Development and Validation of a Deep Learning Algorit Retinopathy in Retinal Fundus Photographs

JAMA - Journal of the American Medical Association 316, 2402 DOI: 10.1001/jama.2016.17216

Citation Report

#	Article	IF	CITATIONS
2	Translating Artificial Intelligence Into Clinical Care. JAMA - Journal of the American Medical Association, 2016, 316, 2368.	3.8	150
3	Artificial Intelligence With Deep Learning Technology Looks Into Diabetic Retinopathy Screening. JAMA - Journal of the American Medical Association, 2016, 316, 2366.	3.8	204
4	An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nature Biomedical Engineering, 2017, 1, .	11.6	234
6	Cephalometric landmark detection in dental x-ray images using convolutional neural networks. Proceedings of SPIE, 2017, , .	0.8	32
7	Contextual convolutional neural networks for lung nodule classification using Gaussian-weighted average image patches. Proceedings of SPIE, 2017, , .	0.8	10
8	Auspicious machine learning. Nature Biomedical Engineering, 2017, 1, .	11.6	9
9	Brain Hemorrhage Diagnosis by Using Deep Learning. , 2017, , .		36
10	A transfer learning approach for classification of clinical significant prostate cancers from mpMRI scans. Proceedings of SPIE, 2017, , .	0.8	15
11	Deep image mining for diabetic retinopathy screening. Medical Image Analysis, 2017, 39, 178-193.	7.0	338
12	Retinal vascular geometry and 6Âyear incidence and progression of diabetic retinopathy. Diabetologia, 2017, 60, 1770-1781.	2.9	48
13	Computational image analysis for prognosis determination in DME. Vision Research, 2017, 139, 204-210.	0.7	42
14	Precision Radiology: Predicting longevity using feature engineering and deep learning methods in a radiomics framework. Scientific Reports, 2017, 7, 1648.	1.6	123
15	Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Information Sciences, 2017, 415-416, 190-198.	4.0	628
16	Precision Medicine for Heart Failure with Preserved Ejection Fraction: An Overview. Journal of Cardiovascular Translational Research, 2017, 10, 233-244.	1.1	66
17	Reaching the Unreachable: Novel Approaches to Telemedicine Screening of Underserved Populations for Vitreoretinal Disease. Current Eye Research, 2017, 42, 963-970.	0.7	7
18	Does Machine Learning Automate Moral Hazard and Error?. American Economic Review, 2017, 107, 476-480.	4.0	88
19	Deep Convolutional Neural Networks for Endotracheal Tube Position and X-ray Image Classification: Challenges and Opportunities. Journal of Digital Imaging, 2017, 30, 460-468.	1.6	77
20	Automatic detection of diabetic retinopathy features in ultra-wide field retinal images. Proceedings of SPIE, 2017, , .	0.8	2

	CITATION	REPORT	
#	Article	IF	CITATIONS
21	Diabetic Retinopathy Screening With Telemedicine. JAMA Ophthalmology, 2017, 135, 438.	1.4	3
22	Computational medicine: A cybernetic eye for rare disease. Nature Biomedical Engineering, 2017, 1, .	11.6	9
23	The Evolution of Patient Diagnosis. JAMA - Journal of the American Medical Association, 2017, 318, 1859.	3.8	30
24	Machine Learning Approaches in Cardiovascular Imaging. Circulation: Cardiovascular Imaging, 2017, 10,	1.3	94
25	Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks. JAMA Ophthalmology, 2017, 135, 1170.	1.4	460
26	Crowdsourcing and Automated Retinal Image Analysis for Diabetic Retinopathy. Current Diabetes Reports, 2017, 17, 106.	1.7	11
27	The imaging tsunami: Computational opportunities and challenges. Current Opinion in Systems Biology, 2017, 4, 105-113.	1.3	27
28	Sensor, Signal, and Imaging Informatics. Yearbook of Medical Informatics, 2017, 26, 120-124.	0.8	0
29	Application of Convolutional Neural Networks in the Diagnosis of Helicobacter pylori Infection Based on Endoscopic Images. EBioMedicine, 2017, 25, 106-111.	2.7	231
30	High-Definition Medicine. Cell, 2017, 170, 828-843.	13.5	168
32	Point-of-care mobile digital microscopy and deep learning for the detection of soil-transmitted helminths and <i>Schistosoma haematobium</i> . Global Health Action, 2017, 10, 1337325.	0.7	75
33	Teleophthalmic Approach for Detection of Corneal Diseases: Accuracy and Reliability. Cornea, 2017, 36, 1159-1165.	0.9	30
35	Will Perimetry Be Performed to Monitor Glaucoma in 2025?. Ophthalmology, 2017, 124, S71-S75.	2.5	22
36	Comparing deep neural network and other machine learning algorithms for stroke prediction in a large-scale population-based electronic medical claims database. , 2017, 2017, 3110-3113.		90
37	Automated arteriole and venule classification using deep learning for retinal images from the UK Biobank cohort. Computers in Biology and Medicine, 2017, 90, 23-32.	3.9	95
38	Training Deep Convolutional Neural Networks with Active Learning for Exudate Classification in Eye Fundus Images. Lecture Notes in Computer Science, 2017, , 146-154.	1.0	11
39	Deep Learning for Automatic Detection of Abnormal Findings in Breast Mammography. Lecture Notes in Computer Science, 2017, , 321-329.	1.0	28
40	Computerized Bone Age Estimation Using Deep Learning Based Program: Evaluation of the Accuracy and Efficiency. American Journal of Roentgenology, 2017, 209, 1374-1380.	1.0	107

#	Article	IF	CITATIONS
41	Patch-Based Deep Convolutional Neural Network for Corneal Ulcer Area Segmentation. Lecture Notes in Computer Science, 2017, , 101-108.	1.0	10
42	Accuracy of deep learning, a machine-learning technology, using ultra–wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment. Scientific Reports, 2017, 7, 9425.	1.6	93
43	Unintended Consequences of Machine Learning in Medicine. JAMA - Journal of the American Medical Association, 2017, 318, 517.	3.8	574
44	Augmenting diagnostic vision with Al. Lancet, The, 2017, 390, 221.	6.3	37
45	Label-free molecular imaging of the kidney. Kidney International, 2017, 92, 580-598.	2.6	24
46	Building Bridges Across Clinical Registries. Anesthesia and Analgesia, 2017, 125, 689-691.	1.1	4
47	A tool for automated diabetic retinopathy pre-screening based on retinal image computer analysis. Computers in Biology and Medicine, 2017, 88, 100-109.	3.9	33
48	A survey on deep learning in medical image analysis. Medical Image Analysis, 2017, 42, 60-88.	7.0	7,976
49	Applying deep neural networks to unstructured text notes in electronic medical records for phenotyping youth depression. Evidence-Based Mental Health, 2017, 20, 83-87.	2.2	51
50	Open source software for automatic detection of cone photoreceptors in adaptive optics ophthalmoscopy using convolutional neural networks. Scientific Reports, 2017, 7, 6620.	1.6	65
51	Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network. Information Sciences, 2017, 420, 66-76.	4.0	210
52	Deep Learning Algorithms for Detection of Lymph Node Metastases From Breast Cancer. JAMA - Journal of the American Medical Association, 2017, 318, 2184.	3.8	182
53	Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes. JAMA - Journal of the American Medical Association, 2017, 318, 2211.	3.8	1,442
54	Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA - Journal of the American Medical Association, 2017, 318, 2199.	3.8	2,003
55	Automated Analysis of Unregistered Multi-View Mammograms With Deep Learning. IEEE Transactions on Medical Imaging, 2017, 36, 2355-2365.	5.4	139
56	Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning. Scientific Reports, 2017, 7, 15415.	1.6	131
57	Machine Learning Has Arrived!. Ophthalmology, 2017, 124, 1726-1728.	2.5	86
58	A novel microaneurysms detection approach based on convolutional neural networks with reinforcement sample learning algorithm. Health Information Science and Systems, 2017, 5, 14.	3.4	40

#	ARTICLE	IF	Citations
59	Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology, 2017, 2, 230-243.	1.5	2,009
60	A complete modelling of Local Binary Pattern for detection of diabetic retinopathy. , 2017, , .		7
61	Towards a Fully Automated Diagnostic System for Orthodontic Treatment in Dentistry. , 2017, , .		21
62	Detecting diabetic retinopathy using deep learning. , 2017, , .		29
63	eTRIKS analytical environment: A modular high performance framework for medical data analysis. , 2017, , .		6
64	Deep tessellated retinal image detection using Convolutional Neural Networks. , 2017, 2017, 676-680.		9
65	Deep neural networks approach to skin lesions classification $\hat{a} \in \raiset a$ Comparative analysis. , 2017, , .		43
66	Exploring transfer learning for gastrointestinal bleeding detection on small-size imbalanced endoscopy images. , 2017, 2017, 1994-1997.		14
67	A Hybrid Approach for Incorporating Deep Visual Features and Side Channel Information with Applications to AMD Detection. , 2017, , .		6
68	Leveraging uncertainty information from deep neural networks for disease detection. Scientific Reports, 2017, 7, 17816.	1.6	274
69	Improved U-Net Model for Nerve Segmentation. Lecture Notes in Computer Science, 2017, , 496-504.	1.0	13
70	Automating Clinical Score Calculation within the Electronic Health Record. Applied Clinical Informatics, 2017, 08, 369-380.	0.8	22
71	Convolutional neural networks based transfer learning for diabetic retinopathy fundus image classification. , 2017, , .		100
72	Fundus image texture features analysis in diabetic retinopathy diagnosis. , 2017, , .		3
73	Weakly-supervised localization of diabetic retinopathy lesions in retinal fundus images. , 2017, , .		95
74	Generative caption for diabetic retinopathy images. , 2017, , .		12
75	Identification of diabetic retinopathy in eye images using transfer learning. , 2017, , .		36
76	Joint separation and denoising of noisy multi-talker speech using recurrent neural networks and permutation invariant training. , 2017, , .		8

#	Article	IF	CITATIONS
77	Deep learning microscopy. Optica, 2017, 4, 1437.	4.8	475
78	Deep Learning for Medical Image Analysis: Applications to Computed Tomography and Magnetic Resonance Imaging. Hanyang Medical Reviews, 2017, 37, 61.	0.4	14
79	Join the disruptors of health science. Nature, 2017, 551, 23-26.	13.7	13
80	White blood cell differential count of maturation stages in bone marrow smear using dual-stage convolutional neural networks. PLoS ONE, 2017, 12, e0189259.	1.1	79
81	Multi-categorical deep learning neural network to classify retinal images: A pilot study employing small database. PLoS ONE, 2017, 12, e0187336.	1.1	183
82	Sensitivity and specificity of automated analysis of single-field non-mydriatic fundus photographs by Bosch DR Algorithm—Comparison with mydriatic fundus photography (ETDRS) for screening in undiagnosed diabetic retinopathy. PLoS ONE, 2017, 12, e0189854.	1.1	39
83	Using Deep Neural Networks to Simulate Human Body. , 2017, , .		3
84	Automatic diagnosis of imbalanced ophthalmic images using a cost-sensitive deep convolutional neural network. BioMedical Engineering OnLine, 2017, 16, 132.	1.3	36
85	RetiNet — Feature Extractor for Learning Patterns of Diabetic Retinopathy and Age-Related Macular Degeneration from Publicly Available Datasets. , 2017, , .		2
86	Status and Direction of Healthcare Data in Korea for Artificial Intelligence. Hanyang Medical Reviews, 2017, 37, 86.	0.4	9
87	Deep Learning for Cancer Screening in Medical Imaging. Hanyang Medical Reviews, 2017, 37, 71.	0.4	6
88	Visualizing the Indicators of Diabetic Retinopathy Learnt by Convolutional Neural Networks. , 2017, , .		3
89	Optimal Predictive analytics of Pima Diabetics using Deep Learning. International Journal of Database Theory and Application, 2017, 10, 47-62.	0.2	27
90	Crowdsourced Annotations as an Additional Form of Data Augmentation for CAD Development. , 2017, , .		Ο
91	Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell, 2018, 172, 1122-1131.e9.	13.5	2,822
92	Learning from Everyday Images Enables Expert-like Diagnosis of Retinal Diseases. Cell, 2018, 172, 893-895.	13.5	27
93	Eyeing cardiovascular risk factors. Nature Biomedical Engineering, 2018, 2, 140-141.	11.6	32
94	All eyes are on Al. Nature Biomedical Engineering, 2018, 2, 139-139.	11.6	4

#	Article	IF	CITATIONS
95	Comparison of Subjective Assessment and Precise Quantitative Assessment of Lesion Distribution in Diabetic Retinopathy. JAMA Ophthalmology, 2018, 136, 365.	1.4	24
97	COUNTERPOINT: ls ICD-10 Diagnosis Coding Important in the EraÂof Big Data? No. Chest, 2018, 153, 1095-1098.	0.4	9
98	Deep learning based tissue analysis predicts outcome in colorectal cancer. Scientific Reports, 2018, 8, 3395.	1.6	450
99	Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. Ophthalmology, 2018, 125, 1199-1206.	2.5	538
100	Comment on â€~Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study'. Physics in Medicine and Biology, 2018, 63, 068001.	1.6	18
101	Distributed deep learning networks among institutions for medical imaging. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 945-954.	2.2	227
102	The New Possibilities from "Big Data―to Overlooked Associations Between Diabetes, Biochemical Parameters, Glucose Control, and Osteoporosis. Current Osteoporosis Reports, 2018, 16, 320-324.	1.5	7
103	Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. Npj Digital Medicine, 2018, 1, 9.	5.7	284
104	Machine learning in catalysis. Nature Catalysis, 2018, 1, 230-232.	16.1	308
105	Artificial intelligence in health care: enabling informed care. Lancet, The, 2018, 391, 1260.	6.3	11
105 106	Artificial intelligence in health care: enabling informed care. Lancet, The, 2018, 391, 1260. Deep Learning and Clinical Decision Support. Optometry and Vision Science, 2018, 95, 275-276.	6.3 0.6	11
106	Deep Learning and Clinical Decision Support. Optometry and Vision Science, 2018, 95, 275-276. Opportunities and obstacles for deep learning in biology and medicine. Journal of the Royal Society	0.6	4
106 107	Deep Learning and Clinical Decision Support. Optometry and Vision Science, 2018, 95, 275-276. Opportunities and obstacles for deep learning in biology and medicine. Journal of the Royal Society Interface, 2018, 15, 20170387. Deformable Image Registration Using a Cue-Aware Deep Regression Network. IEEE Transactions on	0.6 1.5	4 1,282
106 107 108	Deep Learning and Clinical Decision Support. Optometry and Vision Science, 2018, 95, 275-276. Opportunities and obstacles for deep learning in biology and medicine. Journal of the Royal Society Interface, 2018, 15, 20170387. Deformable Image Registration Using a Cue-Aware Deep Regression Network. IEEE Transactions on Biomedical Engineering, 2018, 65, 1900-1911. Visual and semi-automatic non-invasive detection of interictal fast ripples: A potential biomarker of	0.6 1.5 2.5	4 1,282 86
106 107 108 109	 Deep Learning and Clinical Decision Support. Optometry and Vision Science, 2018, 95, 275-276. Opportunities and obstacles for deep learning in biology and medicine. Journal of the Royal Society Interface, 2018, 15, 20170387. Deformable Image Registration Using a Cue-Aware Deep Regression Network. IEEE Transactions on Biomedical Engineering, 2018, 65, 1900-1911. Visual and semi-automatic non-invasive detection of interictal fast ripples: A potential biomarker of epilepsy in children with tuberous sclerosis complex. Clinical Neurophysiology, 2018, 129, 1458-1466. 	0.6 1.5 2.5 0.7	4 1,282 86 46
106 107 108 109 110	 Deep Learning and Clinical Decision Support. Optometry and Vision Science, 2018, 95, 275-276. Opportunities and obstacles for deep learning in biology and medicine. Journal of the Royal Society Interface, 2018, 15, 20170387. Deformable Image Registration Using a Cue-Aware Deep Regression Network. IEEE Transactions on Biomedical Engineering, 2018, 65, 1900-1911. Visual and semi-automatic non-invasive detection of interictal fast ripples: A potential biomarker of epilepsy in children with tuberous sclerosis complex. Clinical Neurophysiology, 2018, 129, 1458-1466. End-to-End Adversarial Retinal Image Synthesis. IEEE Transactions on Medical Imaging, 2018, 37, 781-791. Predicting Visual Acuity by Using Machine Learning in Patients Treated for Neovascular Age-Related 	0.6 1.5 2.5 0.7 5.4	4 1,282 86 46 277

		CITATION REPORT		
#	Article		IF	CITATIONS
114	Machine Learning in Medical Imaging. Journal of the American College of Radiology, 201	8, 15, 512-520.	0.9	383
115	Joint Optic Disc and Cup Segmentation Based on Multi-Label Deep Network and Polar Tr IEEE Transactions on Medical Imaging, 2018, 37, 1597-1605.	ansformation.	5.4	606
116	Analyzing Tongue Images Using a Conceptual Alignment Deep Autoencoder. IEEE Acces 5962-5972.	s, 2018, 6,	2.6	29
117	Prediction of Occult Invasive Disease in Ductal Carcinoma in Situ Using Deep Learning F Journal of the American College of Radiology, 2018, 15, 527-534.	eatures.	0.9	56
118	Artificial Intelligence and Radiology: Collaboration Is Key. Journal of the American Colleg Radiology, 2018, 15, 781-783.	e of	0.9	25
119	Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using Learning Algorithm. Journal of Investigative Dermatology, 2018, 138, 1529-1538.	a Deep	0.3	459
120	Clinical Report Guided Retinal Microaneurysm Detection With Multi-Sieving Deep Learni Transactions on Medical Imaging, 2018, 37, 1149-1161.	ng. IEEE	5.4	113
121	Multi-radial LBP Features as a Tool for Rapid Glomerular Detection and Assessment in W Histopathology Images. Scientific Reports, 2018, 8, 2032.	hole Slide	1.6	74
122	Artificial intelligence in diabetes care. Diabetic Medicine, 2018, 35, 495-497.		1.2	25
123	Application of artificial intelligence using a convolutional neural network for detecting g cancer in endoscopic images. Gastric Cancer, 2018, 21, 653-660.	astric	2.7	539
124	From Big Data to Artificial Intelligence: Harnessing Data Routinely Collected in the Proce Critical Care Medicine, 2018, 46, 345-346.	ess of Care*.	0.4	14
125	Retinal Telemedicine. Current Ophthalmology Reports, 2018, 6, 36-45.		0.5	28
126	Improvement of the Application of Diabetic Retinopathy Detection Model. Wireless Pers Communications, 2018, 103, 611-624.	onal	1.8	6
127	A convolutional neural network for sleep stage scoring from raw single-channel EEG. Bio Signal Processing and Control, 2018, 42, 107-114.	medical	3.5	304
128	A New Golden Age in Computer Architecture: Empowering the Machine-Learning Revolu Micro, 2018, 38, 21-29.	tion. IEEE	1.8	104
129	Clinical Applicability of Deep Learning System in Detecting Tuberculosis with Chest Radi Radiology, 2018, 286, 729-731.	ography.	3.6	30
130	Diabetes technology: improving care, improving patientâ€reported outcomes and preve complications in young people with Type 1 diabetes. Diabetic Medicine, 2018, 35, 419-4	nting 129.	1.2	84
131	Automated mammographic breast density estimation using a fully convolutional networ Physics, 2018, 45, 1178-1190.	k. Medical	1.6	74

#	Article	IF	CITATIONS
132	Automated diabetic retinopathy detection using optical coherence tomography angiography: a pilot study. British Journal of Ophthalmology, 2018, 102, 1564-1569.	2.1	79
133	Artificial intelligence in fracture detection: transfer learning from deep convolutional neural neural networks. Clinical Radiology, 2018, 73, 439-445.	0.5	303
134	Automatic Detection of Acromegaly From Facial Photographs Using Machine Learning Methods. EBioMedicine, 2018, 27, 94-102.	2.7	80
135	Behind the scenes: A medical natural language processing project. International Journal of Medical Informatics, 2018, 112, 68-73.	1.6	20
136	Harnessing the power of intelligent machines to enhance primary care. British Journal of General Practice, 2018, 68, 6-7.	0.7	9
137	Deep learning algorithm. Survey of Ophthalmology, 2018, 63, 448-449.	1.7	2
138	Novel Image-Based Analysis for Reduction of Clinician-Dependent Variability in Measurement of the Corneal Ulcer Size. Cornea, 2018, 37, 331-339.	0.9	23
139	Epileptic Seizure Prediction Using Big Data and Deep Learning: Toward a Mobile System. EBioMedicine, 2018, 27, 103-111.	2.7	201
140	Implementation of medical retina virtual clinics in a tertiary eye care referral centre. British Journal of Ophthalmology, 2018, 102, 1391-1395.	2.1	53
141	A context-sensitive deep learning approach for microcalcification detection in mammograms. Pattern Recognition, 2018, 78, 12-22.	5.1	70
142	Methodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for Medical Diagnosis and Prediction. Radiology, 2018, 286, 800-809.	3.6	549
143	Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images. EBioMedicine, 2018, 27, 317-328.	2.7	240
144	Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks. JAMA Ophthalmology, 2018, 136, 803.	1.4	442
145	Development and Validation of a Deep Neural Network Model for Prediction of Postoperative In-hospital Mortality. Anesthesiology, 2018, 129, 649-662.	1.3	128
146	A Survey of Deep Learning: Platforms, Applications and Emerging Research Trends. IEEE Access, 2018, 6, 24411-24432.	2.6	429
148	Deep Learning in Biomedical Data Science. Annual Review of Biomedical Data Science, 2018, 1, 181-205.	2.8	76
149	Deep Learning in Radiology. Academic Radiology, 2018, 25, 1472-1480.	1.3	304
150	Laying the digital and analytical foundations for Canada's future health care system. Cmaj, 2018, 190, E1-E2.	0.9	2

#	Article	IF	CITATIONS
151	Artifact Rejection Methodology Enables Continuous, Noninvasive Measurement of Gastric Myoelectric Activity in Ambulatory Subjects. Scientific Reports, 2018, 8, 5019.	1.6	69
152	Automated retinal nerve fiber layer defect detection using fundus imaging in glaucoma. Computerized Medical Imaging and Graphics, 2018, 66, 56-65.	3.5	15
153	Diverse lesion detection from retinal images by subspace learning over normal samples. Neurocomputing, 2018, 297, 59-70.	3.5	9
154	Grader Variability and the Importance of Reference Standards for Evaluating Machine Learning Models for Diabetic Retinopathy. Ophthalmology, 2018, 125, 1264-1272.	2.5	347
155	Artificial intelligence powers digital medicine. Npj Digital Medicine, 2018, 1, 5.	5.7	224
156	A Weakly-Supervised Framework for Interpretable Diabetic Retinopathy Detection on Retinal Images. IEEE Access, 2018, 6, 18747-18758.	2.6	61
157	A Generalizable, Data-Driven Approach to Predict Daily Risk of <i>Clostridium difficile</i> Infection at Two Large Academic Health Centers. Infection Control and Hospital Epidemiology, 2018, 39, 425-433.	1.0	104
158	Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 89, 468-473.	1.2	283
159	Advanced Morphologic Analysis for Diagnosing Allograft Rejection. Transplantation, 2018, 102, 1230-1239.	0.5	21
160	Using Unsupervised Deep Learning for Automatic Summarization of Arabic Documents. Arabian Journal for Science and Engineering, 2018, 43, 7803-7815.	1.7	24
161	Toward Augmented Radiologists. Academic Radiology, 2018, 25, 747-750.	1.3	70
162	Big Data in Drug Discovery. Progress in Medicinal Chemistry, 2018, 57, 277-356.	4.1	36
163	Passive Detection of Atrial Fibrillation Using a Commercially Available Smartwatch. JAMA Cardiology, 2018, 3, 409.	3.0	357
164	Moving From Big Data to Deep Learning—The Case of Atrial Fibrillation. JAMA Cardiology, 2018, 3, 371.	3.0	10
165	Deep Learning Lends a Hand to Pediatric Radiology. Radiology, 2018, 287, 323-325.	3.6	12
166	Fast and accurate view classification of echocardiograms using deep learning. Npj Digital Medicine, 2018, 1, .	5.7	333
167	Deep multiple instance learning for automatic detection of diabetic retinopathy in retinal images. IET Image Processing, 2018, 12, 563-571.	1.4	71
168	3D Deep Learning Angiography (3D-DLA) from C-arm Conebeam CT. American Journal of Neuroradiology, 2018, 39, 916-922.	1.2	10

#	Article	IF	CITATIONS
169	Biomedical informatics and machine learning for clinical genomics. Human Molecular Genetics, 2018, 27, R29-R34.	1.4	28
170	Foreword. International Journal of Medical Informatics, 2018, 113, 96-97.	1.6	1
171	Deep Learning for Prediction of Obstructive Disease From Fast Myocardial Perfusion SPECT. JACC: Cardiovascular Imaging, 2018, 11, 1654-1663.	2.3	246
172	Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence. Eye, 2018, 32, 1138-1144.	1.1	277
173	Big Data and Machine Learning in Health Care. JAMA - Journal of the American Medical Association, 2018, 319, 1317.	3.8	1,030
174	Feasibility and patient acceptability of a novel artificial intelligence-based screening model for diabetic retinopathy at endocrinology outpatient services: a pilot study. Scientific Reports, 2018, 8, 4330.	1.6	129
175	Predicting cancer outcomes from histology and genomics using convolutional networks. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2970-E2979.	3.3	671
176	Model-driven deep-learning. National Science Review, 2018, 5, 22-24.	4.6	84
177	Deep learning applications in ophthalmology. Current Opinion in Ophthalmology, 2018, 29, 254-260.	1.3	91
178	Deep learning for healthcare: review, opportunities and challenges. Briefings in Bioinformatics, 2018, 19, 1236-1246.	3.2	1,459
179	Artificial Intelligence Methodologies and Their Application to Diabetes. Journal of Diabetes Science and Technology, 2018, 12, 303-310.	1.3	70
180	Learning from Dorothy Vaughan: artificial intelligence and the health professions. Medical Education, 2018, 52, 11-13.	1.1	20
181	Artificial Intelligence and Chest Imaging. Will Deep Learning Make Us Smarter?. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 148-150.	2.5	13
182	An ensemble deep learning based approach for red lesion detection in fundus images. Computer Methods and Programs in Biomedicine, 2018, 153, 115-127.	2.6	199
183	Automated detection of diabetic retinopathy lesions on ultrawidefield pseudocolour images. Acta Ophthalmologica, 2018, 96, e168-e173.	0.6	17
184	Diabetic retinopathy screening using deep neural network. Clinical and Experimental Ophthalmology, 2018, 46, 412-416.	1.3	62
185	Disease Staging and Prognosis in Smokers Using Deep Learning in Chest Computed Tomography. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 193-203.	2.5	189
186	The Influence of Big (Clinical) Data and Genomics on Precision Medicine and Drug Development. Clinical Pharmacology and Therapeutics, 2018, 103, 409-418.	2.3	42

#	Article	IF	CITATIONS
187	Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning. Graefe's Archive for Clinical and Experimental Ophthalmology, 2018, 256, 259-265.	1.0	166
188	Residual Convolutional Neural Network for the Determination of <i>IDH</i> Status in Low- and High-Grade Gliomas from MR Imaging. Clinical Cancer Research, 2018, 24, 1073-1081.	3.2	297
189	Clinical judgement in the era of big data and predictive analytics. Journal of Evaluation in Clinical Practice, 2018, 24, 638-645.	0.9	36
190	Rapid Intraoperative Diagnosis of Pediatric Brain Tumors Using Stimulated Raman Histology. Cancer Research, 2018, 78, 278-289.	0.4	98
191	Digital image analysis in breast pathology—from image processing techniques to artificial intelligence. Translational Research, 2018, 194, 19-35.	2.2	203
192	Artificial Intelligence in Medical Practice: The Question to the Answer?. American Journal of Medicine, 2018, 131, 129-133.	0.6	474
193	Deep Learning in Nuclear Medicine and Molecular Imaging: Current Perspectives and Future Directions. Nuclear Medicine and Molecular Imaging, 2018, 52, 109-118.	0.6	57
194	Deep Learning for Medical Image Processing: Overview, Challenges and the Future. Lecture Notes in Computational Vision and Biomechanics, 2018, , 323-350.	0.5	561
195	Moving From Clinic to Home: What the Future Holds for Ophthalmic Telemedicine. American Journal of Ophthalmology, 2018, 187, xxviii-xxxv.	1.7	26
196	LoID-EEC. , 2018, , .		3
197	Result comparison between categorical and numerical predictor variables on CART method in predicting factors related to diabetic retinopathy in patients with type 2 diabetes mellitus. AIP Conference Proceedings, 2018, , .	0.3	0
198	Multimodal imaging of diabetic retinopathy. Current Opinion in Ophthalmology, 2018, 29, 566-575.	1.3	17
199	A Signal Quality Assessment Method for Electrocardiography Acquired by Mobile Device. , 2018, , .		5
200	Using Transfer Learning to Detect Breast Cancer without Network Training. , 2018, , .		5
201	Automated Staging of Diabetic Retinopathy Using a 2D Convolutional Neural Network. , 2018, , .		10
202	Diagnostic Classification of Cystoscopic Images Using Deep Convolutional Neural Networks. JCO Clinical Cancer Informatics, 2018, 2, 1-8.	1.0	40
203	Principles for evaluating the clinical implementation of novel digital healthcare devices. Journal of the Korean Medical Association, 2018, 61, 765.	0.1	16
204	The Survey of CNN-based Cancer Diagnosis System. IOP Conference Series: Materials Science and Engineering, 2018, 466, 012095.	0.3	2

#	Article	IF	CITATIONS
205	Comparison of Deep Transfer Learning Strategies for Digital Pathology. , 2018, , .		70
206	Machine learning to relate PM2.5 and PM10 concentrations to outpatient visits for upper respiratory tract infections in Taiwan: A nationwide analysis. World Journal of Clinical Cases, 2018, 6, 200-206.	0.3	25
207	Modality Classification and Concept Detection in Medical Images Using Deep Transfer Learning. , 2018, , .		14
208	Deep Generative Classifiers for Thoracic Disease Diagnosis with Chest X-ray Images. , 2018, 2018, 1209-1214.		12
209	Artificial Intelligence in Medicine: Beginner's Guide. Journal of the Korean Society of Radiology, 2018, 78, 301.	0.1	23
210	Computer-Aided Diagnosis and Localization of Glaucoma Using Deep Learning. , 2018, , .		8
211	Fully automated, real-time 3D ultrasound segmentation to estimate first trimester placental volume using deep learning. JCI Insight, 2018, 3, .	2.3	70
212	Methodology to develop machine learning algorithms to improve performance in gastrointestinal endoscopy. World Journal of Gastroenterology, 2018, 24, 5057-5062.	1.4	31
213	Towards Automated Tuberculosis detection using Deep Learning. , 2018, , .		29
214	Detection of Diabetic Retinopathy using Deep Neural Network. , 2018, , .		21
215	Artificial intelligence and echocardiography. Echo Research and Practice, 2018, 5, R115-R125.	0.6	163
216	Resset: A Recurrent Model for Sequence of Sets with Applications to Electronic Medical Records. , 2018, , .		10
217	Evaluation of CAD and Radiomic Tools. , 2018, , 389-406.		0
218	Artificial intelligence in the diagnosis of Parkinson's disease from ioflupane-123 single-photon emission computed tomography dopamine transporter scans using transfer learning. Nuclear Medicine Communications, 2018, 39, 887-893.	0.5	30
219	Adipocyte Size Evaluation Based on Photoacoustic Spectral Analysis Combined with Deep Learning Method. Applied Sciences (Switzerland), 2018, 8, 2178.	1.3	6
220	Deep Learning and Big DataTechnologies in Medical Image Analysis. , 2018, , .		8
221	Automatic classification of dual-modalilty, smartphone-based oral dysplasia and malignancy images using deep learning. Biomedical Optics Express, 2018, 9, 5318.	1.5	86
222	Enhanced Deep Learning with Improved Feature Subspace Separation. , 2018, , .		1

#	Article	IF	CITATIONS
223	Using deep-learning to predict outcome of patients with Parkinsonâ \in Ms disease. , 2018, , .		15
224	Analysis of Parkinson's Disease Data. Procedia Computer Science, 2018, 140, 334-341.	1.2	19
225	Diabetic Retinopathy: Present and Past. Procedia Computer Science, 2018, 132, 1432-1440.	1.2	39
226	Preliminary Study on Evaluation of Smart-Cities Technologies and Proposed UV Lifestyles. , 2018, , .		7
227	Deep Learning for Natural Language Processing in Urology: State-of-the-Art Automated Extraction of Detailed Pathologic Prostate Cancer Data From Narratively Written Electronic Health Records. JCO Clinical Cancer Informatics, 2018, 2, 1-9.	1.0	150
229	Deep-Learning-gestützte Computer-Algorithmen zur Diagnosestellung in der Augenheilkunde. Karger Kompass Ophthalmologie, 2018, 4, 136-137.	0.0	1
230	Keys, the Streetlamp, and Tidbits*. Critical Care Medicine, 2018, 46, 2062-2063.	0.4	1
231	Predicting drug-resistant epilepsy — A machine learning approach based on administrative claims data. Epilepsy and Behavior, 2018, 89, 118-125.	0.9	68
232	Advances in Retinal Imaging and Applications in Diabetic Retinopathy Screening: A Review. Ophthalmology and Therapy, 2018, 7, 333-346.	1.0	86
233	Performance of Deep Learning Architectures and Transfer Learning for Detecting Glaucomatous Optic Neuropathy in Fundus Photographs. Scientific Reports, 2018, 8, 16685.	1.6	211
234	Deep Learning-Based Approach for the Semantic Segmentation of Bright Retinal Damage. Lecture Notes in Computer Science, 2018, , 164-173.	1.0	3
235	Prediction of Incident Delirium Using a Random Forest classifier. Journal of Medical Systems, 2018, 42, 261.	2.2	37
236	Applications of Artificial Intelligence in Ophthalmology: General Overview. Journal of Ophthalmology, 2018, 2018, 1-15.	0.6	85
237	Cutting Edge Bioinformatics and Biostatistics Approaches Are Bringing Precision Medicine and Nutrition to a New Era. Lifestyle Genomics, 2018, 11, 73-76.	0.6	1
238	The unmet need for better risk stratification of nonâ€proliferative diabetic retinopathy. Diabetic Medicine, 2019, 36, 424-433.	1.2	36
239	A Novel Fundus Image Reading Tool for Efficient Generation of a Multi-dimensional Categorical Image Database for Machine Learning Algorithm Training. Journal of Korean Medical Science, 2018, 33, e239.	1.1	16
240	Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. PLoS Medicine, 2018, 15, e1002699.	3.9	409
241	A Novel Machine Learning Algorithm to Automatically Predict Visual Outcomes in Intravitreal Ranibizumab-Treated Patients with Diabetic Macular Edema. Journal of Clinical Medicine, 2018, 7, 475.	1.0	17

#	Article	IF	CITATIONS
242	Challenges in Personalized Nutrition and Health. Frontiers in Nutrition, 2018, 5, 117.	1.6	64
243	Reflecting health: smart mirrors for personalized medicine. Npj Digital Medicine, 2018, 1, 62.	5.7	36
244	The European Federation of Organisations for Medical Physics (EFOMP) White Paper: Big data and deep learning in medical imaging and in relation to medical physics profession. Physica Medica, 2018, 56, 90-93.	0.4	36
245	Deep transfer learning-based hologram classification for molecular diagnostics. Scientific Reports, 2018, 8, 17003.	1.6	48
246	Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Medicine, 2018, 15, e1002686.	3.9	773
247	Artificial intelligence in gastrointestinal endoscopy: The future is almost here. World Journal of Gastrointestinal Endoscopy, 2018, 10, 239-249.	0.4	122
248	Predicting the risk of emergency admission with machine learning: Development and validation using linked electronic health records. PLoS Medicine, 2018, 15, e1002695.	3.9	94
249	Deep Learning Electronic Cleansing for Single- and Dual-Energy CT Colonography. Radiographics, 2018, 38, 2034-2050.	1.4	23
250	Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study. PLoS Medicine, 2018, 15, e1002683.	3.9	771
251	Deep learning for biomarker regression: application to osteoporosis and emphysema on chest CT scans. , 2018, 10574, .		13
252	Solution to overcome the sparsity issue of annotated data in medical domain. CAAI Transactions on Intelligence Technology, 2018, 3, 153-160.	3.4	11
253	Deep Learning-Based Automated Classification of Multi-Categorical Abnormalities From Optical Coherence Tomography Images. Translational Vision Science and Technology, 2018, 7, 41.	1.1	105
254	The Power of Ensembles for Active Learning in Image Classification. , 2018, , .		276
255	The machine learning horizon in cardiac hybrid imaging. European Journal of Hybrid Imaging, 2018, 2, .	0.6	30
256	Expert-level sleep scoring with deep neural networks. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 1643-1650.	2.2	185
257	RCBâ€Ð static gesture recognition based on convolutional neural network. Journal of Engineering, 2018, 2018, 1515-1520.	0.6	29
258	A Body Simulator with Delayed Health State Transition. , 2018, , .		1
259	Integrative Analysis of Patient Health Records and Neuroimages via Memory-Based Graph Convolutional Network. , 2018, , .		8

