Designing CPS/IoT applications for smart buildings and

IET Cyber-Physical Systems: Theory and Applications 1, 3-12 DOI: 10.1049/iet-cps.2016.0025

Citation Report

#	Article	IF	CITATIONS
1	IoTtalk-RC: Sensors As Universal Remote Control for Aftermarket Home Appliances. IEEE Internet of Things Journal, 2017, 4, 1104-1112.	5.5	38
2	Demand side management with consumer clusters in cyberâ€physical smart distribution system considering priceâ€based and rewardâ€based scheduling programs. IET Cyber-Physical Systems: Theory and Applications, 2017, 2, 75-83.	1.9	14
3	Location-based IoT applications on campus: The IoTtalk approach. Pervasive and Mobile Computing, 2017, 40, 660-673.	2.1	17
4	An architecture for implementing private local automation clouds built by CPS. , 2017, , .		12
5	Cyber–Physical–Social Frameworks for Urban Big Data Systems: A Survey. Applied Sciences (Switzerland), 2017, 7, 1017.	1.3	56
6	AAoT: Lightweight attestation and authentication of low-resource things in IoT and CPS. Computer Networks, 2018, 134, 167-182.	3.2	74
7	Priority based deployment of IoT devices. , 2018, , .		6
8	Design and Process Metamodels for Modelling and Verification of Safety-Related Software Applications in Smart Building Systems. , 2018, , .		2
9	Implementing an internet of things eLearning ecosystem. AIP Conference Proceedings, 2018, , .	0.3	0
10	Application of Fog Architecture Based on Multi-agent Mechanism in CPPS. , 2018, , .		3
11	The Challenges in Development of Internet of Things Based Smart Power Distribution System. , 2018, , .		2
12	Smart System for Protecting Onion from Different Attack. , 2018, , .		2
13	Virtual Physical Space $\hat{a} \in $ An Architecture Supporting Internet of Things Applications. , 2018, , .		21
14	A mutual authentication scheme with user anonymity for cyber-physical and internet of things. , 2018, ,		1
15	Internet of Things Water Monitoring for a Smart Seaside City. , 2018, , .		13
16	Knowledge discovery for enabling smart Internet of Things: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018, 8, e1276.	4.6	4
17	Data analytics and processing platforms in CPS. , 2019, , 1-24.		4
18	Internet of Things Applications as Energy Internet in Smart Grids and Smart Environments. Electronics (Switzerland), 2019, 8, 972.	1.8	110

#	Article	IF	CITATIONS
19	Design and Verification of Cyber-Physical Systems Specified by Petri Nets—A Case Study of a Direct Matrix Converter. Mathematics, 2019, 7, 812.	1.1	13
20	IOT Devices for Control Applications: A Review. , 2019, , .		4
21	Smart Home Automation System Using Internet of Things. , 2019, , .		22
22	Anomaly Detection Based on Fixed and Wearable Sensors in Assisted Living Environments. , 2019, , .		6
23	Specification of Cyber-Physical Systems with the Application of Interpreted Nets. , 2019, , .		9
24	Fog/Edge Computing-Based IoT (FECIoT): Architecture, Applications, and Research Issues. IEEE Internet of Things Journal, 2019, 6, 4118-4149.	5.5	175
25	A Cyber-Physical Middleware Platform for Buildings in Smart Cities. , 2019, , 645-652.		1
26	Guaranteed cost control of cyberâ€physical systems with packet dropouts under dos jamming attacks. Asian Journal of Control, 2020, 22, 1659-1669.	1.9	23
27	BigraphTalk: Verified Design of IoT Applications. IEEE Internet of Things Journal, 2020, 7, 2955-2967.	5.5	14
28	Smart Buildings: Systems and Drivers. Buildings, 2020, 10, 153.	1.4	59
29	Formal Verification of Control Modules in Cyber-Physical Systems. Sensors, 2020, 20, 5154.	2.1	4
30	IoT-based enterprise resource planning: Challenges, open issues, applications, architecture, and future research directions. Internet of Things (Netherlands), 2020, 11, 100262.	4.9	54
31	Experiments to Assess the Implementation of A 4 GHZ Proximity Detector for Smart Crosswalk. , 2020, , .		0
32	HADES: a Hybrid Anomaly Detection System for Large-Scale Cyber-Physical Systems. , 2020, , .		3
33	Priority Based Traffic Pre-emption System for Medical Emergency Vehicles in Smart Cities. , 2020, , .		5
34	Secure Edge Computing Management Based on Independent Microservices Providers for Gateway-Centric IoT Networks. IEEE Access, 2020, 8, 187975-187990.	2.6	24
35	A Secure, Energy-Efficient and Distributed manageable model for a Smart Home. , 2020, , .		0
36	A Dual-Connectivity Mobility Link Service for Producer Mobility in the Named Data Networking. Sensors, 2020, 20, 4859.	2.1	7

