

#	Article	IF	CITATIONS
1	Channel coding for enhanced mobile broadband communication in 5G systems., 2017,,.		44
2	Performance and PAPR Analysis of Single-Carrier Massive MIMO Systems with Channel Imperfections. , 2017, , .		2
3	Vehicular Communications: A Physical Layer Perspective. IEEE Transactions on Vehicular Technology, 2017, 66, 10647-10659.	3.9	188
4	Location-aware beamformed downlink control channel for ultra-dense networks., 2017,,.		3
5	Contention-Based Access for Ultra-Reliable Low Latency Uplink Transmissions. IEEE Wireless Communications Letters, 2018, 7, 182-185.	3.2	111
6	Low-Rate PBRL-LDPC Codes for URLLC in 5G. IEEE Wireless Communications Letters, 2018, 7, 800-803.	3.2	28
7	New Radio Technologies for Ultra Reliable and Low Latency Communications. , 2018, , .		6
8	Towards beyond Visual Line of Sight Piloting of UAVs with Ultra Reliable Low Latency Communication. , 2018, , .		23
9	On Generalized LDPC Codes for 5G Ultra Reliable Communication. , 2018, , .		4
10	Generalized LDPC Codes for Ultra Reliable Low Latency Communication in 5G and Beyond. IEEE Access, 2018, 6, 72002-72014.	2.6	20
11	Ultra-Reliable and Low-Latency Communications in 5G Downlink: Physical Layer Aspects. IEEE Wireless Communications, 2018, 25, 124-130.	6.6	378
12	Radio resource and traffic management for ultra-reliable low latency communications. , 2018, , .		19
13	Performance Analysis of Early-HARQ for Finite Block-Length Packet Transmission. , 2019, , .		6
14	Partial CRC-aided decoding of 5G-NR short codes using reliability information. Science China Information Sciences, 2019, 62, 1.	2.7	4
15	Downlink Multiuser Detection in the Virtual Cell-Based Ultra-Low Latency Vehicular Networks. IEEE Transactions on Vehicular Technology, 2019, 68, 4651-4666.	3.9	7
16	LEARN Codes: Inventing Low-Latency Codes via Recurrent Neural Networks. , 2019, , .		25
17	Quasi-Analytical Simulation Method for Estimating the Error Probability of Star Domain Decoders. IEEE Transactions on Communications, 2019, 67, 3101-3113.	4.9	6
18	Mission-Critical Machine-Type Communication: An Overview and Perspectives Towards 5G. IEEE Access, 2019, 7, 127198-127216.	2.6	38

#	Article	IF	CITATIONS
19	Extending Accurate Time Distribution and Timeliness Capabilities Over the Air to Enable Future Wireless Industrial Automation Systems. Proceedings of the IEEE, 2019, 107, 1132-1152.	16.4	81
20	Operation Merging for Hardware Implementations of Fast Polar Decoders. Journal of Signal Processing Systems, 2019, 91, 995-1007.	1.4	12
21	Fast Iterative Semi-Blind Receiver for URLLC in Short-Frame Full-Duplex Systems With CFO. IEEE Journal on Selected Areas in Communications, 2019, 37, 839-853.	9.7	13
22	High-Performance Wireless Networks for Industrial Control Applications: New Targets and Feasibility. Proceedings of the IEEE, 2019, 107, 1074-1093.	16.4	79
23	Improved Polar SCL Decoding by Exploiting the Error Correction Capability of CRC. IEEE Access, 2019, 7, 7032-7040.	2.6	15
24	Channel Coding Scheme for 5G Mobile Communication System for Short Length Message Transmission. Wireless Personal Communications, 2019, 106, 377-400.	1.8	29
25	Performance Analysis of Hybrid ARQ for Ultra-Reliable Low Latency Communications. IEEE Sensors Journal, 2019, 19, 3521-3531.	2.4	22
26	Tiny Codes for Guaranteeable Delay. IEEE Journal on Selected Areas in Communications, 2019, 37, 809-825.	9.7	31
27	Achieving Reliable URLLC-based Network in Industrial and Military Embedded Systems. , 2019, , .		6
28	Ultra-Reliable Wireless Communications via Incremental Redundancy and Space-Time Coding. , 2019, , .		O
29	Low-Latency Communication with Computational Complexity Constraints., 2019,,.		7
30	Lowered-Complexity Decoding Algorithms of LDPC Codes for Agricultural-WSNs, 2019, , .		O
31	Improved Spinal Codes: A Segmented CRC-Aided Scheme. , 2019, , .		0
32	Neural Network Based Successive Cancellation Decoding Algorithm for Polar Codes in URLLC. , 2019, , .		2
33	Short Block-Length Codes for Ultra-Reliable Low Latency Communications. IEEE Communications Magazine, 2019, 57, 130-137.	4.9	232
34	Performance Evaluation of Polar Code for Ultrareliable Low Latency Applications of 5G New Radio. Lecture Notes in Electrical Engineering, 2020, , 261-270.	0.3	3
35	Energy-Efficient Hardware Architectures for Fast Polar Decoders. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 322-335.	3.5	32
37	Beam-centric Handover Decision in Dense 5G-mmWave Networks. , 2020, , .		5