#	Article	IF	CITATIONS
260	From Machine Learning to Artificial Intelligence Applications in Cardiac Care. Circulation, 2018, 138, 2569-2575.	1.6	37
261	Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy. Nature Communications, 2018, 9, 5229.	5.8	194
262	Retinal Vessel Detection in Wide-Field Fluorescein Angiography with Deep Neural Networks: A Novel Training Data Generation Approach. , 2018, , .		7
263	A deep learning approach to automatic detection of early glaucoma from visual fields. PLoS ONE, 2018, 13, e0206081.	1.1	52
264	Cataract Detection and Grading Based on Combination of Deep Convolutional Neural Network and Random Forests. , 2018, , .		34
265	A deep learning model for the detection of both advanced and early glaucoma using fundus photography. PLoS ONE, 2018, 13, e0207982.	1.1	137
266	Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study. PLoS Medicine, 2018, 15, e1002711.	3.9	385
267	An Efficient and Comprehensive Labeling Tool for Large-Scale Annotation of Fundus Images. Lecture Notes in Computer Science, 2018, , 95-104.	1.0	4
268	Deep Neural Network-Based Method for Detecting Central Retinal Vein Occlusion Using Ultrawide-Field Fundus Ophthalmoscopy. Journal of Ophthalmology, 2018, 2018, 1-6.	0.6	50
269	Glioma Grading on Conventional MR Images: A Deep Learning Study With Transfer Learning. Frontiers in Neuroscience, 2018, 12, 804.	1.4	216
270	Artificial Intelligence and Big Data in Public Health. International Journal of Environmental Research and Public Health, 2018, 15, 2796.	1.2	168
271	Automatic differentiation of Glaucoma visual field from non-glaucoma visual filed using deep convolutional neural network. BMC Medical Imaging, 2018, 18, 35.	1.4	81
272	Fully Automated Echocardiogram Interpretation in Clinical Practice. Circulation, 2018, 138, 1623-1635.	1.6	563
273	Machine learning and medical education. Npj Digital Medicine, 2018, 1, 54.	5.7	151
274	Development and validation of an endoscopic imagesâ€based deep learning model for detection with nasopharyngeal malignancies. Cancer Communications, 2018, 38, 1-11.	3.7	43
275	Predicting the progression of ophthalmic disease based on slit-lamp images using a deep temporal sequence network. PLoS ONE, 2018, 13, e0201142.	1.1	18
276	Evaluation of Artificial Intelligence–Based Grading of Diabetic Retinopathy in Primary Care. JAMA Network Open, 2018, 1, e182665.	2.8	128
277	Retinal image analysis for disease screening through local tetra patterns. Computers in Biology and Medicine, 2018, 102, 200-210.	3.9	9

#	ARTICLE	IF	CITATIONS
278	Transforming Retinal Photographs to Entropy Images in Deep Learning to Improve Automated Detection for Diabetic Retinopathy. Journal of Ophthalmology, 2018, 2018, 1-6.	0.6	57
279	3D Deep Learning from CT Scans Predicts Tumor Invasiveness of Subcentimeter Pulmonary Adenocarcinomas. Cancer Research, 2018, 78, 6881-6889.	0.4	150
280	An Automated Grading System for Detection of Vision-Threatening Referable Diabetic Retinopathy on the Basis of Color Fundus Photographs. Diabetes Care, 2018, 41, 2509-2516.	4.3	175
281	Evaluating Artificial Intelligence Applications in Clinical Settings. JAMA Network Open, 2018, 1, e182658.	2.8	37
282	Diabetic retinopathy: how far are we from personalized medicine?. Future Medicinal Chemistry, 2018, 10, 2249-2252.	1.1	1
283	Selections from the current literature. Journal of the American Dental Association, 2018, 149, 995-997.	0.7	0
284	Characterization of coronary artery pathological formations from OCT imaging using deep learning. Biomedical Optics Express, 2018, 9, 4936.	1.5	51
285	Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy. Nature Biomedical Engineering, 2018, 2, 741-748.	11.6	354
286	Artificial intelligence in healthcare. Nature Biomedical Engineering, 2018, 2, 719-731.	11.6	1,437
287	Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet, The, 2018, 392, 2388-2396.	6.3	616
288	Oculoâ€visual abnormalities in Parkinson's disease: Possible value as biomarkers. Movement Disorders, 2018, 33, 1390-1406.	2.2	55
289	Development of a deep residual learning algorithm to screen for glaucoma from fundus photography. Scientific Reports, 2018, 8, 14665.	1.6	177
290	Automatic nodule detection for lung cancer in CT images: A review. Computers in Biology and Medicine, 2018, 103, 287-300.	3.9	93
291	Advancing Regulatory Science With Computational Modeling for Medical Devices at the FDA's Office of Science and Engineering Laboratories. Frontiers in Medicine, 2018, 5, 241.	1.2	93
292	Deep neural network improves fracture detection by clinicians. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11591-11596.	3.3	383
293	Evidenceâ€based Danish guidelines for screening of diabetic retinopathy. Acta Ophthalmologica, 2018, 96, 763-769.	0.6	41
294	Use of a Deep Belief Network for Small High-Level Abstraction Data Sets Using Artificial Intelligence with Rule Extraction. Neural Computation, 2018, 30, 3309-3326.	1.3	9
295	Convolutional Neural Networks-Based MRI Image Analysis for the Alzheimer's Disease Prediction From Mild Cognitive Impairment. Frontiers in Neuroscience, 2018, 12, 777.	1.4	253

		Citation R	EPORT	
#	Article		IF	CITATIONS
296	Imaging biomarkers and staging in IPF. Current Opinion in Pulmonary Medicine, 2018,	24, 445-452.	1.2	16
297	Automatic Detection and Evaluation of Hard Exudates Based on Deep Bayesian Learnir	ng. , 2018, , .		0
298	SCREEN-DR: Collaborative platform for diabetic retinopathy. International Journal of M Informatics, 2018, 120, 137-146.	edical	1.6	17
299	Clinically validated machine learning algorithm for detecting residual diseases with mu cytometry analysis in acute myeloid leukemia and myelodysplastic syndrome. EBioMec 91-100.		2.7	54
300	DeepCXray: Automatically Diagnosing Diseases on Chest X-Rays Using Deep Neural Ne Access, 2018, 6, 66972-66983.	ztworks. IEEE	2.6	13
301	Re: Lee etÂal.: Machine learning has arrived! (Ophthalmology. 2017;124:1726-1728). (125, e85.	Ophthalmology, 2018,	2.5	1
302	The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in inte Nature Medicine, 2018, 24, 1716-1720.	nsive care.	15.2	629
303	Application of a deep convolutional neural network in the diagnosis of neonatal ocular hemorrhage. Bioscience Reports, 2018, 38, .	fundus	1.1	12
304	Overachieving Municipalities in Public Health: A Machine-learning Approach. Epidemiol 836-840.	ogy, 2018, 29,	1.2	5
305	Use of Deep Learning for Detailed Severity Characterization and Estimation of 5-Year R Patients With Age-Related Macular Degeneration. JAMA Ophthalmology, 2018, 136, 1	Risk Among 359.	1.4	127
306	Deep learning for classifying fibrotic lung disease on high-resolution computed tomog case-cohort study. Lancet Respiratory Medicine,the, 2018, 6, 837-845.	raphy: a	5.2	252
307	Classification and mutation prediction from non–small cell lung cancer histopatholo deep learning. Nature Medicine, 2018, 24, 1559-1567.	gy images using	15.2	1,768
308	Development and Validation of a Deep Learning System for Staging Liver Fibrosis by U Agent–enhanced CT Images in the Liver. Radiology, 2018, 289, 688-697.	sing Contrast	3.6	153
309	Prevalence and risk factors of diabetic retinopathy among an elderly population with d Nepal: the Bhaktapur Retina Study. Clinical Ophthalmology, 2018, Volume 12, 561-56	iabetes in 8.	0.9	33
310	Informatics, Data Science, and Artificial Intelligence. JAMA - Journal of the American Me Association, 2018, 320, 1103.	2dical	3.8	42
311	Classification of Findings with Localized Lesions in Fundoscopic Images Using a Regior CNN. Lecture Notes in Computer Science, 2018, , 176-184.	nally Guided	1.0	8
312	Weakly Supervised Deep Learning for Thoracic Disease Classification and Localization , 2018, , .	on Chest X-rays.		67
314	A Framework for Identifying Diabetic Retinopathy Based on Anti-noise Detection and A Fusion. Lecture Notes in Computer Science, 2018, , 74-82.	ttention-Based	1.0	55

#	Article	IF	CITATIONS
315	Integrate Domain Knowledge in Training CNN for Ultrasonography Breast Cancer Diagnosis. Lecture Notes in Computer Science, 2018, , 868-875.	1.0	21
316	Deep learning based detection of cone photoreceptors with multimodal adaptive optics scanning light ophthalmoscope images of achromatopsia. Biomedical Optics Express, 2018, 9, 3740.	1.5	41
317	Machine learning-based diagnosis for disseminated intravascular coagulation (DIC): Development, external validation, and comparison to scoring systems. PLoS ONE, 2018, 13, e0195861.	1.1	11
318	Diabetic Retinopathy Detection Using Machine Learning and Texture Features. , 2018, , .		48
319	New machine-learning technologies for computer-aided diagnosis. Nature Medicine, 2018, 24, 1304-1305.	15.2	72
320	Deep learning aided decision support for pulmonary nodules diagnosing: a review. Journal of Thoracic Disease, 2018, 10, S867-S875.	0.6	40
321	Automated retinopathy of prematurity screening using deep neural networks. EBioMedicine, 2018, 35, 361-368.	2.7	104
322	Pivotal trial of an autonomous Al-based diagnostic system for detection of diabetic retinopathy in primary care offices. Npj Digital Medicine, 2018, 1, 39.	5.7	796
323	Clinical Implications and Challenges of Artificial Intelligence and Deep Learning. JAMA - Journal of the American Medical Association, 2018, 320, 1107.	3.8	176
324	Deep learning: Evolution and expansion. Cognitive Systems Research, 2018, 52, 701-708.	1.9	79
325	With an eye to AI and autonomous diagnosis. Npj Digital Medicine, 2018, 1, 40.	5.7	163
326	Finding Small-Bowel Lesions: Challenges in Endoscopy-Image-Based Learning Systems. Computer, 2018, 51, 68-76.	1.2	11
327	Susceptibility to misdiagnosis of adversarial images by deep learning based retinal image analysis algorithms. , 2018, , .		21
328	Big Data and Predictive Analytics. JAMA - Journal of the American Medical Association, 2018, 320, 27.	3.8	185
329	Resolving the Productivity Paradox of Health Information Technology. JAMA - Journal of the American Medical Association, 2018, 320, 25.	3.8	21
330	Machine Learning for Outcome Prediction in Electroencephalograph (EEG)-Monitored Children in the Intensive Care Unit. Journal of Child Neurology, 2018, 33, 546-553.	0.7	10
331	Innovation at the Intersection of Clinical Trials and Realâ€World Data Science to Advance Patient Care. Clinical and Translational Science, 2018, 11, 450-460.	1.5	45
332	Artificial intelligence in radiology. Nature Reviews Cancer, 2018, 18, 500-510.	12.8	1,953

#	Article	IF	CITATIONS
333	Computerâ€aided diagnosis of prostate cancer on magnetic resonance imaging using a convolutional neural network algorithm. BJU International, 2018, 122, 411-417.	1.3	84
334	Artificial Intelligence and Its Applications in Vision and EyeÂCare. Advances in Ophthalmology and Optometry, 2018, 3, 21-38.	0.3	6
335	Disc-Aware Ensemble Network for Glaucoma Screening From Fundus Image. IEEE Transactions on Medical Imaging, 2018, 37, 2493-2501.	5.4	264
336	Deep-learning Classifier With an Ultrawide-field Scanning Laser Ophthalmoscope Detects Glaucoma Visual Field Severity. Journal of Glaucoma, 2018, 27, 647-652.	0.8	50
337	Integrating artificial intelligence with real-time intracranial EEG monitoring to automate interictal identification of seizure onset zones in focal epilepsy. Journal of Neural Engineering, 2018, 15, 046035.	1.8	54
338	Automated Deep Learning-Based System to Identify Endothelial Cells Derived from Induced Pluripotent Stem Cells. Stem Cell Reports, 2018, 10, 1687-1695.	2.3	72
339	Automatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networks. Scientific Reports, 2018, 8, 7497.	1.6	110
340	Big Data and Data Science in Critical Care. Chest, 2018, 154, 1239-1248.	0.4	184
341	Guidelines on Diabetic Eye Care. Ophthalmology, 2018, 125, 1608-1622.	2.5	437
342	Structure-Preserving Guided Retinal Image Filtering and Its Application for Optic Disk Analysis. IEEE Transactions on Medical Imaging, 2018, 37, 2536-2546.	5.4	45
343	Gastric Pathology Image Recognition Based on Deep Residual Networks. , 2018, , .		14
344	A deep-learning classifier identifies patients with clinical heart failure using whole-slide images of H&E tissue. PLoS ONE, 2018, 13, e0192726.	1.1	93
345	Small Data, Big Data, and Data Analytics. , 2018, , 73-92.		0
346	An Algorithm Based on Deep Learning for Predicting Inâ€Hospital Cardiac Arrest. Journal of the American Heart Association, 2018, 7, .	1.6	188
347	Imaging in Diabetic Retinopathy. , 2018, , 25-36.		5
348	Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 1419-1428.	2.2	465
349	Convolutional neural networks: an overview and application in radiology. Insights Into Imaging, 2018, 9, 611-629.	1.6	2,388
350	A Deep Learning-Based Algorithm Identifies Glaucomatous Discs Using Monoscopic Fundus Photographs. Ophthalmology Glaucoma, 2018, 1, 15-22.	0.9	77

#	Article	IF	CITATIONS
351	Can the NHS be a learning healthcare system in the age of digital technology?. BMJ Evidence-Based Medicine, 2018, 23, 161-165.	1.7	6
352	Boosting Clinical Decision-making: Machine Learning for Intensive Care Unit Discharge. Annals of the American Thoracic Society, 2018, 15, 804-805.	1.5	7
353	An intelligible deep convolution neural network based approach for classification of diabetic retinopathy. Bio-Algorithms and Med-Systems, 2018, 14, .	1.0	13
354	Self-reported healthcare utilization by adults with diabetic retinopathy in the United States. Ophthalmic Epidemiology, 2018, 25, 365-372.	0.8	11
355	Automated Performance Metrics and Machine Learning Algorithms to Measure Surgeon Performance and Anticipate Clinical Outcomes in Robotic Surgery. JAMA Surgery, 2018, 153, 770.	2.2	126
356	Automated Dental Image Analysis by Deep Learning on Small Dataset. , 2018, , .		41
357	Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry, 2018, 77, 106-111.	1.7	477
358	Deep Learning for Predicting Refractive Error From Retinal Fundus Images. , 2018, 59, 2861.		127
359	Big data: More than big data sets. Surgery, 2018, 164, 640-642.	1.0	24
360	Deep longitudinal transfer learning-based automatic segmentation of photoreceptor ellipsoid zone defects on optical coherence tomography images of macular telangiectasia type 2. Biomedical Optics Express, 2018, 9, 2681.	1.5	48
361	Retinal Lesion Detection With Deep Learning Using Image Patches. , 2018, 59, 590.		135
362	Automated Microscopic Analysis of Metal Sulfide Colonization by Acidophilic Microorganisms. Applied and Environmental Microbiology, 2018, 84, .	1.4	23
363	Revolution in Health Care: How Will Data Science Impact Doctor–Patient Relationships?. Frontiers in Public Health, 2018, 6, 99.	1.3	12
364	Patient-specific ECG classification by deeper CNN from generic to dedicated. Neurocomputing, 2018, 314, 336-346.	3.5	92
365	Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning. PLoS ONE, 2018, 13, e0200721.	1.1	120
366	Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. Journal of Periodontal and Implant Science, 2018, 48, 114.	0.9	269
367	Artificial intelligence, physiological genomics, and precision medicine. Physiological Genomics, 2018, 50, 237-243.	1.0	86
368	Approach for a Clinically Useful Comprehensive Classification of Vascular and Neural Aspects of Diabetic Retinal Disease. , 2018, 59, 519.		62

#	Article	IF	CITATIONS
369	Computer-aided diagnosis of glaucoma using fundus images: A review. Computer Methods and Programs in Biomedicine, 2018, 165, 1-12.	2.6	106
370	Connecting Technological Innovation in Artificial Intelligence to Real-world Medical Practice through Rigorous Clinical Validation: What Peer-reviewed Medical Journals Could Do. Journal of Korean Medical Science, 2018, 33, e152.	1.1	41
371	Artificial intelligence in retina. Progress in Retinal and Eye Research, 2018, 67, 1-29.	7.3	469
372	Automated Diagnosis and Grading of Diabetic Retinopathy Using Optical Coherence Tomography. , 2018, 59, 3155.		34
373	Machine Learning in Radiation Oncology: Opportunities, Requirements, and Needs. Frontiers in Oncology, 2018, 8, 110.	1.3	82
374	Machine Learning and Radiogenomics: Lessons Learned and Future Directions. Frontiers in Oncology, 2018, 8, 228.	1.3	54
375	Will artificial intelligence solve the human resource crisis in healthcare?. BMC Health Services Research, 2018, 18, 545.	0.9	153
376	Comparing Deep Learning and Classical Machine Learning Approaches for Predicting Inpatient Violence Incidents from Clinical Text. Applied Sciences (Switzerland), 2018, 8, 981.	1.3	50
378	Classification of urine sediment based on convolution neural network. AIP Conference Proceedings, 2018, , .	0.3	9
379	Image-based manufacturing analytics: Improving the accuracy of an industrial pellet classification system using deep neural networks. Chemometrics and Intelligent Laboratory Systems, 2018, 180, 26-35.	1.8	18
380	Long Short-Term Memory Recurrent Neural Network for Stroke Prediction. Lecture Notes in Computer Science, 2018, , 312-323.	1.0	19
381	A Deep Learning Based Automatic Severity Detector for Diabetic Retinopathy. Lecture Notes in Computer Science, 2018, , 64-76.	1.0	3
382	The Application of Deep Learning in Biomedical Informatics. , 2018, , .		2
383	Transfer learning for diagnosis of congenital abnormalities of the kidney and urinary tract in children based on ultrasound imaging data. , 2018, 2018, 1487-1490.		22
384	Machine Learning in Orthopedics: A Literature Review. Frontiers in Bioengineering and Biotechnology, 2018, 6, 75.	2.0	148
385	Scalable and accurate deep learning with electronic health records. Npj Digital Medicine, 2018, 1, 18.	5.7	1,440
386	Why Not Robot Teachers: Artificial Intelligence for Addressing Teacher Shortage. Applied Artificial Intelligence, 2018, 32, 345-360.	2.0	75
387	Defining Phenotypes from Clinical Data to Drive Genomic Research. Annual Review of Biomedical Data Science, 2018, 1, 69-92.	2.8	38

#	Article	IF	CITATIONS
388	Implementation of Enterprise Imaging Strategy at a Chinese Tertiary Hospital. Journal of Digital Imaging, 2018, 31, 534-542.	1.6	2
389	Measurement of Left Ventricular Volumes and Ejection Fraction in Patients with Regional Wall Motion Abnormalities Using an Automated 3D Quantification Algorithm. Ultrasound in Medicine and Biology, 2018, 44, 2274-2282.	0.7	3
390	Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature Medicine, 2018, 24, 1342-1350.	15.2	1,551
391	Automated deep-neural-network surveillance of cranial images for acute neurologic events. Nature Medicine, 2018, 24, 1337-1341.	15.2	308
392	Deep Learning–Based Computer-Aided Diagnosis System for Localization and Diagnosis of Metastatic Lymph Nodes on Ultrasound: A Pilot Study. Thyroid, 2018, 28, 1332-1338.	2.4	50
393	Computer-aided detection in chest radiography based on artificial intelligence: a survey. BioMedical Engineering OnLine, 2018, 17, 113.	1.3	234
394	Deep Learning and Radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer. Scientific Reports, 2018, 8, 12611.	1.6	142
395	3D deep learning for detecting pulmonary nodules in CT scans. Journal of the American Medical Informatics Association: JAMIA, 2018, 25, 1301-1310.	2.2	60
396	NODULe: Combining constrained multi-scale LoG filters with densely dilated 3D deep convolutional neural network for pulmonary nodule detection. Neurocomputing, 2018, 317, 159-167.	3.5	46
397	Early diabetic retinopathy diagnosis based on local retinal blood vessel analysis in optical coherence tomography angiography (OCTA) images. Medical Physics, 2018, 45, 4582-4599.	1.6	35
398	<scp>eD</scp> octor: machine learning and the future of medicine. Journal of Internal Medicine, 2018, 284, 603-619.	2.7	400
399	Diabetic Retinopathy Stage Classification Using Convolutional Neural Networks. , 2018, , .		98
400	Interpretation of the Outputs of a Deep Learning Model Trained with a Skin CancerÂDataset. Journal of Investigative Dermatology, 2018, 138, 2275-2277.	0.3	17
401	The potential of computerised analysis of bowel sounds for diagnosis of gastrointestinal conditions: a systematic review. Systematic Reviews, 2018, 7, 124.	2.5	27
402	Diabetic Eye Diseases. Current Practices in Ophthalmology, 2018, , 71-89.	0.1	0
403	Artificial Intelligence in Cardiology. Journal of the American College of Cardiology, 2018, 71, 2668-2679.	1.2	690
404	Using Digital Health Technology toÂBetterÂGenerate Evidence and DeliverÂEvidence-BasedÂCare. Journal of the American College of Cardiology, 2018, 71, 2680-2690.	1.2	192
405	Predicting urinary tract infections in the emergency department with machine learning. PLoS ONE, 2018, 13, e0194085.	1.1	127

#	Article	IF	CITATIONS
406	Machine-learning Algorithm to Predict Hypotension Based on High-fidelity Arterial Pressure Waveform Analysis. Anesthesiology, 2018, 129, 663-674.	1.3	334
407	Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network. PLoS ONE, 2018, 13, e0191493.	1.1	151
408	Current and Emerging Trends in Point-of-Care Technology and Strategies for Clinical Validation and Implementation. Clinical Chemistry, 2018, 64, 1439-1452.	1.5	84
409	m-Health 2.0: New perspectives on mobile health, machine learning and big data analytics. Methods, 2018, 151, 34-40.	1.9	76
410	Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed Tomographic Angiography–Based Fractional Flow Reserve. Circulation: Cardiovascular Imaging, 2018, 11, e007217.	1.3	280
411	Artificial intelligence-assisted interpretation of bone age radiographs improves accuracy and decreases variability. Skeletal Radiology, 2019, 48, 275-283.	1.2	79
412	Quantitative Phase Imaging and Artificial Intelligence: A Review. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-14.	1.9	123
413	Diabetic Retinopathy Assessment Variability Among Eye Care Providers in an Urban Teleophthalmology Program. Telemedicine Journal and E-Health, 2019, 25, 301-308.	1.6	16
414	Smart connected electronic gastroscope system for gastric cancer screening using multi-column convolutional neural networks. International Journal of Production Research, 2019, 57, 6795-6806.	4.9	29
416	Predicting Inpatient Length of Stay After Brain Tumor Surgery: Developing Machine Learning Ensembles to Improve Predictive Performance. Neurosurgery, 2019, 85, 384-393.	0.6	55
417	Learning for Personalized Medicine: A Comprehensive Review From a Deep Learning Perspective. IEEE Reviews in Biomedical Engineering, 2019, 12, 194-208.	13.1	63
418	Medical students' attitude towards artificial intelligence: a multicentre survey. European Radiology, 2019, 29, 1640-1646.	2.3	312
419	Are we at a crossroads or a plateau? Radiomics and machine learning in abdominal oncology imaging. Abdominal Radiology, 2019, 44, 1985-1989.	1.0	12
420	Accuracy of ultra-wide-field fundus ophthalmoscopy-assisted deep learning, a machine-learning technology, for detecting age-related macular degeneration. International Ophthalmology, 2019, 39, 1269-1275.	0.6	63
421	Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A survey. Artificial Intelligence in Medicine, 2019, 99, 101701.	3.8	176
422	Artificial Intelligence Approach in Melanoma. , 2019, , 599-628.		5
423	Feasibility of Diagnosing Both Severity and Features of Diabetic Retinopathy in Fundus Photography. IEEE Access, 2019, 7, 102589-102597.	2.6	20
424	Machine learning in clinical practice: prospects and pitfalls. Medical Journal of Australia, 2019, 211, 203.	0.8	22

#	Article	IF	Citations
425	Diagnostic Accuracy of Community-Based Diabetic Retinopathy Screening With an Offline Artificial Intelligence System on a Smartphone. JAMA Ophthalmology, 2019, 137, 1182.	1.4	146
426	Accuracy of computer-assisted vertical cup-to-disk ratio grading for glaucoma screening. PLoS ONE, 2019, 14, e0220362.	1.1	5
427	Bimodal learning via trilogy of skip-connection deep networks for diabetic retinopathy risk progression identification. International Journal of Medical Informatics, 2019, 132, 103926.	1.6	40
428	Examination of retinal vascular trajectory in schizophrenia and bipolar disorder. Psychiatry and Clinical Neurosciences, 2019, 73, 738-744.	1.0	27
429	An augmented reality microscope with real-time artificial intelligence integration for cancer diagnosis. Nature Medicine, 2019, 25, 1453-1457.	15.2	179
430	A Deep Learning Framework for Identifying Zone I in RetCam Images. IEEE Access, 2019, 7, 103530-103537.	2.6	20
431	Accuracy of machine learning for differentiation between optic neuropathies and pseudopapilledema. BMC Ophthalmology, 2019, 19, 178.	0.6	33
432	The diagnostic accuracy of an intelligent and automated fundus disease image assessment system with lesion quantitative function (SmartEye) in diabetic patients. BMC Ophthalmology, 2019, 19, 184.	0.6	18
433	Global Assessment of Retinal Arteriolar, Venular and Capillary Microcirculations Using Fundus Photographs and Optical Coherence Tomography Angiography in Diabetic Retinopathy. Scientific Reports, 2019, 9, 11751.	1.6	30
434	HetEnc: a deep learning predictive model for multi-type biological dataset. BMC Genomics, 2019, 20, 638.	1.2	4
435	Detection of severity level of diabetic retinopathy using Bag of features model. IET Computer Vision, 2019, 13, 523-530.	1.3	24
436	Al in Health: State of the Art, Challenges, and Future Directions. Yearbook of Medical Informatics, 2019, 28, 016-026.	0.8	138
437	Improving Lesion Segmentation for Diabetic Retinopathy Using Adversarial Learning. Lecture Notes in Computer Science, 2019, , 333-344.	1.0	13
438	Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning. Biomedical Optics Express, 2019, 10, 892.	1.5	149
439	Artificial Intelligence in Corneal Diagnosis: Where Are we?. Current Ophthalmology Reports, 2019, 7, 204-211.	0.5	24
440	Artificial Intelligence Screening for Diabetic Retinopathy: the Real-World Emerging Application. Current Diabetes Reports, 2019, 19, 72.	1.7	107
441	Combining patient visual timelines with deep learning to predict mortality. PLoS ONE, 2019, 14, e0220640.	1.1	19
442	Medinoid: Computer-Aided Diagnosis and Localization of Glaucoma Using Deep Learning â€. Applied Sciences (Switzerland), 2019, 9, 3064.	1.3	25

#	Article	IF	Citations
443	A Permutation Approach to Assess Confounding in Machine Learning Applications for Digital Health. , 2019, , .		6
444	Retinal image assessment using bi-level adaptive morphological component analysis. Artificial Intelligence in Medicine, 2019, 99, 101702.	3.8	13
445	Automated detection and classification of early AMD biomarkers using deep learning. Scientific Reports, 2019, 9, 10990.	1.6	70
446	Efficient Deep Learning Approaches for Health Informatics. , 2019, , 123-137.		32
447	Radiation Oncology in the Era of Big Data and Machine Learning for Precision Medicine. , 0, , .		5
448	State-of-the-Art Deep Learning in Cardiovascular Image Analysis. JACC: Cardiovascular Imaging, 2019, 12, 1549-1565.	2.3	238
449	Deep Learning for Recognition of Endoleak After Endovascular Abdominal Aortic Aneurysm Repair. , 2019, , .		5
450	Convolution kernel and iterative reconstruction affect the diagnostic performance of radiomics and deep learning in lung adenocarcinoma pathological subtypes. Thoracic Cancer, 2019, 10, 1893-1903.	0.8	19
451	Deep Learning and Neurology: A Systematic Review. Neurology and Therapy, 2019, 8, 351-365.	1.4	101
452	Deep Learning for Weak Supervision of Diabetic Retinopathy Abnormalities. , 2019, , .		13
453	Risk-Aware Machine Learning Classifier for Skin Lesion Diagnosis. Journal of Clinical Medicine, 2019, 8, 1241.	1.0	56
454	Predicting lung nodule malignancies by combining deep convolutional neural network and handcrafted features. Physics in Medicine and Biology, 2019, 64, 175012.	1.6	51
455	Few Shot Learning in Histopathological Images:Reducing the Need of Labeled Data on Biological Datasets. , 2019, , .		33
456	Big data in nephrology: Are we ready for the change?. Nephrology, 2019, 24, 1097-1102.	0.7	21
457	Applying Deep Neural Network Analysis to High-Content Image-Based Assays. SLAS Discovery, 2019, 24, 829-841.	1.4	22
458	Artificial Intelligence for Clinical Trial Design. Trends in Pharmacological Sciences, 2019, 40, 577-591.	4.0	288
459	Detecting Retinal Nerve Fibre Layer Segmentation Errors on Spectral Domain-Optical Coherence Tomography with a Deep Learning Algorithm. Scientific Reports, 2019, 9, 9836.	1.6	14
460	Deep learning-based selection of human sperm with high DNA integrity. Communications Biology, 2019, 2, 250.	2.0	64

#	Article	IF	CITATIONS
461	The application of convolutional neural network to stem cell biology. Inflammation and Regeneration, 2019, 39, 14.	1.5	69
462	Role of Big Data in Cardiovascular Research. Journal of the American Heart Association, 2019, 8, e012791.	1.6	26
463	The Application of Deep Learning in the Risk Grading of Skin Tumors for Patients Using Clinical Images. Journal of Medical Systems, 2019, 43, 283.	2.2	17
464	A Novel Non-invasive Method for Predicting Liver Fibrosis by Quantifying the Hepatic Vein Waveform. Ultrasound in Medicine and Biology, 2019, 45, 2363-2371.	0.7	6
465	Promoting Trust Between Patients and Physicians in the Era of Artificial Intelligence. JAMA - Journal of the American Medical Association, 2019, 322, 497.	3.8	71
466	Image Level Training and Prediction: Intracranial Hemorrhage Identification in 3D Non-Contrast CT. IEEE Access, 2019, 7, 92355-92364.	2.6	48
467	Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences. Nature Communications, 2019, 10, 3111.	5.8	65
468	EyeWeS: Weakly Supervised Pre-Trained Convolutional Neural Networks for Diabetic Retinopathy Detection. , 2019, , .		14
469	Classification for invasion depth of esophageal squamous cell carcinoma using a deep neural network compared with experienced endoscopists. Gastrointestinal Endoscopy, 2019, 90, 407-414.	0.5	113
470	Severity Classification of Conjunctival Hyperaemia by Deep Neural Network Ensembles. Journal of Ophthalmology, 2019, 2019, 1-10.	0.6	10
471	Artificial Intelligence. Thoracic Surgery Clinics, 2019, 29, 339-350.	0.4	16
472	Prediction of the Location of the Glottis in Laryngeal Images by Using a Novel Deep-Learning Algorithm. IEEE Access, 2019, 7, 79545-79554.	2.6	12
473	Machine Learning Assessment for Severity of Liver Fibrosis for Chronic HBV Based on Physical Layer With Serum Markers. IEEE Access, 2019, 7, 124351-124365.	2.6	8
474	Three Problems with Big Data and Artificial Intelligence in Medicine. Perspectives in Biology and Medicine, 2019, 62, 237-256.	0.3	45
475	Research on deep learning in the field of mechanical equipment fault diagnosis image quality. Journal of Visual Communication and Image Representation, 2019, 62, 402-409.	1.7	14
476	Photographic Analysis and Machine Learning for Diagnostic Prediction of Adenoid Hypertrophy. , 2019, , .		2
477	Management of Thyroid Nodules Seen on US Images: Deep Learning May Match Performance of Radiologists. Radiology, 2019, 292, 695-701.	3.6	127
478	Artificial intelligence algorithm for predicting mortality of patients with acute heart failure. PLoS ONE, 2019, 14, e0219302.	1.1	84

#	Article	IF	CITATIONS
479	Auto-classification of Retinal Diseases in the Limit of Sparse Data Using a Two-Streams Machine Learning Model. Lecture Notes in Computer Science, 2019, , 323-338.	1.0	2
480	An Evaluation System of Fundus Photograph-Based Intelligent Diagnostic Technology for Diabetic Retinopathy and Applicability for Research. Diabetes Therapy, 2019, 10, 1811-1822.	1.2	26
481	Referable diabetic retinopathy identification from eye fundus images with weighted path for convolutional neural network. Artificial Intelligence in Medicine, 2019, 99, 101694.	3.8	80
482	Automated spectrographic seizure detection using convolutional neural networks. Seizure: the Journal of the British Epilepsy Association, 2019, 71, 124-131.	0.9	15
483	Ultrasound image analysis using deep learning algorithm for the diagnosis of thyroid nodules. Medicine (United States), 2019, 98, e15133.	0.4	64
484	Solid Science of Al Supporting Bladder Cancer CT Reading. Academic Radiology, 2019, 26, 1146-1147.	1.3	0
485	Urinary Stone Detection on CT Images Using Deep Convolutional Neural Networks: Evaluation of Model Performance and Generalization. Radiology: Artificial Intelligence, 2019, 1, e180066.	3.0	46
486	Utilization of DenseNet201 for diagnosis of breast abnormality. Machine Vision and Applications, 2019, 30, 1135-1144.	1.7	62
487	Deep Learning Fundus Image Analysis for Diabetic Retinopathy and Macular Edema Grading. Scientific Reports, 2019, 9, 10750.	1.6	153
488	The Value of Automated Diabetic Retinopathy Screening with the EyeArt System: A Study of More Than 100,000 Consecutive Encounters from People with Diabetes. Diabetes Technology and Therapeutics, 2019, 21, 635-643.	2.4	114
489	Network-based features for retinal fundus vessel structure analysis. PLoS ONE, 2019, 14, e0220132.	1.1	3
490	Brain Tumor Segmentation and Survival Prediction Using Multimodal MRI Scans With Deep Learning. Frontiers in Neuroscience, 2019, 13, 810.	1.4	155
491	Artificial intelligence and machine learning in clinical development: a translational perspective. Npj Digital Medicine, 2019, 2, 69.	5.7	282
492	Detecting Vascular Bifurcation in IVOCT Images Using Convolutional Neural Networks With Transfer Learning. IEEE Access, 2019, 7, 66167-66175.	2.6	13
493	Applying a new quantitative image analysis scheme based on global mammographic features to assist diagnosis of breast cancer. Computer Methods and Programs in Biomedicine, 2019, 179, 104995.	2.6	21
494	A Deep Learning Approach for Automated Detection of Geographic Atrophy from Color Fundus Photographs. Ophthalmology, 2019, 126, 1533-1540.	2.5	55
495	From Handcrafted to Deep-Learning-Based Cancer Radiomics: Challenges and Opportunities. IEEE Signal Processing Magazine, 2019, 36, 132-160.	4.6	185
496	The Right Direction Needed to Develop White-Box Deep Learning in Radiology, Pathology, and Ophthalmology: A Short Review. Frontiers in Robotics and AI, 2019, 6, 24.	2.0	27

