BrÃ, nsted acid sites based on penta-coordinated alumin

Nature Communications 7, 13820 DOI: 10.1038/ncomms13820

Citation Report

#	Article	IF	CITATIONS
1	The zeolite mediated isomerization of allyl phenyl ether. Materials Research Express, 2017, 4, 044004.	0.8	0
2	Jean-Paul Amoureux: Having fun with quadrupolar nuclei. Solid State Nuclear Magnetic Resonance, 2017, 84, 1-3.	1.5	0
3	Characterization of Catalytic Materials through a Facile Approach to Probe OH Groups by Solid-State NMR. Journal of Physical Chemistry C, 2017, 121, 14108-14119.	1.5	19
4	Proton detection of MAS solid-state NMR spectra of half-integer quadrupolar nuclei. Solid State Nuclear Magnetic Resonance, 2017, 84, 171-181.	1.5	75
5	Determining the Surface Structure of Silicated Alumina Catalysts via Isotopic Enrichment and Dynamic Nuclear Polarization Surface-Enhanced NMR Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 22977-22984.	1.5	34
6	Role of Coordination Number, Geometry, and Local Disorder on ²⁷ Al NMR Chemical Shifts and Quadrupolar Coupling Constants: Case Study with Aluminosilicates. Journal of Physical Chemistry C, 2017, 121, 19946-19957.	1.5	28
7	Simulations of Ammonia Adsorption for the Characterization of Acid Sites in Metal-Doped Amorphous Silicates. Journal of Physical Chemistry C, 2017, 121, 22258-22267.	1.5	25
8	BrÃ,nsted-Lewis Acids for Efficient Conversion of Renewables. Biofuels and Biorefineries, 2017, , 99-135.	0.5	5
9	Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass. Green Chemistry, 2018, 20, 2711-2721.	4.6	323
10	Relation of Catalytic Performance to the Aluminum Siting of Acidic Zeolites in the Conversion of Methanol to Olefins, Viewed via a Comparison between ZSM-5 and ZSM-11. ACS Catalysis, 2018, 8, 5485-5505.	5.5	148
11	Role of BrÃ,nsted acid site during catalytic combustion of methane over PdO/ZSM-5: Dominant or negligible?. Journal of Catalysis, 2018, 357, 29-40.	3.1	115
12	Shedding light on the atomic-scale structure of amorphous silica–alumina and its BrÃ,nsted acid sites. Physical Chemistry Chemical Physics, 2019, 21, 19529-19537.	1.3	32
13	Deleterious effects of non-framework Al species on the catalytic performance of ZSM-5 crystals synthesized at low temperature. Reaction Chemistry and Engineering, 2019, 4, 1957-1968.	1.9	16
14	Tuning the siting of aluminum in ZSM-11 zeolite and regulating its catalytic performance in the conversion of methanol to olefins. Journal of Catalysis, 2019, 377, 81-97.	3.1	50
15	Verapamil delivery systems on the basis of mesoporous ZSM-5/KIT-6 and ZSM-5/SBA-15 polymer nanocomposites as a potential tool to overcome MDR in cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 460-472.	2.0	8
16	Catalytic arene alkylation over H-Beta zeolite: Influence of zeolite shape selectivity and reactant nucleophilicity. Journal of Catalysis, 2019, 380, 9-20.	3.1	19
17	Low-Dimensional Magnetic Semimetal Cr _{0.65} Al _{1.35} Se ₃ . Inorganic Chemistry, 2019, 58, 13960-13968.	1.9	0
18	Insight into Threeâ€Coordinate Aluminum Species on Ethanolâ€toâ€Olefin Conversion over ZSMâ€5 Zeolites. Angewandte Chemie, 2019, 131, 18229-18236.	1.6	7

