Microgap thermophotovoltaic systems with low emission output

Journal of Optics (United Kingdom) 18, 115104 DOI: 10.1088/2040-8978/18/11/115104

Citation Report

#	Article	IF	CITATIONS
1	Thermal energy conversion using near-field thermophotovoltaic device composed of a thin-film tungsten radiator and a thin-film silicon cell. Journal of Applied Physics, 2017, 122, 084302.	2.5	9
2	Super-Planckian Thermophotovoltaics Without Vacuum Gaps. Physical Review Applied, 2017, 8, .	3.8	12
3	Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 210, 35-43.	2.3	38
4	Magnetic field free circularly polarized thermal emission from a chiral metasurface. Physical Review B, 2018, 98, .	3.2	28
5	Indium antimonide photovoltaic cells for near-field thermophotovoltaics. Solar Energy Materials and Solar Cells, 2019, 203, 110190.	6.2	15
6	An Equivalent ABCD-Matrix Formalism for Non-Local Wire Media With Arbitrary Terminations. IEEE Transactions on Antennas and Propagation, 2020, 68, 1786-1798.	5.1	1
7	Hyperbolic Bismuth–Dielectric Structure for Terahertz Photonics. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000093.	2.4	3
8	Transient performance of a nanowire-based near-field thermophotovoltaic system. Applied Thermal Engineering, 2021, 192, 116918.	6.0	11
9	Miniaturized Backward Coupler Realized by the Circuitâ€Based Planar Hyperbolic Waveguide. Advanced Photonics Research, 2021, 2, 2100035.	3.6	6
10	Micron-sized liquid nitrogen-cooled indium antimonide photovoltaic cell for near-field thermophotovoltaics. Optics Express, 2019, 27, A11.	3.4	31
11	Zero-index and hyperbolic metacavities: fundamentals and applications. Journal Physics D: Applied Physics, 2022, 55, 083001.	2.8	33
12	High contrast grating based thermal emitters for portable thermophotovoltaic systems. , 2018, , .		1
13	Near-field thermophotovoltaic energy conversion analysis based on enhanced radiative absorption distribution. Journal Physics D: Applied Physics, 2023, 56, 395501.	2.8	0
14	Analysis of Near-Field Thermophotovoltaic Devices Using Graphene–Germanium Schottky Cell. IEEE Transactions on Electron Devices, 2023, 70, 3269-3274.	3.0	0
15	Enhanced radiative absorption distribution in near-field thermophotovoltaic system with multilayer emitter. AIP Conference Proceedings, 2023, , .	0.4	0
16	Aluminium doping effects on physical properties of semiconductors InSb for optoelectronic devices: a computational insight. Optical and Quantum Electronics, 2024, 56, .	3.3	0
17	Tuning the spectrum of near-field radiative heat transfer using Mie resonance based metamaterials. Physical Review B, 2024, 109, .	3.2	0