#	Article	IF	CITATIONS
497	Colonic Polyp Detection in Endoscopic Videos With Single Shot Detection Based Deep Convolutional Neural Network. IEEE Access, 2019, 7, 75058-75066.	2.6	47
498	Cardiac tissue engineering: state-of-the-art methods and outlook. Journal of Biological Engineering, 2019, 13, 57.	2.0	89
499	Machine Learning for Health Services Researchers. Value in Health, 2019, 22, 808-815.	0.1	168
500	Identifying depression in the National Health and Nutrition Examination Survey data using a deep learning algorithm. Journal of Affective Disorders, 2019, 257, 623-631.	2.0	48
501	Deep learning in medical image analysis: A third eye for doctors. Journal of Stomatology, Oral and Maxillofacial Surgery, 2019, 120, 279-288.	0.5	152
502	Demystifying the Jargon: The Bridge between Ophthalmology and Artificial Intelligence. Ophthalmology Retina, 2019, 3, 291-293.	1.2	6
503	Evaluation of an Al system for the automated detection of glaucoma from stereoscopic optic disc photographs: the European Optic Disc Assessment Study. Eye, 2019, 33, 1791-1797.	1.1	31
504	Monitoring Disease Progression With a Quantitative Severity Scale for Retinopathy of Prematurity Using Deep Learning. JAMA Ophthalmology, 2019, 137, 1022.	1.4	81
505	Classification of Carotid Artery Intima Media Thickness Ultrasound Images with Deep Learning. Journal of Medical Systems, 2019, 43, 273.	2.2	33
506	Automated diagnosis of ear disease using ensemble deep learning with a big otoendoscopy image database. EBioMedicine, 2019, 45, 606-614.	2.7	97
507	Al in MRI: A case for grassroots deep learning. Magnetic Resonance Imaging, 2019, 64, 1-3.	1.0	5
508	Computer-aided diagnosis system for breast ultrasound images using deep learning. Physics in Medicine and Biology, 2019, 64, 235013.	1.6	84
509	The Secrets of Machine Learning: Ten Things You Wish You Had Known Earlier to Be More Effective at Data Analysis. , 2019, , 44-72.		17
510	Joint optic disc and cup segmentation using semi-supervised conditional GANs. Computers in Biology and Medicine, 2019, 115, 103485.	3.9	44
511	Clinical applications of artificial intelligence in sepsis: A narrative review. Computers in Biology and Medicine, 2019, 115, 103488.	3.9	77
512	Development of a real-time endoscopic image diagnosis support system using deep learning technology in colonoscopy. Scientific Reports, 2019, 9, 14465.	1.6	169
513	An Interpretable Ensemble Deep Learning Model for Diabetic Retinopathy Disease Classification. , 2019, 2019, 2045-2048.		105
514	PASnet: A Joint Convolutional Neural Network for Noninvasive Renal Ultrasound Pathology Assessment. , 2019, , .		1

#	Article	IF	CITATIONS
515	EdgeScaping: Mapping the spatial distribution of pairwise gene expression intensities. PLoS ONE, 2019, 14, e0220279.	1.1	2
516	Artificial neural network technologies as a tool to histological preparation analysis. IOP Conference Series: Earth and Environmental Science, 2019, 333, 012087.	0.2	2
517	Computer-aided diagnosis of laryngeal cancer via deep learning based on laryngoscopic images. EBioMedicine, 2019, 48, 92-99.	2.7	74
518	Ontology-based venous thromboembolism risk assessment model developing from medical records. BMC Medical Informatics and Decision Making, 2019, 19, 151.	1.5	20
519	Key challenges for delivering clinical impact with artificial intelligence. BMC Medicine, 2019, 17, 195.	2.3	968
520	Deep-learning-based risk stratification for mortality of patients with acute myocardial infarction. PLoS ONE, 2019, 14, e0224502.	1.1	54
521	Learning More with Less. , 2019, , .		56
522	Diabetic Retinopathy and Heart Disease. Frontiers in Diabetes, 2019, , 54-63.	0.4	0
523	A comparison of machine learning classifiers for dementia with Lewy bodies using miRNA expression data. BMC Medical Genomics, 2019, 12, 150.	0.7	22
524	Current status and future trends of clinical diagnoses via image-based deep learning. Theranostics, 2019, 9, 7556-7565.	4.6	66
525	Automated detection of a nonperfusion area caused by retinal vein occlusion in optical coherence tomography angiography images using deep learning. PLoS ONE, 2019, 14, e0223965.	1.1	37
526	Convolutional neural networks for dental image diagnostics: A scoping review. Journal of Dentistry, 2019, 91, 103226.	1.7	217
527	Enhancing the Accuracy of Glaucoma Detection from OCT Probability Maps using Convolutional Neural Networks. , 2019, 2019, 2036-2040.		37
528	Automatic Parallel Detection of Neovascularization from Retinal Images Using Ensemble of Extreme Learning Machine. , 2019, 2019, 4712-4716.		5
529	Hidden noise in immunologic parameters might explain rapid progression in early-onset periodontitis. PLoS ONE, 2019, 14, e0224615.	1.1	2
530	Machine Friendly Machine Learning: Interpretation of Computed Tomography Without Image Reconstruction. Scientific Reports, 2019, 9, 15540.	1.6	27
531	How to Read Articles That Use Machine Learning. JAMA - Journal of the American Medical Association, 2019, 322, 1806.	3.8	329
532	Evaluating Machine Learning Articles. JAMA - Journal of the American Medical Association, 2019, 322,	3.8	28

#	Article	IF	CITATIONS
533	Real-Time Extraction of Important Surgical Phases in Cataract Surgery Videos. Scientific Reports, 2019, 9, 16590.	1.6	31
534	Deep learning-based automatic blood pressure measurement: evaluation of the effect of deep breathing, talking and arm movement. Annals of Medicine, 2019, 51, 397-403.	1.5	8
535	Key Considerations for Incorporating Conversational AI in Psychotherapy. Frontiers in Psychiatry, 2019, 10, 746.	1.3	56
536	Synthesizing Diverse Lung Nodules Wherever Massively: 3D Multi-Conditional GAN-Based CT Image Augmentation for Object Detection. , 2019, , .		74
537	A Data Augmentation-Assisted Deep Learning Model for High Dimensional and Highly Imbalanced Hyperspectral Imaging Data. , 2019, , .		7
538	Deep Learning for Chest Radiograph Diagnosis in the Emergency Department. Radiology, 2019, 293, 573-580.	3.6	107
539	A State of Art Approaches on Deep Learning Models in Healthcare: An Application Perspective. , 2019, , .		5
540	Deep Feature Selection and Causal Analysis of Alzheimer's Disease. Frontiers in Neuroscience, 2019, 13, 1198.	1.4	20
541	On the Effectiveness of Deep Representation Learning: The Atrial Fibrillation Case. Computer, 2019, 52, 18-29.	1.2	6
542	Universal artificial intelligence platform for collaborative management of cataracts. British Journal of Ophthalmology, 2019, 103, 1553-1560.	2.1	87
543	The Current State of Artificial Intelligence in Medical Imaging and Nuclear Medicine. BJR Open, 2019, 1, 20190037.	0.4	16
544	Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22737-22745.	3.3	171
545	Decision Making with Machine Learning and ROC Curves. SSRN Electronic Journal, 0, , .	0.4	11
546	Deep Learning in Alzheimer's Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data. Frontiers in Aging Neuroscience, 2019, 11, 220.	1.7	406
547	Artificial Intelligence in Nephrology: Core Concepts, Clinical Applications, and Perspectives. American Journal of Kidney Diseases, 2019, 74, 803-810.	2.1	90
548	A Severity Score for Retinopathy of Prematurity. , 2019, , .		3
549	MetaPred. , 2019, 2019, 2487-2495.		63
550	Learning Algorithms for Ophthalmologists: A Conceptual Primer. Journal of Academic Ophthalmology (2017), 2019, 11, e22-e24.	0.2	0

#	Article	IF	CITATIONS
551	Producing Radiologist-Quality Reports for Interpretable Deep Learning. , 2019, , .		24
552	Physician-Level Aggregated Classifier for Genetic Muscle Disorders. , 2019, , .		2
553	Deep Learning Classifiers for Automated Detection of Gonioscopic Angle Closure Based on Anterior Segment OCT Images. American Journal of Ophthalmology, 2019, 208, 273-280.	1.7	80
554	Machine learning approach of automatic identification and counting of blood cells. Healthcare Technology Letters, 2019, 6, 103-108.	1.9	103
555	A Roadmap for Automatic Surgical Site Infection Detection and Evaluation Using User-Generated Incision Images. Surgical Infections, 2019, 20, 555-565.	0.7	17
556	Deep Convolutional Neural Networks For Imaging Data Based Survival Analysis Of Rectal Cancer. , 2019, 2019, 846-849.		31
557	Identifying Diabetic Retinopathy from OCT Images using Deep Transfer Learning with Artificial Neural Networks. , 2019, , .		30
558	Imaging and Biomarkers in Diabetic Macular Edema and Diabetic Retinopathy. Current Diabetes Reports, 2019, 19, 95.	1.7	77
559	BiRA-Net: Bilinear Attention Net for Diabetic Retinopathy Grading. , 2019, , .		51
560	Fully automated method for glaucoma screening using robust optic nerve head detection and unsupervised segmentation based cup-to-disc ratio computation in retinal fundus images. Computerized Medical Imaging and Graphics, 2019, 77, 101643.	3.5	44
561	Learning to detect lymphocytes in immunohistochemistry with deep learning. Medical Image Analysis, 2019, 58, 101547.	7.0	98
562	Convolutional Neural Networks for Spectroscopic Analysis in Retinal Oximetry. Scientific Reports, 2019, 9, 11387.	1.6	12
563	Why digital medicine depends on interoperability. Npj Digital Medicine, 2019, 2, 79.	5.7	197
564	Three pitfalls to avoid in machine learning. Nature, 2019, 572, 27-29.	13.7	98
565	Pathological Evidence Exploration in Deep Retinal Image Diagnosis. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33, 1093-1101.	3.6	22
566	Development and Validation of a Deep Learning System to Detect Glaucomatous Optic Neuropathy Using Fundus Photographs. JAMA Ophthalmology, 2019, 137, 1353.	1.4	188
567	Development of an automatic muscle atrophy measuring algorithm to calculate the ratio of supraspinatus in supraspinous fossa using deep learning. Computer Methods and Programs in Biomedicine, 2019, 182, 105063.	2.6	29
568	Expert-level Automated Biomarker Identification in Optical Coherence Tomography Scans. Scientific Reports, 2019, 9, 13605.	1.6	37

	CITATION		
#	Article	IF	CITATIONS
569	Imaging Retinal Activity in the Living Eye. Annual Review of Vision Science, 2019, 5, 15-45.	2.3	27
570	Medical Image Analysis Using Artificial Intelligence. Progress in Medical Physics, 2019, 30, 49.	0.5	16
571	Automated and Interpretable Patient ECG Profiles for Disease Detection, Tracking, and Discovery. Circulation: Cardiovascular Quality and Outcomes, 2019, 12, e005289.	0.9	111
572	Qualifying antibodies for image-based immune profiling and multiplexed tissue imaging. Nature Protocols, 2019, 14, 2900-2930.	5.5	92
573	A Survey on Multimodal Data-Driven Smart Healthcare Systems: Approaches and Applications. IEEE Access, 2019, 7, 133583-133599.	2.6	74
574	An Overview of Deep Reinforcement Learning. , 2019, , .		9
575	Personalized Health Systems—Past, Present, and Future of Research Development and Implementation in Real-Life Environment. Frontiers in Medicine, 2019, 6, 149.	1.2	7
576	Deep Learning and Glaucoma Specialists. Ophthalmology, 2019, 126, 1627-1639.	2.5	130
577	Deep learning based early stage diabetic retinopathy detection using optical coherence tomography. Neurocomputing, 2019, 369, 134-144.	3.5	62
578	Incorporating Statistical Test and Machine Intelligence Into Strain Typing of Staphylococcus haemolyticus Based on Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. Frontiers in Microbiology, 2019, 10, 2120.	1.5	20
579	Individualized prediction of depressive disorder in the elderly: A multitask deep learning approach. International Journal of Medical Informatics, 2019, 132, 103973.	1.6	24
580	Review on the Applications of Deep Learning in the Analysis of Gastrointestinal Endoscopy Images. IEEE Access, 2019, 7, 142053-142069.	2.6	64
581	Autonomous early detection of eye disease in childhood photographs. Science Advances, 2019, 5, eaax6363.	4.7	25
583	Deep learning algorithm predicts diabetic retinopathy progression in individual patients. Npj Digital Medicine, 2019, 2, 92.	5.7	178
584	An Ophthalmologist's Guide to Deciphering Studies in Artificial Intelligence. Ophthalmology, 2019, 126, 1475-1479.	2.5	35
585	Machine learning as a supportive tool to recognize cardiac arrest in emergency calls. Resuscitation, 2019, 138, 322-329.	1.3	124
586	A Deep Learning Algorithm to Quantify Neuroretinal Rim Loss From Optic Disc Photographs. American Journal of Ophthalmology, 2019, 201, 9-18.	1.7	70
587	From Machine to Machine. Ophthalmology, 2019, 126, 513-521.	2.5	158

#	Article	IF	CITATIONS
588	Data-Driven Subtyping of Parkinson's Disease Using Longitudinal Clinical Records: A Cohort Study. Scientific Reports, 2019, 9, 797.	1.6	76
589	Artificial Intelligence Transforms the Future of Health Care. American Journal of Medicine, 2019, 132, 795-801.	0.6	255
590	Convolutional Neural Networks for Automated Fracture Detection and Localization on Wrist Radiographs. Radiology: Artificial Intelligence, 2019, 1, e180001.	3.0	105
591	Deep Learning in Diagnosis of Maxillary Sinusitis Using Conventional Radiography. Investigative Radiology, 2019, 54, 7-15.	3.5	65
592	Artificial Intelligence, Radiology, and the Way Forward. Canadian Association of Radiologists Journal, 2019, 70, 10-12.	1.1	28
593	Discovery Radiomics With CLEAR-DR: Interpretable Computer Aided Diagnosis of Diabetic Retinopathy. IEEE Access, 2019, 7, 25891-25896.	2.6	26
594	Deep Learning: Current and Emerging Applications in Medicine and Technology. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 906-920.	3.9	56
595	Machine Learning for the Prediction of New-Onset Diabetes Mellitus during 5-Year Follow-up in Non-Diabetic Patients with Cardiovascular Risks. Yonsei Medical Journal, 2019, 60, 191.	0.9	56
596	Dermoscopy diagnosis of cancerous lesions utilizing dual deep learning algorithms via visual and audio (sonification) outputs: Laboratory and prospective observational studies. EBioMedicine, 2019, 40, 176-183.	2.7	31
	,		
597	Data Science for Child Health. Journal of Pediatrics, 2019, 208, 12-22.	0.9	22
597 599		0.9	22 8
	Data Science for Child Health. Journal of Pediatrics, 2019, 208, 12-22.	0.9	
599	Data Science for Child Health. Journal of Pediatrics, 2019, 208, 12-22. Artificial Intelligence in Medicine: Validation and Study Design. , 2019, , 83-104. Major automatic diabetic retinopathy screening systems and related core algorithms: a review.		8
599 600	Data Science for Child Health. Journal of Pediatrics, 2019, 208, 12-22. Artificial Intelligence in Medicine: Validation and Study Design. , 2019, , 83-104. Major automatic diabetic retinopathy screening systems and related core algorithms: a review. Machine Vision and Applications, 2019, 30, 423-446. Is Image Interpretation a Sustainable Form of Advanced Practice in MedicalÂlmaging?. Journal of Medical	1.7	8
599 600 601	Data Science for Child Health. Journal of Pediatrics, 2019, 208, 12-22. Artificial Intelligence in Medicine: Validation and Study Design. , 2019, , 83-104. Major automatic diabetic retinopathy screening systems and related core algorithms: a review. Machine Vision and Applications, 2019, 30, 423-446. Is Image Interpretation a Sustainable Form of Advanced Practice in MedicalÂlmaging?. Journal of Medical Imaging and Radiation Sciences, 2019, 50, 345-347.	1.7	8 19 4
599 600 601 602	Data Science for Child Health. Journal of Pediatrics, 2019, 208, 12-22. Artificial Intelligence in Medicine: Validation and Study Design. , 2019, , 83-104. Major automatic diabetic retinopathy screening systems and related core algorithms: a review. Machine Vision and Applications, 2019, 30, 423-446. Is Image Interpretation a Sustainable Form of Advanced Practice in MedicalÂlmaging?. Journal of Medical Imaging and Radiation Sciences, 2019, 50, 345-347. Fundus Image Classification Using VGG-19 Architecture with PCA and SVD. Symmetry, 2019, 11, 1. USâ€Pro: An Application Enabling Efficient, Highâ€Throughput Ultrasound Video Processing. Journal of	1.7 0.2 1.1	8 19 4 425
 599 600 601 602 603 	Data Science for Child Health. Journal of Pediatrics, 2019, 208, 12-22. Artificial Intelligence in Medicine: Validation and Study Design. , 2019, , 83-104. Major automatic diabetic retinopathy screening systems and related core algorithms: a review. Machine Vision and Applications, 2019, 30, 423-446. Is Image Interpretation a Sustainable Form of Advanced Practice in MedicalÂlmaging?. Journal of Medical Imaging and Radiation Sciences, 2019, 50, 345-347. Fundus Image Classification Using VGC-19 Architecture with PCA and SVD. Symmetry, 2019, 11, 1. USâ€Pro: An Application Enabling Efficient, Highâ€Throughput Ultrasound Video Processing. Journal of Ultrasound in Medicine, 2019, 38, 2761-2767. Deep Learning Algorithms with Demographic Information Help to Detect Tuberculosis in Chest Radiographs in Annual Workers' Health Examination Data. International Journal of Environmental	1.7 0.2 1.1 0.8	8 19 4 425 0

#	Article	IF	CITATIONS
607	Laser Scar Detection in Fundus Images Using Convolutional Neural Networks. Lecture Notes in Computer Science, 2019, , 191-206.	1.0	6
608	Enhancing cardiovascular artificial intelligence (AI) research in the Netherlands: CVON-AI consortium. Netherlands Heart Journal, 2019, 27, 414-425.	0.3	6
609	Automated Classification of the Tympanic Membrane Using a Convolutional Neural Network. Applied Sciences (Switzerland), 2019, 9, 1827.	1.3	43
610	Evaluation of Use of Technologies to Facilitate Medical Chart Review. Drug Safety, 2019, 42, 1071-1080.	1.4	3
611	Quality assurance of computer-aided detection and diagnosis in colonoscopy. Gastrointestinal Endoscopy, 2019, 90, 55-63.	0.5	104
612	Assessment of Machine Learning Detection of Environmental Enteropathy and Celiac Disease in Children. JAMA Network Open, 2019, 2, e195822.	2.8	35
613	New imaging systems in diabetic retinopathy. Acta Diabetologica, 2019, 56, 981-994.	1.2	22
614	Prediction of the Antioxidant Response Elements' Response of Compound by Deep Learning. Frontiers in Chemistry, 2019, 7, 385.	1.8	24
615	Deep Convolutional Neural Network-Based Positron Emission Tomography Analysis Predicts Esophageal Cancer Outcome. Journal of Clinical Medicine, 2019, 8, 844.	1.0	22
616	RetinaMatch: Efficient Template Matching of Retina Images for Teleophthalmology. IEEE Transactions on Medical Imaging, 2019, 38, 1993-2004.	5.4	15
617	Artificial Intelligence and Personalized Medicine. Cancer Treatment and Research, 2019, 178, 265-283.	0.2	150
618	Predicting Breast Cancer by Applying Deep Learning to Linked Health Records and Mammograms. Radiology, 2019, 292, 331-342.	3.6	115
619	Critical Care, Critical Data. Biomedical Engineering and Computational Biology, 2019, 10, 117959721985656.	0.8	33
620	Exploiting the Vulnerability of Deep Learning-Based Artificial Intelligence Models in Medical Imaging: Adversarial Attacks. Journal of the Korean Society of Radiology, 2019, 80, 259.	0.1	23
621	Supervised Machine Learning Based Multi-Task Artificial Intelligence Classification of Retinopathies. Journal of Clinical Medicine, 2019, 8, 872.	1.0	50
622	Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss. Computerized Medical Imaging and Graphics, 2019, 75, 84-92.	3.5	121
623	Development and validation of a deepâ€learning algorithm for the detection of neovascular ageâ€related macular degeneration from colour fundus photographs. Clinical and Experimental Ophthalmology, 2019, 47, 1009-1018.	1.3	52
624	A Transfer Learning Approach for Malignant Prostate Lesion Detection on Multiparametric MRI. Technology in Cancer Research and Treatment, 2019, 18, 153303381985836.	0.8	31

#	Article	IF	CITATIONS
625	Enhanced Detection of Referable Diabetic Retinopathy via DCNNs and Transfer Learning. Lecture Notes in Computer Science, 2019, , 282-288.	1.0	2
626	Generative Adversarial Networks (GANs) for Retinal Fundus Image Synthesis. Lecture Notes in Computer Science, 2019, , 289-302.	1.0	12
627	Artificial Intelligence Using Deep Learning in Classifying Side of the Eyes and Width of Field for Retinal Fundus Photographs. Lecture Notes in Computer Science, 2019, , 309-315.	1.0	2
628	Deep learning networks find unique mammographic differences in previous negative mammograms between interval and screen-detected cancers: a case-case study. Cancer Imaging, 2019, 19, 41.	1.2	18
630	Artificial Intelligence and Machine Learning in Lower Extremity Arthroplasty: A Review. Journal of Arthroplasty, 2019, 34, 2201-2203.	1.5	91
631	IAPSO-AIRS: A novel improved machine learning-based system for wart disease treatment. Journal of Medical Systems, 2019, 43, 220.	2.2	40
632	Topological data analysis of high resolution diabetic retinopathy images. PLoS ONE, 2019, 14, e0217413.	1.1	30
633	Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. Npj Digital Medicine, 2019, 2, 48.	5.7	244
634	Evaluating New Ophthalmic Digital Devices for Safety and Effectiveness in the Context of Rapid Technological Development. JAMA Ophthalmology, 2019, 137, 939.	1.4	10
635	Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening. Information Sciences, 2019, 501, 511-522.	4.0	246
636	Artificial Intelligence Approach in Melanoma. , 2019, , 1-31.		5
637	Machine Learning in the Detection of the Glaucomatous Disc and Visual Field. Seminars in Ophthalmology, 2019, 34, 232-242.	0.8	2
638	Applications of deep learning for the analysis of medical data. Archives of Pharmacal Research, 2019, 42, 492-504.	2.7	64
639	Automated brain histology classification using machine learning. Journal of Clinical Neuroscience, 2019, 66, 239-245.	0.8	118
640	Dry eye is matched by increased intrasubject variability in tear osmolarity as confirmed by machine learning approach. Archivos De La Sociedad Espanola De Oftalmologia, 2019, 94, 337-342.	0.1	1
641	The Rebirth of CAD: How Is Modern AI Different from the CAD We Know?. Radiology: Artificial Intelligence, 2019, 1, e180089.	3.0	26
642	Deep Learning for the Radiographic Detection of Apical Lesions. Journal of Endodontics, 2019, 45, 917-922.e5.	1.4	185
643	Computational intelligence techniques for medical diagnosis and prognosis: Problems and current developments. Biocybernetics and Biomedical Engineering, 2019, 39, 638-672.	3.3	31

#	Article		CITATIONS
644	Pragmatic considerations for fostering reproducible research in artificial intelligence. Npj Digital Medicine, 2019, 2, 42.	5.7	27
645	Artificial intelligence: opportunities and risks for public health. The Lancet Digital Health, 2019, 1, e13-e14.	5.9	109
646	Reproduction study using public data of: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. PLoS ONE, 2019, 14, e0217541.	1.1	107
648	A Review of Machine Learning Techniques for Keratoconus Detection and Refractive Surgery Screening. Seminars in Ophthalmology, 2019, 34, 317-326.	0.8	38
649	Use of Telemedicine Technologies in Diabetes Prevention and Control in Resource-Constrained Settings: Lessons Learned from Emerging Economies. Diabetes Technology and Therapeutics, 2019, 21, S2-9-S2-16.	2.4	23
650	Performance of a Deep-Learning Algorithm vs Manual Grading for Detecting Diabetic Retinopathy in India. JAMA Ophthalmology, 2019, 137, 987.	1.4	171
651	Deep Learning for the Radiographic Detection of Periodontal Bone Loss. Scientific Reports, 2019, 9, 8495.	1.6	229
652	Observations and Lessons Learned From the Artificial Intelligence Studies for Diabetic Retinopathy Screening. JAMA Ophthalmology, 2019, 137, 994.	1.4	7
653	Deep Learning for Detecting Breast Cancer Metastases on WSI. Smart Innovation, Systems and Technologies, 2019, , 137-145.	0.5	11
654	A population health perspective on artificial intelligence. Healthcare Management Forum, 2019, 32, 173-177.	0.6	13
655	AÂprimer in artificial intelligence in cardiovascular medicine. Netherlands Heart Journal, 2019, 27, 392-402.	0.3	44
656	Breast cancer outcome prediction with tumour tissue images and machine learning. Breast Cancer Research and Treatment, 2019, 177, 41-52.	1.1	80
657	Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. The Lancet Digital Health, 2019, 1, e35-e44.	5.9	205
658	Automated Detection of Macular Diseases by Optical Coherence Tomography and Artificial Intelligence Machine Learning of Optical Coherence Tomography Images. Journal of Ophthalmology, 2019, 2019, 1-7.	0.6	46
659	New Phenotypes for Sepsis. JAMA - Journal of the American Medical Association, 2019, 321, 1981.	3.8	21
660	Using Big Data and Predictive Analytics to Determine Patient Risk in Oncology. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2019, 39, e53-e58.	1.8	26
661	Artificial Intelligence in Health Care. JAMA - Journal of the American Medical Association, 2019, 321, 2281.	3.8	162
662	End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature Medicine, 2019, 25, 954-961.	15.2	1,122

#	Article	IF	Citations
663	Automated Detection of Diabetic Retinopathy using a Binocular Siamese-Like Convolutional Network. , 2019, , .		13
664	Deep Convolutional Neural Networks for Electrocardiogram Classification. Lecture Notes in Electrical Engineering, 2019, , 57-69.	0.3	4
665	Detection of smoking status from retinal images; a Convolutional Neural Network study. Scientific Reports, 2019, 9, 7180.	1.6	28
666	Image Thresholding Improves 3-Dimensional Convolutional Neural Network Diagnosis of Different Acute Brain Hemorrhages on Computed Tomography Scans. Sensors, 2019, 19, 2167.	2.1	139
667	Automated Pupillary Light Reflex Test on a Portable Platform. , 2019, , .		0
668	Toward automatic prediction of <i>EGFR</i> mutation status in pulmonary adenocarcinoma with 3D deep learning. Cancer Medicine, 2019, 8, 3532-3543.	1.3	87
669	Developing a Diagnostic Decision Support System for Benign Paroxysmal Positional Vertigo Using a Deep-Learning Model. Journal of Clinical Medicine, 2019, 8, 633.	1.0	35
670	Performance of a Deep Learning Model vs Human Reviewers in Grading Endoscopic Disease Severity of Patients With Ulcerative Colitis. JAMA Network Open, 2019, 2, e193963.	2.8	159
671	Deep Vision: Learning toÂldentify Renal Disease With Neural Networks. Kidney International Reports, 2019, 4, 914-916.	0.4	5
672	Application of artificial intelligence in pediatrics: past, present and future. World Journal of Pediatrics, 2019, 15, 105-108.	0.8	29
673	Deep learning versus human graders for classifying diabetic retinopathy severity in a nationwide screening program. Npj Digital Medicine, 2019, 2, 25.	5.7	121
674	Improved Mixed-Example Data Augmentation. , 2019, , .		94
675	How to develop machine learning models for healthcare. Nature Materials, 2019, 18, 410-414.	13.3	178
676	Use of Crowd Innovation to Develop an Artificial Intelligence–Based Solution for Radiation Therapy Targeting. JAMA Oncology, 2019, 5, 654.	3.4	54
677	Deep learning only by normal brain PET identify unheralded brain anomalies. EBioMedicine, 2019, 43, 447-453.	2.7	51
678	Using artificial intelligence in health-system pharmacy practice: Finding new patterns that matter. American Journal of Health-System Pharmacy, 2019, 76, 622-627.	0.5	33
679	A Roadmap for Foundational Research on Artificial Intelligence in Medical Imaging: From the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology, 2019, 291, 781-791.	3.6	241
680	Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy. Theranostics, 2019, 9, 2541-2554.	4.6	106

#	Article	IF	CITATIONS
681	Development of a machine learning algorithm for prediction of failure of nonoperative management in spinal epidural abscess. Spine Journal, 2019, 19, 1657-1665.	0.6	41
682	Resistance to Medical Artificial Intelligence. Journal of Consumer Research, 2019, 46, 629-650.	3.5	609
683	Physician perspectives on integration of artificial intelligence into diagnostic pathology. Npj Digital Medicine, 2019, 2, 28.	5.7	148
684	Evidence-Based Guidelines for Management of Diabetic Macular Edema. Journal of Vitreoretinal Diseases, 2019, 3, 145-152.	0.2	12
685	Scaled Subprofile Modeling and Convolutional Neural Networks for the Identification of Parkinson's Disease in 3D Nuclear Imaging Data. International Journal of Neural Systems, 2019, 29, 1950010.	3.2	48
686	Deep learning in ophthalmology: The technical and clinical considerations. Progress in Retinal and Eye Research, 2019, 72, 100759.	7.3	300
687	Artificial intelligence in cytopathology: a review of the literature and overview of commercial landscape. Journal of the American Society of Cytopathology, 2019, 8, 230-241.	0.2	83
688	Artificial Intelligence in Primary Health Care: Perceptions, Issues, and Challenges. Yearbook of Medical Informatics, 2019, 28, 041-046.	0.8	80
689	Machine learning in a data-limited regime: Augmenting experiments with synthetic data uncovers order in crumpled sheets. Science Advances, 2019, 5, eaau6792.	4.7	47
690	Application of Deep Learning Algorithm in Cervical Cancer MRI Image Segmentation Based on Wireless Sensor. Journal of Medical Systems, 2019, 43, 156.	2.2	10
691	Deep Learning Approach for Software Maintainability Metrics Prediction. IEEE Access, 2019, 7, 61840-61855.	2.6	84
692	A Novel Weakly Supervised Multitask Architecture for Retinal Lesions Segmentation on Fundus Images. IEEE Transactions on Medical Imaging, 2019, 38, 2434-2444.	5.4	62
693	Development and Validation of a Deep Learning–Based Automated Detection Algorithm for Major Thoracic Diseases on Chest Radiographs. JAMA Network Open, 2019, 2, e191095.	2.8	284
694	Machine Learning in Aging Research. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1901-1902.	1.7	16
695	Artificial Neural Networks for Prediction of Tuberculosis Disease. Frontiers in Microbiology, 2019, 10, 395.	1.5	49
696	Expression of Concern: A gingivitis identification method based on contrastâ€limited adaptive histogram equalization, grayâ€level coâ€occurrence matrix, and extreme learning machine. International Journal of Imaging Systems and Technology, 2019, 29, 77-82.	2.7	31
697	Application of convolutional neural networks for evaluating <i>Helicobacter pylori</i> infection status on the basis of endoscopic images. Scandinavian Journal of Gastroenterology, 2019, 54, 158-163.	0.6	70
698	OPTICAL COHERENCE TOMOGRAPHY BIOMARKERS TO DISTINGUISH DIABETIC MACULAR EDEMA FROM PSEUDOPHAKIC CYSTOID MACULAR EDEMA USING MACHINE LEARNING ALGORITHMS. Retina, 2019, 39, 2283-2291.	1.0	14

#	Article		CITATIONS
699	Computer-Aided Diagnosis of Label-Free 3-D Optical Coherence Microscopy Images of Human Cervical Tissue. IEEE Transactions on Biomedical Engineering, 2019, 66, 2447-2456.	2.5	28
700	Artificial intelligence in medical imaging of the liver. World Journal of Gastroenterology, 2019, 25, 672-682.	1.4	149
701	Artificial Intelligence in Pathology. Journal of Pathology and Translational Medicine, 2019, 53, 1-12.	0.4	144
702	Automated Diabetic Retinopathy Detection Based on Binocular Siamese-Like Convolutional Neural Network. IEEE Access, 2019, 7, 30744-30753.	2.6	178
703	Generalizable Inter-Institutional Classification of Abnormal Chest Radiographs Using Efficient Convolutional Neural Networks. Journal of Digital Imaging, 2019, 32, 888-896.	1.6	37
704	Predicting Long-Term Mortality after Acute Coronary Syndrome Using Machine Learning Techniques and Hematological Markers. Disease Markers, 2019, 2019, 1-9.	0.6	29
705	Notoginsenoside R1 Ameliorates Diabetic Retinopathy through PINK1-Dependent Activation of Mitophagy. Cells, 2019, 8, 213.	1.8	85
706	Introduction to artificial intelligence in medicine. Minimally Invasive Therapy and Allied Technologies, 2019, 28, 73-81.	0.6	311
707	Deep learning for cardiovascular medicine: a practical primer. European Heart Journal, 2019, 40, 2058-2073.	1.0	218
708	Deep Learning Predicts OCT Measures of Diabetic Macular Thickening From Color Fundus Photographs. , 2019, 60, 852.		57
709	Data Science Driven Drug Repurposing for Metabolic Disorders. , 2019, , 191-227.		7
710	The Effect of CT Scan Parameters on the Measurement of CT Radiomic Features: A Lung Nodule Phantom Study. Computational and Mathematical Methods in Medicine, 2019, 2019, 1-12.	0.7	36
711	Personalized Medicine and the Power of Electronic Health Records. Cell, 2019, 177, 58-69.	13.5	197
712	Automated identification and grading system of diabetic retinopathy using deep neural networks. Knowledge-Based Systems, 2019, 175, 12-25.	4.0	185
713	A Fully Automated System Using A Convolutional Neural Network to Predict Renal Allograft Rejection: Extra-validation with Giga-pixel Immunostained Slides. Scientific Reports, 2019, 9, 5123.	1.6	15
714	Automatic diagnosis of neurological diseases using MEG signals with a deep neural network. Scientific Reports, 2019, 9, 5057.	1.6	26
715	Periodontal Disease Detection Using Convolutional Neural Networks. , 2019, , .		12
716	Prediction of premature all-cause mortality: A prospective general population cohort study comparing machine-learning and standard epidemiological approaches. PLoS ONE, 2019, 14, e0214365.	1.1	79

#	Article	IF	CITATIONS
717	Clinical applications of machine learning algorithms: beyond the black box. BMJ: British Medical Journal, 2019, 364, l886.		213
718	Development of an intelligent decision support system for ischemic stroke risk assessment in a population-based electronic health record database. PLoS ONE, 2019, 14, e0213007.	1.1	22
719	Machine Learning in Relation to Emergency Medicine Clinical and Operational Scenarios: An Overview. Western Journal of Emergency Medicine, 2019, 20, 219-227.	0.6	34
720	Assessment of a Deep Learning Model Based on Electronic Health Record Data to Forecast Clinical Outcomes in Patients With Rheumatoid Arthritis. JAMA Network Open, 2019, 2, e190606.	2.8	135
722	A Second Chance to Get Causal Inference Right: A Classification of Data Science Tasks. Chance, 2019, 32, 42-49.	0.1	247
723	Deep convolutional neural networks for segmenting 3D in vivo multiphoton images of vasculature in Alzheimer disease mouse models. PLoS ONE, 2019, 14, e0213539.	1.1	60
724	Rise of the Machines: Advances in Deep Learning for Cancer Diagnosis. Trends in Cancer, 2019, 5, 157-169.	3.8	129
725	An Efficient Deep Learning Approach to Pneumonia Classification in Healthcare. Journal of Healthcare Engineering, 2019, 2019, 1-7.	1.1	347
726	A novel machine learning-derived decision tree including uPA/PAI-1 for breast cancer care. Clinical Chemistry and Laboratory Medicine, 2019, 57, 901-910.	1.4	6
727	Machine Learning and Artificial Intelligence in Cardiovascular Imaging. Contemporary Medical Imaging, 2019, , 893-907.	0.3	0
728	L-Seg: An end-to-end unified framework for multi-lesion segmentation of fundus images. Neurocomputing, 2019, 349, 52-63.	3.5	72
729	Deep learning in estimating prevalence and systemic risk factors for diabetic retinopathy: a multi-ethnic study. Npj Digital Medicine, 2019, 2, 24.	5.7	53
730	Clinical Applications of Machine Learning Algorithms: Beyond the Black Box. SSRN Electronic Journal, 0, , .	0.4	20
731	Deep neural networks outperform human expert's capacity in characterizing bioleaching bacterial biofilm composition. Biotechnology Reports (Amsterdam, Netherlands), 2019, 22, e00321.	2.1	57
732	Optimized Deep Convolutional Neural Networks for Identification of Macular Diseases from Optical Coherence Tomography Images. Algorithms, 2019, 12, 51.	1.2	66
733	A data-driven approach to referable diabetic retinopathy detection. Artificial Intelligence in Medicine, 2019, 96, 93-106.	3.8	103
734	Diagnostic Efficacy and Therapeutic Decision-making Capacity of an Artificial Intelligence Platform for Childhood Cataracts in Eye Clinics: A Multicentre Randomized Controlled Trial. EClinicalMedicine, 2019, 9, 52-59.	3.2	117
735	Machine Learning in Health Care: A Critical Appraisal of Challenges and Opportunities. EGEMS (Washington, DC), 2019, 7, 1.	2.0	59

