Identifying patients at risk for severe exacerbations of a validation of a multivariable prediction model

Thorax 71, 838-846 DOI: 10.1136/thoraxjnl-2015-208138

Citation Report

#	Article	IF	CITATIONS
1	The evidence on tiotropium bromide in asthma: from the rationale to the bedside. Multidisciplinary Respiratory Medicine, 2017, 12, 12.	0.6	21
2	The role of upper airway pathology as a co-morbidity in severe asthma. Expert Review of Respiratory Medicine, 2017, 11, 855-865.	1.0	42
3	Inflammatory and Comorbid Features of Patients with Severe Asthma and Frequent Exacerbations. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 302-313.	2.5	346
4	Machine learning approaches to personalize early prediction of asthma exacerbations. Annals of the New York Academy of Sciences, 2017, 1387, 153-165.	1.8	138
5	Emerging Concepts in Evidence-Based Asthma Management. Seminars in Respiratory and Critical Care Medicine, 2018, 39, 082-90.	0.8	1
6	Exacerbations in Adults with Asthma: A Systematic Review and External Validation of Prediction Models. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 1942-1952.e15.	2.0	49
7	Comorbid "treatable traits―in difficult asthma: Current evidence and clinical evaluation. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 1369-1382.	2.7	113
8	Performance of database-derived severe exacerbations and asthma control measures in asthma: responsiveness and predictive utility in a UK primary care database with linked questionnaire data. Journal of Pragmatic and Observational Research, 2018, Volume 9, 29-42.	1.1	18
9	Prospective predictors of exacerbation status in severe asthma over a 3â€year followâ€up. Clinical and Experimental Allergy, 2018, 48, 1137-1146.	1.4	48
10	Rhinosinutis and Asthma in Children. Sinusitis, 2018, 3, 3.	0.2	2
11	U-BIOPRED: evaluation of the value of a public–private partnership to industry. Drug Discovery Today, 2018, 23, 1622-1634.	3.2	14
12	Development and Validation of Personalized Prediction to Estimate Future Risk of Severe Exacerbations and Uncontrolled Asthma in Patients with Asthma, Using Clinical Parameters and Early Treatment Response. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 175-182.e5.	2.0	14
13	ERS/EAACI statement on severe exacerbations in asthma in adults: facts, priorities and key research questions. European Respiratory Journal, 2019, 54, 1900900.	3.1	56
14	Predicting asthma attacks in primary care: protocol for developing a machine learning-based prediction model. BMJ Open, 2019, 9, e028375.	0.8	21
15	A Single Institution Retrospective Study of the Clinical Efficacy of Tiotropium Respimat in Never-Smoking Elderly Asthmatics with Irreversible Airflow Limitation. Drug Research, 2019, 69, 211-217.	0.7	2
16	Diagnosis and Treatment of Asthma in Nonpregnant Women. Journal of Midwifery and Women's Health, 2019, 64, 18-27.	0.7	1
17	Predictors of future exacerbations in a multi-ethnic Asian population with asthma. Journal of Asthma, 2019, 56, 380-387.	0.9	9
18	Development and validation of an asthma exacerbation prediction model using electronic health record (EHR) data. Journal of Asthma, 2020, 57, 1339-1346.	0.9	20

CITATION REPORT

#	Article	IF	CITATIONS
19	ICS-formoterol reliever therapy stepwise treatment algorithm for adult asthma. European Respiratory Journal, 2020, 55, 1901407.	3.1	26
20	The impact of comorbidities on severe asthma. Current Opinion in Pulmonary Medicine, 2020, 26, 47-55.	1.2	40
21	Testing the Generalizability of an Automated Method for Explaining Machine Learning Predictions on Asthma Patients' Asthma Hospital Visits to an Academic Healthcare System. IEEE Access, 2020, 8, 195971-195979.	2.6	20
22	Towards a personalised treatment approach for asthma attacks. Thorax, 2020, 75, 1119-1129.	2.7	13
23	On the aggregation of published prognostic scores for causal inference in observational studies. Statistics in Medicine, 2020, 39, 1440-1457.	0.8	4
24	A systematic review of methodology used in the development of prediction models for future asthma exacerbation. BMC Medical Research Methodology, 2020, 20, 22.	1.4	16
25	Fractional exhaled nitric oxide as a determinant for the clinical course of asthma: a systematic review. European Clinical Respiratory Journal, 2021, 8, 1891725.	0.7	14
28	Forecasting Future Asthma Hospital Encounters of Patients With Asthma in an Academic Health Care System: Predictive Model Development and Secondary Analysis Study. Journal of Medical Internet Research, 2021, 23, e22796.	2.1	18
29	Generalizability of an Automatic Explanation Method for Machine Learning Prediction Results on Asthma-Related Hospital Visits in Patients With Asthma: Quantitative Analysis. Journal of Medical Internet Research, 2021, 23, e24153.	2.1	5
30	Novel Machine Learning Can Predict Acute Asthma Exacerbation. Chest, 2021, 159, 1747-1757.	0.4	35
31	Using Computational Methods to Improve Integrated Disease Management for Asthma and Chronic Obstructive Pulmonary Disease: Protocol for a Secondary Analysis. JMIR Research Protocols, 2021, 10, e27065.	0.5	0
32	Developing an ML pipeline for asthma and COPD: The case of a Dutch primary care service. International Journal of Intelligent Systems, 2021, 36, 6763-6790.	3.3	1
33	Ranking Rule-Based Automatic Explanations for Machine Learning Predictions on Asthma Hospital Encounters in Patients With Asthma: Retrospective Cohort Study. JMIR Medical Informatics, 2021, 9, e28287.	1.3	4
34	Developing a short-term prediction model for asthma exacerbations from Swedish primary care patients' data using machine learning - Based on the ARCTIC study. Respiratory Medicine, 2021, 185, 106483.	1.3	12
35	Asthma Patients Benefit More Than Chronic Obstructive Pulmonary Disease Patients in the Coronavirus Disease 2019 Pandemic. Frontiers in Medicine, 2021, 8, 709006.	1.2	2
36	Adult Severe Asthma. , 2022, , 383-399.		0
37	Exacerbation-Prone Asthma: A Separate Bioclinical Phenotype?. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 275-277.	2.5	18
38	Developing a Model to Predict Hospital Encounters for Asthma in Asthmatic Patients: Secondary Analysis. JMIR Medical Informatics, 2020, 8, e16080.	1.3	39