3

#	Article	IF	Citations
38	Low Complexity Autoencoder based End-to-End Learning of Coded Communications Systems. , 2020, , .		5
39	Problems and Challenges in Education in ICT at the Poznan University of Technology. , 2020, , .		1
40	Practical Dynamic SC-Flip Polar Decoders: Algorithm and Implementation. IEEE Transactions on Signal Processing, 2020, 68, 5441-5456.	3.2	21
41	Deep Reinforcement Learning-Based Beam Tracking for Low-Latency Services in Vehicular Networks. , 2020, , .		17
42	LEARN Codes: Inventing Low-Latency Codes via Recurrent Neural Networks. IEEE Journal on Selected Areas in Information Theory, 2020, 1 , 207-216.	1.9	25
43	Network for hypersonic UCAV swarms. Science China Information Sciences, 2020, 63, 1.	2.7	14
44	Fast Simulation of Ultra-Reliable Coded Communication System via Adaptive Shaping of Noise Histogram. , 2020, , .		4
45	5G-Enabled Fault Detection and Diagnostics: How Do We Achieve Efficiency?. IEEE Internet of Things Journal, 2020, 7, 3267-3281.	5.5	11
46	A Framework to Maximize the Capacity of 5G Systems for Ultra-Reliable Low-Latency Communications. IEEE Transactions on Mobile Computing, 2021, 20, 2111-2123.	3.9	22
47	A 7.8–13.6 pJ/b Ultra-Low Latency and Reconfigurable Neural Network-Assisted Polar Decoder With Multi-Code Length Support. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 1956-1965.	3.5	4
48	Improved Block Oriented Unit Memory Convolutional Codes. IEEE Transactions on Communications, 2021, , 1-1.	4.9	0
49	Self-Adaptive Ordered Statistics Decoder for Finite Block Length Raptor Codes Toward URLLC. IEEE Internet of Things Journal, 2022, 9, 3282-3297.	5.5	6
50	Sparse Superimposed Coding for Short-Packet URLLC. IEEE Internet of Things Journal, 2022, 9, 5275-5289.	5.5	10
51	Towards Reliable UAV Swarm Communication in D2D-Enhanced Cellular Networks. IEEE Transactions on Wireless Communications, 2021, 20, 1567-1581.	6.1	19
52	Quasi-Cyclic LDPC Codes for Short Block-Lengths. , 2021, , .		3
53	Sparse Vector Coding-based Superimposed Transmission for Short Packet URLLC. , 2021, , .		5
54	LDPC-Coded Spectrally Efficient FDM System with Iterative Decoder., 2021,,.		2
55	The Effect of Coupling Memory and Block Length on Spatially Coupled Serially Concatenated Codes. , 2021, , .		8

#	Article	IF	Citations
56	Latency and Reliability Trade-Off With Computational Complexity Constraints: OS Decoders and Generalizations. IEEE Transactions on Communications, 2021, 69, 2080-2092.	4.9	6
57	Channel Estimation of the 802.11p Standard in High-Speed Mobile Environments. , 2021, , .		1
58	Power Adaptive HARQ for Ultrareliability via a Novel Outage Probability Bound. , 2021, , .		3
59	CRC Codes as Error Correction Codes. , 2021, , .		18
60	Data-Oriented View for Convolutional Coding With Adaptive Irregular Constellations. IEEE Communications Letters, 2021, 25, 1771-1775.	2.5	1
61	Overview of the challenges and solutions for 5G channel coding schemes. Journal of Information and Telecommunication, 2021, 5, 460-483.	2.2	11
62	5G New Radio channel coding for messaging in Smart Grid. Sustainable Energy, Grids and Networks, 2021, 27, 100495.	2.3	5
63	SIVA: A Low Complexity and Optimum Decoding Algorithm for Tail-Biting Codes. IEEE Transactions on Wireless Communications, 2021, 20, 5957-5968.	6.1	1
64	Design of LDBCH Codes for Ultra Reliable Low Latency Communications. IEEE Communications Letters, 2021, 25, 2800-2804.	2.5	5
65	Federated Learning for Internet of Things: Recent Advances, Taxonomy, and Open Challenges. IEEE Communications Surveys and Tutorials, 2021, 23, 1759-1799.	24.8	290
66	Metrics and Algorithms for Designing Convolutional Codes With Unequal Error Protection. IEEE Transactions on Vehicular Technology, 2021, 70, 11169-11183.	3.9	3
67	Polar Code Appropriateness for Ultra-Reliable and Low-Latency Use Cases of 5G Systems. International Journal of Networked and Distributed Computing, 2019, 7, 93.	1.3	12
68	A Multi-Objective Optimization Framework for URLLC With Decoding Complexity Constraints. IEEE Transactions on Wireless Communications, 2022, 21, 2786-2798.	6.1	3
70	Advanced LTE (5G) in Medical IOT-Research, Future and Scope. Communications in Computer and Information Science, 2018, , 192-200.	0.4	0
71	Achieving Efficient Computation Tasks for 5G-Enabled Industrial IoT Applications. , 2020, , .		0
72	Optimal Configured Grant Selection Method for NR Rel-16 Uplink URLLC. , 2020, , .		4
73	Optimal CRC Design and Serial List Viterbi Decoding for Multi-Input Convolutional Codes., 2020,,.		1
74	On the Design of Generalized LDPC Codes with Component BCJR Decoding. , 2020, , .		1