		EPORT	
# 736	ARTICLE Machine Learning in Medicine. New England Journal of Medicine, 2019, 380, 1347-1358.	IF 13.9	Citations
737	Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs. European Radiology, 2019, 29, 5469-5477.	2.3	183
738	In defense of the black box. Science, 2019, 364, 26-27.	6.0	107
739	Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. Npj Digital Medicine, 2019, 2, 21.	5.7	246
740	Generating retinal flow maps from structural optical coherence tomography with artificial intelligence. Scientific Reports, 2019, 9, 5694.	1.6	61
741	Radiomic features and multilayer perceptron network classifier: a robust MRI classification strategy for distinguishing glioblastoma from primary central nervous system lymphoma. Scientific Reports, 2019, 9, 5746.	1.6	73
742	Machine Learning in the Evaluation of Myocardial Ischemia Through Nuclear Cardiology. Current Cardiovascular Imaging Reports, 2019, 12, 1.	0.4	17
743	Realizing the Promise of Electronic Health Records: Moving Beyond "Paper on a Screen― Ophthalmology, 2019, 126, 331-334.	2.5	4
744	Can Al Help Reduce Disparities in General Medical and Mental Health Care?. AMA Journal of Ethics, 2019, 21, E167-179.	0.4	182
745	Data Analytics and Machine Learning for Disease Identification in Electronic Health Records. JAMA Ophthalmology, 2019, 137, 497.	1.4	3
746	Current status and perspectives for computer-aided ultrasonic diagnosis of liver lesions using deep learning technology. Hepatology International, 2019, 13, 416-421.	1.9	24
747	Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network. Medical Image Analysis, 2019, 54, 100-110.	7.0	103
748	Accuracy of Detection and Grading of Diabetic Retinopathy and Diabetic Macular Edema Using Teleretinal Screening. Ophthalmology Retina, 2019, 3, 343-349.	1.2	23
749	Identification of Serious Illness Conversations in Unstructured Clinical Notes Using Deep Neural Networks. Lecture Notes in Computer Science, 2019, , 199-212.	1.0	1
750	Evaluation of deep convolutional neural networks for glaucoma detection. Japanese Journal of Ophthalmology, 2019, 63, 276-283.	0.9	60
751	Accuracy of ultrawide-field fundus ophthalmoscopy-assisted deep learning for detecting treatment-naìve proliferative diabetic retinopathy. International Ophthalmology, 2019, 39, 2153-2159.	0.6	56
752	Artificial Intelligence for Breast Cancer Imaging: The New Frontier?. Journal of the National Cancer Institute, 2019, 111, 875-876.	3.0	5
753	Artificial intelligence in cancer imaging: Clinical challenges and applications. Ca-A Cancer Journal for Clinicians, 2019, 69, 127-157.	157.7	965

#	Article	IF	CITATIONS
754	Diagnostic Accuracy of a Device for the Automated Detection of Diabetic Retinopathy in a Primary Care Setting. Diabetes Care, 2019, 42, 651-656.	4.3	77
755	Artificial intelligence in neuropathology: deep learning-based assessment of tauopathy. Laboratory Investigation, 2019, 99, 1019-1029.	1.7	79
756	Evaluate the Malignancy of Pulmonary Nodules Using the 3-D Deep Leaky Noisy-OR Network. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30, 3484-3495.	7.2	288
757	It Is Time for Us to Get Artificially Intelligent!. JACC: Clinical Electrophysiology, 2019, 5, 263-265.	1.3	4
758	Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nature Medicine, 2019, 25, 433-438.	15.2	386
759	Comparison of different smartphone cameras to evaluate conjunctival hyperaemia in normal subjects. Scientific Reports, 2019, 9, 1339.	1.6	13
760	A Smart Recommender Based on Hybrid Learning Methods for Personal Well-Being Services. Sensors, 2019, 19, 431.	2.1	29
761	Applications of Deep Learning and Artificial Intelligence in Retina. International Ophthalmology Clinics, 2019, 59, 39-57.	0.3	16
762	Deep Learning Based Analysis of Histopathological Images of Breast Cancer. Frontiers in Genetics, 2019, 10, 80.	1.1	175
763	Reinventing Clinical Decision Support. , 2019, , 117-143.		0
763 764	Reinventing Clinical Decision Support. , 2019, , 117-143. Artificial Intelligence and Blackâ€Box Medical Decisions: <i>Accuracy versus Explainability</i> . Hastings Center Report, 2019, 49, 15-21.	0.7	0 360
	Artificial Intelligence and Blackâ€Box Medical Decisions: <i>Accuracy versus Explainability</i> . Hastings	0.7	
764	Artificial Intelligence and Blackâ€Box Medical Decisions: <i>Accuracy versus Explainability</i> . Hastings Center Report, 2019, 49, 15-21. Attention to Lesion: Lesion-Aware Convolutional Neural Network for Retinal Optical Coherence		360
764 765	 Artificial Intelligence and Blackâ€Box Medical Decisions: <i>Accuracy versus Explainability</i>. Hastings Center Report, 2019, 49, 15-21. Attention to Lesion: Lesion-Aware Convolutional Neural Network for Retinal Optical Coherence Tomography Image Classification. IEEE Transactions on Medical Imaging, 2019, 38, 1959-1970. 		360 146
764 765 766	 Artificial Intelligence and Blackâ€Box Medical Decisions: <i>Accuracy versus Explainability</i>. Hastings Center Report, 2019, 49, 15-21. Attention to Lesion: Lesion-Aware Convolutional Neural Network for Retinal Optical Coherence Tomography Image Classification. IEEE Transactions on Medical Imaging, 2019, 38, 1959-1970. The Role of an Artificial Intelligence Ecosystem in Radiology. , 2019, , 291-327. DeepSOFA: A Continuous Acuity Score for Critically III Patients using Clinically Interpretable Deep 	5.4	360 146 3
764 765 766 767	Artificial Intelligence and Blackâ€Box Medical Decisions: <i>Accuracy versus Explainability</i> . Hastings Center Report, 2019, 49, 15-21. Attention to Lesion: Lesion-Aware Convolutional Neural Network for Retinal Optical Coherence Tomography Image Classification. IEEE Transactions on Medical Imaging, 2019, 38, 1959-1970. The Role of an Artificial Intelligence Ecosystem in Radiology. , 2019, , 291-327. DeepSOFA: A Continuous Acuity Score for Critically III Patients using Clinically Interpretable Deep Learning. Scientific Reports, 2019, 9, 1879. Data abnormal detection and classification in wireless body area networks using Convolutional	5.4	360 146 3 97
764 765 766 767 768	Artificial Intelligence and Blackâ€Box Medical Decisions: <i>Accuracy versus Explainability</i> . Hastings Center Report, 2019, 49, 15-21. Attention to Lesion: Lesion-Aware Convolutional Neural Network for Retinal Optical Coherence Tomography Image Classification. IEEE Transactions on Medical Imaging, 2019, 38, 1959-1970. The Role of an Artificial Intelligence Ecosystem in Radiology., 2019, , 291-327. DeepSOFA: A Continuous Acuity Score for Critically III Patients using Clinically Interpretable Deep Learning. Scientific Reports, 2019, 9, 1879. Data abnormal detection and classification in wireless body area networks using Convolutional Neural Networks., 2019, El ojo seco estÃj relacionado con un aumento intrasujeto de la variabilidad de osmolaridad lagrimal confirmado por tecnologÃa de aprendizaje de mÃjquinas. Archivos De La Sociedad Espanola De	5.4	360 146 3 97 3

# 772	ARTICLE Semantic Segmentation of Intracranial Hemorrhages in Head CT Scans. , 2019, , .	IF	CITATIONS 27
773	An Approach Towards Automatic Detection of Toxoplasmosis using Fundus Images. , 2019, , .		5
774	A CNN-Based Framework for Automatic Vitreous Segemntation from OCT Images. , 2019, , .		2
775	What Do Patients Tell Doctors on the Internet? Ask AI How to Valorize Online Medical Conversations. , 2019, , .		0
776	Computer-aided Pathological Annotation Framework: A Deep Learning-Based Diagnostic Algorithm of Lung Cancer. , 2019, , .		0
777	DP-CGAN: Differentially Private Synthetic Data and Label Generation. , 2019, , .		73
778	Multi-channel Convolutions Neural Network Based Diabetic Retinopathy Detection from Fundus Images. Procedia Computer Science, 2019, 163, 283-291.	1.2	35
779	An accurate black lung detection using transfer learning based on deep neural networks. , 2019, , .		7
780	Classifying Diabetic Retinopathy Images Using Induced Deep Region of Interest Extraction. , 2019, , .		0
781	Constructing a Comprehensive Clinical Database Integrating Patients' Data from Intensive Care Units and General Wards. , 2019, , .		2
782	Red lesion detection in fundus images based on convolution neural network. , 2019, , .		3
783	Retinal Image Classification via Vasculature-Guided Sequential Attention. , 2019, , .		6
784	Diabetic retinopathy as an independent predictor of subclinical cardiovascular disease: baseline results of the PRECISED study. BMJ Open Diabetes Research and Care, 2019, 7, e000845.	1.2	24
785	Keratoconus detection using deep learning of colour-coded maps with anterior segment optical coherence tomography: a diagnostic accuracy study. BMJ Open, 2019, 9, e031313.	0.8	79
786	Use of smartphones for detecting diabetic retinopathy: a protocol for a scoping review of diagnostic test accuracy studies. BMJ Open, 2019, 9, e028811.	0.8	15
787	A Gaussian Data Augmentation Technique on Highly Dimensional, Limited Labeled Data for Multiclass Classification Using Deep Learning. , 2019, , .		4
788	Automatic Carotid Artery Detection Using Attention Layer Region-Based Convolution Neural Network. International Journal of Humanoid Robotics, 2019, 16, 1950015.	0.6	3
789	Preparing for the Ai Era Under the Digital Health Framework. , 2019, , .		2

# 790	ARTICLE Automated Smartphone Based System for Diagnosis of Diabetic Retinopathy. , 2019, , .	IF	CITATIONS
791	Arguing Machines: Human Supervision of Black Box Al Systems That Make Life-Critical Decisions. , 2019, ,		17
792	A Simplified Cohen's Kappa for Use in Binary Classification Data Annotation Tasks. IEEE Access, 2019, 7, 164386-164397.	2.6	24
793	CeliacNet: Celiac Disease Severity Diagnosis on Duodenal Histopathological Images Using Deep Residual Networks. , 2019, 2019, 962-967.		9
794	Small Scale Feature Propagation Using Deep Residual Learning for Diabetic Retinopathy Classification. , 2019, , .		1
795	Eminent identification and classification of Diabetic Retinopathy in clinical fundus images using Probabilistic Neural Network. , 2019, , .		1
796	Diabetic Retinopathy Detection from Eye Fundus Images with Parameter Tuning for Convolutional Neural Networks. , 2019, , .		1
797	Collaborative Learning of Semi-Supervised Segmentation and Classification for Medical Images. , 2019, ,		139
798	Attention Based Glaucoma Detection: A Large-Scale Database and CNN Model. , 2019, , .		132
799	An Effective CNN Approach for Diabetic Retinopathy Stage Classification with Dual Inputs and Selective Data Sampling. , 2019, , .		6
800	Interpretable and Fine-Grained Visual Explanations for Convolutional Neural Networks. , 2019, , .		76
801	Automated Grading of Diabetic Retinopathy in Retinal Fundus Images using Deep Learning. , 2019, , .		7
802	Research on Improved Pedestrian Detection Algorithm Based on Convolutional Neural Network. , 2019, , .		5
803	Clinical motivation and the needs for RIA in healthcare. , 2019, , 5-17.		2
804	Image quality assessment. , 2019, , 135-155.		3
805	Structure-preserving guided retinal image filtering for optic disc analysis. , 2019, , 199-221.		5
806	Retinal biomarkers and cardiovascular disease: A clinical perspective. , 2019, , 299-318.		1
807	Image analysis tools for assessment of atrophic macular diseases. , 2019, , 353-378.		2

#	Article	IF	CITATIONS
808	Al and retinal image analysis at Baidu. , 2019, , 405-427.		4
809	Technical and clinical challenges of A.I. in retinal image analysis. , 2019, , 445-466.		7
811	Learning a Cytometric Deep Phenotype Embedding for Automatic Hematological Malignancies Classification. , 2019, 2019, 1733-1736.		4
812	An Application of Convolutional Neural Networks for the Early Detection of Late-onset Neonatal Sepsis. , 2019, , .		5
813	Application of Machine-Learning to Construct Simulation Models from High-Resolution Fractured Formation. , 2019, , .		20
814	A Multi-Task Group Bi-LSTM Networks Application on Electrocardiogram Classification. IEEE Journal of Translational Engineering in Health and Medicine, 2020, 8, 1-11.	2.2	8
815	Automatic Detection of Diabetic Retinopathy in Retinal Fundus Photographs Based on Deep Learning Algorithm. Translational Vision Science and Technology, 2019, 8, 4.	1.1	89
816	Multi-scale Stepwise Training Strategy of Convolutional Neural Networks for Diabetic Retinopathy Severity Assessment. , 2019, , .		2
817	Convolutional Neural Networks for classifying skin lesions. , 2019, , .		22
818	Deconstructing the diagnostic reasoning of human versus artificial intelligence. Cmaj, 2019, 191, E1332-E1335.	0.9	21
819	Development of diabetic retinopathy early detection and its implementation in Android application. AIP Conference Proceedings, 2019, , .	0.3	1
820	Diabetic Retinopathy Grade and Macular Edema Risk Classification Using Convolutional Neural Networks. , 2019, , .		8
821	Intracerebral Haemorrhage Segmentation in Non-Contrast CT. Scientific Reports, 2019, 9, 17858.	1.6	33
822	Artificial intelligence in clinical and genomic diagnostics. Genome Medicine, 2019, 11, 70.	3.6	205
823	Regulatory oversight, causal inference, and safe and effective health care machine learning. Biostatistics, 2020, 21, 363-367.	0.9	8
824	Human–machine partnership with artificial intelligence for chest radiograph diagnosis. Npj Digital Medicine, 2019, 2, 111.	5.7	94
825	A Method for Detecting Femur Fracture Based on SK-DenseNet. , 2019, , .		3
826	Machine Learning Models for Abnormality Detection in Musculoskeletal Radiographs. Reports, 2019, 2, 26.	0.2	13

		CITATION R	EPORT	
#	Article		IF	CITATIONS
827	Document-Level Multi-Aspect Sentiment Classification for Online Reviews of Medical Exp	erts., 2019,,.		2
828	Machine learning can accurately predict pre-admission baseline hemoglobin and creatinir care patients. Npj Digital Medicine, 2019, 2, 116.	e in intensive	5.7	17
829	Building an Otoscopic screening prototype tool using deep learning. Journal of Otolaryng Head and Neck Surgery, 2019, 48, 66.	;ology -	0.9	31
830	Deep Learning Algorithm for Automated Diagnosis of Retinopathy of Prematurity Plus Dis Translational Vision Science and Technology, 2019, 8, 23.	sease.	1.1	62
831	Artificial intelligence for pediatric ophthalmology. Current Opinion in Ophthalmology, 20 337-346.	19, 30,	1.3	49
832	Auxiliary diagnosis of developmental dysplasia of the hip by automated detection of Shar standardized anteroposterior pelvic radiographs. Medicine (United States), 2019, 98, e18	p's angle on 3500.	0.4	22
833	Borderline Personality Features in Inpatients with Bipolar Disorder: Impact on Course and Learning Model Use to Predict Rapid Readmission. Journal of Psychiatric Practice, 2019, 2	Machine 5, 279-289.	0.3	11
834	A Survey on Deep Learning Empowered IoT Applications. IEEE Access, 2019, 7, 181721-1	81732.	2.6	68
835	Poster Abstract: mTEH: A Decision Support System for Tele-Ophthalmology to Improve Ey Wisconsin Population in Community Settings. , 2019, , .	/e Health of		1
836	Labelling Stomach Anatomical Locations In Upper Gastrointestinal Endoscopic Images Us 2019, , .	ing a CNN. ,		3
837	Remote Tool-Based Adjudication for Grading Diabetic Retinopathy. Translational Vision So Technology, 2019, 8, 40.	cience and	1.1	17
838	Automated abnormality detection in lower extremity radiographs using deep learning. Na Intelligence, 2019, 1, 578-583.	ture Machine	8.3	47
839	Evaluation of Malignancy of Lung Nodules from CT Image Using Recurrent Neural Netwo	[.] k., 2019, , .		7
840	Novel Retinal Imaging in Assessment of Cardiovascular Risk Factors and Systemic Vascula Frontiers in Diabetes, 2019, , 106-118.	ar Diseases.	0.4	5
841	Diabetic Retinopathy–An Underdiagnosed and Undertreated Inflammatory, Neuro-Vasc Complication of Diabetes. Frontiers in Endocrinology, 2019, 10, 843.	ular	1.5	70
842	Patient-specific reconstruction of volumetric computed tomography images from a single view via deep learning. Nature Biomedical Engineering, 2019, 3, 880-888.	e projection	11.6	163
843	Identifying Ear Abnormality from 2D Photographs Using Convolutional Neural Networks. Reports, 2019, 9, 18198.	Scientific	1.6	27
844	Development and validation of deep learning algorithms for scoliosis screening using bac Communications Biology, 2019, 2, 390.	k images.	2.0	72

	CITATION I	LFORT	
#	ARTICLE	IF	CITATIONS
845	Artificial Intelligence in Critical Care. International Anesthesiology Clinics, 2019, 57, 89-102.	0.3	27
846	Why We Needn't Fear the Machines: Opportunities for Medicine in a Machine Learning World. Academic Medicine, 2019, 94, 623-625.	0.8	33
847	Primer on machine learning. Current Opinion in Anaesthesiology, 2019, 32, 653-660.	0.9	10
848	Artificial Intelligence and Machine Learning in Anesthesiology. Anesthesiology, 2019, 131, 1346-1359.	1.3	133
849	The War on Diabetic Retinopathy: Where Are We Now?. Asia-Pacific Journal of Ophthalmology, 2019, 8, 448-456.	1.3	44
850	Application of machine learning in the diagnosis of axial spondyloarthritis. Current Opinion in Rheumatology, 2019, 31, 362-367.	2.0	23
851	Can Machine Learning Algorithms Predict Which Patients Will Achieve Minimally Clinically Important Differences From Total Joint Arthroplasty?. Clinical Orthopaedics and Related Research, 2019, 477, 1267-1279.	0.7	136
852	What Are the Applications and Limitations of Artificial Intelligence for Fracture Detection and Classification in Orthopaedic Trauma Imaging? A Systematic Review. Clinical Orthopaedics and Related Research, 2019, 477, 2482-2491.	0.7	96
853	Smart Neuropathy Detection using Machine Intelligence: Filling the Void Between Clinical Practice and Early Diagnosis. , 2019, , .		5
854	Deep Diagnosis of Non-Proliferative Diabetic Retinopathy in a Mobile System. , 2019, , .		3
855	Usefulness of Deep Learning Analysis for the Diagnosis of Malignancy in Intraductal Papillary Mucinous Neoplasms of the Pancreas. Clinical and Translational Gastroenterology, 2019, 10, e00045.	1.3	114
856	Multimodal Imaging in Diabetic Macular Edema. Asia-Pacific Journal of Ophthalmology, 2019, 7, 22-27.	1.3	11
857	Diabetic Retinopathy in the Asia-Pacific. Asia-Pacific Journal of Ophthalmology, 2019, 7, 3-16.	1.3	47
858	Can Artificial Intelligence Make Screening Faster, More Accurate, and More Accessible?. Asia-Pacific Journal of Ophthalmology, 2019, 7, 436-441.	1.3	15
859	Promising Artificial Intelligence-Machine Learning-Deep Learning Algorithms in Ophthalmology. Asia-Pacific Journal of Ophthalmology, 2019, 8, 264-272.	1.3	90
860	Artificial Intelligence in Ophthalmology: Accuracy, Challenges, and Clinical Application. Asia-Pacific Journal of Ophthalmology, 2019, 8, 197-199.	1.3	13
861	Retinal Imaging for Neurological Diseases: "A Window into the Brain― International Ophthalmology Clinics, 2019, 59, 137-154.	0.3	13
862	Can endoscopists differentiate cytomegalovirus esophagitis from herpes simplex virus esophagitis based on gross endoscopic findings?. Medicine (United States), 2019, 98, e15845.	0.4	13

#	Article		CITATIONS
863	Deep Learning Applications in Chest Radiography and Computed Tomography. Journal of Thoracic Imaging, 2019, 34, 75-85.	0.8	90
864	Prediction Accuracy With Electronic Medical Records Versus Administrative Claims. Medical Care, 2019, 57, 551-559.	1.1	21
865	Research on Urine Sediment Images Recognition Based on Deep Learning. IEEE Access, 2019, 7, 166711-166720.	2.6	19
867	Development and validation of a deep-learning model for scoring of radiographic finger joint destruction in rheumatoid arthritis. Rheumatology Advances in Practice, 2019, 3, rkz047.	0.3	42
868	Deep Learning Algorithm to Predict Need for Critical Care in Pediatric Emergency Departments. Pediatric Emergency Care, 2021, 37, e988-e994.	0.5	11
869	Deep Learning Diagnosis of Pigmented Skin Lesions. , 2019, , .		8
871	Machine Learning Models for Diagnosing Glaucoma from Retinal Nerve Fiber Layer Thickness Maps. Ophthalmology Glaucoma, 2019, 2, 422-428.	0.9	28
872	L'intelligence artificielle au service de l'imagerie et de la santé des femmes. Imagerie De La Femme, 2019 29, 179-186.	⁹ v.o	1
873	Segmentation-based Knowledge Extraction from Chest X-ray Images. , 2019, , .		1
874	Toward an Expert Level of Lung Cancer Detection and Classification Using a Deep Convolutional Neural Network. Oncologist, 2019, 24, 1159-1165.	1.9	85
875	Screening Glaucoma With Red-free Fundus Photography Using Deep Learning Classifier and Polar Transformation. Journal of Glaucoma, 2019, 28, 258-264.	0.8	14
876	Brain-Inspired Intelligence for Real-Time Health Situation Understanding in Smart e-Health Home Applications. IEEE Access, 2019, 7, 180106-180126.	2.6	13
877	Artificial intelligence, robotics and eye surgery: are we overfitted?. International Journal of Retina and Vitreous, 2019, 5, 52.	0.9	8
878	A Giant with Feet of Clay: On the Validity of the Data that Feed Machine Learning in Medicine. Lecture Notes in Information Systems and Organisation, 2019, , 121-136.	0.4	17
879	Current state and future prospects of artificial intelligence in ophthalmology: a review. Clinical and Experimental Ophthalmology, 2019, 47, 128-139.	1.3	118
880	Fuzzy Deep Learning for Diabetes Detection. Advances in Intelligent Systems and Computing, 2019, , 875-882.	0.5	7
881	Comparison between support vector machine and deep learning, machine-learning technologies for detecting epiretinal membrane using 3D-OCT. International Ophthalmology, 2019, 39, 1871-1877.	0.6	37
882	Machine learning: applications of artificial intelligence to imaging and diagnosis. Biophysical Reviews, 2019, 11, 111-118.	1.5	218

#	Article		CITATIONS
883	Using Machine Learning to Assess Physician Competence: A Systematic Review. Academic Medicine, 2019, 94, 427-439.	0.8	39
884	Diagnostic accuracy of contentâ€based dermatoscopic image retrieval with deep classification features. British Journal of Dermatology, 2019, 181, 155-165.	1.4	59
885	Deep Learning in Medicine—Promise, Progress, and Challenges. JAMA Internal Medicine, 2019, 179, 293.	2.6	264
886	An overview of deep learning in medical imaging focusing on MRI. Zeitschrift Fur Medizinische Physik, 2019, 29, 102-127.	0.6	1,266
887	An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nature Biomedical Engineering, 2019, 3, 173-182.	11.6	297
888	Development and Validation of a Machine Learning Algorithm After Primary Total Hip Arthroplasty: Applications to Length of Stay and Payment Models. Journal of Arthroplasty, 2019, 34, 632-637.	1.5	99
889	Developed and validated a prognostic nomogram for recurrence-free survival after complete surgical resection of local primary gastrointestinal stromal tumors based on deep learning. EBioMedicine, 2019, 39, 272-279.	2.7	32
890	Using a Deep Learning Algorithm and Integrated Gradients Explanation to Assist Grading for Diabetic Retinopathy. Ophthalmology, 2019, 126, 552-564.	2.5	248
891	Visualizing Deep Learning Models for the Detection of Referable Diabetic Retinopathy and Glaucoma. JAMA Ophthalmology, 2019, 137, 288.	1.4	76
892	Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study. Lancet Oncology, The, 2019, 20, 193-201.	5.1	279
893	Novel computer-assisted diagnosis system for endoscopic disease activity in patients with ulcerative colitis. Gastrointestinal Endoscopy, 2019, 89, 416-421.e1.	0.5	157
894	Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network. Gastrointestinal Endoscopy, 2019, 89, 357-363.e2.	0.5	217
895	Diagnosis of Diabetic Retinopathy Using Deep Neural Networks. IEEE Access, 2019, 7, 3360-3370.	2.6	123
896	The Digitization of Patient Care: A Review of the Effects of Electronic Health Records on Health Care Quality and Utilization. Annual Review of Public Health, 2019, 40, 487-500.	7.6	130
897	Fundus photograph-based deep learning algorithms in detecting diabetic retinopathy. Eye, 2019, 33, 97-109.	1.1	109
898	Deep learning for retinopathy of prematurity screening. British Journal of Ophthalmology, 2019, 103, 577-579.	2.1	25
899	Development of an Automated Screening System for Retinopathy of Prematurity Using a Deep Neural Network for Wide-Angle Retinal Images. IEEE Access, 2019, 7, 10232-10241.	2.6	46
900	Computer vs human: Deep learning versus perceptual training for the detection of neck of femur fractures. Journal of Medical Imaging and Radiation Oncology, 2019, 63, 27-32.	0.9	92

#	Article		CITATIONS
901	Diabetic retinopathy techniques in retinal images: A review. Artificial Intelligence in Medicine, 2019, 97, 168-188.	3.8	73
902	Detecting abnormal electroencephalograms using deep convolutional networks. Clinical Neurophysiology, 2019, 130, 77-84.	0.7	40
903	Distributed machine learning cloud teleophthalmology IoT for predicting AMD disease progression. Future Generation Computer Systems, 2019, 93, 486-498.	4.9	56
904	Development and Validation of a Deep Learning–based Automatic Detection Algorithm for Active Pulmonary Tuberculosis on Chest Radiographs. Clinical Infectious Diseases, 2019, 69, 739-747.	2.9	150
905	Development and Validation of a Deep Learning System for Detection of Active Pulmonary Tuberculosis on Chest Radiographs: Clinical and Technical Considerations. Clinical Infectious Diseases, 2019, 69, 748-750.	2.9	5
906	Assessment of Convolutional Neural Networks for Automated Classification of Chest Radiographs. Radiology, 2019, 290, 537-544.	3.6	142
907	Deep learning algorithms to identify documentation of serious illness conversations during intensive care unit admissions. Palliative Medicine, 2019, 33, 187-196.	1.3	36
908	Potential Impact of Initial Clinical Data on Adjustment of Pediatric Readmission Rates. Academic Pediatrics, 2019, 19, 589-598.	1.0	5
909	Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity. British Journal of Ophthalmology, 2019, 103, 580-584.	2.1	114
910	A picture tells a thousand…exposures: Opportunities and challenges of deep learning image analyses in exposure science and environmental epidemiology. Environment International, 2019, 122, 3-10.	4.8	72
911	Forensic age estimation for pelvic X-ray images using deep learning. European Radiology, 2019, 29, 2322-2329.	2.3	51
912	Applying Artificial Intelligence to Address the Knowledge Gaps in Cancer Care. Oncologist, 2019, 24, 772-782.	1.9	38
913	Artificial intelligence, bias and clinical safety. BMJ Quality and Safety, 2019, 28, 231-237.	1.8	469
914	Potential retinal biomarkers for dementia: what is new?. Current Opinion in Neurology, 2019, 32, 82-91.	1.8	47
915	DeepSeeNet: A Deep Learning Model for Automated Classification of Patient-based Age-related Macular Degeneration Severity from Color Fundus Photographs. Ophthalmology, 2019, 126, 565-575.	2.5	220
916	Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature Medicine, 2019, 25, 65-69.	15.2	1,633
917	High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 2019, 25, 44-56.	15.2	2,938
918	The practical implementation of artificial intelligence technologies in medicine. Nature Medicine, 2019, 25, 30-36.	15.2	1,079

#	Article	IF	CITATIONS
919	A guide to deep learning in healthcare. Nature Medicine, 2019, 25, 24-29.		1,906
920	Performance Comparison of Pre-trained Deep Neural Networks for Automated Glaucoma Detection. Lecture Notes in Computational Vision and Biomechanics, 2019, , 631-637.	0.5	9
921	Assessment of Deep Generative Models for High-Resolution Synthetic Retinal Image Generation of Age-Related Macular Degeneration. JAMA Ophthalmology, 2019, 137, 258.	1.4	104
922	Efficient cell classification of mitochondrial images by using deep learning. Journal of Optics (India), 2019, 48, 113-122.	0.8	26
924	Deep learning for image analysis: Personalizing medicine closer to the point of care. Critical Reviews in Clinical Laboratory Sciences, 2019, 56, 61-73.	2.7	35
925	Prediction of postoperative complications of pediatric cataract patients using data mining. Journal of Translational Medicine, 2019, 17, 2.		33
926	Machine learning derived segmentation of phase velocity encoded cardiovascular magnetic resonance for fully automated aortic flow quantification. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 1.	1.6	73
927	The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment. Medical and Biological Engineering and Computing, 2019, 57, 677-687.		97
928	Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology, 2019, 103, 167-175.		754
929	A feasibility study on an automated method to generate patientâ€specific dose distributions for radiotherapy using deep learning. Medical Physics, 2019, 46, 56-64.		124
930	Deep learning in medical imaging and radiation therapy. Medical Physics, 2019, 46, e1-e36.	1.6	513
931	Deep Learning–Based Algorithms in Screening of Diabetic Retinopathy: A Systematic Review of Diagnostic Performance. Ophthalmology Retina, 2019, 3, 294-304.	1.2	70
932	Development of an artificial intelligence system to classify pathology and clinical features on retinal fundus images. Clinical and Experimental Ophthalmology, 2019, 47, 484-489.	1.3	27
933	CANDI: an R package and Shiny app for annotating radiographs and evaluating computer-aided diagnosis. Bioinformatics, 2019, 35, 1610-1612.	1.8	4
934	Machine learningâ€based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy. European Journal of Heart Failure, 2019, 21, 74-85.	2.9	175
935	Peering Into the Black Box of Artificial Intelligence: Evaluation Metrics of Machine Learning Methods. American Journal of Roentgenology, 2019, 212, 38-43.	1.0	208
936	Questions for Artificial Intelligence in Health Care. JAMA - Journal of the American Medical Association, 2019, 321, 31.	3.8	191
937	Deep learning for detecting tumour-infiltrating lymphocytes in testicular germ cell tumours. Journal of Clinical Pathology, 2019, 72, 157-164.	1.0	53

#	Article	IF	CITATIONS
938	Exporting Diabetic Retinopathy Images from VA VistA Imaging for Research. Journal of Digital Imaging, 2019, 32, 832-840.	1.6	4
939	Diagnosis using deep-learning artificial intelligence based on the endocytoscopic observation of the esophagus. Esophagus, 2019, 16, 180-187.	1.0	80
940	Artificial intelligence and upper gastrointestinal endoscopy: Current status and future perspective. Digestive Endoscopy, 2019, 31, 378-388.	1.3	100
941	Weakly Supervised Lesion Detection From Fundus Images. IEEE Transactions on Medical Imaging, 2019, 38, 1501-1512.	5.4	29
942	Diagnostic Case-Control versus Diagnostic Cohort Studies for Clinical Validation of Artificial Intelligence Algorithm Performance. Radiology, 2019, 290, 272-273.	3.6	44
943	Exploring behavioural intentions toward smart healthcare services among medical practitioners: a technology transfer perspective. International Journal of Production Research, 2019, 57, 5801-5820.	4.9	58
944	Introduction to Machine Learning for Ophthalmologists. Seminars in Ophthalmology, 2019, 34, 19-41.	0.8	23
945	Artificial Intelligence–Based Breast Cancer Nodal Metastasis Detection: Insights Into the Black Box for Pathologists. Archives of Pathology and Laboratory Medicine, 2019, 143, 859-868.	1.2	240
946	Spectral-Domain OCT Measurements in Alzheimer's Disease. Ophthalmology, 2019, 126, 497-510.	2.5	236
947	The current state of artificial intelligence in ophthalmology. Survey of Ophthalmology, 2019, 64, 233-240.	1.7	121
948	Digital diabetes: Perspectives for diabetes prevention, management and research. Diabetes and Metabolism, 2019, 45, 322-329.	1.4	109
949	Framing the challenges of artificial intelligence in medicine. BMJ Quality and Safety, 2019, 28, 238-241.	1.8	146
950	Transforming Diabetes Care Through Artificial Intelligence: The Future Is Here. Population Health Management, 2019, 22, 229-242.	0.8	121
951	Deep learning in omics: a survey and guideline. Briefings in Functional Genomics, 2019, 18, 41-57.	1.3	119
952	Diagnosis of diabetic retinopathy based on holistic texture and local retinal features. Information Sciences, 2019, 475, 44-66.	4.0	17
953	Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. Gastrointestinal Endoscopy, 2019, 89, 25-32.	0.5	314
954	Dropout Prediction in MOOCs: Using Deep Learning for Personalized Intervention. Journal of Educational Computing Research, 2019, 57, 547-570.	3.6	155
955	Surrogate-Assisted Retinal OCT Image Classification Based on Convolutional Neural Networks. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 253-263.	3.9	81

#	Article	IF	CITATIONS
956	A Clinical Decision Support System for Diabetic Retinopathy Screening: Creating a Clinical Support Application. Telemedicine Journal and E-Health, 2019, 25, 31-40.	1.6	19
957	Video image target monitoring based on RNN-LSTM. Multimedia Tools and Applications, 2019, 78, 4527-4544.	2.6	13
958	A deep inference learning framework for healthcare. Pattern Recognition Letters, 2020, 139, 17-25.	2.6	16
959	Diabetic retinopathy detection through artificial intelligent techniques: a review and open issues. Multimedia Tools and Applications, 2020, 79, 15209-15252.	2.6	46
960	Angle-Closure Detection in Anterior Segment OCT Based on Multilevel Deep Network. IEEE Transactions on Cybernetics, 2020, 50, 3358-3366.	6.2	48
961	Deep Learning in the Prediction of Ischaemic Stroke Thrombolysis Functional Outcomes. Academic Radiology, 2020, 27, e19-e23.	1.3	65
962	A transfer learning method with deep residual network for pediatric pneumonia diagnosis. Computer Methods and Programs in Biomedicine, 2020, 187, 104964.	2.6	254
963	Big data analytics in health sector: Theoretical framework, techniques and prospects. International Journal of Information Management, 2020, 50, 206-216.	10.5	108
964	Automatic CIN Grades Prediction of Sequential Cervigram Image Using LSTM With Multistate CNN Features. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 844-854.	3.9	26
965	A Deep Learning Approach for Assessment of Regional Wall MotionÂAbnormality From Echocardiographic Images. JACC: Cardiovascular Imaging, 2020, 13, 374-381.	2.3	133
966	A deep learning interpretable classifier for diabetic retinopathy disease grading. Neurocomputing, 2020, 396, 465-476.	3.5	110
967	Bin loss for hard exudates segmentation in fundus images. Neurocomputing, 2020, 392, 314-324.	3.5	32
968	Segmenting Diabetic Retinopathy Lesions in Multispectral Images Using Low-Dimensional Spatial-Spectral Matrix Representation. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 493-502.	3.9	17
969	Use of machine learning techniques in the development and refinement of a predictive model for early diagnosis of ankylosing spondylitis. Clinical Rheumatology, 2020, 39, 975-982.	1.0	21
970	Era of Intelligent Systems in Healthcare. Intelligent Systems Reference Library, 2020, , 1-55.	1.0	7
971	The electrocardiogram endeavour: from the Holter single-lead recordings to multilead wearable devices supported by computational machine learning algorithms. Europace, 2020, 22, 19-23.	0.7	16
972	Strategies to Tackle the Global Burden of Diabetic Retinopathy: From Epidemiology to Artificial Intelligence. Ophthalmologica, 2020, 243, 9-20.	1.0	164
973	The impact of artificial intelligence in the diagnosis and management of glaucoma. Eye, 2020, 34, 1-11.	1.1	47