ATION RED

ARTICLE IF CITATIONS Insight into Threeâ€Coordinate Aluminum Species on Ethanolâ€toâ€Olefin Conversion over ZSMâ€5 Zeolites. 19 7.2 51 Angewandte Chemie - International Edition, 2019, 58, 18061-18068. Advanced applications of amorphous alumina: From nano to bulk. Journal of Non-Crystalline Solids, 1.5 2019, 521, 119493. Ce-modified zeolite BEA catalysts for the trichloroethylene oxidation. The role of the different and 21 10.8 20 necessary active sites. Applied Catalysis B: Environmental, 2019, 259, 118022. The acidic nature of "NMR-invisible―tri-coordinated framework aluminum species in zeolites. Chemical Science, 2019, 10, 10159-10169. Alumina: discriminative analysis using 3D correlation of solid-state NMR parameters. Chemical Society 23 18.7 85 Reviews, 2019, 48, 134-156. BrÃ,nsted–BrÃ,nsted Synergies between Framework and Noncrystalline Protons in Zeolite H-ZSM-5. ACS Catalysis, 2019, 9, 6124-6136. 5.5 37 The cooperative effect of Lewis and BrÃ, nsted acid sites on Sn-MCM-41 catalysts for the conversion of 25 4.6 26 1,3-dihydroxyacetone to ethyl lactate. Green Chemistry, 2019, 21, 3383-3393. Recent experimental and theoretical studies on Al siting/acid site distribution in zeolite framework. 26 3.8 Current Opinion in Chemical Engineering, 2019, 23, 146-154. Catalytic materials based on silica and alumina: Structural features and generation of surface acidity. 27 16.0 68 Progress in Materials Science, 2019, 104, 215-249. High population and dispersion of pentacoordinated AIV species on the surface of flame-made 4.3 amorphous silica-alumina. Science Bulletin, 2019, 64, 516-523. Strongly enhanced acidity and activity of amorphous silica–alumina by formation of 29 3.1 30 pentacoordinated AIV species. Journal of Catalysis, 2019, 372, 1-7. The Coordination Structure and Activity of Hollow Silica-alumina Composite Spheres for Hydrogen Evolution from Aqueous Ammonia Borane Solution. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2019, 98, 312-317. Magnetization transfer from protons to quadrupolar nuclei in solid-state NMR using PRESTO or $\mathbf{31}$ 1.2 21 dipolar-mediated refocused INEPT methods. Journal of Magnetic Resonance, 2019, 299, 109-123. Synthesis, characterization and catalytic activity of single site, Lewis acidic aluminosilicates. 2.2 Catalysis Today, 2019, 334, 131-139 Silica-alumina catalytic materials: A critical review. Catalysis Today, 2020, 357, 621-629. 33 2.2 52 NMR Spectroscopic Characterization of Flameâ€Made Amorphous Silicaâ€Alumina for Cyclohexanol and 34 1.8 Glyceraldehyde Conversion. ChemCatChem, 2020, 12, 287-293. Pentacoordinated Aluminum Species: New Frontier for Tailoring Acidity-Enhanced Silica–Alumina 35 7.6 32 Catalysts. Accounts of Chemical Research, 2020, 53, 2648-2658. Dehydroaromatization of methane over Mo/ZSM-5 zeolites: influence of aluminum distribution in the crystals. Reaction Kinetics, Mechanisms and Catalysis, 2020, 131, 889-904.

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
37	A Practical Review of NMR Lineshapes for Spin-1/2 and Quadrupolar Nuclei in Disordered Materials. International Journal of Molecular Sciences, 2020, 21, 5666.	1.8	20
38	Waterâ€Induced Structural Dynamic Process in Molecular Sieves under Mild Hydrothermal Conditions: Shipâ€inâ€aâ€Bottle Strategy for Acidity Identification and Catalyst Modification. Angewandte Chemie - International Edition, 2020, 59, 20672-20681.	7.2	26
39	Waterâ€Induced Structural Dynamic Process in Molecular Sieves under Mild Hydrothermal Conditions: Shipâ€inâ€aâ€Bottle Strategy for Acidity Identification and Catalyst Modification. Angewandte Chemie, 2020, 132, 20853-20862.	1.6	5
40	Catalytic nanosponges of acidic aluminosilicates for plastic degradation and CO2 to fuel conversion. Nature Communications, 2020, 11, 3828.	5.8	47
41	Synergistic effects of Pt-embedded, MIL-53-derived catalysts (Pt@Al2O3) and NaBH4 for water-mediated hydrogenolysis of biomass-derived furfural to 1,5-pentanediol at near-ambient temperature. Journal of Catalysis, 2020, 390, 46-56.	3.1	43
42	Huang, Luterbacher, and Mauter: Winners of the 2021 <i>ACS Sustainable Chemistry & Engineering</i> Lectureship Awards. ACS Sustainable Chemistry and Engineering, 2020, 8, 17607-17607.	3.2	1
43	Hybrid mesoporous aluminosilicate catalysts obtained by non-hydrolytic sol–gel for ethanol dehydration. Journal of Materials Chemistry A, 2020, 8, 23526-23542.	5.2	12
44	Amorphous High-Surface-Area Aluminum Hydroxide–Bicarbonates for Highly Efficient Methyl Orange Removal from Water. Langmuir, 2020, 36, 6277-6285.	1.6	11
45	Crystal Structure Directed Catalysis by Aluminum Metal-Organic Framework: Mechanistic Insight into the Role of Coordination of Al Sites and Entrance Size of Catalytic Pocket. , 2020, 2, 699-704.		7
46	Structure and Catalytic Characterization of a Second Framework Al(IV) Site in Zeolite Catalysts Revealed by NMR at 35.2 T. Journal of the American Chemical Society, 2020, 142, 7514-7523.	6.6	78
47	Synthesis and characterization of amorphous silica-alumina with enhanced acidity and its application in hydro-isomerization/cracking. Fuel, 2020, 279, 118487.	3.4	21
48	Rapid conversion from common precursors to carbon dots in large scale: Spectral controls, optical sensing, cellular imaging and LEDs application. Journal of Colloid and Interface Science, 2020, 580, 88-98.	5.0	31
49	Acidity enhancement through synergy of penta- and tetra-coordinated aluminum species in amorphous silica networks. Nature Communications, 2020, 11, 225.	5.8	40
50	Methanol to olefins over H-RUB-13 zeolite: regulation of framework aluminum siting and acid density and their relationship to the catalytic performance. Catalysis Science and Technology, 2020, 10, 1835-1847.	2.1	24
51	Mildly acidic aluminosilicate catalysts for stable performance in ethanol dehydration. Applied Catalysis B: Environmental, 2020, 271, 118926.	10.8	27
52	Scalable Synthesis of Uniform Mesoporous Aluminosilicate Microspheres with Controllable Size and Morphology and High Hydrothermal Stability for Efficient Acid Catalysis. ACS Applied Materials & Interfaces, 2020, 12, 21922-21935.	4.0	17
53	Toward the Atomic Scale Simulation of Intricate Acidic Aluminosilicate Catalysts. ACS Catalysis, 2020, 10, 5579-5601.	5.5	49
54	Influence of BrÃ,nsted and Lewis acidity of the modified Al-MCM-41 solid acid on cellulose conversion and 5-hydroxylmethylfurfuran selectivity. Chemosphere, 2021, 265, 129062.	4.2	29

