swarm Control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 1816-1825.	4.9	1
149	An Introduction to Policy, Identity, and Neurotechnology: The Neuroethics of Brain–Computer Interfaces. Advances in Neuroethics, 2023, , 1-7.	0.3	0
150	Future Developments in Brain/Neural–Computer Interface Technology. Advances in Neuroethics, 2023, , 65-85.	0.3	2
151	Hybrid brain/neural interface and autonomous vision-guided whole-arm exoskeleton control to perform activities of daily living (ADLs). Journal of NeuroEngineering and Rehabilitation, 2023, 20, .	4.6	1
152	Game changers in science and technology - now and beyond. Technological Forecasting and Social Change, 2023, 193, 122588.	11.6	14
153	Design, Modeling and Experiments of a Variable Stiffness Soft Robotic Glove for Stroke Patients With Clenched Fist Deformity. IEEE Robotics and Automation Letters, 2023, 8, 4044-4051.	5.1	1
155	Advanced Electrode Technologies for Noninvasive Brain–Computer Interfaces. ACS Nano, 0, , .	14.6	0

#	Article	IF	CITATIONS
156	An Upper-Limb Rehabilitation Exoskeleton System Controlled by MI Recognition Model With Deep Emphasized Informative Features in a VR Scene. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 4390-4401.	4.9	0
157	EEG-Based Motor BCIs for Upper Limb Movement: Current Techniques and Future Insights. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 4413-4427.	4.9	0
158	Decoding Upper-Limb Movement Intention Through Adaptive Dynamic Movement Primitives: A Proof-of-Concept Study with a Shoulder-Elbow Exoskeleton. , 2023, , .		0
159	Neural Correlation of EEG and Eye Movement in Natural Grasping Intention Estimation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 4329-4337.	4.9	Ο
160	Technological trends in medical robotic sensing with soft electronic skin. Sensors & Diagnostics, 2024, 3, 218-237.	3.8	0
161	A review about synergistic effects of transcranial direct current stimulation (tDCS) in combination with motor imagery (MI)-based brain computer interface (BCI) on post-stroke rehabilitation. Research on Biomedical Engineering, 0, , .	2.2	Ο
162	Hand assistive device with suction cup (HADS) technology for poststroke patients. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2024, 238, 160-169.	1.8	0
163	Rehabilitation and Assistive Robotics. , 2023, , 73-99.		0