#	Article	IF	CITATIONS
974	Machine learning versus traditional risk stratification methods in acute coronary syndrome: a pooled randomized clinical trial analysis. Journal of Thrombosis and Thrombolysis, 2020, 49, 1-9.	1.0	36
975	IDRiD: Diabetic Retinopathy – Segmentation and Grading Challenge. Medical Image Analysis, 2020, 59, 101561.	7.0	162
976	Digital health and patient safety: Technology is not a magic wand. Health Informatics Journal, 2020, 26, 2295-2299.	1.1	12
977	Machine learning for clinical decision support in infectious diseases: a narrative review of current applications. Clinical Microbiology and Infection, 2020, 26, 584-595.	2.8	218
978	The assessment of small bowel motility with attentive deformable neural network. Information Sciences, 2020, 508, 22-32.	4.0	18
979	Endoscopic detection and differentiation of esophageal lesions using a deep neural network. Gastrointestinal Endoscopy, 2020, 91, 301-309.e1.	0.5	101
980	Computer-Aided Diagnosis in Histopathological Images of the Endometrium Using a Convolutional Neural Network and Attention Mechanisms. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 1664-1676.	3.9	74
981	Otoscopic diagnosis using computer vision: An automated machine learning approach. Laryngoscope, 2020, 130, 1408-1413.	1.1	50
982	Advancing to precision medicine through big data and artificial intelligence. , 2020, , 337-349.		3
983	Artificial Intelligence in Medicine: Where Are We Now?. Academic Radiology, 2020, 27, 62-70.	1.3	166
984	REFUGEÂChallenge: A unified framework for evaluating automatedÂmethods for glaucomaÂassessment from fundus photographs. Medical Image Analysis, 2020, 59, 101570.	7.0	354
985	Deep learning-based cardiovascular image diagnosis: A promising challenge. Future Generation Computer Systems, 2020, 110, 802-811.	4.9	121
986	The role for artificial intelligence in evaluation of upper GI cancer. Techniques and Innovations in Gastrointestinal Endoscopy, 2020, 22, 66-70.	0.4	1
987	Deep learning technology for improving cancer care in society: New directions in cancer imaging driven by artificial intelligence. Technology in Society, 2020, 60, 101198.	4.8	112
988	Artificial intelligence using a convolutional neural network for automatic detection of smallâ€bowel angioectasia in capsule endoscopy images. Digestive Endoscopy, 2020, 32, 382-390.	1.3	114
989	Artificial Intelligence in Musculoskeletal Imaging: A Paradigm Shift. Journal of Bone and Mineral Research, 2020, 35, 28-35.	3.1	27
990	Diabetic retinopathy screening using a virtual reading center. Acta Diabetologica, 2020, 57, 183-188.	1.2	6
991	Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images. Ophthalmology, 2020, 127, 85-94.	2.5	156

#	Article		CITATIONS
992	Deep Learning Benchmarks on L1000 Gene Expression Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 1846-1857.	1.9	9
993	Deep-Learning Approach to Automatic Identification of Facial Anomalies in Endocrine Disorders. Neuroendocrinology, 2020, 110, 328-337.	1.2	21
994	A Large-Scale Database and a CNN Model for Attention-Based Glaucoma Detection. IEEE Transactions on Medical Imaging, 2020, 39, 413-424.	5.4	153
995	Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging. European Radiology, 2020, 30, 413-424.	2.3	127
996	Accurate prediction of glaucoma from colour fundus images with a convolutional neural network that relies on active and transfer learning. Acta Ophthalmologica, 2020, 98, e94-e100.	0.6	58
997	Performance of deep learning for differentiating pancreatic diseases on contrast-enhanced magnetic resonance imaging: A preliminary study. Diagnostic and Interventional Imaging, 2020, 101, 91-100.	1.8	29
998	Artificial intelligence-based screening for diabetic retinopathy at community hospital. Eye, 2020, 34, 572-576.	1.1	44
999	Artificial intelligence for diabetic retinopathy screening: a review. Eye, 2020, 34, 451-460.	1.1	183
1000	Fast macula detection and application to retinal image quality assessment. Biomedical Signal Processing and Control, 2020, 55, 101567.	3.5	11
1001	Artificial intelligence–assisted detection of diabetic retinopathy on digital fundus images: concepts and applications in the National Health Service. , 2020, , 261-278.		2
1002	Can artificial intelligence help identify elder abuse and neglect?. Journal of Elder Abuse and Neglect, 2020, 32, 97-103.	0.5	12
1003	Deep convolutional neural network applied to the liver imaging reporting and data system (LI-RADS) version 2014 category classification: a pilot study. Abdominal Radiology, 2020, 45, 24-35.	1.0	28
1004	Validation of a Deep Learning Algorithm for Diabetic Retinopathy. Telemedicine Journal and E-Health, 2020, 26, 1001-1009.	1.6	7
1005	Smart identification of psoriasis by images using convolutional neural networks: a case study in China. Journal of the European Academy of Dermatology and Venereology, 2020, 34, 518-524.	1.3	30
1006	Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network. Oral Diseases, 2020, 26, 152-158.	1.5	127
1007	Utility of a public-available artificial intelligence in diagnosis of polypoidal choroidal vasculopathy. Graefe's Archive for Clinical and Experimental Ophthalmology, 2020, 258, 17-21.	1.0	14
1008	Anatomical context protects deep learning from adversarial perturbations in medical imaging. Neurocomputing, 2020, 379, 370-378.	3.5	29
1009	Is automated screening for diabetic retinopathy indeed not yet ready as stated by Grauslund etÂal.?. Acta Ophthalmologica, 2020, 98, e257-e258.	0.6	1

#	Article		CITATIONS
1010	Reply: Is automated screening for DR indeed not yet ready as stated by Grauslund et al?. Acta Ophthalmologica, 2020, 98, e258.	0.6	3
1011	Triaging ophthalmology outpatient referrals with machine learning: A pilot study. Clinical and Experimental Ophthalmology, 2020, 48, 169-173.	1.3	15
1012	New grading criterion for retinal haemorrhages in term newborns based on deep convolutional neural networks. Clinical and Experimental Ophthalmology, 2020, 48, 220-229.	1.3	4
1013	Superficial Punctate Keratitis Grading for Dry Eye Screening Using Deep Convolutional Neural Networks. IEEE Sensors Journal, 2020, 20, 1672-1678.	2.4	11
1014	Analysis of the location of retinal lesions in central retinographies of patients with Type 2 diabetes. Acta Ophthalmologica, 2020, 98, e13-e21.	0.6	7
1015	Feasibility of fully automated classification of whole slide images based on deep learning. Korean Journal of Physiology and Pharmacology, 2020, 24, 89.	0.6	14
1016	Deep and Densely Connected Networks for Classification of Diabetic Retinopathy. Diagnostics, 2020, 10, 24.	1.3	53
1017	Deep learning for detecting retinal detachment and discerning macular status using ultra-widefield fundus images. Communications Biology, 2020, 3, 15.	2.0	48
1018	Deep learning for electronic health records: A comparative review of multiple deep neural architectures. Journal of Biomedical Informatics, 2020, 101, 103337.	2.5	133
1019	Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncology, The, 2020, 21, 222-232.	5.1	364
1020	DiabDeep: Pervasive Diabetes Diagnosis Based on Wearable Medical Sensors and Efficient Neural Networks. IEEE Transactions on Emerging Topics in Computing, 2021, 9, 1139-1150.	3.2	17
1021	Social Media– and Internet-Based Disease Surveillance for Public Health. Annual Review of Public Health, 2020, 41, 101-118.	7.6	164
1022	Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning. Nature Communications, 2020, 11, 130.	5.8	79
1023	Artificial intelligence in digital breast pathology: Techniques and applications. Breast, 2020, 49, 267-273.	0.9	117
1024	Application of deep learning for retinal image analysis: A review. Computer Science Review, 2020, 35, 100203.	10.2	117
1025	Beyond Performance Metrics. Ophthalmology, 2020, 127, 793-801.	2.5	27
1026	Detection of anaemia from retinal fundus images via deep learning. Nature Biomedical Engineering, 2020, 4, 18-27.	11.6	130
1027	International evaluation of an AI system for breast cancer screening. Nature, 2020, 577, 89-94.	13.7	1,458

#	Article		CITATIONS
1028	Machine Learning and Cochlear Implantation—A Structured Review of Opportunities and Challenges. Otology and Neurotology, 2020, 41, e36-e45.	0.7	24
1029	A(eye): A Review of Current Applications of Artificial Intelligence and Machine Learning in Ophthalmology. International Ophthalmology Clinics, 2020, 60, 57-71.	0.3	46
1030	Myocardial infarction in type 2 diabetes using sodium–glucose co-transporter-2 inhibitors, dipeptidyl peptidase-4 inhibitors or glucagon-like peptide-1 receptor agonists: proportional hazards analysis by deep neural network based machine learning. Current Medical Research and Opinion, 2020, 36, 403-409.	0.9	11
1031	CANet: Cross-Disease Attention Network for Joint Diabetic Retinopathy and Diabetic Macular Edema Grading. IEEE Transactions on Medical Imaging, 2020, 39, 1483-1493.	5.4	235
1032	Human Versus Machine: Comparing a Deep Learning Algorithm to Human Gradings for Detecting Glaucoma on Fundus Photographs. American Journal of Ophthalmology, 2020, 211, 123-131.	1.7	69
1033	Predictive Utility of a Machine Learning Algorithm in Estimating Mortality Risk in Cardiac Surgery. Annals of Thoracic Surgery, 2020, 109, 1811-1819.	0.7	60
1034	Diabetic retinopathy detection using red lesion localization and convolutional neural networks. Computers in Biology and Medicine, 2020, 116, 103537.	3.9	148
1035	Robust, ECG-based detection of Sleep-disordered breathing in large population-based cohorts. Sleep, 2020, 43, .	0.6	20
1036	Estimating age-related changes in inÂvivo cerebral magnetic resonance angiography using convolutional neural network. Neurobiology of Aging, 2020, 87, 125-131.	1.5	8
1037	Deep Learning Algorithms for Corneal Amyloid Deposition Quantitation in Familial Amyloidosis. Ocular Oncology and Pathology, 2020, 6, 58-65.	0.5	3
1038	Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. Nature Medicine, 2020, 26, 52-58.	15.2	413
1039	Will artificial intelligence change the job of the cardiac imaging specialist?. Archives of Cardiovascular Diseases, 2020, 113, 1-4.	0.7	3
1040	Great expectations and challenges of artificial intelligence in the screening of diabetic retinopathy. Eye, 2020, 34, 418-419.	1.1	8
1041	Big Data – How to Realize the Promise. Clinical Pharmacology and Therapeutics, 2020, 107, 753-761.	2.3	15
1042	The clinical feasibility of deep learning-based classification of amyloid PET images in visually equivocal cases. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 332-341.	3.3	37
1043	Detecting glaucoma based on spectral domain optical coherence tomography imaging of peripapillary retinal nerve fiber layer: a comparison study between hand-crafted features and deep learning model. Graefe's Archive for Clinical and Experimental Ophthalmology, 2020, 258, 577-585.	1.0	21
1044	Deep Learning Signature Based on Staging CT for Preoperative Prediction of Sentinel Lymph Node Metastasis in Breast Cancer. Academic Radiology, 2020, 27, 1226-1233.	1.3	42
1045	Deep learning for risk assessment: all about automatic feature extraction. British Journal of Anaesthesia, 2020, 124, 131-133.	1.5	13

#	Article	IF	CITATIONS
1046	Facetto: Combining Unsupervised and Supervised Learning for Hierarchical Phenotype Analysis in Multi-Channel Image Data. IEEE Transactions on Visualization and Computer Graphics, 2020, 26, 227-237.	2.9	32
1047	Endoscopy report mining for intelligent gastric cancer screening. Expert Systems, 2020, 37, e12504.	2.9	0
1048	Deep learning for caries lesion detection in near-infrared light transillumination images: A pilot study. Journal of Dentistry, 2020, 92, 103260.	1.7	101
1049	Deep Learning Enables Automatic Classification of Emphysema Pattern at CT. Radiology, 2020, 294, 434-444.	3.6	89
1050	Ophthalmic diagnosis using deep learning with fundus images – A critical review. Artificial Intelligence in Medicine, 2020, 102, 101758.	3.8	125
1051	Gibbs-ringing artifact suppression with knowledge transfer from natural images to MR images. Multimedia Tools and Applications, 2020, 79, 33711-33733.	2.6	10
1052	Evaluation of a deep learning system for the joint automated detection of diabetic retinopathy and ageâ€related macular degeneration. Acta Ophthalmologica, 2020, 98, 368-377.	0.6	68
1053	Keratinocytic Skin Cancer Detection on the Face Using Region-Based Convolutional Neural Network. JAMA Dermatology, 2020, 156, 29.	2.0	89
1054	Evolving the pulmonary nodules diagnosis from classical approaches to deep learning-aided decision support: three decades' development course and future prospect. Journal of Cancer Research and Clinical Oncology, 2020, 146, 153-185.	1.2	49
1055	Cognitive signature of brain FDG PET based on deep learning: domain transfer from Alzheimer's disease to Parkinson's disease. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 403-412.	3.3	49
1056	A Machine Learning Algorithm to Predict the Probability of (Occult) Posterior Malleolar Fractures Associated With Tibial Shaft Fractures to Guide "Malleolus First―Fixation. Journal of Orthopaedic Trauma, 2020, 34, 131-138.	0.7	27
1057	ASSESSMENT OF CENTRAL SEROUS CHORIORETINOPATHY DEPICTED ON COLOR FUNDUS PHOTOGRAPHS USING DEEP LEARNING. Retina, 2020, 40, 1558-1564.	1.0	20
1058	DISEASE CLASSIFICATION OF MACULAR OPTICAL COHERENCE TOMOGRAPHY SCANS USING DEEP LEARNING SOFTWARE. Retina, 2020, 40, 1549-1557.	1.0	22
1059	Multiple-Image Deep Learning Analysis for Neuropathy Detection in Corneal Nerve Images. Cornea, 2020, 39, 342-347.	0.9	26
1060	Anterior Segment Optical Coherence Tomography: Is There a Clinical Role in the Management of Primary Angle Closure Disease?. Journal of Glaucoma, 2020, 29, 60-66.	0.8	11
1061	Deep Learning and Transfer Learning for Optic Disc Laterality Detection: Implications for Machine Learning in Neuro-Ophthalmology. Journal of Neuro-Ophthalmology, 2020, 40, 178-184.	0.4	22
1062	An Effective MR-Guided CT Network Training for Segmenting Prostate in CT Images. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 2278-2291.	3.9	8
1063	Al-based computer-aided diagnosis (Al-CAD): the latest review to read first. Radiological Physics and Technology, 2020, 13, 6-19.	1.0	146

		CITATION REPO	ORT	
#	Article		IF	CITATIONS
1064	From the eye into the foot?. Atherosclerosis, 2020, 294, 41-43.		0.4	0
1065	A machine learning approach to define antimalarial drug action from heterogeneous cell-ba screens. Science Advances, 2020, 6, .	sed	4.7	36
1066	Semantic segmentation of HeLa cells: An objective comparison between one traditional alg four deep-learning architectures. PLoS ONE, 2020, 15, e0230605.	orithm and	1.1	15
1067	Novel Model to Predict HCC Recurrence after Liver Transplantation Obtained Using Deep Le Multicenter Study. Cancers, 2020, 12, 2791.	earning: A	1.7	25
1068	Found in Translation: Unpacking the Artificial Intelligence Revolution That Has Already Arriv Journal of the American College of Radiology, 2020, 17, 1307-1308.	ed.	0.9	0
1069	Sea-Net: Squeeze-And-Excitation Attention Net For Diabetic Retinopathy Grading. , 2020, ,			17
1070	Computer-aided recognition of myopic tilted optic disc using deep learning algorithms in fu photography. BMC Ophthalmology, 2020, 20, 407.	ındus	0.6	16
1071	Artificial Intelligence in Subspecialties. , 2020, , 267-396.			1
1072	Automated rotator cuff tear classification using 3D convolutional neural network. Scientific Reports, 2020, 10, 15632.	2	1.6	28
1073	Deep learning algorithms for detecting and visualising intussusception on plain abdominal radiography in children: a retrospective multicenter study. Scientific Reports, 2020, 10, 175	582.	1.6	14
1074	Artificial intelligence-enabled screening for diabetic retinopathy: a real-world, multicenter an prospective study. BMJ Open Diabetes Research and Care, 2020, 8, e001596.	nd	1.2	56
1075	Comparison of Convolutional Neural Network Models for Determination of Vocal Fold Norr Laryngoscopic Images. Journal of Voice, 2022, 36, 590-598.	nality in	0.6	22
1076	Deep learning for identifying corneal diseases from ocular surface slit-lamp photographs. So Reports, 2020, 10, 17851.	cientific	1.6	47
1077	Fusion of medical imaging and electronic health records using deep learning: a systematic r implementation guidelines. Npj Digital Medicine, 2020, 3, 136.	eview and	5.7	266
1078	AGE challenge: Angle Closure Glaucoma Evaluation in Anterior Segment Optical Coherence Tomography. Medical Image Analysis, 2020, 66, 101798.		7.0	35
1079	The Digital Reconstruction of Health Care. NEJM Catalyst, 2020, 1, .		0.4	13
1080	Development and Validation of a Deep Learning CT Signature to Predict Survival and Chem Benefit in Gastric Cancer. Annals of Surgery, 2021, 274, e1153-e1161.	otherapy	2.1	99
1081	The Application of Artificial Intelligence in Prostate Cancer Management—What Improver Expected? A Systematic Review. Applied Sciences (Switzerland), 2020, 10, 6428.	nents Can Be	1.3	10

#	Article	IF	Citations
1082	Accurate and Efficient Intracranial Hemorrhage Detection and Subtype Classification in 3D CT Scans with Convolutional and Long Short-Term Memory Neural Networks. Sensors, 2020, 20, 5611.	2.1	75
1083	A Visual Sensing Concept for Robustly Classifying House Types through a Convolutional Neural Network Architecture Involving a Multi-Channel Features Extraction. Sensors, 2020, 20, 5672.	2.1	4
1085	Targeted transfer learning to improve performance in small medical physics datasets. Medical Physics, 2020, 47, 6246-6256.	1.6	29
1086	Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer. EBioMedicine, 2020, 61, 103054.	2.7	76
1087	Artificial Intelligence-Based Multiclass Classification of Benign or Malignant Mucosal Lesions of the Stomach. Frontiers in Pharmacology, 2020, 11, 572372.	1.6	15
1088	A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre. Nature Biomedical Engineering, 2021, 5, 498-508.	11.6	131
1089	Ueg Week 2020 Poster Presentations. United European Gastroenterology Journal, 2020, 8, 144-887.	1.6	7
1090	Automated detection of mild and multi-class diabetic eye diseases using deep learning. Health Information Science and Systems, 2020, 8, 32.	3.4	83
1091	A comprehensive diagnosis system for early signs and different diabetic retinopathy grades using fundus retinal images based on pathological changes detection. Computers in Biology and Medicine, 2020, 126, 104039.	3.9	18
1092	Robust deep learning classification of adamantinomatous craniopharyngioma from limited preoperative radiographic images. Scientific Reports, 2020, 10, 16885.	1.6	19
1093	Progress of artificial intelligence in diabetic retinopathy screening. Diabetes/Metabolism Research and Reviews, 2021, 37, e3414.	1.7	11
1094	Al in the treatment of fertility: key considerations. Journal of Assisted Reproduction and Genetics, 2020, 37, 2817-2824.	1.2	25
1095	A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images: A retrospective study. EClinicalMedicine, 2020, 27, 100558.	3.2	88
1096	Extended-Zone Retinal Vascular Caliber and Risk of Diabetic Retinopathy in Adolescents with Type 1 Diabetes. Ophthalmology Retina, 2020, 4, 1151-1157.	1.2	2
1097	Evaluating artificial intelligence in medicine: phases of clinical research. JAMIA Open, 2020, 3, 326-331.	1.0	75
1098	Overcoming barriers to the adoption and implementation of predictive modeling and machine learning in clinical care: what can we learn from US academic medical centers?. JAMIA Open, 2020, 3, 167-172.	1.0	43
1099	Responsible, practical genomic data sharing that accelerates research. Nature Reviews Genetics, 2020, 21, 615-629.	7.7	66
1100	User satisfaction with a smartphone-compatible, artificial intelligence-based cutaneous pigmented lesion evaluator. Computer Methods and Programs in Biomedicine, 2020, 195, 105649.	2.6	4

#	Article	IF	CITATIONS
1101	Deep Sequential Feature Learning in Clinical Image Classification of Infectious Keratitis. Engineering, 2021, 7, 1002-1010.	3.2	31
1102	Causal inference and counterfactual prediction in machine learning for actionable healthcare. Nature Machine Intelligence, 2020, 2, 369-375.	8.3	147
1103	A Novel Deep Learning Pipeline for Retinal Vessel Detection In Fluorescein Angiography. IEEE Transactions on Image Processing, 2020, 29, 6561-6573.	6.0	36
1104	SecureBP from Homomorphic Encryption. Security and Communication Networks, 2020, 2020, 1-9.	1.0	1
1105	Detection of Diabetic Retinopathy Using Bichannel Convolutional Neural Network. Journal of Ophthalmology, 2020, 2020, 1-7.	0.6	57
1106	Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nature Reviews Neurology, 2020, 16, 440-456.	4.9	257
1107	A Survey on Artificial Intelligence Techniques for Biomedical Image Analysis in Skeleton-Based Forensic Human Identification. Applied Sciences (Switzerland), 2020, 10, 4703.	1.3	26
1108	Classification of glomerular pathological findings using deep learning and nephrologist–Al collective intelligence approach. International Journal of Medical Informatics, 2020, 141, 104231.	1.6	59
1109	Physiology as a Lingua Franca for Clinical Machine Learning. Patterns, 2020, 1, 100017.	3.1	9
1110	Workforce Shortage for Retinopathy of Prematurity Care and Emerging Role of Telehealth and Artificial Intelligence. Pediatric Clinics of North America, 2020, 67, 725-733.	0.9	15
1111	Clinical applications of machine learning in the diagnosis, classification, and prediction of heart failure. American Heart Journal, 2020, 229, 1-17.	1.2	85
1112	Artificial intelligence for STEMI detection: The "Shanghai Algorithm―provides a step forward. International Journal of Cardiology, 2020, 317, 231-232.	0.8	4
1113	Accuracy of deep learning for automated detection of pneumonia using chest X-Ray images: A systematic review and meta-analysis. Computers in Biology and Medicine, 2020, 123, 103898.	3.9	46
1114	BAGLS, a multihospital Benchmark for Automatic Glottis Segmentation. Scientific Data, 2020, 7, 186.	2.4	44
1115	Automated identification of chest radiographs with referable abnormality with deep learning: need for recalibration. European Radiology, 2020, 30, 6902-6912.	2.3	9
1116	Diabetic retinopathy identification using autoML. , 2020, , 175-188.		3
1117	Analytics with artificial intelligence to advance the treatment of acute respiratory distress syndrome. Journal of Evidence-Based Medicine, 2020, 13, 301-312.	0.7	30
1118	A Pilot Study of Diabetes Mellitus Classification from rs-fMRI Data Using Convolutional Neural Networks. Mathematical Problems in Engineering, 2020, 2020, 1-11.	0.6	1

#	Article	IF	CITATIONS
1119	Artificial Intelligence Algorithms for Analysis of Geographic Atrophy: A Review and Evaluation. Translational Vision Science and Technology, 2020, 9, 57.	1.1	28
1120	An advanced machine learning technique for the analysis of retina fundus images. Materials Today: Proceedings, 2020, , .	0.9	3
1121	Incidental cerebral aneurysms detected by a computer-assisted detection system based on artificial intelligence. Medicine (United States), 2020, 99, e21518.	0.4	12
1122	Feature Selection for Simple Color Histogram Filter based on Retinal Fundus Images for Diabetic Retinopathy Recognition. IETE Journal of Research, 2023, 69, 987-994.	1.8	10
1123	Addressing the challenges of artificial intelligence in medicine. Internal Medicine Journal, 2020, 50, 1278-1281.	0.5	8
1124	Artificial intelligence in cardiology. Trends in Cardiovascular Medicine, 2022, 32, 34-41.	2.3	29
1125	A deep learning diagnostic platform for diffuse large B-cell lymphoma with high accuracy across multiple hospitals. Nature Communications, 2020, 11, 6004.	5.8	51
1126	A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images. Nature Communications, 2020, 11, 6090.	5.8	83
1127	Development and evaluation of deep learning for screening dental caries from oral photographs. Oral Diseases, 2022, 28, 173-181.	1.5	59
1129	Essentials of a Robust Deep Learning System for Diabetic Retinopathy Screening: A Systematic Literature Review. Journal of Ophthalmology, 2020, 2020, 1-11.	0.6	10
1130	The Appropriateness of Digital Diabetic Retinopathy Screening Images for a Computer-Aided Glaucoma Screening System. Clinical Ophthalmology, 2020, Volume 14, 3881-3890.	0.9	2
1131	Automated Diabetic Retinopathy Detection and classification using ImageNet Convolution Neural Network using Fundus Images. , 2020, , .		15
1132	A Performance Comparison between Automated Deep Learning and Dental Professionals in Classification of Dental Implant Systems from Dental Imaging: A Multi-Center Study. Diagnostics, 2020, 10, 910.	1.3	51
1133	Artificial Intelligence in Ovarian Cancer Diagnosis. Anticancer Research, 2020, 40, 4795-4800.	0.5	46
1134	Fundamentals of artificial intelligence for ophthalmologists. Current Opinion in Ophthalmology, 2020, 31, 303-311.	1.3	6
1135	Uncertainty Estimation in Deep Neural Networks for Dermoscopic Image Classification. , 2020, , .		35
1136	A topological encoding convolutional neural network for segmentation of 3D multiphoton images of brain vasculature using persistent homology. , 2020, 2020, 4262-4271.		11
1137	Detection Of Foreign Objects In Chest Radiographs Using Deep Learning. , 2020, , .		4

#	Article	IF	CITATIONS
1138	Leveraging Multimodal Deep Learning Architecture with Retina Lesion Information to Detect Diabetic Retinopathy. Translational Vision Science and Technology, 2020, 9, 41.	1.1	12
1139	CrypTFlow: Secure TensorFlow Inference. , 2020, , .		91
1140	Deep Learning Algorithms and the Protection of Data Privacy. JAMA Ophthalmology, 2020, 138, 1024.	1.4	5
1141	AutoAudio: Deep Learning for Automatic Audiogram Interpretation. Journal of Medical Systems, 2020, 44, 163.	2.2	7
1142	An intelligent platform for ultrasound diagnosis of thyroid nodules. Scientific Reports, 2020, 10, 13223.	1.6	14
1143	Artificial intelligence-based diagnostic system classifying gastric cancers and ulcers: comparison between the original and newly developed systems. Endoscopy, 2020, 52, 1077-1083.	1.0	35
1144	Artificial intelligence for diabetic retinopathy screening, prediction and management. Current Opinion in Ophthalmology, 2020, 31, 357-365.	1.3	70
1145	Controversies in artificial intelligence. Current Opinion in Ophthalmology, 2020, 31, 324-328.	1.3	8
1146	Enabling Execution Assurance of Federated Learning at Untrusted Participants. , 2020, , .		39
1147	Interpretation of artificial intelligence studies for the ophthalmologist. Current Opinion in Ophthalmology, 2020, 31, 351-356.	1.3	2
1148	Harnessing in Silico Technologies to Develop and Augment Second-Generation Cell-Based Therapies. , 2020, , 183-211.		2
1149	Coarse-to-fine classification for diabetic retinopathy grading using convolutional neural network. Artificial Intelligence in Medicine, 2020, 108, 101936.	3.8	69
1150	An improved deep learning approach and its applications on colonic polyp images detection. BMC Medical Imaging, 2020, 20, 83.	1.4	47
1151	Diabetic retinopathy detection through deep learning techniques: A review. Informatics in Medicine Unlocked, 2020, 20, 100377.	1.9	196
1152	Diabetic retinopathy identification system based on transfer learning. Journal of Physics: Conference Series, 2020, 1544, 012133.	0.3	0
1153	Deep learning of lumbar spine X-ray for osteopenia and osteoporosis screening: A multicenter retrospective cohort study. Bone, 2020, 140, 115561.	1.4	67
1154	Machine Learning Techniques for Ophthalmic Data Processing: A Review. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3338-3350.	3.9	38
1155	Heart Coronary Artery Segmentation and Disease Risk Warning Based on a Deep Learning Algorithm. IEEE Access, 2020, 8, 140108-140121.	2.6	22

#	Article	IF	Citations
1156	Regional Tree Regularization for Interpretability in Deep Neural Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34, 6413-6421.	3.6	21
1157	Developing intelligent medical image modality classification system using deep transfer learning and LDA. Scientific Reports, 2020, 10, 12868.	1.6	32
1158	Discovery of Novel Inhibitors of a Critical Brain Enzyme Using a Homology Model and a Deep Convolutional Neural Network. Journal of Medicinal Chemistry, 2020, 63, 8867-8875.	2.9	31
1159	Simultaneous Diagnosis of Severity and Features of Diabetic Retinopathy in Fundus Photography Using Deep Learning. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3397-3407.	3.9	47
1160	Deployment of Artificial Intelligence in Real-World Practice: Opportunity and Challenge. Asia-Pacific Journal of Ophthalmology, 2020, 9, 299-307.	1.3	31
1161	Deep Learning Sensor Fusion for Autonomous Vehicle Perception and Localization: A Review. Sensors, 2020, 20, 4220.	2.1	213
1162	Generating Proteomic Big Data for Precision Medicine. Proteomics, 2020, 20, 1900358.	1.3	7
1163	High Accuracy Thyroid Tumor Image Recognition Based on Hybrid Multiple Models Optimization. IEEE Access, 2020, 8, 128426-128439.	2.6	3
1164	Accelerating ophthalmic artificial intelligence research: the role of an open access data repository. Current Opinion in Ophthalmology, 2020, 31, 337-350.	1.3	18
1165	Automatic Detection of Diabetic Eye Disease Through Deep Learning Using Fundus Images: A Survey. IEEE Access, 2020, 8, 151133-151149.	2.6	72
1166	Delivering personalized medicine in retinal care: from artificial intelligence algorithms to clinical application. Current Opinion in Ophthalmology, 2020, 31, 329-336.	1.3	20
1167	Pilot study: Application of artificial intelligence for detecting left atrial enlargement on canine thoracic radiographs. Veterinary Radiology and Ultrasound, 2020, 61, 611-618.	0.4	29
1168	Deep Learning-Based Segmentation and Quantification of Retinal Capillary Non-Perfusion on Ultra-Wide-Field Retinal Fluorescein Angiography. Journal of Clinical Medicine, 2020, 9, 2537.	1.0	15
1169	Classification of cervical neoplasms on colposcopic photography using deep learning. Scientific Reports, 2020, 10, 13652.	1.6	43
1170	FocalMix: Semi-Supervised Learning for 3D Medical Image Detection. , 2020, , .		63
1171	Automatic detection of acute ischemic stroke using non-contrast computed tomography and two-stage deep learning model. Computer Methods and Programs in Biomedicine, 2020, 196, 105711.	2.6	26
1172	Task Agnostic Robust Learning on Corrupt Outputs by Correlation-Guided Mixture Density Networks. , 2020, , .		4
1173	Surrogates and Artificial Intelligence: Why AI Trumps Family. Science and Engineering Ethics, 2020, 26, 3217-3227.	1.7	5

#	Article	IF	CITATIONS
1174	Vessel-Net: A Vessel-Aware Ensemble Network For Retinopathy Screening From Fundus Image. , 2020, , .		5
1175	Artificial Intelligence-Based Referral System for Patients With Diabetic Retinopathy. Computer, 2020, 53, 77-87.	1.2	4
1176	Training Artificial Neural Networks by Generalized Likelihood Ratio Method: An Effective Way to Improve Robustness. , 2020, , .		2
1177	Detecting Diabetic Retinopathy Using Embedded Computer Vision. Applied Sciences (Switzerland), 2020, 10, 7274.	1.3	14
1178	Improving Computer-Aided Cervical Cells Classification Using Transfer Learning Based Snapshot Ensemble. Applied Sciences (Switzerland), 2020, 10, 7292.	1.3	18
1179	A comprehensive artificial intelligence–enabled electrocardiogram interpretation program. Cardiovascular Digital Health Journal, 2020, 1, 62-70.	0.5	33
1180	Intensive treat-to-target statin therapy and severity of diabetic retinopathy complicated by hypercholesterolaemia. Eye, 2021, 35, 2221-2228.	1.1	5
1181	A Simplified Deep Network Architecture on Optic Cup and Disc Segmentation. , 2020, , .		2
1182	Deep learning can generate traditional retinal fundus photographs using ultra-widefield images via generative adversarial networks. Computer Methods and Programs in Biomedicine, 2020, 197, 105761.	2.6	20
1184	Automated Quality Assessment and Image Selection of Ultra-Widefield Fluorescein Angiography Images through Deep Learning. Translational Vision Science and Technology, 2020, 9, 52.	1.1	10
1185	Machine learning for endoleak detection after endovascular aortic repair. Scientific Reports, 2020, 10, 18343.	1.6	12
1186	Nuclear Segmentation in Histopathological Images Using Two-Stage Stacked U-Nets With Attention Mechanism. Frontiers in Bioengineering and Biotechnology, 2020, 8, 573866.	2.0	31
1187	Noninvasive temporal detection of early retinal vascular changes during diabetes. Scientific Reports, 2020, 10, 17370.	1.6	12
1188	TzanckNet: a convolutional neural network to identify cells in the cytology of erosive-vesiculobullous diseases. Scientific Reports, 2020, 10, 18314.	1.6	11
1189	Artificial intelligence in ophthalmology: the ophthalmologist's opinion. , 2020, , .		0
1190	A CNN-Based Approach for Lung 3D-CT Registration. IEEE Access, 2020, 8, 192835-192843.	2.6	4
1191	Analysis of Adversarial based Augmentation for Diabetic Retinopathy Disease Grading. , 2020, , .		14
1192	Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice. Translational Vision Science and Technology, 2020, 9, 55.	1.1	49

#	Article	IF	Citations
1193	Real-time deep learning-based image recognition for applications in automated positioning and injection of biological cells. Computers in Biology and Medicine, 2020, 125, 103976.	3.9	15
1194	Diabetic Retinopathy (DR) Severity Level Classification Using Multimodel Convolutional Neural Networks. , 2020, 2020, 1404-1407.		5
1195	Assessment of a Deep Learning Model to Predict Hepatocellular Carcinoma in Patients With Hepatitis C Cirrhosis. JAMA Network Open, 2020, 3, e2015626.	2.8	75
1196	Envisioning an artificial intelligence documentation assistant for future primary care consultations: A co-design study with general practitioners. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 1695-1704.	2.2	38
1197	Low-Shot Deep Learning of Diabetic Retinopathy With Potential Applications to Address Artificial Intelligence Bias in Retinal Diagnostics and Rare Ophthalmic Diseases. JAMA Ophthalmology, 2020, 138, 1070.	1.4	44
1198	Generative adversarial networks to predict treatment response for neovascular age-related macular degeneration: interesting, but is it useful?. British Journal of Ophthalmology, 2020, 104, 1629-1630.	2.1	6
1199	Generative Adversarial Domain Adaptation for Nucleus Quantification in Images of Tissue Immunohistochemically Stained for Ki-67. JCO Clinical Cancer Informatics, 2020, 4, 666-679.	1.0	8
1200	Clinical Implication of Machine Learning in Predicting the Occurrence of Cardiovascular Disease Using Big Data (Nationwide Cohort Data in Korea). IEEE Access, 2020, 8, 157643-157653.	2.6	42
1201	Evidence Based Prediction and Progression Monitoring on Retinal Images from Three Nations. Translational Vision Science and Technology, 2020, 9, 44.	1.1	9
1202	Radiomics at a Glance: A Few Lessons Learned from Learning Approaches. Cancers, 2020, 12, 2453.	1.7	5
1203	Novel Low-Shot Deep Learning Approach for Retinal Image Classification With Few Examples. JAMA Ophthalmology, 2020, 138, 1077.	1.4	3
1204	Automatic detection of hand hygiene using computer vision technology. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 1316-1320.	2.2	31
1205	Automated diagnosis and staging of Fuchs' endothelial cell corneal dystrophy using deep learning. Eye and Vision (London, England), 2020, 7, 44.	1.4	18
1206	Diagnosis of gastric lesions through a deep convolutional neural network. Digestive Endoscopy, 2021, 33, 788-796.	1.3	26
1207	Comparison of Conventional Statistical Methods with Machine Learning in Medicine: Diagnosis, Drug Development, and Treatment. Medicina (Lithuania), 2020, 56, 455.	0.8	178
1208	Rule-based automatic diagnosis of thyroid nodules from intraoperative frozen sections using deep learning. Artificial Intelligence in Medicine, 2020, 108, 101918.	3.8	21
1209	Comparative analysis of deep learning methods of detection of diabetic retinopathy. Cogent Engineering, 2020, 7, 1805144.	1.1	24
1210	Diabetic Retinopathy Classification using Deep Learning. , 2020, , .		2