#	Article	IF	CITATIONS
55	Catalytic Fast Pyrolysis of Biomass: Catalyst Characterization Reveals the Feed-Dependent Deactivation of a Technical ZSM-5-Based Catalyst. ACS Sustainable Chemistry and Engineering, 2021, 9, 291-304.	3.2	57
56	Novel Oneâ€6tep Process for the Production of Levulinic Acid from Furfural over Hierarchical Zeolites in a Microwave Reactor. Advanced Sustainable Systems, 2021, 5, .	2.7	5
57	Siloxyaluminate and Siloxygallate Complexes as Models for Framework and Partially Hydrolyzed Framework Sites in Zeolites and Zeotypes. Chemistry - A European Journal, 2021, 27, 307-315.	1.7	2
58	Propane Dehydrogenation on Ga ₂ O ₃ -Based Catalysts: Contrasting Performance with Coordination Environment and Acidity of Surface Sites. ACS Catalysis, 2021, 11, 907-924.	5.5	55
59	Engineering the Distinct Structure Interface of Subnano-alumina Domains on Silica for Acidic Amorphous Silica–Alumina toward Biorefining. Jacs Au, 2021, 1, 262-271.	3.6	7
60	Formation and Location of Pt Single Sites Induced by Pentacoordinated Al Species on Amorphous Silica–Alumina. Journal of Physical Chemistry Letters, 2021, 12, 2536-2546.	2.1	11
61	Synthesis and Catalytic Performance of Aluminiumâ€containing Mesoporous, Spherical Silica Particles. Chemie-Ingenieur-Technik, 2021, 93, 1001-1010.	0.4	1
62	Atomic-Scale Structure and Its Impact on Chemical Properties of Aluminum Oxide Layers Prepared by Atomic Layer Deposition on Silica. Chemistry of Materials, 2021, 33, 3335-3348.	3.2	23
63	Synergy of Extraframework Al ³⁺ Cations and BrÃุnsted Acid Sites on Hierarchical ZSM-5 Zeolites for Butanol-to-Olefin Conversion. Journal of Physical Chemistry C, 2021, 125, 11665-11676.	1.5	12
64	Qualitative and Quantitative Analysis of Acid Properties for Solid Acids by Solid-State Nuclear Magnetic Resonance Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 10179-10197.	1.5	21
65	Modification of commercial Y zeolites by alkaline-treatment for improved performance in the isomerization of glucose to fructose. Molecular Catalysis, 2021, 510, 111686.	1.0	12
66	Synthesis and purification of glycolic acid from the mixture of methyl levulinate and methyl glycolate via acid-mediated hydrolysis reactions and extraction. Separation and Purification Technology, 2021, 268, 118718.	3.9	6
67	Facile and cost-effective synthesis of acidity-enhanced amorphous silica-alumina for high-performance isomerization. Journal of Solid State Chemistry, 2021, 300, 122249.	1.4	1
68	Strontium lons Function as Both an Accelerant and Structure-Directing Agent of Chabazite Crystallization. , 2021, 3, 187-192.		21
69	Application of ammonia probe-assisted solid-state NMR technique in zeolites and catalysis. Magnetic Resonance Letters, 2022, 2, 28-37.	0.7	8
70	Synergistic Effect in Vapor Phase Hydrodeoxygenation on USY Zeolite Supported Ir–Pt Catalyst: Role of Pentacoordinated Al ³⁺ Ions. Industrial & Engineering Chemistry Research, 2021, 60, 18707-18721.	1.8	5
71	Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes. Renewable and Sustainable Energy Reviews, 2022, 154, 111866.	8.2	110
72	Revealing BrÃ,nsted Acidic Bridging SiOHAl Groups on Amorphous Silica–Alumina by Ultrahigh Field Solid-State NMR. Journal of Physical Chemistry Letters, 2021, 12, 11563-11572.	2.1	8