CITATION REPORT

		REPORT	
#	Article	IF	CITATIONS
37	Determinism in Cyber-Physical Systems Specified by Interpreted Petri Nets. Sensors, 2020, 20, 5565.	2.1	18
38	IoTRepair: Systematically Addressing Device Faults in Commodity IoT. , 2020, , .		5
39	Resource Provisioning for Cyber–Physical–Social System in Cloud-Fog-Edge Computing Using Optimal Flower Pollination Algorithm. IEEE Access, 2020, 8, 105311-105319.	2.6	27
40	Internet of Robotic Things in Smart Domains: Applications and Challenges. Sensors, 2020, 20, 3355.	2.1	75
41	How IoT Can Integrate Biotechnological Approaches for City Applications—Review of Recent Advancements, Issues, and Perspectives. Applied Sciences (Switzerland), 2020, 10, 3990.	1.3	12
42	SimTalk: Simulation of IoT Applications. Sensors, 2020, 20, 2563.	2.1	11
43	Application of complex event processing approaches for intelligent building development: AÂreview. Journal of Ambient Intelligence and Smart Environments, 2020, 12, 101-124.	0.8	3
44	Content analysis of literature on big data in smart cities. Benchmarking, 2021, 28, 1837-1857.	2.9	17
45	Near Optimum Random Routing of Uniformly Load Balanced Nodes in Wireless Sensor Networks Using Connectivity Matrix. Wireless Personal Communications, 2021, 116, 2963-2979.	1.8	10
46	Cyber-physical systems architectures for industrial internet of things applications in Industry 4.0: A literature review. Journal of Manufacturing Systems, 2021, 58, 176-192.	7.6	212
47	Application of Internet of Thing and Cyber Physical System in Industry 4.0 Smart Manufacturing. Advances in Science, Technology and Innovation, 2021, , 203-217.	0.2	16
48	Challenges and Applications of Cyber Physical Systems. Advances in Systems Analysis, Software Engineering, and High Performance Computing Book Series, 2021, , 1-17.	0.5	1
49	Observer Design for Cyber-Physical Systems With State Delay and Sparse Sensor Attacks. IEEE Access, 2021, 9, 3261-3268.	2.6	4
50	An Efficient RPL-Based Mechanism for Node-to-Node Communications in IoT. IEEE Internet of Things Journal, 2021, 8, 7152-7169.	5.5	14
51	Microservice-Based Performance Problem Detection in Cyber-Physical System Software Updates. , 2021, , .		2
52	A Survey on IoT Applications in Smart Cities. EAI/Springer Innovations in Communication and Computing, 2022, , 179-204.	0.9	6
53	Security and Effectiveness Analysis of the Gateway Integrity Checking Protocol. IEEE Transactions on Dependable and Secure Computing, 2022, 19, 2396-2404.	3.7	0
54	A shared computational model using distributed processing in a CPS enabled environment. , 2021, , .		1