#	Article	IF	Citations
1211	Automated Cytomegalovirus Retinitis Screening in Fundus Images. , 2020, 2020, 1996-2002.		1
1212	Automated Assessment of Peristomal Skin Discoloration and Leakage Area Using Artificial Intelligence. Frontiers in Artificial Intelligence, 2020, 3, 72.	2.0	4
1213	Evaluation of the Classification Accuracy of the Kidney Biopsy Direct Immunofluorescence through Convolutional Neural Networks. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 1445-1454.	2.2	34
1214	A Deep-Learning Approach for Foot-Type Classification Using Heterogeneous Pressure Data. Sensors, 2020, 20, 4481.	2.1	11
1215	Artificial intelligence in health care: preparing for the fifth Industrial Revolution. Medical Journal of Australia, 2020, 213, 253.	0.8	14
1216	Automatic detection of venous air embolism using transesophageal echocardiography in patients undergoing neurological surgery in the semi-sitting position: a pilot study. Journal of Clinical Monitoring and Computing, 2020, 35, 1103-1109.	0.7	4
1217	Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning. Nature Communications, 2020, 11, 4294.	5.8	156
1218	Explainable Diabetic Retinopathy using EfficientNET. , 2020, 2020, 1966-1969.		39
1219	Automatic detection and severity classification of diabetic retinopathy. Multimedia Tools and Applications, 2020, 79, 31803-31817.	2.6	12
1220	100 most-cited articles on diabetic retinopathy. British Journal of Ophthalmology, 2021, 105, 1329-1336.	2.1	13
1221	Using convolutional neural network for diabetes mellitus diagnosis based on tongue images. Journal of Engineering, 2020, 2020, 635-638.	0.6	6
1222	The Case for Algorithmic Stewardship for Artificial Intelligence and Machine Learning Technologies. JAMA - Journal of the American Medical Association, 2020, 324, 1397.	3.8	69
1223	Automatic detection of non-proliferative diabetic retinopathy in retinal fundus images using convolution neural network. Journal of Ambient Intelligence and Humanized Computing, 0, , 1.	3.3	37
1224	Predicting risk of late age-related macular degeneration using deep learning. Npj Digital Medicine, 2020, 3, 111.	5.7	33
1225	Protecting Data Privacy in the Age of AI-Enabled Ophthalmology. Translational Vision Science and Technology, 2020, 9, 36.	1.1	37
1226	Machine Learningâ€Enabled Smart Sensor Systems. Advanced Intelligent Systems, 2020, 2, 2000063.	3.3	83
1227	Automated diabetic retinopathy detection with two different retinal imaging devices using artificial intelligence: a comparison study. Graefe's Archive for Clinical and Experimental Ophthalmology, 2020, 258, 2647-2654.	1.0	24
1228	Retinal Image Analysis for Diabetes-Based Eye Disease Detection Using Deep Learning. Applied Sciences (Switzerland), 2020, 10, 6185.	1.3	59

#	Article	IF	CITATIONS
1229	Effective Activation Functions for Homomorphic Evaluation of Deep Neural Networks. IEEE Access, 2020, 8, 153098-153112.	2.6	28
1230	Improving the Accuracy of Diabetic Retinopathy Severity Classification with Transfer Learning. , 2020, , .		20
1231	Minimum information about clinical artificial intelligence modeling: the MI-CLAIM checklist. Nature Medicine, 2020, 26, 1320-1324.	15.2	262
1232	Toward standardized premarket evaluation of computer aided diagnosis/detection products: insights from FDA-approved products. Expert Review of Medical Devices, 2020, 17, 899-918.	1.4	5
1233	Development of machine learning-based clinical decision support system for hepatocellular carcinoma. Scientific Reports, 2020, 10, 14855.	1.6	24
1234	Automatic deep learning-based colorectal adenoma detection system and its similarities with pathologists. BMJ Open, 2020, 10, e036423.	0.8	32
1235	A digital biomarker of diabetes from smartphone-based vascular signals. Nature Medicine, 2020, 26, 1576-1582.	15.2	58
1236	<p>The Evolution of Diabetic Retinopathy Screening Programmes: A Chronology of Retinal Photography from 35 mm Slides to Artificial Intelligence</p> . Clinical Ophthalmology, 2020, Volume 14, 2021-2035.	0.9	25
1237	Faster RCNNâ€based detection of cervical spinal cord injury and disc degeneration. Journal of Applied Clinical Medical Physics, 2020, 21, 235-243.	0.8	28
1238	Development and clinical application of deep learning model for lung nodules screening on CT images. Scientific Reports, 2020, 10, 13657.	1.6	60
1239	Artificial intelligence in sleep medicine: background and implications for clinicians. Journal of Clinical Sleep Medicine, 2020, 16, 609-618.	1.4	51
1240	Implementation and Use of Disease Diagnosis Systems for Electronic Medical Records Based on Machine Learning: A Complete Review. IEEE Access, 2020, 8, 150489-150513.	2.6	27
1241	Semiâ€supervised joint learning for longitudinal clinical events classification using neural network models. Stat, 2020, 9, e305.	0.3	1
1242	Attribution in Scale and Space. , 2020, , .		17
1243	Ordinal labels in machine learning: a user-centered approach to improve data validity in medical settings. BMC Medical Informatics and Decision Making, 2020, 20, 142.	1.5	6
1244	Identification of Alzheimer's disease using a convolutional neural network model based on T1-weighted magnetic resonance imaging. Scientific Reports, 2020, 10, 22252.	1.6	73
1245	Ensemble Framework of Deep CNNs for Diabetic Retinopathy Detection. Computational Intelligence and Neuroscience, 2020, 2020, 1-11.	1.1	25
1246	Optical coherence tomography-based deep-learning model for detecting central serous chorioretinopathy. Scientific Reports, 2020, 10, 18852.	1.6	29

ARTICLE IF CITATIONS Jekyll: Attacking Medical Image Diagnostics using Deep Generative Models., 2020,,. 12 1247 Diabetic Retinopathy Detection using Deep Learning., 2020,,. 1248 Brain-Inspired Computing: Models and Architectures. IEEE Open Journal of Circuits and Systems, 2020, 1249 1.4 21 1, 185-204. Multi-Label Classification of Fundus Images With EfficientNet. IEEE Access, 2020, 8, 212499-212508. 1250 Convolutional Network With Twofold Feature Augmentation for Diabetic Retinopathy Recognition 1251 3.9 21 From Multi-Modal Images. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 2686-2697. Recent Advances in Medical Image Processing. Acta Cytologica, 2021, 65, 310-323. 0.7 Deep Learning-Based Method to Differentiate Neuromyelitis Optica Spectrum Disorder From Multiple 1253 1.1 22 Sclerosis. Frontiers in Neurology, 2020, 11, 599042. Deep Learning Techniques for Early Detection of Diabetic Retinopathy: Recent Developments and 1254 Techniques. , 2020, , . Deep Learning for Diabetes: A Systematic Review. IEEE Journal of Biomedical and Health Informatics, 1255 3.9 89 2021, 25, 2744-2757. Longitudinal Screening for Diabetic Retinopathy in a Nationwide Screening Program: Comparing Deep 1.0 Learning and Human Graders. Journal of Diabetes Research, 2020, 2020, 1-8. Identifying Mouse Autoimmune Uveitis from Fundus Photographs Using Deep Learning. Translational 1257 4 1.1 Vision Science and Technology, 2020, 9, 59. Artificial Intelligence in Medical Imaging and Its Application in Sonography for the Management of 1.3 Liver Tumor. Frontiers in Oncology, 2020, 10, 594580. Automated model versus treating physician for predicting survival time of patients with metastatic 1259 2.2 23 cancer. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 1108-1116. Detection of eye contact with deep neural networks is as accurate as human experts. Nature 5.8 Communications, 2020, 11, 6386. Association is not prediction: A landscape of confused reporting in diabetes $\hat{a} \in A$ systematic review. 1261 1.1 44 Diabetes Research and Clinical Practice, 2020, 170, 108497. Deployment of artificial intelligence for radiographic diagnosis of COVIDâ€19 pneumonia in the emergency department. Journal of the American College of Emergency Physicians Open, 2020, 1, 1262 19 1459-1464. Outcomes in CME/CPD - Special Collection: How to make the "pyramid―a perpetuum mobile. Journal of 1263 0.6 4 European CME, 2020, 9, 1832750. Improved and robust deep learning agent for preliminary detection of diabetic retinopathy using 1264 1.4 public datasets. Intelligence-based Medicine, 2020, 3-4, 100022.

#	Article	IF	CITATIONS
1265	Automatic Identification of Referral-Warranted Diabetic Retinopathy Using Deep Learning on Mobile Phone Images. Translational Vision Science and Technology, 2020, 9, 60.	1.1	18
1266	Self-supervised retinal thickness prediction enables deep learning from unlabelled data to boost classification of diabetic retinopathy. Nature Machine Intelligence, 2020, 2, 719-726.	8.3	48
1267	Breaking medical data sharing boundaries by using synthesized radiographs. Science Advances, 2020, 6,	4.7	29
1268	Classification of Diabetic Retinopathy using Residual Neural Network. IOP Conference Series: Materials Science and Engineering, 2020, 925, 012033.	0.3	2
1269	Al Hype and Radiology: A Plea for Realism and Accuracy. Radiology: Artificial Intelligence, 2020, 2, e190223.	3.0	10
1270	Can Additional Patient Information Improve the Diagnostic Performance of Deep Learning for the Interpretation of Knee Osteoarthritis Severity. Journal of Clinical Medicine, 2020, 9, 3341.	1.0	14
1271	Transplantation and optimization based on embedded binocular algorithm. , 2020, , .		0
1272	Written in Blood: Applying Shape Grammars to Retinal Vasculatures. Translational Vision Science and Technology, 2020, 9, 36.	1.1	3
1273	Measuring the Uncertainty of Predictions in Deep Neural Networks with Variational Inference. Sensors, 2020, 20, 6011.	2.1	10
1274	Incorporating patient generated health data into pharmacoepidemiological research. Pharmacoepidemiology and Drug Safety, 2020, 29, 1540-1549.	0.9	13
1275	Artificial Intelligence and Glaucoma: Illuminating the Black Box. Ophthalmology Glaucoma, 2020, 3, 311-313.	0.9	6
1276	Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs. Npj Digital Medicine, 2020, 3, 144.	5.7	60
1277	Consistency of variety of machine learning and statistical models in predicting clinical risks of individual patients: longitudinal cohort study using cardiovascular disease as exemplar. BMJ, The, 2020, 371, m3919.	3.0	59
1278	Preparing Radiologists to Lead in the Era of Artificial Intelligence: Designing and Implementing a Focused Data Science Pathway for Senior Radiology Residents. Radiology: Artificial Intelligence, 2020, 2, e200057.	3.0	31
1279	Refining dataset curation methods for deep learning-based automated tuberculosis screening. Journal of Thoracic Disease, 2020, 12, 5078-5085.	0.6	23
1280	A Systematic Review of Machine Learning Techniques in Hematopoietic Stem Cell Transplantation (HSCT). Sensors, 2020, 20, 6100.	2.1	24
1281	Sex judgment using color fundus parameters in elementary school students. Graefe's Archive for Clinical and Experimental Ophthalmology, 2020, 258, 2781-2789.	1.0	4
1282	Deep learning from "passive feeding―to "selective eating―of real-world data. Npj Digital Medicine, 2020, 3, 143.	5.7	17

#		IE	CITATIONS
#	ARTICLE Precision medicine and artificial intelligence: overview and relevance to reproductive medicine.	IF	CITATIONS
1283	Fertility and Sterility, 2020, 114, 908-913.	0.5	16
1284	CycleGAN-based deep learning technique for artifact reduction in fundus photography. Graefe's Archive for Clinical and Experimental Ophthalmology, 2020, 258, 1631-1637.	1.0	28
1285	Clinically Applicable AI System for Accurate Diagnosis, Quantitative Measurements, and Prognosis of COVID-19 Pneumonia Using Computed Tomography. Cell, 2020, 181, 1423-1433.e11.	13.5	638
1287	New unified insights on deep learning in radiological and pathological images: Beyond quantitative performances to qualitative interpretation. Informatics in Medicine Unlocked, 2020, 19, 100329.	1.9	7
1288	Critical Appraisal of Studies of Diagnostic Test Accuracy. , 2020, , 75-109.		3
1289	Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 757-769.	2.2	69
1290	Artificial Intelligence in Ophthalmology in 2020: A Technology on the Cusp for Translation and Implementation. Asia-Pacific Journal of Ophthalmology, 2020, 9, 61-66.	1.3	35
1291	Use of artificial intelligence in imaging in rheumatology – current status and future perspectives. RMD Open, 2020, 6, e001063.	1.8	54
1292	Applications of artificial intelligence and machine learning in respiratory medicine. Thorax, 2020, 75, 695-701.	2.7	49
1293	Early detection of ST-segment elevated myocardial infarction by artificial intelligence with 12-lead electrocardiogram. International Journal of Cardiology, 2020, 317, 223-230.	0.8	46
1294	Artificial Intelligence for Cataract Detection and Management. Asia-Pacific Journal of Ophthalmology, 2020, 9, 88-95.	1.3	36
1295	Artificial Intelligence in Ophthalmology: Evolutions in Asia. Asia-Pacific Journal of Ophthalmology, 2020, 9, 78-84.	1.3	18
1296	Neuro-ophthalmology in the Era of COVID-19: Future Implications of a Public Health Crisis. Ophthalmology, 2020, 127, e72-e74.	2.5	21
1297	An automated tissue-to-diagnosis pipeline using intraoperative stimulated Raman histology and deep learning. Molecular and Cellular Oncology, 2020, 7, 1736742.	0.3	11
1298	Expert-validated estimation of diagnostic uncertainty for deep neural networks in diabetic retinopathy detection. Medical Image Analysis, 2020, 64, 101724.	7.0	49
1299	A survey on medical image analysis in diabetic retinopathy. Medical Image Analysis, 2020, 64, 101742.	7.0	74
1300	Potential of deep learning in assessing pneumoconiosis depicted on digital chest radiography. Occupational and Environmental Medicine, 2020, 77, 597-602.	1.3	45
1301	Deep learning to distinguish pancreatic cancer tissue from non-cancerous pancreatic tissue: a retrospective study with cross-racial external validation. The Lancet Digital Health, 2020, 2, e303-e313.	5.9	121

#	Article	IF	Citations
1302	The retina revolution: signaling pathway therapies, genetic therapies, mitochondrial therapies, artificial intelligence. Current Opinion in Ophthalmology, 2020, 31, 207-214.	1.3	5
1303	Prediction of hypertension, hyperglycemia and dyslipidemia from retinal fundus photographs via deep learning: A cross-sectional study of chronic diseases in central China. PLoS ONE, 2020, 15, e0233166.	1.1	48
1304	Visual and Quantitative Evaluation of Amyloid Brain PET Image Synthesis with Generative Adversarial Network. Applied Sciences (Switzerland), 2020, 10, 2628.	1.3	16
1305	Clinically Feasible and Accurate View Classification of Echocardiographic Images Using Deep Learning. Biomolecules, 2020, 10, 665.	1.8	49
1306	A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations. The Lancet Digital Health, 2020, 2, e295-e302.	5.9	130
1307	Automatic Grading System for Diabetic Retinopathy Diagnosis Using Deep Learning Artificial Intelligence Software. Current Eye Research, 2020, 45, 1550-1555.	0.7	18
1308	Automatic Triage of 12â€Lead ECGs Using Deep Convolutional Neural Networks. Journal of the American Heart Association, 2020, 9, e015138.	1.6	42
1309	Deep learning assisted detection of glaucomatous optic neuropathy and potential designs for a generalizable model. PLoS ONE, 2020, 15, e0233079.	1.1	22
1310	Primer on an ethics of Al-based decision support systems in the clinic. Journal of Medical Ethics, 2021, 47, e3-e3.	1.0	84
1311	Artificial Intelligence: Quo Vadis?. Translational Vision Science and Technology, 2020, 9, 1.	1.1	10
1312	Artificial intelligence in gastroenterology: where are we heading?. Frontiers of Medicine, 2020, 14, 511-517.	1.5	14
1313	Al papers in ophthalmology made simple. Eye, 2020, 34, 1947-1949.	1.1	2
1314	Diabetic Retinopathy Detection Using Prognosis of Microaneurysm and Early Diagnosis System for Non-Proliferative Diabetic Retinopathy Based on Deep Learning Algorithms. IEEE Access, 2020, 8, 104292-104302.	2.6	144
1315	Multilevel approach to male fertility by machine learning highlights a hidden link between haematological and spermatogenetic cells. Andrology, 2020, 8, 1021-1029.	1.9	8
1316	Factors in Color Fundus Photographs That Can Be Used by Humans to Determine Sex of Individuals. Translational Vision Science and Technology, 2020, 9, 4.	1.1	21
1317	Artificial Intelligence in Intracoronary Imaging. Current Cardiology Reports, 2020, 22, 46.	1.3	24
1318	Artificial Intelligence in Biotechnology: A Framework for Commercialization. , 2020, , 419-427.		2
1319	Technology and computing. , 2020, , 99-128.		0

#	Article	IF	CITATIONS
1320	The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions. Nature Communications, 2020, 11, 2624.	5.8	324
1321	Research on Application Strategy of Deep Learning of Internet of Things Based on Edge Computing Optimization Method. Journal of Physics: Conference Series, 2020, 1486, 022024.	0.3	8
1322	Dense Correlation Network for Automated Multi-Label Ocular Disease Detection with Paired Color Fundus Photographs. , 2020, , .		15
1323	Iterative Augmentation of Visual Evidence for Weakly-Supervised Lesion Localization in Deep Interpretability Frameworks: Application to Color Fundus Images. IEEE Transactions on Medical Imaging, 2020, 39, 3499-3511.	5.4	22
1324	Automated Classification of Colorectal Neoplasms in White-Light Colonoscopy Images via Deep Learning. Journal of Clinical Medicine, 2020, 9, 1593.	1.0	33
1325	Nextmed: Automatic Imaging Segmentation, 3D Reconstruction, and 3D Model Visualization Platform Using Augmented and Virtual Reality. Sensors, 2020, 20, 2962.	2.1	49
1326	Age and sex affect deep learning prediction of cardiometabolic risk factors from retinal images. Scientific Reports, 2020, 10, 9432.	1.6	35
1327	Artificial Intelligence Applications in Otology: A State of the Art Review. Otolaryngology - Head and Neck Surgery, 2020, 163, 1123-1133.	1.1	24
1328	The use of machine learning in rare diseases: a scoping review. Orphanet Journal of Rare Diseases, 2020, 15, 145.	1.2	95
1329	Deep Neural Network for Scleral Spur Detection in Anterior Segment OCT Images: The Chinese American Eye Study. Translational Vision Science and Technology, 2020, 9, 18.	1.1	30
1330	Application of Convolutional Neural Networks for Detection of Superficial Nonampullary Duodenal Epithelial Tumors in Esophagogastroduodenoscopic Images. Clinical and Translational Gastroenterology, 2020, 11, e00154.	1.3	9
1331	Machine Learning for 3D Kinematic Analysis of Movements in Neurorehabilitation. Current Neurology and Neuroscience Reports, 2020, 20, 29.	2.0	19
1332	Comparison of performances of artificial intelligence versus expert endoscopists for real-time assisted diagnosis of esophageal squamous cell carcinoma (with video). Gastrointestinal Endoscopy, 2020, 92, 848-855.	0.5	60
1333	A deep learning-based algorithm for detection of cortical arousal during sleep. Sleep, 2020, 43, .	0.6	20
1334	Epidemiology of Atrial Fibrillation in the 21st Century. Circulation Research, 2020, 127, 4-20.	2.0	624
1335	A deep learning, image based approach for automated diagnosis for inflammatory skin diseases. Annals of Translational Medicine, 2020, 8, 581-581.	0.7	54
1336	Efficient Pneumonia Detection in Chest Xray Images Using Deep Transfer Learning. Diagnostics, 2020, 10, 417.	1.3	179
1337	Dense anatomical annotation of slit-lamp images improves the performance of deep learning for the diagnosis of ophthalmic disorders. Nature Biomedical Engineering, 2020, 4, 767-777.	11.6	42

		CITATION REPORT		
#	Article		IF	Citations
1338	Human–computer collaboration for skin cancer recognition. Nature Medicine, 2020,	26, 1229-1234.	15.2	383
1339	Convolutional Neural Networks Can Predict Retinal Differentiation in Retinal Organoid Cellular Neuroscience, 2020, 14, 171.	s. Frontiers in	1.8	36
1340	Machine learning approach for prediction of hearing preservation in vestibular schwan Scientific Reports, 2020, 10, 7136.	noma surgery.	1.6	12
1341	Cross-Modal Data Programming Enables Rapid Medical Machine Learning. Patterns, 20	20, 1, 100019.	3.1	33
1342	Application of Artificial Intelligence in Diabetes Education and Management: Present S Promising Prospect. Frontiers in Public Health, 2020, 8, 173.	tatus and	1.3	35
1343	Utilizing artificial intelligence in endoscopy: a clinician's guide. Expert Review of Ga and Hepatology, 2020, 14, 689-706.	istroenterology	1.4	24
1344	Assessment of Generative Adversarial Networks Model for Synthetic Optical Coherenc Images of Retinal Disorders. Translational Vision Science and Technology, 2020, 9, 29.		1.1	35
1345	Diabetic retinopathy and diabetic macular oedema pathways and management: UK Co Group. Eye, 2020, 34, 1-51.	nsensus Working	1.1	104
1346	Iteratively Pruned Deep Learning Ensembles for COVID-19 Detection in Chest X-Rays. I 115041-115050.	EEE Access, 2020, 8,	2.6	248
1347	Deep Learning for Automated Detection of Cyst and Tumors of the Jaw in Panoramic R Journal of Clinical Medicine, 2020, 9, 1839.	adiographs.	1.0	85
1348	Deep learning with noisy labels: Exploring techniques and remedies in medical image a Image Analysis, 2020, 65, 101759.	nalysis. Medical	7.0	320
1349	Artificial intelligence: improving the efficiency of cardiovascular imaging. Expert Review Devices, 2020, 17, 565-577.	v of Medical	1.4	20
1350	AResU-Net: Attention Residual U-Net for Brain Tumor Segmentation. Symmetry, 2020,	12, 721.	1.1	41
1351	Low-complexity computer-aided diagnosis for diabetic retinopathy. , 2020, , 133-149.			6
1352	Artificial Intelligence in Cardiology: Present and Future. Mayo Clinic Proceedings, 2020	, 95, 1015-1039.	1.4	127
1353	Effects of Hypertension, Diabetes, and Smoking on Age and Sex Prediction from Retina Scientific Reports, 2020, 10, 4623.	al Fundus Images.	1.6	38
1354	Diabetic retinopathy and ultrawide field imaging. Seminars in Ophthalmology, 2020, 3	5, 56-65.	0.8	10
1355	The power of clinical data empowered by clinical prediction model: an R tutorial. Annal Translational Medicine, 2020, 8, 77-77.	s of	0.7	0

#	Article	IF	CITATIONS
1356	<p>The Evolving Treatment of Diabetic Retinopathy</p> . Clinical Ophthalmology, 2020, Volume 14, 653-678.	0.9	134
1357	Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	1.4	279
1358	Classification of pathological types of lung cancer from CT images by deep residual neural networks with transfer learning strategy. Open Medicine (Poland), 2020, 15, 190-197.	0.6	47
1359	Efficient Prediction of Vitamin B Deficiencies via Machine-Learning Using Routine Blood Test Results in Patients With Intense Psychiatric Episode. Frontiers in Psychiatry, 2019, 10, 1029.	1.3	7
1360	Investigation and classification of fibre deformation using interferometric and machine learning techniques. Applied Physics B: Lasers and Optics, 2020, 126, 1.	1.1	12
1361	Commentary on: Eye-Tracking Technology in Plastic and Reconstructive Surgery: A Systematic Review. Aesthetic Surgery Journal, 2020, 40, 1035-1036.	0.9	3
1362	Detection of extremity chronic traumatic osteomyelitis by machine learning based on computed-tomography images. Medicine (United States), 2020, 99, e19239.	0.4	4
1363	Exploring the effect of hypertension on retinal microvasculature using deep learning on East Asian population. PLoS ONE, 2020, 15, e0230111.	1.1	29
1364	NFNK: A novel network followed network for retinal vessel segmentation. Neural Networks, 2020, 126, 153-162.	3.3	119
1365	Automatic optic nerve head localization and cup-to-disc ratio detection using state-of-the-art deep-learning architectures. Scientific Reports, 2020, 10, 5025.	1.6	9
1366	Machine learning in nephrology: scratching the surface. Chinese Medical Journal, 2020, , 687-698.	0.9	14
1367	Application of Artificial Intelligence in Modern Healthcare System. , 0, , .		17
1368	Accounting for data variability in multi-institutional distributed deep learning for medical imaging. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 700-708.	2.2	36
1369	Deep Learning–Based Algorithm for Detecting Aortic Stenosis Using Electrocardiography. Journal of the American Heart Association, 2020, 9, e014717.	1.6	113
1370	Machine Learning and Feature Selection Applied to SEER Data to Reliably Assess Thyroid Cancer Prognosis. Scientific Reports, 2020, 10, 5176.	1.6	27
1371	Machine Learning Algorithms for Optic Pathway Disease Diagnostics: A Review. IOP Conference Series: Materials Science and Engineering, 2020, 767, 012067.	0.3	1
1372	Artificial intelligence in oncology. Cancer Science, 2020, 111, 1452-1460.	1.7	166
1373	A Deep Learning Model for Segmentation of Geographic Atrophy to Study Its Long-Term Natural History. Ophthalmology, 2020, 127, 1086-1096.	2.5	41

#	Article	IF	CITATIONS
1374	The Role and Promise of Artificial Intelligence in Medical Toxicology. Journal of Medical Toxicology, 2020, 16, 458-464.	0.8	13
1375	Practice Guidelines for Ocular Telehealth-Diabetic Retinopathy, Third Edition. Telemedicine Journal and E-Health, 2020, 26, 495-543.	1.6	47
1376	Automated and Computer-Assisted Detection, Classification, and Diagnosis of Diabetic Retinopathy. Telemedicine Journal and E-Health, 2020, 26, 544-550.	1.6	17
1377	Coordinate Difference Matrices. SIAM Journal on Matrix Analysis and Applications, 2020, 41, 332-363.	0.7	0
1378	Artificial Intelligence for Refractive Surgery Screening: Finding the Balance Between Myopia and Hype-ropia. JAMA Ophthalmology, 2020, 138, 526.	1.4	4
1379	Attention Gate ResU-Net for Automatic MRI Brain Tumor Segmentation. IEEE Access, 2020, 8, 58533-58545.	2.6	139
1380	Deep Learning Model as a New Trend in Computer-aided Diagnosis of Tumor Pathology for Lung Cancer. Journal of Cancer, 2020, 11, 3615-3622.	1.2	39
1381	Limits of trust in medical AI. Journal of Medical Ethics, 2020, 46, 478-481.	1.0	79
1382	The AI Revolution and How to Prepare for It. Translational Vision Science and Technology, 2020, 9, 16.	1.1	16
1383	The American Society of Retina Specialists Artificial Intelligence Task Force Report. Journal of Vitreoretinal Diseases, 2020, 4, 312-319.	0.2	0
1384	Deep learning algorithm for surveillance of pneumothorax after lung biopsy: a multicenter diagnostic cohort study. European Radiology, 2020, 30, 3660-3671.	2.3	32
1385	Automatic Detection of Diabetic Retinopathy: A Review on Datasets, Methods and Evaluation Metrics. IEEE Access, 2020, 8, 48784-48811.	2.6	71
1386	Diagnostic performance of deep learning-based vascular extraction and stenosis detection technique for coronary artery disease. British Journal of Radiology, 2020, 93, 20191028.	1.0	31
1387	Identifying Schizophrenia Using Structural MRI With a Deep Learning Algorithm. Frontiers in Psychiatry, 2020, 11, 16.	1.3	78
1388	Adenocarcinoma Recognition in Endoscopy Images Using Optimized Convolutional Neural Networks. Applied Sciences (Switzerland), 2020, 10, 1650.	1.3	13
1389	Artificial intelligence algorithm to predict the need for critical care in prehospital emergency medical services. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 2020, 28, 17.	1.1	56
1390	A multi-scale recurrent fully convolution neural network for laryngeal leukoplakia segmentation. Biomedical Signal Processing and Control, 2020, 59, 101913.	3.5	16
1391	Automated molecular-image cytometry and analysis in modern oncology. Nature Reviews Materials, 2020, 5, 409-422.	23.3	19

CITATION REPO	RT

#	Article	IF	CITATIONS
1392	Classification of digital pathological images of nonâ€Hodgkin's lymphoma subtypes based on the fusion of transfer learning and principal component analysis. Medical Physics, 2020, 47, 4241-4253.	1.6	12
1393	A bibliometric analysis on deep learning during 2007–2019. International Journal of Machine Learning and Cybernetics, 2020, 11, 2807-2826.	2.3	39
1394	Automatic Detection and Monitoring of Diabetic Retinopathy Using Efficient Convolutional Neural Networks and Contrast Limited Adaptive Histogram Equalization. IEEE Access, 2020, 8, 136668-136673.	2.6	69
1395	Deep Learning Based Segmentation of Body Parts in CT Localizers and Application to Scan Planning. , 2020, , .		2
1396	Deep learning-based survival prediction for multiple cancer types using histopathology images. PLoS ONE, 2020, 15, e0233678.	1.1	143
1397	Blended Multi-Modal Deep ConvNet Features for Diabetic Retinopathy Severity Prediction. Electronics (Switzerland), 2020, 9, 914.	1.8	95
1398	Acute myeloid leukemia and artificial intelligence, algorithms and new scores. Best Practice and Research in Clinical Haematology, 2020, 33, 101192.	0.7	15
1399	A Retrospective Comparison of Deep Learning to Manual Annotations for Optic Disc and Optic Cup Segmentation in Fundus Photographs. Translational Vision Science and Technology, 2020, 9, 33.	1.1	11
1400	Using artificial intelligence to improve medical services in China. Annals of Translational Medicine, 2020, 8, 711-711.	0.7	5
1401	Deep convolutional neural networks for automatic segmentation of thoracic organsâ€atâ€risk in radiation oncology – use of nonâ€domain transfer learning. Journal of Applied Clinical Medical Physics, 2020, 21, 108-113.	0.8	14
1402	Review of Machine Learning in Predicting Dermatological Outcomes. Frontiers in Medicine, 2020, 7, 266.	1.2	23
1403	Histological Subtypes Classification of Lung Cancers on CT Images Using 3D Deep Learning and Radiomics. Academic Radiology, 2021, 28, e258-e266.	1.3	32
1404	Small Target Recognition Using Dynamic Time Warping and Visual Attention. Computer Journal, 2020, , .	1.5	1
1405	Development of a self-constrained 3D DenseNet model in automatic detection and segmentation of nasopharyngeal carcinoma using magnetic resonance images. Oral Oncology, 2020, 110, 104862.	0.8	49
1406	An artificial intelligent platform for live cell identification and the detection of cross-contamination. Annals of Translational Medicine, 2020, 8, 697-697.	0.7	6
1407	Differentiate cavernous hemangioma from schwannoma with artificial intelligence (AI). Annals of Translational Medicine, 2020, 8, 710-710.	0.7	11
1408	Artificial Intelligence and Digital Tools. Clinics in Geriatric Medicine, 2020, 36, 513-525.	1.0	16
1409	Effective blood vessels reconstruction methodology for early detection and classification of diabetic retinopathy using OCTA images by artificial neural network. Informatics in Medicine Unlocked, 2020, 20, 100390.	1.9	20

#	Article	IF	CITATIONS
1410	Machine Learning Methods for Neonatal Mortality and Morbidity Classification. IEEE Access, 2020, 8, 123347-123358.	2.6	30
1411	Real-world big-data studies in laboratory medicine: Current status, application, and future considerations. Clinical Biochemistry, 2020, 84, 21-30.	0.8	32
1412	Application of a Deep Machine Learning Model for Automatic Measurement of EZ Width in SD-OCT Images of RP. Translational Vision Science and Technology, 2020, 9, 15.	1.1	12
1413	Non-uniform Label Smoothing for Diabetic Retinopathy Grading from Retinal Fundus Images with Deep Neural Networks. Translational Vision Science and Technology, 2020, 9, 34.	1.1	12
1414	Clinical Validation of a Deep Learning Algorithm for Detection of Pneumonia on Chest Radiographs in Emergency Department Patients with Acute Febrile Respiratory Illness. Journal of Clinical Medicine, 2020, 9, 1981.	1.0	24
1415	Development of machine learning models to prognosticate chronic shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage. Acta Neurochirurgica, 2020, 162, 3093-3105.	0.9	19
1416	Advances in Telemedicine in Ophthalmology. Seminars in Ophthalmology, 2020, 35, 210-215.	0.8	47
1417	Automatic T Staging Using Weakly Supervised Deep Learning for Nasopharyngeal Carcinoma on <scp>MR</scp> Images. Journal of Magnetic Resonance Imaging, 2020, 52, 1074-1082.	1.9	18
1418	Artificial intelligence-tutoring problem-based learning in ophthalmology clerkship. Annals of Translational Medicine, 2020, 8, 700-700.	0.7	14
1419	SODNet: small object detection using deconvolutional neural network. IET Image Processing, 2020, 14, 1662-1669.	1.4	13
1420	An abnormality detection of retinal fundus images by deep convolutional neural networks. Multimedia Tools and Applications, 2020, 79, 24949-24967.	2.6	12
1421	Age-related Macular Degeneration: Nutrition, Genes and Deep Learning—The LXXVI Edward Jackson Memorial Lecture. American Journal of Ophthalmology, 2020, 217, 335-347.	1.7	10
1422	Efficacy of deep convolutional neural network algorithm for the identification and classification of dental implant systems, using panoramic and periapical radiographs. Medicine (United States), 2020, 99, e20787.	0.4	60
1423	Notice of Retraction: AI Techniques for COVID-19. IEEE Access, 2020, 8, 128776-128795.	2.6	117
1424	Machine Learning Based Automated Segmentation and Hybrid Feature Analysis for Diabetic Retinopathy Classification Using Fundus Image. Entropy, 2020, 22, 567.	1.1	41
1425	From Local to Global: A Graph Framework for Retinal Artery/Vein Classification. IEEE Transactions on Nanobioscience, 2020, 19, 589-597.	2.2	3
1426	Artificial intelligence, machine learning and deep learning for eye care specialists. Annals of Eye Science, 0, 5, 18-18.	1.1	4
1427	Application of artificial intelligence in anterior segment ophthalmic diseases: diversity and standardization. Annals of Translational Medicine, 2020, 8, 714-714.	0.7	21