	CITATION	CITATION REPORT	
#	ARTICLE Asthma Exacerbation Prediction and Risk Factor Analysis Based on a Time-Sensitive, Attentive Neural	IF	CITATIONS
39	Network: Retrospective Cohort Study. Journal of Medical Internet Research, 2020, 22, e16981.	2.1	34
40	Automatically Explaining Machine Learning Prediction Results on Asthma Hospital Visits in Patients With Asthma: Secondary Analysis. JMIR Medical Informatics, 2020, 8, e21965.	1.3	14
41	Developing a Predictive Model for Asthma-Related Hospital Encounters in Patients With Asthma in a Large, Integrated Health Care System: Secondary Analysis. JMIR Medical Informatics, 2020, 8, e22689.	1.3	19
42	Future Risks in Patients With Severe Asthma. Allergy, Asthma and Immunology Research, 2019, 11, 763.	1.1	43
45	Bronchial asthma — a new paradigm in GINA clinical recommendations. Đart 1. Tuberculosis Lung Diseases HIV Infection, 2020, .	0.3	0
47	Acute exacerbations of asthma. , 0, , 66-85.		0
48	Nasal polyposis and asthma: the chest physician's view. , 0, , 105-121.		1
50	Bronchial asthma — a new paradigm in GINA clinical recommendations. Đart 2. Tuberculosis Lung Diseases HIV Infection, 2020, .	0.3	0
51	Predicting Continuity of Asthma Care Using a Machine Learning Model: Retrospective Cohort Study. International Journal of Environmental Research and Public Health, 2022, 19, 1237.	1.2	4
52	Forecasting the Effects of Real-Time Indoor PM2.5 on Peak Expiratory Flow Rates (PEFR) of Asthmatic Children in Korea: A Deep Learning Approach. IEEE Access, 2022, 10, 19391-19400.	2.6	3
53	A Roadmap for Boosting Model Generalizability for Predicting Hospital Encounters for Asthma. JMIR Medical Informatics, 2022, 10, e33044.	1.3	1
54	Blood eosinophils, fractional exhaled nitric oxide and the risk of asthma attacks in randomised controlled trials: protocol for a systemic review and control arm patient-level meta-analysis for clinical prediction modelling. BMJ Open, 2022, 12, e058215.	0.8	7
56	Using placebo-controlled trials to define predictors of future exacerbations in severe asthma patients. European Respiratory Journal, 2021, 58, 2101702.	3.1	0
57	Identifying asthma patients at high risk of exacerbation in a routine visit: A machine learning model. Respiratory Medicine, 2022, 198, 106866.	1.3	8
58	Characteristics, phenotypes, mechanisms and management of severe asthma. Chinese Medical Journal, 2022, 135, 1141-1155.	0.9	12
60	Error and Timeliness Analysis for Using Machine Learning to Predict Asthma Hospital Visits: Retrospective Cohort Study. JMIR Medical Informatics, 2022, 10, e38220.	1.3	0
61	Dupilumab efficacy in subgroups of type 2 asthma with high-dose inhaled corticosteroids at baseline. Respiratory Medicine, 2022, 202, 106938.	1.3	5
62	Acute severe asthma in emergency department: clinical characteristics, risk factors, and predictors for poor outcome. Egyptian Journal of Bronchology, 2022, 16, .	0.3	0

#ARTICLEIFCITATIONS63Independent risk factors of asthma exacerbations: 3-year follow-up in a single-center prospective
cohort study. Annals of Translational Medicine, 2022, 10, 1353-1353.0.7065Management of Chronic Asthma in Adults. Primary Care - Clinics in Office Practice, 2023, , .0.7069Asthma and COPD: A Focus on Î2-Agonists â€" Past, Present and Future. Handbook of Experimental
Pharmacology, 2023, , .0.90

CITATION REPORT