#	Article	IF	CITATIONS
56	Proposal for Information and Communications Technologies that Are Essential to Smart City Dimensions. Lecture Notes in Electrical Engineering, 2019, , 225-240.	0.3	0
57	A Cyber-Physical System Modelling Framework for an Intelligent Urban Traffic System. Computacion Y Sistemas, 2019, 23, .	0.2	0
58	Wearable inertial sensors to recognize basic human motion: What technology for what activity?. , 2020, , .		0
59	FaTEMa: A Framework for Multi-Layer Fault Tolerance in IoT Systems. Sensors, 2021, 21, 7181.	2.1	3
61	Adaptive tracking control of switched cyber-physical systems with cyberattacks. Applied Mathematics and Computation, 2022, 415, 126721.	1.4	7
62	AutoloT. , 2020, , .		13
63	Data quality challenges in large-scale cyber-physical systems: A systematic review. Information Systems, 2022, 105, 101951.	2.4	22
64	Industrial digital twins at the nexus of NextG wireless networks and computational intelligence: A survey. Journal of Network and Computer Applications, 2022, 200, 103309.	5.8	41
65	An Intelligent IoT Framework for Handling Multidimensional Data Generated by IoT Gadgets. , 2022, , 199-228.		1
66	CPS: Role, Characteristics, Architectures and Future Potentials. Procedia Computer Science, 2022, 200, 1347-1358.	1.2	5
67	A Triple Human-Digital Twin Architecture for Cyber-Physical Systems. CMES - Computer Modeling in Engineering and Sciences, 2022, 131, 1557-1578.	0.8	2
68	Green Building Design Based on 5G Network and Internet of Things System. Journal of Sensors, 2022, 2022, 1-14.	0.6	2
69	BMDD: a novel approach for IoT platform (broker-less and microservice architecture, decentralized) Tj ETQq0 0 0	rgBT /Ove 2 . 7	rlock 10 Tf 5
70	IoTRepair: Flexible Fault Handling in Diverse IoT Deployments. ACM Transactions on Internet of Things, 2022, 3, 1-33.	3.4	5
71	Hippo-CPS: Verification of Boundedness, Safeness and Liveness of Petri Net-Based Cyber-Physical Systems. IFIP Advances in Information and Communication Technology, 2022, , 74-82.	0.5	7
72	Commlib: An easy-to-use communication library for Cyber–Physical Systems. SoftwareX, 2022, 19, 101180.	1.2	0
73	Robust Security Control Under Denial-of-service Jamming Attacks: An Event-triggered Sliding-mode Control Approach. International Journal of Control, Automation and Systems, 2022, 20, 3892-3902.	1.6	2
74	Analysis of Control Part of Cyber-Physical Systems Specified by Interpreted Petri Nets. , 2022, , .		4

CITATION REPORT

#	Article	IF	CITATIONS
75	A Mixed Reality-Based Platform towards Human-Cyber-Physical Systems with IoT Wearable Device for Occupational Safety and Health Training. Applied Sciences (Switzerland), 2022, 12, 12009.	1.3	5
76	A Survey of Cyber-Physical Systems Applications (2017–2022). , 2022, , 1-29.		0
77	Adaptive tracking control of unknown state target for CPSs subjected to cyberattacks. , 2022, , .		0
78	Designing Reconfigurable Cyber-Physical Systems Using Unified Modeling Language. Energies, 2023, 16, 1273.	1.6	4
79	Reachable Set Control for Cyber-Physical Systems with False Data Injection Attacks. , 2023, , .		0
80	Hippo-CPS: A Tool for Verification and Analysis of Petri Net-Based Cyber-Physical Systems. Lecture Notes in Computer Science, 2023, , 191-204.	1.0	0
81	A Study of Smart Evolution on Al-Based Cyber-Physical System Using Blockchain Techniques. , 2023, , 327-346.		0
82	Preliminary Verification of Liveness in a Control Part of Cyber-Physical Systems Modeled by a Petri Net. IFIP Advances in Information and Communication Technology, 2023, , 205-215.	0.5	0
84	A Survey of Cyber-physical Systems Applications (2017–2022). , 2023, , 2089-2117.		1

CITATION REPORT