#	Article	IF	CITATIONS
1428	Automatic identification of myopia based on ocular appearance images using deep learning. Annals of Translational Medicine, 2020, 8, 705-705.	0.7	23
1429	Detecting caries lesions of different radiographic extension on bitewings using deep learning. Journal of Dentistry, 2020, 100, 103425.	1.7	141
1430	Vanadium Core–Shell Nanorods Inspect Metabolic Changes of Diabetic Retinopathy. Advanced Functional Materials, 2020, 30, 2002791.	7.8	59
1431	Demystifying artificial intelligence in pharmacy. American Journal of Health-System Pharmacy, 2020, 77, 1556-1570.	0.5	29
1432	Development and Evaluation of a Deep Learning System for Screening Retinal Hemorrhage Based on Ultra-Widefield Fundus Images. Translational Vision Science and Technology, 2020, 9, 3.	1.1	22
1433	Predicting patient outcomes in psychiatric hospitals with routine data: a machine learning approach. BMC Medical Informatics and Decision Making, 2020, 20, 21.	1.5	12
1434	Changes in cancer detection and false-positive recall in mammography using artificial intelligence: a retrospective, multireader study. The Lancet Digital Health, 2020, 2, e138-e148.	5.9	240
1435	Automated diabetic retinopathy grading and lesion detection based on the modified Râ€FCN objectâ€detection algorithm. IET Computer Vision, 2020, 14, 1-8.	1.3	53
1436	Deep Learning Features Improve the Performance of a Radiomics Signature for Predicting KRAS Status in Patients with Colorectal Cancer. Academic Radiology, 2020, 27, e254-e262.	1.3	37
1437	Prediction of Vestibular Dysfunction by Applying Machine Learning Algorithms to Postural Instability. Frontiers in Neurology, 2020, 11, 7.	1.1	21
1439	Evidence-based Canadian guidelines for tele-retina screening for diabetic retinopathy: recommendations from the Canadian Retina Research Network (CR2N) Tele-Retina Steering Committee. Canadian Journal of Ophthalmology, 2020, 55, 14-24.	0.4	18
1440	Artificial intelligence in medical imaging: A radiomic guide to precision phenotyping of cardiovascular disease. Cardiovascular Research, 2020, 116, 2040-2054.	1.8	59
1441	The eye, the kidney, and cardiovascular disease: old concepts, better tools, and new horizons. Kidney International, 2020, 98, 323-342.	2.6	72
1442	<p>Artificial Intelligence to Identify Retinal Fundus Images, Quality Validation, Laterality Evaluation, Macular Degeneration, and Suspected Glaucoma</p> . Clinical Ophthalmology, 2020, Volume 14, 419-429.	0.9	51
1443	Stratification of gastric cancer risk using a deep neural network. JGH Open, 2020, 4, 466-471.	0.7	17
1444	Machine learning to predict venous thrombosis in acutely ill medical patients. Research and Practice in Thrombosis and Haemostasis, 2020, 4, 230-237.	1.0	28
1445	Design and Evaluation of a Deep Learning Recommendation Based Augmented Reality System for Teaching Programming and Computational Thinking. IEEE Access, 2020, 8, 45689-45699.	2.6	62
1446	Randomized Clinical Trials of Artificial Intelligence. JAMA - Journal of the American Medical Association, 2020, 323, 1043.	3.8	57

		I KLFOKT	
#	Article	IF	CITATIONS
1447	Noninterpretive Uses of Artificial Intelligence in Radiology. Academic Radiology, 2021, 28, 1225-1235.	1.3	53
1448	Deep-learning-based prediction of late age-related macular degeneration progression. Nature Machine Intelligence, 2020, 2, 141-150.	8.3	79
1449	Preparing Medical Imaging Data for Machine Learning. Radiology, 2020, 295, 4-15.	3.6	473
1450	Automatic Recognition of Laryngoscopic Images Using a Deep‣earning Technique. Laryngoscope, 2020, 130, E686-E693.	1.1	61
1451	Unimodal regularized neuron stick-breaking for ordinal classification. Neurocomputing, 2020, 388, 34-44.	3.5	29
1452	BSCN: bidirectional symmetric cascade network for retinal vessel segmentation. BMC Medical Imaging, 2020, 20, 20.	1.4	16
1453	Detection of Early Signs of Diabetic Retinopathy Based on Textural and Morphological Information in Fundus Images. Sensors, 2020, 20, 1005.	2.1	56
1454	Intelligent oil well identification modelling based on deep learning and neural network. Enterprise Information Systems, 2022, 16, 249-263.	3.3	6
1455	Retrospective imaging studies of gastric cancer. Medicine (United States), 2020, 99, e19157.	0.4	12
1456	Assessing and Mitigating Bias in Medical Artificial Intelligence. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e007988.	2.1	116
1457	Artificial intelligenceâ€based detection of pharyngeal cancer using convolutional neural networks. Digestive Endoscopy, 2020, 32, 1057-1065.	1.3	35
1458	Assessment of Expert-Level Automated Detection of <i>Plasmodium falciparum</i> in Digitized Thin Blood Smear Images. JAMA Network Open, 2020, 3, e200206.	2.8	8
1459	Imaging research in fibrotic lung disease; applying deep learning to unsolved problems. Lancet Respiratory Medicine,the, 2020, 8, 1144-1153.	5.2	47
1460	The National Institutes of Health funding for clinical research applying machine learning techniques in 2017. Npj Digital Medicine, 2020, 3, 13.	5.7	10
1461	Deep learning computer vision algorithm for detecting kidney stone composition. BJU International, 2020, 125, 920-924.	1.3	89
1462	Teleconsultations between Patients and Healthcare Professionals in Primary Care in Catalonia: The Evaluation of Text Classification Algorithms Using Supervised Machine Learning. International Journal of Environmental Research and Public Health, 2020, 17, 1093.	1.2	16
1463	A novel diagnostic method for pituitary adenoma based on magnetic resonance imaging using a convolutional neural network. Pituitary, 2020, 23, 246-252.	1.6	17
1464	Recognition of ischaemia and infection in diabetic foot ulcers: Dataset and techniques. Computers in Biology and Medicine, 2020, 117, 103616.	3.9	107

ΙΤΛΤΙΟΝ

P

#	Article	IF	CITATIONS
1465	Abnormality detection in retinal image by individualized background learning. Pattern Recognition, 2020, 102, 107209.	5.1	8
1466	Deep learning in fracture detection: a narrative review. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 91, 215-220.	1.2	81
1467	Interactive 3D U-net for the segmentation of the pancreas in computed tomography scans. Physics in Medicine and Biology, 2020, 65, 065002.	1.6	29
1468	Current Challenges and Recent Updates in Artificial Intelligence and Echocardiography. Current Cardiovascular Imaging Reports, 2020, 13, 1.	0.4	14
1469	A Deep Learning Model for Estimation of Patients with Undiagnosed Diabetes. Applied Sciences (Switzerland), 2020, 10, 421.	1.3	19
1470	Identifying Scoliosis in Population-Based Cohorts: Automation of a Validated Method Based on Total Body Dual Energy X-ray Absorptiometry Scans. Calcified Tissue International, 2020, 106, 378-385.	1.5	11
1471	Toward improving ECG biometric identification using cascaded convolutional neural networks. Neurocomputing, 2020, 391, 83-95.	3.5	72
1472	Classifying Neck Lymph Nodes of Head and Neck Squamous Cell Carcinoma in MRI Images with Radiomic Features. Journal of Digital Imaging, 2020, 33, 613-618.	1.6	22
1473	Automatic detection of rare pathologies in fundus photographs using few-shot learning. Medical Image Analysis, 2020, 61, 101660.	7.0	53
1474	A Practical Approach to Artificial Intelligence in Plastic Surgery. Aesthetic Surgery Journal Open Forum, 2020, 2, ojaa001.	0.5	17
1475	Simple, Mobile-based Artificial Intelligence Algo r ithm in the detection of Diabetic Retinopathy (SMART) study. BMJ Open Diabetes Research and Care, 2020, 8, e000892.	1.2	44
1476	Using machine learning to construct nomograms for patients with metastatic colon cancer. Colorectal Disease, 2020, 22, 914-922.	0.7	7
1477	Glaucoma management in the era of artificial intelligence. British Journal of Ophthalmology, 2020, 104, 301-311.	2.1	63
1478	Machine learning detection of Atrial Fibrillation using wearable technology. PLoS ONE, 2020, 15, e0227401.	1.1	47
1479	Do we have enough ophthalmologists to manage vision-threatening diabetic retinopathy? A global perspective. Eye, 2020, 34, 1255-1261.	1.1	32
1480	Intraâ€individual association between Câ€reactive protein and insulin administration in postoperative lumbar spinal canal stenosis patients: A retrospective cohort study. Journal of Diabetes Investigation, 2020, 11, 980-984.	1.1	3
1481	Deep learning algorithms for detection of diabetic retinopathy in retinal fundus photographs: A systematic review and meta-analysis. Computer Methods and Programs in Biomedicine, 2020, 191, 105320.	2.6	102
1482	Prediction of Pulmonary to Systemic Flow Ratio in Patients With Congenital Heart Disease Using Deep Learning–Based Analysis of Chest Radiographs. JAMA Cardiology, 2020, 5, 449.	3.0	27

ARTICLE IF CITATIONS Machine learning and data analytics., 2020, , 227-309. 3 1483 Can Artificial Intelligence Improve the Management of Pneumonia. Journal of Clinical Medicine, 2020, 1484 1.0 9,248. Evaluation of artificial intelligence for detecting periapical pathosis on coneâ€beam computed 1485 2.3147 tomography scans. International Endodontic Journal, 2020, 53, 680-689. The Application of the Machine Learning Method in Electromyographic Data. IEEE Access, 2020, 8, 1486 9196-9208. Multi-label classification of retinal lesions in diabetic retinopathy for automatic analysis of fundus 1487 fluorescein angiography based on deep learning. Graefe's Archive for Clinical and Experimental 1.0 47 Ophthalmology, 2020, 258, 779-785. The three-way-in and three-way-out framework to treat and exploit ambiguity in data. International Journal of Approximate Reasoning, 2020, 119, 292-312. 1488 A combined ultrasonic B-mode and color Doppler system for the classification of breast masses using 1489 2.318 neural network. European Radiology, 2020, 30, 3023-3033. Fighting healthcare rocketing costs with value-based medicine: the case of stroke management. BMC 1490 Health Services Research, 2020, 20, 75. A multicenter random forest model for effective prognosis prediction in collaborative clinical 1491 3.8 44 research network. Artificial Intelligence in Medicine, 2020, 103, 101814. 1492 Electronic health records for the diagnosis of rare diseases. Kidney International, 2020, 97, 676-686. 2.6 Predicting Glaucoma before Onset Using Deep Learning. Ophthalmology Glaucoma, 2020, 3, 262-268. 1493 0.9 45 Deep learning in rare disease. Detection of tubers in tuberous sclerosis complex. PLoS ONE, 2020, 15, 1494 1.1 e0232376. Development and Validation of a Deep Learning Radiomics Model Predicting Lymph Node Status in 1495 1.3 27 Operable Cervical Cancer. Frontiers in Oncology, 2020, 10, 464. A "Third Wheel―Effect in Health Decision Making Involving Artificial Entities: A Psychological 1496 1.3 39 Perspective. Frontiers in Public Health, 2020, 8, 117. Evaluation of a Deep Neural Network for Automated Classification of Colorectal Polyps on 1497 2.8 71 Histopathologic Slides. JAMA Network Open, 2020, 3, e203398. Fundus retinal image analyses for screening and diagnosing diabetic retinopathy, macular edema, and 1498 glaucoma disorders., 2020,, 59-111. Discussion: Photographic and Video Deepfakes Have Arrived: How Machine Learning May Influence 1499 0.7 0 Plastic Surgery. Plastic and Reconstructive Surgery, 2020, 145, 1087-1088. Towards implementation of AI in New Zealand national diabetic screening program: Cloud-based, 1.1 robust, and bespoke. PLoS ONE, 2020, 15, e0225015.

#	Article	IF	CITATIONS
1501	Fundamental principles of an effective diabetic retinopathy screening program. Acta Diabetologica, 2020, 57, 785-798.	1.2	32
1502	Interpretable artificial intelligence: Closing the adoption gap in healthcare. , 2020, , 3-29.		1
1503	Artificial intelligence for management of patients with intracranial neoplasms. , 2020, , 203-230.		0
1504	How Machine Learning Will Transform Biomedicine. Cell, 2020, 181, 92-101.	13.5	279
1505	Addressing class imbalance in deep learning for small lesion detection on medical images. Computers in Biology and Medicine, 2020, 120, 103735.	3.9	70
1506	Three artificial intelligence data challenges based on CT and MRI. Diagnostic and Interventional Imaging, 2020, 101, 783-788.	1.8	19
1507	Augmented Intelligence Dermatology: Deep Neural Networks Empower Medical Professionals in Diagnosing Skin Cancer andÂPredicting Treatment Options for 134 SkinÂDisorders. Journal of Investigative Dermatology, 2020, 140, 1753-1761.	0.3	121
1508	Automatic detection of tympanic membrane and middle ear infection from oto-endoscopic images via convolutional neural networks. Neural Networks, 2020, 126, 384-394.	3.3	54
1509	Application of Automated Quantification of Fluid Volumes to Anti–VEGF Therapy of Neovascular Age-Related Macular Degeneration. Ophthalmology, 2020, 127, 1211-1219.	2.5	89
1510	Reinventing polysomnography in the age of precision medicine. Sleep Medicine Reviews, 2020, 52, 101313.	3.8	57
1511	Deep Learning Method for Mandibular Canal Segmentation in Dental Cone Beam Computed Tomography Volumes. Scientific Reports, 2020, 10, 5842.	1.6	76
1512	Choroidal thickness estimation from colour fundus photographs by adaptive binarisation and deep learning, according to central serous chorioretinopathy status. Scientific Reports, 2020, 10, 5640.	1.6	9
1513	Technical and imaging factors influencing performance of deep learning systems for diabetic retinopathy. Npj Digital Medicine, 2020, 3, 40.	5.7	28
1514	Personalized predictions of patient outcomes during and after hospitalization using artificial intelligence. Npj Digital Medicine, 2020, 3, 51.	5.7	34
1515	Siamese neural networks for continuous disease severity evaluation and change detection in medical imaging. Npj Digital Medicine, 2020, 3, 48.	5.7	70
1516	DCT-MIL: Deep CNN transferred multiple instance learning for COPD identification using CT images. Physics in Medicine and Biology, 2020, 65, 145011.	1.6	21
1517	HKSiamFC: Visual-Tracking Framework Using Prior Information Provided by Staple and Kalman Filter. Sensors, 2020, 20, 2137.	2.1	7
1518	Machine Learning Applications in Endocrinology and Metabolism Research: An Overview. Endocrinology and Metabolism, 2020, 35, 71.	1.3	16

#	Article	IF	CITATIONS
1519	Deep neural networks to predict diabetic retinopathy. Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 5407-5420.	3.3	151
1520	A critical review on computer vision and artificial intelligence in food industry. Journal of Agriculture and Food Research, 2020, 2, 100033.	1.2	158
1521	CAD-CAP: a 25,000-image database serving the development of artificial intelligence for capsule endoscopy. Endoscopy International Open, 2020, 08, E415-E420.	0.9	41
1522	On the ethics of algorithmic decision-making in healthcare. Journal of Medical Ethics, 2020, 46, 205-211.	1.0	210
1523	A hybrid double-density dual-tree discrete wavelet transformation and marginal Fisher analysis for scoring sleep stages from unprocessed single-channel electroencephalogram. Quantitative Imaging in Medicine and Surgery, 2020, 10, 766-778.	1.1	2
1524	The autonomous point-of-care diabetic retinopathy examination. , 2020, , 159-178.		2
1525	Use of Deep Learning to Predict Final Ischemic Stroke Lesions From Initial Magnetic Resonance Imaging. JAMA Network Open, 2020, 3, e200772.	2.8	98
1526	An accountable saliency-oriented data-driven approach to diabetic retinopathy detection. , 2020, , 223-243.		0
1527	Learning in the machine: To share or not to share?. Neural Networks, 2020, 126, 235-249.	3.3	7
1528	Stigma, biomarkers, and algorithmic bias: recommendations for precision behavioral health with artificial intelligence. JAMIA Open, 2020, 3, 9-15.	1.0	62
1529	1.1 The Deep Learning Revolution and Its Implications for Computer Architecture and Chip Design. , 2020, , .		32
1530	Health Economic and Safety Considerations for Artificial Intelligence Applications in Diabetic Retinopathy Screening. Translational Vision Science and Technology, 2020, 9, 22.	1.1	39
1531	CT-Based Quantitative Analysis for Pathological Features Associated With Postoperative Recurrence and Potential Application Upon Artificial Intelligence: A Narrative Review With a Focus on Chronic Subdural Hematomas. Molecular Imaging, 2020, 19, 153601212091477.	0.7	7
1532	Different fundus imaging modalities and technical factors in Al screening for diabetic retinopathy: a review. Eye and Vision (London, England), 2020, 7, 21.	1.4	55
1533	Application of machine learning in ophthalmic imaging modalities. Eye and Vision (London, England), 2020, 7, 22.	1.4	65
1534	Diagnostic performance of convolutional neural network-based Tanner-Whitehouse 3 bone age assessment system. Quantitative Imaging in Medicine and Surgery, 2020, 10, 657-667.	1.1	21
1535	Streamlining the KOOS Activities of Daily Living Subscale Using Machine Learning. Orthopaedic Journal of Sports Medicine, 2020, 8, 232596712091044.	0.8	9
1536	<p>On the Role of Artificial Intelligence in Genomics to Enhance Precision Medicine</p> . Pharmacogenomics and Personalized Medicine, 2020, Volume 13, 105-119.	0.4	10

#	Article	IF	CITATIONS
1537	Transfer Learning with Convolutional Neural Networks for Diabetic Retinopathy Image Classification. A Review. Applied Sciences (Switzerland), 2020, 10, 2021.	1.3	89
1538	Noise can speed backpropagation learning and deep bidirectional pretraining. Neural Networks, 2020, 129, 359-384.	3.3	22
1539	Al for the Eye — Automated Assistance for Clinicians Screening for Papilledema. New England Journal of Medicine, 2020, 382, 1760-1761.	13.9	5
1540	Artificial Intelligence to Detect Papilledema from Ocular Fundus Photographs. New England Journal of Medicine, 2020, 382, 1687-1695.	13.9	214
1541	Correlated Parameters to Accurately Measure Uncertainty in Deep Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 1037-1051.	7.2	21
1542	Comparison of automated and expert human grading of diabetic retinopathy using smartphone-based retinal photography. Eye, 2021, 35, 334-342.	1.1	15
1543	Application of deep learning image assessment software VeriSeeâ,,¢ for diabetic retinopathy screening. Journal of the Formosan Medical Association, 2021, 120, 165-171.	0.8	36
1544	Diabetic Retinopathy Diagnosis Using Multichannel Generative Adversarial Network With Semisupervision. IEEE Transactions on Automation Science and Engineering, 2021, 18, 574-585.	3.4	71
1545	Autonomous Artificial Intelligence in Diabetic Retinopathy: From Algorithm to Clinical Application. Journal of Diabetes Science and Technology, 2021, 15, 695-698.	1.3	14
1546	Validation of Automated Screening for Referable Diabetic Retinopathy With an Autonomous Diagnostic Artificial Intelligence System in a Spanish Population. Journal of Diabetes Science and Technology, 2021, 15, 655-663.	1.3	27
1547	Deep learning approaches for sleep disorder prediction in an asthma cohort. Journal of Asthma, 2021, 58, 903-911.	0.9	16
1548	Evaluation of an AI system for the detection of diabetic retinopathy from images captured with a handheld portable fundus camera: the MAILOR AI study. Eye, 2021, 35, 632-638.	1.1	29
1549	Diagnostic accuracy of diabetic retinopathy grading by an artificial intelligence-enabled algorithm compared with a human standard for wide-field true-colour confocal scanning and standard digital retinal images. British Journal of Ophthalmology, 2021, 105, 265-270.	2.1	29
1550	Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recognition, 2021, 110, 107332.	5.1	214
1552	Artificial intelligence for anterior segment diseases: Emerging applications in ophthalmology. British Journal of Ophthalmology, 2021, 105, 158-168.	2.1	110
1553	Classification of pachychoroid disease on ultrawide-field indocyanine green angiography using auto-machine learning platform. British Journal of Ophthalmology, 2021, 105, 856-861.	2.1	32
1554	Prospective evaluation of an artificial intelligence-enabled algorithm for automated diabetic retinopathy screening of 30Â000 patients. British Journal of Ophthalmology, 2021, 105, 723-728.	2.1	89
1555	Machine learning and artificial intelligence in haematology. British Journal of Haematology, 2021, 192, 239-250.	1.2	64

ARTICLE IF CITATIONS Deep learning for smart fish farming: applications, opportunities and challenges. Reviews in 1556 144 4.6 Aquaculture, 2021, 13, 66-90. DeepNeuro: an open-source deep learning toolbox for neuroimaging. Neuroinformatics, 2021, 19, 1.5 127-140. Artificial intelligence and its impact on quality improvement in upper and lower gastrointestinal 1558 1.3 21 endoscopy. Digestive Endoscopy, 2021, 33, 242-253. The deep learning model combining CT image and clinicopathological information for predicting ALK fusion status and response to ALK-TKI therapy in non-small cell lung cancer patients. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 361-371. DeepImpact: a deep learning model for whole body vibration control using impact force monitoring. 1560 3.2 10 Neural Computing and Applications, 2021, 33, 3521-3544. Machine Learning in Laryngoscopy Analysis: A Proof of Concept Observational Study for the Identification of Post-Extubation Ulcerations and Granulomas. Annals of Otology, Rhinology and Laryngology, 2021, 130, 286-291. Secure and Robust Machine Learning for Healthcare: A Survey. IEEE Reviews in Biomedical Engineering, 1562 13.1 230 2021, 14, 156-180. The automaton as a surgeon: the future of artificial intelligence in emergency and general surgery. 0.8 European Journal of Trauma and Emergency Surgery, 2021, 47, 757-762. Development and validation of two artificial intelligence models for diagnosing benign, pigmented 1564 0.8 15 facial skin lesions. Skin Research and Technology, 2021, 27, 74-79. Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A Review. IEEE Reviews in 13.1 148 Biomedical Engineering, 2021, 14, 139-155. Rapid, label-free detection of diffuse glioma recurrence using intraoperative stimulated Raman 1566 0.6 25 histology and deep neural networks. Neuro-Oncology, 2021, 23, 144-155. Machine Learning for Clinical Outcome Prediction. IEEE Reviews in Biomedical Engineering, 2021, 14, 1567 13.1 116-126. Deep learning for differentiation of benign and malignant solid liver lesions on ultrasonography. 1568 1.0 20 Abdominal Radiology, 2021, 46, 534-543. Opportunistic osteoporosis screening in multi-detector CT images using deep convolutional neural networks. European Radiology, 2021, 31, 1831-1842. 2.3 Diagnostic performance for pulmonary adenocarcinoma on CT: comparison of radiologists with and 1570 2.310 without three-dimensional convolutional neural network. European Radiology, 2021, 31, 1978-1986. Adaptive machine learning classification for diabetic retinopathy. Multimedia Tools and Applications, 1571 2021, 80, 5173-5186. A global review of publicly available datasets for ophthalmological imaging: barriers to access, 1572 5.9153 usability, and generalisability. The Lancet Digital Health, 2021, 3, e51-e66. Diagnostic Performance of Artificial Intelligence for Detection of Anterior Cruciate Ligament and 1573 Meniscus Tears: A Systematic Review. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2021, 1.3 37, 771-781.

	Сітаті	on Report	
#	Article	IF	CITATIONS
1574	Commentary: Can machine learning reduce readmissions after esophagectomy? A consummation devoutly to be wished. Journal of Thoracic and Cardiovascular Surgery, 2021, 161, 1944-1945.	0.4	1
1575	Deep neural network models for computational histopathology: A survey. Medical Image Analysis, 2021, 67, 101813.	7.0	331
1576	Digital technology, tele-medicine and artificial intelligence in ophthalmology: A global perspective. Progress in Retinal and Eye Research, 2021, 82, 100900.	7.3	261
1577	Artificial intelligence enabled applications in kidney disease. Seminars in Dialysis, 2021, 34, 5-16.	0.7	19
1578	Brain metastasis detection using machine learning: a systematic review and meta-analysis. Neuro-Oncology, 2021, 23, 214-225.	0.6	61
1580	Closing the translation gap: Al applications in digital pathology. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188452.	3.3	31
1581	A Demonstration of Machine Learning in Detecting Frequency Following Responses in American Neonates. Perceptual and Motor Skills, 2021, 128, 48-58.	0.6	5
1582	In pursuit of glioma diagnosis: the challenges and opportunities of deep neural network augmented analyses. Neuro-Oncology, 2021, 23, 9-10.	0.6	0
1583	L'intelligence artificielle au service des maladies métaboliques. Medecine Des Maladies Metaboliques 2021, 15, 70-79.	s, 0.1	0
1584	Deep Neural Networks Offer Morphologic Classification and Diagnosis of Bacterial Vaginosis. Journal of Clinical Microbiology, 2021, 59, .	1.8	21
1585	Low utility of diabetic eye care services and perceived barriers to optimal diabetic retinopathy management in Indonesian adults with vision-threatening diabetic retinopathy. Diabetes Research and Clinical Practice, 2021, 171, 108540.	1.1	3
1586	Diagnosis and risk stratification in hypertrophic cardiomyopathy using machine learning wall thickness measurement: a comparison with human test-retest performance. The Lancet Digital Health, 2021, 3, e20-e28.	5.9	57
1587	Advanced machine-learning techniques in drug discovery. Drug Discovery Today, 2021, 26, 769-777.	3.2	78
1588	A review on medical imaging synthesis using deep learning and its clinical applications. Journal of Applied Clinical Medical Physics, 2021, 22, 11-36.	0.8	139
1589	The LEukemia Artificial Intelligence Program (LEAP) in chronic myeloid leukemia in chronic phase: A model to improve patient outcomes. American Journal of Hematology, 2021, 96, 241-250.	2.0	19
1590	Lessons learnt from harnessing deep learning for real-world clinical applications in ophthalmology: detecting diabetic retinopathy from retinal fundus photographs. , 2021, , 247-264.		0
1591	Outlook of the future landscape of artificial intelligence in medicine and new challenges. , 2021, , 503-526.		1
1592	Baseline structural and functional magnetic resonance imaging predicts early treatment response in schizophrenia with radiomics strategy. European Journal of Neuroscience, 2021, 53, 1961-1975.	1.2	19

#	ARTICLE Machine learning for lung CT texture analysis: Improvement of inter-observer agreement for	IF	CITATIONS
1594	radiological finding classification in patients with pulmonary diseases. European Journal of Radiology, 2021, 134, 109410.	1.2	20
1595	Diabetic Retinopathy Screening with Automated Retinal Image Analysis in a Primary Care Setting Improves Adherence to Ophthalmic Care. Ophthalmology Retina, 2021, 5, 71-77.	1.2	35
1596	Clinical and Research Medical Applications of Artificial Intelligence. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2021, 37, 1694-1697.	1.3	55
1597	Al applications in prevalent diseases and disorders. , 2021, , 293-444.		2
1598	Development of a deep learning-based image eligibility verification system for detecting and filtering out ineligible fundus images: A multicentre study. International Journal of Medical Informatics, 2021, 147, 104363.	1.6	8
1599	Comparison of segmentation-free and segmentation-dependent computer-aided diagnosis of breast masses on a public mammography dataset. Journal of Biomedical Informatics, 2021, 113, 103656.	2.5	10
1600	The Value of Artificial Intelligence in Laboratory Medicine. American Journal of Clinical Pathology, 2021, 155, 823-831.	0.4	33
1601	Stacked Inverse Probability of Censoring Weighted Bagging: A Case Study In the InfCareHIV Register. Journal of the Royal Statistical Society Series C: Applied Statistics, 2021, 70, 51-65.	0.5	4
1602	Lung segmentation on chest Xâ€ray images in patients with severe abnormal findings using deep learning. International Journal of Imaging Systems and Technology, 2021, 31, 1002-1008.	2.7	7
1603	Improving rib fracture detection accuracy and reading efficiency with deep learning-based detection software: a clinical evaluation. British Journal of Radiology, 2021, 94, 20200870.	1.0	30
1604	Development and Prospective Validation of a Deep Learning Algorithm for Predicting Need for Mechanical Ventilation. Chest, 2021, 159, 2264-2273.	0.4	38
1605	Adversarial multi-source transfer learning in healthcare: Application to glucose prediction for diabetic people. Computer Methods and Programs in Biomedicine, 2021, 199, 105874.	2.6	25
1606	Improvement of the diagnostic accuracy for intracranial haemorrhage using deep learning–based computer-assisted detection. Neuroradiology, 2021, 63, 713-720.	1.1	19
1607	Modern Internet Search Analytics and Total Joint Arthroplasty: What Are Patients Asking and Reading Online?. Journal of Arthroplasty, 2021, 36, 1224-1231.	1.5	42
1608	Automatic diagnosis of glaucoma using two-dimensional Fourier-Bessel series expansion based empirical wavelet transform. Biomedical Signal Processing and Control, 2021, 64, 102237.	3.5	57
1609	Lesion-aware convolutional neural network for chest radiograph classification. Clinical Radiology, 2021, 76, 155.e1-155.e14.	0.5	9
1610	Current status of artificial intelligence analysis for endoscopic ultrasonography. Digestive Endoscopy, 2021, 33, 298-305.	1.3	32
1611	Clinical Decision Support Systems: An Innovative Approach to Enhancing Child and Adolescent Mental Health Services. Journal of the American Academy of Child and Adolescent Psychiatry, 2021, 60, 562-565.	0.3	5

#	Article	IF	CITATIONS
1612	DcardNet: Diabetic Retinopathy Classification at Multiple Levels Based on Structural and Angiographic Optical Coherence Tomography. IEEE Transactions on Biomedical Engineering, 2021, 68, 1859-1870.	2.5	38
1613	Closing the Gap Between Deep Neural Network Modeling and Biomedical Decision-Making Metrics in Segmentation via Adaptive Loss Functions. IEEE Transactions on Medical Imaging, 2021, 40, 585-593.	5.4	16
1614	THEIAâ"¢ development, and testing of artificial intelligenceâ€based primary triage of diabetic retinopathy screening images in New Zealand. Diabetic Medicine, 2021, 38, e14386.	1.2	10
1615	The International Collaboration for Cancer Classification and Research. International Journal of Cancer, 2021, 148, 560-571.	2.3	32
1616	The future is now? Clinical and translational aspects of "Omics―technologies. Immunology and Cell Biology, 2021, 99, 168-176.	1.0	51
1617	Multi-GPU Design and Performance Evaluation of Homomorphic Encryption on GPU Clusters. IEEE Transactions on Parallel and Distributed Systems, 2021, 32, 379-391.	4.0	25
1618	Deep learning algorithm for detection of aortic dissection on non-contrast-enhanced CT. European Radiology, 2021, 31, 1151-1159.	2.3	29
1619	The state of the art of deep learning models in medical science and their challenges. Multimedia Systems, 2021, 27, 599-613.	3.0	89
1620	CABNet: Category Attention Block for Imbalanced Diabetic Retinopathy Grading. IEEE Transactions on Medical Imaging, 2021, 40, 143-153.	5.4	159
1621	Clinically Relevant Vulnerabilities of Deep Machine Learning Systems for Skin Cancer Diagnosis. Journal of Investigative Dermatology, 2021, 141, 916-920.	0.3	14
1622	Ethical and legal challenges of informed consent applying artificial intelligence in medical diagnostic consultations. Al and Society, 2021, 36, 509-520.	3.1	33
1623	Artificial Intelligence in Plastic Surgery: Applications and Challenges. Aesthetic Plastic Surgery, 2021, 45, 784-790.	0.5	33
1624	Clinical validation of an artificial intelligence-based diabetic retinopathy screening tool for a national health system. Eye, 2022, 36, 78-85.	1.1	9
1625	Artificial Intelligence in Cornea and Refractive Surgery. Current Practices in Ophthalmology, 2021, , 39-55.	0.1	0
1626	Precision Medicine and Informatics. , 2021, , 941-966.		0
1628	Deep learning for biomedical applications. , 2021, , 71-94.		Ο
1629	Automatic Staging for Retinopathy of Prematurity With Deep Feature Fusion and Ordinal Classification Strategy. IEEE Transactions on Medical Imaging, 2021, 40, 1750-1762.	5.4	28
1630	Deep Learning Model for Efficient Mammogram Analysis. Studies in Computational Intelligence, 2021, , 223-240.	0.7	Ο

#	Article	IF	CITATIONS
1632	Mobile Application Can Now Assist to Diagnose Arrhythmias with Collective Intelligence. Korean Circulation Journal, 2021, 51, 358.	0.7	0
1633	Deep Collocative Learning for Immunofixation Electrophoresis Image Analysis. IEEE Transactions on Medical Imaging, 2021, 40, 1898-1910.	5.4	11
1634	Al-automated referral for patients with visual impairment. The Lancet Digital Health, 2021, 3, e2-e3.	5.9	1
1635	Leveraging the Generalization Ability of Deep Convolutional Neural Networks for Improving Classifiers for Color Fundus Photographs. Applied Sciences (Switzerland), 2021, 11, 591.	1.3	4
1636	Prospective Of Artificial Intelligence: Emerging Trends In Modern Biosciences Research. IOP Conference Series: Materials Science and Engineering, 0, 1020, 012008.	0.3	1
1638	A Novel Network With Parallel Resolution Encoders for the Diagnosis of Corneal Diseases. IEEE Transactions on Biomedical Engineering, 2021, 68, 3671-3680.	2.5	6
1639	Hypertensive Retinopathy Screening through Fundus Images-A Review. , 2021, , .		3
1640	Natural Brain-Inspired Intelligence for Screening in Healthcare Applications. IEEE Access, 2021, 9, 67957-67973.	2.6	6
1641	Bilateral Asymmetry Guided Counterfactual Generating Network for Mammogram Classification. IEEE Transactions on Image Processing, 2021, 30, 7980-7994.	6.0	9
1642	Deep Learning Methods and Their Application to Nursing Workflows. CIN - Computers Informatics Nursing, 2021, 39, 1-6.	0.3	0
1643	Development of Decision Support Software for Deep Learning-Based Automated Retinal Disease Screening Using Relatively Limited Fundus Photograph Data. Electronics (Switzerland), 2021, 10, 163.	1.8	12
1644	Brain Tumor Segmentation and Surveillance with Deep Artificial Neural Networks. , 2021, , 311-350.		6
1645	Development and Validation of a Deep Learning Model to Quantify Glomerulosclerosis in Kidney Biopsy Specimens. JAMA Network Open, 2021, 4, e2030939.	2.8	29
1646	Al/Machine Learning in Medical Imaging. , 2021, , 1691-1702.		3
1647	SANet: A Slice-Aware Network for Pulmonary Nodule Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, PP, 1-1.	9.7	38
1648	An Evaluation Based on Diabetic Retinopathy. , 0, , .		0
1649	Epiretinal Membrane Detection in Optical Coherence Tomography Retinal Images Using Deep Learning. IEEE Access, 2021, 9, 99201-99219.	2.6	15
1650	Healthcare. , 2021, , 183-195.		1

# 1651	ARTICLE Recent Developments in Detection of Central Serous Retinopathy Through Imaging and Artificial Intelligence Techniques–A Review. IEEE Access, 2021, 9, 168731-168748.	IF 2.6	CITATIONS
1652	An algorithmic approach to reducing unexplained pain disparities in underserved populations. Nature Medicine, 2021, 27, 136-140.	15.2	143
1653	Intracerebral Hemorrhage Hematoma Expansion Prediction with Deep Learning. SSRN Electronic Journal, 0, , .	0.4	0
1654	Referral for disease-related visual impairment using retinal photograph-based deep learning: a proof-of-concept, model development study. The Lancet Digital Health, 2021, 3, e29-e40.	5.9	20
1655	Explainable Diabetic Retinopathy Detection and Retinal Image Generation. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 44-55.	3.9	29
1656	Predicting the Stages of Diabetic Retinopathy using Deep Learning. , 2021, , .		12
1657	Longitudinal Detection of Diabetic Retinopathy Early Severity Grade Changes Using Deep Learning. Lecture Notes in Computer Science, 2021, , 11-20.	1.0	3
1658	A Comprehensive Investigation of Machine Learning Feature Extraction and Classification Methods for Automated Diagnosis of COVID-19 Based on X-Ray Images. Computers, Materials and Continua, 2021, 66, 3289-3310.	1.5	55
1659	Deep Learning Methods for the Prediction of Chronic Diseases: A Systematic Review. Studies in Autonomic, Data-driven and Industrial Computing, 2021, , 99-110.	0.4	1
1660	Second opinion needed: communicating uncertainty in medical machine learning. Npj Digital Medicine, 2021, 4, 4.	5.7	148
1661	Risk of Blindness Among Patients With Diabetes and Newly Diagnosed Diabetic Retinopathy. Diabetes Care, 2021, 44, 748-756.	4.3	59
1662	Diabetes prognosis using white-box machine learning framework for interpretability of results. , 2021,		0
1663	Neovascularization Detection on Optic Disc Region Using Deep Learning. Lecture Notes in Computer Science, 2021, , 111-120.	1.0	3
1664	Deep Neural Network-Based Prediction of the Risk of Advanced Colorectal Neoplasia. Gut and Liver, 2021, 15, 85-91.	1.4	3
1665	Medical Image Classification Techniques and Analysis Using Deep Learning Networks: A Review. Studies in Computational Intelligence, 2021, , 233-258.	0.7	12
1667	Generative adversarial network for cardiovascular imaging. , 2021, , 95-121.		3
1668	Neural AutoML with Convolutional Networks for Diabetic Retinopathy Diagnosis. Algorithms for Intelligent Systems, 2021, , 145-157.	0.5	1
1669	An Extensive Survey of Machine Learning Based Approaches on Automated Pathology Detection in Chest X-Rays. , 2021, , .		2