#	Article	IF	CITATIONS
73	Cluster Model Simulations of Metal-Doped Amorphous Silicates for Heterogeneous Catalysis. Journal of Physical Chemistry C, 2021, 125, 27509-27519.	1.5	8
74	Promoting Aromatic C–H Activation through Reactive BrÃ,nsted Acid–Base Pairs on Penta-Coordinated Al-Enriched Amorphous Silica–Alumina. Journal of Physical Chemistry Letters, 2022, 13, 486-491.	2.1	3
75	Cooperative catalytic effects between the penta-coordinated Al and Al2O3 in Al2O3-AlPO4 for aldol condensation of methyl acetate with formaldehyde to methyl acrylate. Chinese Journal of Chemical Engineering, 2022, 52, 172-183.	1.7	5
76	Texture and acidity of amorphous silica-alumina regulated by the complex-decomposition method for steam reforming of dimethyl ether. Catalysis Today, 2022, 402, 172-182.	2.2	2
77	Modulating accessibility, acidity and hydrogenation functions on mesoporous NiO1-x/Y-zeolite for vanillin hydrodeoxygenation. Microporous and Mesoporous Materials, 2022, 336, 111868.	2.2	2
78	Synthesis of amorphous silica-alumina with enhanced specific surface area and acidity by pH-swing method and its catalytic activity in cumene cracking. Microporous and Mesoporous Materials, 2022, 337, 111897.	2.2	4
79	Influence of ASA composition on its supported Mo catalyst performance for the slurry-phase hydrocracking of vacuum residue. Fuel, 2022, 324, 124628.	3.4	3
80	On predicting bonding patterns of small clusters of alkaline-earth (Be, Mg) and triel (B, Al) fluorides: a balance between atomic size and electron-deficient character. Molecular Physics, 0, , .	0.8	0
81	Destructive and Protective Effects of NH ₃ on the Low-Temperature Hydrothermal Stability of SAPO-34 and Cu-SAPO-34. ACS Applied Materials & Interfaces, 2022, 14, 43442-43455.	4.0	5
82	Effect of the acid site in the catalytic degradation of volatile organic compounds: A review. Chemical Engineering Journal, 2023, 454, 140125.	6.6	23
83	BrÃ,nsted acid sites formation through penta-coordinated aluminum species on alumina-boria for phenylglyoxal conversion. Journal of Catalysis, 2022, 416, 375-386.	3.1	3
84	Advances in the characterization of inorganic solids using NMR correlation experiments. , 2022, , .		Ο
85	Synthesis of hybrid framework of tenorite and octahedrally coordinated aluminosilicate for the robust adsorption of cationic and anionic dyes. Environmental Research, 2023, 220, 115111.	3.7	5
87	Highly stable amorphous silica-alumina catalysts for continuous bio-derived mesitylene production under solvent-free conditions. Green Chemistry, 2023, 25, 1588-1596.	4.6	2
88	New mechanistic insights into the role of water in the dehydration of ethanol into ethylene over ZSM-5 catalysts at low temperature. Green Chemistry, 2023, 25, 3644-3659.	4.6	6
89	Reaction characteristics of metal-salt coordinated deep eutectic solvents during lignocellulosic pretreatment. Journal of Environmental Chemical Engineering, 2023, 11, 109531.	3.3	4
94	Are the BrÃ,nsted acid sites in amorphous silica–alumina bridging?. Chemical Communications, 2023, 59, 13962-13965.	2.2	0