#	Article	IF	Citations
75	Keep the bursts and ditch the interleavers. , 2020, , .		21
76	Multiplexing URLLC Traffic within eMBB Services in 5G NR: Fair Scheduling. IEEE Transactions on Communications, 2020, , $1-1$.	4.9	53
77	Generalization Bounds and Algorithms for Learning to Communicate Over Additive Noise Channels. IEEE Transactions on Information Theory, 2022, 68, 1886-1921.	1.5	5
78	Quantum Maximum Likelihood Decoding for Linear Block Codes. , 2020, , .		4
79	LDPC Matrix Analysis for Short Packet Transmission in Factory Automation Scenarios., 2020,,.		1
80	CNN-SC Decoder for Polar Codes under Correlated Noise Channels. , 2020, , .		3
81	Evaluation of 5G channel coding technology: for the mMTC scenario. , 2021, , .		1
82	Joint Iterative Blind Self-Interference Cancellation, Propagation Channel Estimation and Decoding Processes in Full-Duplex Transmissions. IEEE Access, 2022, 10, 22795-22807.	2.6	1
83	Energy Efficient HARQ for Ultrareliability via Novel Outage Probability Bound and Geometric Programming. IEEE Transactions on Wireless Communications, 2022, 21, 7810-7820.	6.1	1
84	Wireless Communication in Modular Multilevel Converters and Electromagnetic Interference Characterization. IEEE Access, 2022, 10, 38189-38201.	2.6	1
85	Joint Semi-Blind Self-Interference Cancellation and Equalisation Processes in 5G QC-LDPC-Encoded Short-Packet Full-Duplex Transmissions. Sensors, 2022, 22, 2204.	2.1	5
86	On Meeting a Maximum Delay Constraint. , 2021, , .		1
88	Keep the Bursts and Ditch the Interleavers. IEEE Transactions on Communications, 2022, 70, 3655-3667.	4.9	16
89	Performance Analysis of Pulse Shaping Filters with Novel Rate Adaptive Irregular LDPC Codes. , 2022, , .		0
90	Effective identification of dominant fully absorbing sets for Raptorâ€like LDPC codes. ETRI Journal, 2023, 45, 7-17.	1.2	1
91	Enhancing 5G Forward Error Correction Codes for URLLC by Spatial Coupling. , 2022, , .		0
92	On Ultra-reliable Low Latency Communication between Energy Harvesting Transmitter and Receiver with OS Decoder. , 2022, , .		1
93	Secrecy Coding Analysis of Short-Packet Full-Duplex Transmissions with Joint Iterative Channel Estimation and Decoding Processes. Sensors, 2022, 22, 5257.	2.1	0

0

#	Article	IF	CITATIONS
94	Partial Sample Transmission and Deep Neural Decoding for URLLC V2X System. IEEE Transactions on Wireless Communications, 2022, , 1-1.	6.1	0
95	MMSE-A-MAP Decoder for Block Orthogonal Sparse Superposition Codes in Fading Channels. , 2022, , .		1
96	A Survey on FEC Techniques for Industrial Wireless Communications. IEEE Open Journal of the Industrial Electronics Society, 2022, 3, 674-699.	4.8	4
97	Nonbinary polar coding with low decoding latency and complexity. , 2023, 1, 36-53.		1
98	基于感通算èžå•̂çš"å⁻¼è⅓º"å¼è‡ªåŠ¨é©¾é©¶ç³»ç»Ÿ—æ—线虚拟å⁻¼è⅓°. Scientia Sinic	a l o£e rmat	io n is, 2022,
99	A new design of channel denoiser using <i>residual autoencoder</i> . Electronics Letters, 2023, 59, .	0.5	3
100	A Review: Error Correcting Codes for Efficient Underwater Optical Communication MIMO System. , 2022, , .		0
101	Learning Maximum Margin Channel Decoders. IEEE Transactions on Information Theory, 2023, 69, 3597-3626.	1.5	0
102	Various Channel Coding Schemes for 5G. , 2023, , .		1
103	Polar-Coded Transmission over 7.8-km Terrestrial Free-Space Optical Links. Photonics, 2023, 10, 462.	0.9	0
107	Concept for Using Permutation-Based Three-Pass Cryptographic Protocol in Noisy Channels. Studies in Systems, Decision and Control, 2023, , 99-113.	0.8	1
108	Efficient iterative decoding algorithm of RS-LDPC concatenated schemes with 5G-LDPC codes. , 2023, , .		0

Sequential Decoding of Kronecker Codes for URLLC in 5G Systems. , 2023, , .

112