# 1670	ARTICLE Meta Learning and the Al Learning Process. , 2021, , 1-15.	IF	CITATIONS 0
1671	Capacity building for diabetic retinopathy screening by optometrists in India: Model description and pilot results. Indian Journal of Ophthalmology, 2021, 69, 655.	0.5	12
1672	Retraining Convolutional Neural Networks for Specialized Cardiovascular Imaging Tasks: Lessons from Tetralogy of Fallot. Pediatric Cardiology, 2021, 42, 578-589.	0.6	13
1673	Medical image editing in the latent space of Generative Adversarial Networks. Intelligence-based Medicine, 2021, 5, 100040.	1.4	8
1674	The SEE Study: Safety, Efficacy, and Equity of Implementing Autonomous Artificial Intelligence for Diagnosing Diabetic Retinopathy in Youth. Diabetes Care, 2021, 44, 781-787.	4.3	27
1675	Robust Localization of Retinal Lesions via Weakly-supervised Learning. , 2021, , .		0
1676	Commentary: A mobile application for generating differential diagnosis in neuro-ophthalmology – New tool using artificial intelligence. Indian Journal of Ophthalmology, 2021, 69, 1497.	0.5	0
1677	Convolutional Neural Networks in Advanced Biomedical Imaging Applications. , 2021, , 197-236.		1
1678	Deep learning for computer-aided diagnosis in ophthalmology: a review. , 2021, , 219-237.		3
1679	Fast automated detection of COVID-19 from medical images using convolutional neural networks. Communications Biology, 2021, 4, 35.	2.0	43
1680	Applications of Machine Learning in Disease Pre-screening. , 2020, , 1052-1084.		2
1681	Artificial intelligence for classification of temporal lobe epilepsy with ROI-level MRI data: A worldwide ENIGMA-Epilepsy study. NeuroImage: Clinical, 2021, 31, 102765.	1.4	25
1682	Diabetic Retinopathy Diagnosis From Fundus Images Using Stacked Generalization of Deep Models. IEEE Access, 2021, 9, 108276-108292.	2.6	80
1683	Al-Driven Big Healthcare Analytics. Advances in Data Mining and Database Management Book Series, 2021, , 172-184.	0.4	2
1684	Interpretable Gender Classification fromÂRetinal Fundus Images Using BagNets. Lecture Notes in Computer Science, 2021, , 477-487.	1.0	11
1685	Improving suicide risk prediction via targeted data fusion: proof of concept using medical claims data. Journal of the American Medical Informatics Association: JAMIA, 2022, 29, 500-511.	2.2	9
1686	Improving the Reliability of Semantic Segmentation of Medical Images byÂUncertainty Modeling with Bayesian Deep Networks and Curriculum Learning. Lecture Notes in Computer Science, 2021, , 34-43.	1.0	2
1687	Composite deep neural network with gated-attention mechanism for diabetic retinopathy severity classification. Journal of Ambient Intelligence and Humanized Computing, 2021, 12, 9825-9839.	3.3	74

#	Article	IF	CITATIONS
1688	Investigating the use of a two-stage attention-aware convolutional neural network for the automated diagnosis of otitis media from tympanic membrane images: a prediction model development and validation study. BMJ Open, 2021, 11, e041139.	0.8	21
1689	Data Augmentation to Improve the diagnosis of Melanoma using Convolutional Neural Networks. , 2021, , .		1
1690	Current state of artificial intelligence applications in ophthalmology and their potential to influence clinical practice. Cogent Engineering, 2021, 8, 1920707.	1.1	3
1691	Learn to Segment Retinal Lesions and Beyond. , 2021, , .		14
1692	Benevolent AI for All. , 2021, , 285-291.		0
1693	Diabetic retinopathy detection and stage classification in eye fundus images using active deep learning. Multimedia Tools and Applications, 2021, 80, 11691-11721.	2.6	81
1694	Early detection of diabetic retinopathy based on deep learning and ultra-wide-field fundus images. Scientific Reports, 2021, 11, 1897.	1.6	64
1695	Artificial Intelligence and Glaucoma. Current Practices in Ophthalmology, 2021, , 75-89.	0.1	0
1696	Evaluation of a novel artificial intelligence-based screening system for diabetic retinopathy in community of China: a real-world study. International Ophthalmology, 2021, 41, 1291-1299.	0.6	19
1698	Development of artificial intelligence system for quality control of photo documentation in esophagogastroduodenoscopy. Surgical Endoscopy and Other Interventional Techniques, 2022, 36, 57-65.	1.3	15
1699	Statistical Texture Features Based Automatic Detection and Classification of Diabetic Retinopathy. Algorithms for Intelligent Systems, 2021, , 27-39.	0.5	0
1700	Diabetic retinopathy screening guidelines in India: All India Ophthalmological Society diabetic retinopathy task force and Vitreoretinal Society of India Consensus Statement. Indian Journal of Ophthalmology, 2021, 69, 678.	0.5	31
1701	Automated Microaneurysms Detection in Retinal Images Using Radon Transform and Supervised Learning: Application to Mass Screening of Diabetic Retinopathy. IEEE Access, 2021, 9, 67302-67314.	2.6	20
1702	Contrastive Cross-Modal Pre-Training: A General Strategy for Small Sample Medical Imaging. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 1640-1649.	3.9	7
1703	Machine learning: at the heart of failure diagnosis. Current Opinion in Cardiology, 2021, 36, 227-233.	0.8	9
1704	Artificial Intelligence and Deep Learning in Ophthalmology. , 2021, , 1-34.		10
1705	Synergic Adversarial Label Learning for Grading Retinal Diseases via Knowledge Distillation and Multi-Task Learning. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 3709-3720.	3.9	16
1706	Future Generation Computing in M-Health. Advances in Healthcare Information Systems and Administration Book Series, 2021, , 211-222.	0.2	0

#	Article	IF	Citations
1707	Medical Imaging Based Diagnosis Through Machine Learning and Data Analysis. Computational Biology, 2021, , 179-225.	0.1	0
1708	Imbalance Rectification Using Venn Diagram-Based Ensemble ofÂUndersampling Methods forÂDiseaseÂDatasets. Advances in Intelligent Systems and Computing, 2021, , 371-382.	0.5	0
1710	A Vision of the Future. , 2021, , 175-185.		0
1711	Demystifying artificial intelligence and deep learning in dentistry. Brazilian Oral Research, 2021, 35, e094.	0.6	14
1712	BI-RADS Classification of Calcification on Mammograms. Lecture Notes in Computer Science, 2021, , 119-128.	1.0	2
1713	Relational Subsets Knowledge Distillation for Long-Tailed Retinal Diseases Recognition. Lecture Notes in Computer Science, 2021, , 3-12.	1.0	18
1714	Application of artificial intelligence in pediatric ophthalmic practice. Klinika Oczna, 2021, 123, 65-68.	0.0	0
1715	Evaluation of Active Learning Techniques on Medical Image Classification with Unbalanced Data Distributions. Lecture Notes in Computer Science, 2021, , 235-242.	1.0	1
1716	Self-supervised Domain Adaptation forÂDiabetic Retinopathy Grading Using Vessel Image Reconstruction. Lecture Notes in Computer Science, 2021, , 349-361.	1.0	1
1717	Application and Research Progress of Digital Medicine in the Post-Epidemic Era. Hans Journal of Data Mining, 2021, 11, 196-202.	0.2	0
1718	Classification of intrauterine growth restriction at 34–38 weeks gestation with machine learning models. Informatics in Medicine Unlocked, 2021, 23, 100533.	1.9	11
1719	Accuracy of deep learning model-assisted amyloid positron emission tomography scan in predicting Alzheimer's disease: A Systematic Review and meta-analysis. Informatics in Medicine Unlocked, 2021, 25, 100710.	1.9	13
1720	Improved Model of Eye Disease Recognition Based on VGG Model. Intelligent Automation and Soft Computing, 2021, 28, 729-737.	1.6	3
1721	The future of artificial intelligence in healthcare. , 2021, , 371-394.		0
1722	The Burden of Non-communicable Diseases and Diabetic Retinopathy. , 2021, , 197-228.		0
1723	Using Deep Features Extraction and Ensemble Classifiers to Detect Glaucoma from Fundus Images. Advances in Science, Technology and Innovation, 2021, , 63-70.	0.2	2
1725	Brain Cancer Ontology Construction. Lecture Notes in Business Information Processing, 2021, , 379-387.	0.8	0
1726	Detection of pneumoperitoneum in the abdominal radiograph images using artificial neural networks. European Journal of Radiology Open, 2021, 8, 100316.	0.7	9

#	Article	IF	Citations
1727	Automatic Detection and Classification of Focal Liver Lesions Based on Deep Convolutional Neural Networks: A Preliminary Study. Frontiers in Oncology, 2020, 10, 581210.	1.3	36
1728	L'intelligence artificielle au service de l'obésité. , 2021, , 645-650.		Ο
1729	Artificial Intelligence in Ophthalmology. , 2021, , 1-14.		0
1730	Telemedicine in ophthalmology. Part 2. "special teleophthalmology― Ophthalmology Journal, 2020, 13, 67-80.	0.1	1
1731	D'OraCa: Deep Learning-Based Classification of Oral Lesions with Mouth Landmark Guidance for Early Detection of Oral Cancer. Lecture Notes in Computer Science, 2021, , 408-422.	1.0	3
1732	A Study of Bilateral Symmetry in Color Fundus Photographs. IEEE Access, 2021, 9, 109624-109651.	2.6	0
1733	Controlling Safety of Artificial Intelligence-Based Systems in Healthcare. Symmetry, 2021, 13, 102.	1.1	14
1734	Deep convolution feature aggregation: an application to diabetic retinopathy severity level prediction. Signal, Image and Video Processing, 2021, 15, 923-930.	1.7	37
1735	AIM in Endocrinology. , 2021, , 1-17.		0
1736	DiaNet: A Deep Learning Based Architecture to Diagnose Diabetes Using Retinal Images Only. IEEE Access, 2021, 9, 15686-15695.	2.6	25
1737	An automatic detection system of diabetic retinopathy using a hybrid inductive machine learning algorithm. Personal and Ubiquitous Computing, 2023, 27, 751-765.	1.9	25
1738	Automatic Diabetic Retinopathy Grading System Based on Detecting Multiple Retinal Lesions. IEEE Access, 2021, 9, 15939-15960.	2.6	45
1739	Endotracheal Tube Position Assessment on Chest Radiographs Using Deep Learning. Radiology: Artificial Intelligence, 2021, 3, e200026.	3.0	17
1740	Machine Learning and the Future of Cardiovascular Care. Journal of the American College of Cardiology, 2021, 77, 300-313.	1.2	191
1741	Intelligent Prediction Approach for Diabetic Retinopathy Using Deep learning Based Convolutional Neural Networks Algorithm by Means of Retina Photographs. Computers, Materials and Continua, 2021, 66, 1613-1629.	1.5	14
1742	Introduction to Artificial Intelligence and Machine Learning for Pathology. Archives of Pathology and Laboratory Medicine, 2021, 145, 1228-1254.	1.2	35
1743	Augmented Bi-path Network for Few-shot Learning. , 2021, , .		1
1744	Artificial Intelligence in Retinal Diseases. Current Practices in Ophthalmology, 2021, , 91-99.	0.1	0

#	Article	IF	CITATIONS
1745	Deep Learning Techniques for Diabetic Retinopathy Detection. Current Medical Imaging, 2021, 16, 1201-1213.	0.4	2
1746	Predicting aggressive histopathological features in esophageal cancer with positron emission tomography using a deep convolutional neural network. Annals of Translational Medicine, 2021, 9, 37-37.	0.7	7
1747	Multi-label ocular disease classification with a dense correlation deep neural network. Biomedical Signal Processing and Control, 2021, 63, 102167.	3.5	32
1748	Detection of DR from retinal fundus images using prediction ANN classifier and RG based threshold segmentation for diabetes. Journal of Ambient Intelligence and Humanized Computing, 2021, 12, 10733.	3.3	2
1750	CORR Synthesis: When Should the Orthopaedic Surgeon Use Artificial Intelligence, Machine Learning, and Deep Learning?. Clinical Orthopaedics and Related Research, 2021, 479, 1497-1505.	0.7	8
1751	Machine learning predicts unpredicted deaths with high accuracy following hepatopancreatic surgery. Hepatobiliary Surgery and Nutrition, 2021, 10, 20-30.	0.7	15
1752	Artificial Intelligence in Decision-Making for Colorectal Cancer Treatment Strategy: An Observational Study of Implementing Watson for Oncology in a 250-Case Cohort. Frontiers in Oncology, 2020, 10, 594182.	1.3	13
1753	A framework for probabilistic weather forecast post-processing across models and lead times using machine learning. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200099.	1.6	8
1754	AI-Powered Navigation System for Steering POCUS in the COVID-ICU. JACC: Case Reports, 2021, 3, 264-266.	0.3	3
1755	Corona-Nidaan: lightweight deep convolutional neural network for chest X-Ray based COVID-19 infection detection. Applied Intelligence, 2021, 51, 3026-3043.	3.3	33
1756	Deep learning and the electrocardiogram: review of the current state-of-the-art. Europace, 2021, 23, 1179-1191.	0.7	111
1757	Digital health during COVID-19: lessons from operationalising new models of care in ophthalmology. The Lancet Digital Health, 2021, 3, e124-e134.	5.9	101
1758	Addressing Artificial Intelligence Bias in Retinal Diagnostics. Translational Vision Science and Technology, 2021, 10, 13.	1.1	48
1759	Deep Learning for Diagnosis of Paranasal Sinusitis Using Multi-View Radiographs. Diagnostics, 2021, 11, 250.	1.3	17
1760	Analyzing fundus images to detect diabetic retinopathy (DR) using deep learning system in the Yangtze River delta region of China. Annals of Translational Medicine, 2021, 9, 226-226.	0.7	9
1763	A Myocardial Segmentation Method Based on Adversarial Learning. BioMed Research International, 2021, 2021, 1-9.	0.9	2
1764	Comparison of Intraoperative Ultrasound B-Mode and Strain Elastography for the Differentiation of Glioblastomas From Solitary Brain Metastases. An Automated Deep Learning Approach for Image Analysis. Frontiers in Oncology, 2020, 10, 590756.	1.3	16
1765	Deep-learning-assisted analysis of echocardiographic videos improves predictions of all-cause mortality. Nature Biomedical Engineering, 2021, 5, 546-554.	11.6	29

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1766	Do as Al say: susceptibility in deployment of clinical decision-aids. Npj Digital Medicine	, 2021, 4, 31.	5.7	162
1767	Interpreting a recurrent neural network's predictions of ICU mortality risk. Journal Informatics, 2021, 114, 103672.	of Biomedical	2.5	21
1768	Videomics: bringing deep learning to diagnostic endoscopy. Current Opinion in Otolar Head and Neck Surgery, 2021, 29, 143-148.	yngology and	0.8	23
1769	Deep Learning Detection of Sea Fan Neovascularization From Ultra-Widefield Color Fu Photographs of Patients With Sickle Cell Hemoglobinopathy. JAMA Ophthalmology, 20	ndus 021, 139, 206.	1.4	15
1770	Artificial intelligence diagnostic system predicts multiple Lugol-voiding lesions in the expatients at high risk for esophageal squamous cell carcinoma. Endoscopy, 2021, 53, 1	sophagus and 105-1113.	1.0	6
1772	Short Survey on machine learning techniques used for diabetic retinopathy detection.	, 2021, , .		4
1773	Detection of Diabetic Retinopathy from Ultra-Widefield Scanning Laser Ophthalmosco Multicenter Deep Learning Analysis. Ophthalmology Retina, 2021, 5, 1097-1106.	pe Images: A	1.2	36
1774	Deep learning differentiates between healthy and diabetic mouse ears from optical col tomography angiography images. Annals of the New York Academy of Sciences, 2021,		1.8	2
1775	Quantification of abdominal fat from computed tomography using deep learning and i with electronic health records in an academic biobank. Journal of the American Medica Association: JAMIA, 2021, 28, 1178-1187.		2.2	14
1776	Application of Deep Learning for Diagnosing, Classifying, and Treating Age-Related Ma Degeneration. Seminars in Ophthalmology, 2021, 36, 198-204.	cular	0.8	6
1777	Multimodal deep learning models for early detection of Alzheimer's disease stage. 2021, 11, 3254.	Scientific Reports,	1.6	243
1778	Unraveling the deep learning gearbox in optical coherence tomography image segmen explainable artificial intelligence. Communications Biology, 2021, 4, 170.	tation towards	2.0	20
1779	Classification of Multiple Visual Field Defects using Deep Learning. Journal of Physics: Series, 2021, 1755, 012014.	Conference	0.3	1
1780	Transfer Learning approach for grading of Diabetic Retinopathy. Journal of Physics: Cor Series, 2021, 1767, 012033.	nference	0.3	14
1781	DeepHaul: a deep learning and reinforcement learning-based smart automation framev trucks. Progress in Artificial Intelligence, 2021, 10, 157-180.	vork for dump	1.5	9
1782	A Design Case Study of Artificial Intelligence Pipeline Visualization. Archives of Design 34, 133-155.	Research, 2021,	0.1	0
1783	Automated detection of pneumoconiosis with multilevel deep features learned from ch radiographs. Computers in Biology and Medicine, 2021, 129, 104125.	iest X-Ray	3.9	29
1784	Detection of Peripheral Retinal Breaks in Ultra-widefield Images Using Deep Learning. ,	2021, , .		5

#	Article	IF	CITATIONS
1785	Rates of Eye Care and Diabetic Eye Disease among Insured Patients with Newly Diagnosed Type 2 Diabetes. Ophthalmology Retina, 2021, 5, 160-168.	1.2	16
1787	Artificial intelligence, fetal echocardiography, and congenital heart disease. Prenatal Diagnosis, 2021, 41, 733-742.	1.1	19
1788	Federated learning improves site performance in multicenter deep learning without data sharing. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 1259-1264.	2.2	93
1789	Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 1: Ways to make an impact, and why we are not there yet. Drug Discovery Today, 2021, 26, 511-524.	3.2	136
1790	Protecting Personal Healthcare Record Using Blockchain & Federated Learning Technologies. , 2021, , .		17
1791	Predictive Analytics for Care and Management of Patients With Acute Diseases: Deep Learning–Based Method to Predict Crucial Complication Phenotypes. Journal of Medical Internet Research, 2021, 23, e18372.	2.1	5
1792	Performance of a deep learning-based identification system for esophageal cancer from CT images. Esophagus, 2021, 18, 612-620.	1.0	21
1793	Clinician checklist for assessing suitability of machine learning applications in healthcare. BMJ Health and Care Informatics, 2021, 28, e100251.	1.4	66
1794	Artificial Intelligence Techniques That May Be Applied to Primary Care Data to Facilitate Earlier Diagnosis of Cancer: Systematic Review. Journal of Medical Internet Research, 2021, 23, e23483.	2.1	26
1795	Dank or not? Analyzing and predicting the popularity of memes on Reddit. Applied Network Science, 2021, 6, 21.	0.8	11
1796	A Comparison of Artificial Intelligence and Human Diabetic Retinal Image Interpretation in an Urban Health System. Journal of Diabetes Science and Technology, 2022, 16, 1003-1007.	1.3	3
1797	Predicting treatment response from longitudinal images using multi-task deep learning. Nature Communications, 2021, 12, 1851.	5.8	87
1798	Comparison of different machine learning approaches to detect femoral neck fractures in x-ray images. Health and Technology, 2021, 11, 643-653.	2.1	8
1799	Kashin-Beck disease diagnosis based on deep learning from hand X-ray images. Computer Methods and Programs in Biomedicine, 2021, 200, 105919.	2.6	5
1801	Short-Term Lesion Change Detection for Melanoma Screening With Novel Siamese Neural Network. IEEE Transactions on Medical Imaging, 2021, 40, 840-851.	5.4	25
1802	The potential impact of 5G telecommunication technology on ophthalmology. Eye, 2021, 35, 1859-1868.	1.1	10
1803	High interpretable machine learning classifier for early glaucoma diagnosis. International Journal of Ophthalmology, 2021, 14, 393-398.	0.5	11
1804	Retinal Healthcare Diagnosis Approaches with Deep Learning Techniques. Journal of Medical Imaging and Health Informatics, 2021, 11, 846-855.	0.2	3

#	Article	IF	CITATIONS
1805	Accurate diagnosis of colorectal cancer based on histopathology images using artificial intelligence. BMC Medicine, 2021, 19, 76.	2.3	63
1806	Emerging approaches to polypharmacy among older adults. Nature Aging, 2021, 1, 347-356.	5.3	26
1807	Classification and Predictions of Lung Diseases from Chest X-rays Using MobileNet V2. Applied Sciences (Switzerland), 2021, 11, 2751.	1.3	59
1809	Uso en la prÃjctica clÃnica, de un método de cribado automatizado de retinopatÃa diabética derivable mediante un sistema de inteligencia artificial de diagnóstico. Archivos De La Sociedad Espanola De Oftalmologia, 2021, 96, 117-126.	0.1	2
1810	Development and evaluation of a deep learning model for the detection of multiple fundus diseases based on colour fundus photography. British Journal of Ophthalmology, 2021, , bjophthalmol-2020-316290.	2.1	14
1811	Epiretinal membrane: A review. Clinical and Experimental Ophthalmology, 2021, 49, 289-308.	1.3	64
1812	Al support for ethical decision-making around resuscitation: proceed with care. Journal of Medical Ethics, 2022, 48, 175-183.	1.0	15
1813	Deep learning for computer-assisted diagnosis of hereditary diffuse gastric cancer. Journal of Pathology and Translational Medicine, 2021, 55, 118-124.	0.4	7
1814	From the Digital Data Revolution toward a Digital Society: Pervasiveness of Artificial Intelligence. Machine Learning and Knowledge Extraction, 2021, 3, 284-298.	3.2	12
1815	Development of a convolutional neural network to differentiate among the etiology of similar appearing pathological B lines on lung ultrasound: a deep learning study. BMJ Open, 2021, 11, e045120.	0.8	44
1816	A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading, and Transferability. IEEE Transactions on Medical Imaging, 2021, 40, 818-828.	5.4	90
1817	Artificial intelligence (AI) in medicine, current applications and future role with special emphasis on its potential and promise in pathology: present and future impact, obstacles including costs and acceptance among pathologists, practical and philosophical considerations. A comprehensive review. Diagnostic Pathology. 2021. 16. 24.	0.9	68
1818	A Statistician Teaches Deep Learning. Journal of Statistical Theory and Practice, 2021, 15, 1.	0.3	3
1819	Multi-task weak supervision enables anatomically-resolved abnormality detection in whole-body FDG-PET/CT. Nature Communications, 2021, 12, 1880.	5.8	19
1820	Artificial intelligence meets traditional Chinese medicine: a bridge to opening the magic box of sphygmopalpation for pulse pattern recognition. Digital Chinese Medicine, 2021, 4, 1-8.	0.5	16
1821	Automated feature-based grading and progression analysis of diabetic retinopathy. Eye, 2022, 36, 524-532.	1.1	3
1822	A hierarchical deep learning approach with transparency and interpretability based on small samples for glaucoma diagnosis. Npj Digital Medicine, 2021, 4, 48.	5.7	19
1823	Robustness of convolutional neural networks in recognition of pigmented skin lesions. European Journal of Cancer, 2021, 145, 81-91.	1.3	32

#	Article	IF	CITATIONS
1824	Chasing Your Long Tails. , 2021, , .		21
1825	Prediction of Mortality in Surgical Intensive Care Unit Patients Using Machine Learning Algorithms. Frontiers in Medicine, 2021, 8, 621861.	1.2	8
1826	Code-free deep learning for multi-modality medical image classification. Nature Machine Intelligence, 2021, 3, 288-298.	8.3	90
1827	Artificial Intelligence in Colorectal Polyp Detection and Characterization. International Journal of Clinical Research & Trials, 2021, 6, .	1.6	5
1828	Use in clinical practice of an automated screening method of diabetic retinopathy that can be derived using a diagnostic artificial intelligence system. Archivos De La Sociedad Espanola De Oftalmologia, 2021, 96, 117-126.	0.1	0
1829	Hierarchical deep learning models using transfer learning for disease detection and classification based on small number of medical images. Scientific Reports, 2021, 11, 4250.	1.6	29
1830	Multi-Modal Siamese Network for Diagnostically Similar Lesion Retrieval in Prostate MRI. IEEE Transactions on Medical Imaging, 2021, 40, 986-995.	5.4	22
1831	Deep learningâ€based detection and stage grading for optimising diagnosis of diabetic retinopathy. Diabetes/Metabolism Research and Reviews, 2021, 37, e3445.	1.7	16
1832	Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization. Physica Medica, 2021, 83, 108-121.	0.4	85
1834	Radiopharmaceuticals: An insight into the latest advances in medical uses and regulatory perspectives. Journal of Biosciences, 2021, 46, 1.	0.5	3
1835	Diagnosis of thyroid cancer using a TI-RADS-based computer-aided diagnosis system: a multicenter retrospective study. Clinical Imaging, 2021, 80, 43-49.	0.8	8
1836	Diagnostic Accuracy of Detecting Diabetic Retinopathy by Using Digital Fundus Photographs in the Peripheral Health Facilities of Bangladesh: Validation Study. JMIR Public Health and Surveillance, 2021, 7, e23538.	1.2	10
1837	Evaluating the Viability of a Smartphone-Based Annotation Tool for Faster and Accurate Image Labelling for Artificial Intelligence in Diabetic Retinopathy. Clinical Ophthalmology, 2021, Volume 15, 1023-1039.	0.9	5
1838	Survey on recent developments in automatic detection of diabetic retinopathy. Journal Francais D'Ophtalmologie, 2021, 44, 420-440.	0.2	29
1839	Image classification with deep learning in the presence of noisy labels: A survey. Knowledge-Based Systems, 2021, 215, 106771.	4.0	153
1840	Novel Transfer Learning Approach for Medical Imaging with Limited Labeled Data. Cancers, 2021, 13, 1590.	1.7	127
1841	Homology-Based Image Processing for Automatic Classification of Histopathological Images of Lung Tissue. Cancers, 2021, 13, 1192.	1.7	44
1842	ls artificial intelligence a solution to the myopia pandemic?. British Journal of Ophthalmology, 2021, 105, 741-744.	2.1	9

#	Article	IF	CITATIONS
1843	Artificial intelligence: the unstoppable revolution in ophthalmology. Survey of Ophthalmology, 2022, 67, 252-270.	1.7	30
1844	Integrative Biology of Diabetic Retinal Disease: Lessons from Diabetic Kidney Disease. Journal of Clinical Medicine, 2021, 10, 1254.	1.0	10
1845	The Clinical Influence after Implementation of Convolutional Neural Network-Based Software for Diabetic Retinopathy Detection in the Primary Care Setting. Life, 2021, 11, 200.	1.1	1
1846	Diabetic retinopathy detection and classification using capsule networks. Complex & Intelligent Systems, 2023, 9, 2651-2664.	4.0	67
1847	Machine learning-based prediction model using clinico-pathologic factors for papillary thyroid carcinoma recurrence. Scientific Reports, 2021, 11, 4948.	1.6	15
1849	Artificial Intelligence (AI) Applications for Age-Related Macular Degeneration (AMD) and Other Retinal Dystrophies. Seminars in Ophthalmology, 2021, 36, 304-309.	0.8	12
1850	Randomized multi-reader evaluation of automated detection and segmentation of brain tumors in stereotactic radiosurgery with deep neural networks. Neuro-Oncology, 2021, 23, 1560-1568.	0.6	26
1851	Revealing the state space of turbulence using machine learning. Physical Review Fluids, 2021, 6, .	1.0	16
1852	Requirements and reliability of AI in the medical context. Physica Medica, 2021, 83, 72-78.	0.4	30
1853	A meta-analysis of Watson for Oncology in clinical application. Scientific Reports, 2021, 11, 5792.	1.6	58
1854	Digital Image Processing and Development of Machine Learning Models for the Discrimination of Corneal Pathology: An Experimental Model. Photonics, 2021, 8, 118.	0.9	5
1855	SCRD-Net: A Deep Convolutional Neural Network Model for Glaucoma Detection in Retina Tomography. Complexity, 2021, 2021, 1-11.	0.9	3
1857	Kidney X-ray Images Classification using Machine Learning and Deep Learning Methods. Balkan Journal of Electrical and Computer Engineering, 2021, 9, 144-151.	0.4	15
1858	A comprehensive review on automated systems for severity grading of diabetic retinopathy and macular edema. International Journal of Imaging Systems and Technology, 2021, 31, 2093-2122.	2.7	9
1859	Machine Learning to Assess the Risk of Multidrug-Resistant Gram-Negative Bacilli Infections in Febrile Neutropenic Hematological Patients. Infectious Diseases and Therapy, 2021, 10, 971-983.	1.8	14
1860	A survey on incorporating domain knowledge into deep learning for medical image analysis. Medical Image Analysis, 2021, 69, 101985.	7.0	128
1861	Resource-frugal classification and analysis of pathology slides using image entropy. Biomedical Signal Processing and Control, 2021, 66, 102388.	3.5	5
1862	Three ways of knowing: the integration of clinical expertise, evidence-based medicine, and artificial intelligence in assisted reproductive technologies. Journal of Assisted Reproduction and Genetics, 2021, 38, 1617-1625.	1.2	14

щ		IF	CITATIONS
#		IF	CITATIONS
1863	Facilitating diabetic retinopathy screening using automated retinal image analysis in underresourced settings. Diabetic Medicine, 2021, 38, e14582.	1.2	6
1864	Application of artificial intelligence using a convolutional neural network for detecting cholesteatoma in endoscopic enhanced images. Auris Nasus Larynx, 2022, 49, 11-17.	0.5	9
1868	Prediction of hematocrit through imbalanced dataset of blood spectra. Healthcare Technology Letters, 2021, 8, 37-44.	1.9	3
1869	Machine Learning and Syncope Management in the ED: The Future Is Coming. Medicina (Lithuania), 2021, 57, 351.	0.8	6
1870	Computer Vision for Brain Disorders Based Primarily on Ocular Responses. Frontiers in Neurology, 2021, 12, 584270.	1.1	3
1871	Deeply Supervised UNet for Semantic Segmentation to Assist Dermatopathological Assessment of Basal Cell Carcinoma. Journal of Imaging, 2021, 7, 71.	1.7	35
1872	Deep learning for the radiographic diagnosis of proximal femur fractures: Limitations and programming issues. Orthopaedics and Traumatology: Surgery and Research, 2021, 107, 102837.	0.9	13
1873	Intelligent Health Care: Applications of Deep Learning in Computational Medicine. Frontiers in Genetics, 2021, 12, 607471.	1.1	40
1874	Accuracy of Diabetic Retinopathy Staging with a Deep Convolutional Neural Network Using Ultra-Wide-Field Fundus Ophthalmoscopy and Optical Coherence Tomography Angiography. Journal of Ophthalmology, 2021, 2021, 1-10.	0.6	11
1875	Development and Validation of a Nomogram for Preoperative Prediction of Lymph Node Metastasis in Lung Adenocarcinoma Based on Radiomics Signature and Deep Learning Signature. Frontiers in Oncology, 2021, 11, 585942.	1.3	20
1876	Improving Domain Generalization Performance for Medical Image Segmentation by Self-Supervised Learning. Journal of Korean Institute of Industrial Engineers, 2021, 47, 180-189.	0.1	0
1877	A Generic Study on Diabetic Retinopathy Detection. Turkish Journal of Computer and Mathematics Education, 2021, 12, 4274-4783.	0.4	0
1878	Evaluation of artificial intelligence systems for assisting neurologists with fast and accurate annotations of scalp electroencephalography data. EBioMedicine, 2021, 66, 103275.	2.7	15
1880	A method for the automatic detection of myopia in Optos fundus images based on deep learning. International Journal for Numerical Methods in Biomedical Engineering, 2021, 37, e3460.	1.0	18
1881	BloodCaps: A capsule network based model for the multiclassification of human peripheral blood cells. Computer Methods and Programs in Biomedicine, 2021, 202, 105972.	2.6	27
1882	Detection of Diabetic Retinopathy using Optimized Back-Propagation Neural Network (Op-BPN) Algorithm. , 2021, , .		4
1883	Machine learning and deep learning to predict mortality in patients with spontaneous coronary artery dissection. Scientific Reports, 2021, 11, 8992.	1.6	34
1884	Machine learningâ€based decision tree classifier for the diagnosis of progressive supranuclear palsy and corticobasal degeneration. Neuropathology and Applied Neurobiology, 2021, 47, 931-941.	1.8	22

#	Article	IF	CITATIONS
1885	Detecting white spot lesions on dental photography using deep learning: A pilot study. Journal of Dentistry, 2021, 107, 103615.	1.7	36
1886	Pre-existing and machine learning-based models for cardiovascular risk prediction. Scientific Reports, 2021, 11, 8886.	1.6	30
1887	A Lightweight Deep Learning-Based Pneumonia Detection Approach for Energy-Efficient Medical Systems. Wireless Communications and Mobile Computing, 2021, 2021, 1-14.	0.8	13
1889	Automatic detection of leakage point in central serous chorioretinopathy of fundus fluorescein angiography based on time sequence deep learning. Graefe's Archive for Clinical and Experimental Ophthalmology, 2021, 259, 2401-2411.	1.0	10
1890	Discriminative Learning Approach Based on Flexible Mixture Model for Medical Data Categorization and Recognition. Sensors, 2021, 21, 2450.	2.1	14
1891	Towards evaluating the robustness of deep diagnostic models by adversarial attack. Medical Image Analysis, 2021, 69, 101977.	7.0	27
1892	Type 2 Diabetes with Artificial Intelligence Machine Learning: Methods and Evaluation. Archives of Computational Methods in Engineering, 2022, 29, 313-333.	6.0	29
1893	Medical Images Segmentation Based on Unsupervised Algorithms: A Review. Qubahan Academic Journal, 2021, 1, 71-80.	2.6	6
1894	Study protocol and design for the assessment of paediatric pneumonia from X-ray images using deep learning. BMJ Open, 2021, 11, e044461.	0.8	4
1895	Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning. Nature Biomedical Engineering, 2021, 5, 522-532.	11.6	109
1895 1896		11.6 1,3	109 35
	clinically applicable deep learning. Nature Biomedical Engineering, 2021, 5, 522-532. Convergence of Precision Medicine and Public Health Into Precision Public Health: Toward a Big Data		
1896	clinically applicable deep learning. Nature Biomedical Engineering, 2021, 5, 522-532. Convergence of Precision Medicine and Public Health Into Precision Public Health: Toward a Big Data Perspective. Frontiers in Public Health, 2021, 9, 561873.		35
1896 1897	 clinically applicable deep learning. Nature Biomedical Engineering, 2021, 5, 522-532. Convergence of Precision Medicine and Public Health Into Precision Public Health: Toward a Big Data Perspective. Frontiers in Public Health, 2021, 9, 561873. VisualCheXbert., 2021, ,. Predicting Progression to Septic Shock in the Emergency Department Using an Externally 	1.3	35
1896 1897 1898	 clinically applicable deep learning. Nature Biomedical Engineering, 2021, 5, 522-532. Convergence of Precision Medicine and Public Health Into Precision Public Health: Toward a Big Data Perspective. Frontiers in Public Health, 2021, 9, 561873. VisualCheXbert., 2021, , . Predicting Progression to Septic Shock in the Emergency Department Using an Externally Generalizable Machine-Learning Algorithm. Annals of Emergency Medicine, 2021, 77, 395-406. A Head-to Head Comparison of Machine Learning Algorithms for Identification of Implanted Cardiac 	1.3 0.3	35 11 41
1896 1897 1898 1899	 clinically applicable deep learning. Nature Biomedical Engineering, 2021, 5, 522-532. Convergence of Precision Medicine and Public Health Into Precision Public Health: Toward a Big Data Perspective. Frontiers in Public Health, 2021, 9, 561873. VisualCheXbert., 2021, , . Predicting Progression to Septic Shock in the Emergency Department Using an Externally Generalizable Machine-Learning Algorithm. Annals of Emergency Medicine, 2021, 77, 395-406. A Head-to Head Comparison of Machine Learning Algorithms for Identification of Implanted Cardiac Devices. American Journal of Cardiology, 2021, 144, 77-82. Artificial Intelligence Research and Development for Application in Video Capsule Endoscopy. 	1.3 0.3 0.7	35 11 41 10
1896 1897 1898 1899 1900	 clinically applicable deep learning. Nature Biomedical Engineering, 2021, 5, 522-532. Convergence of Precision Medicine and Public Health Into Precision Public Health: Toward a Big Data Perspective. Frontiers in Public Health, 2021, 9, 561873. VisualCheXbert., 2021, , . Predicting Progression to Septic Shock in the Emergency Department Using an Externally Generalizable Machine-Learning Algorithm. Annals of Emergency Medicine, 2021, 77, 395-406. A Head-to Head Comparison of Machine Learning Algorithms for Identification of Implanted Cardiac Devices. American Journal of Cardiology, 2021, 144, 77-82. Artificial Intelligence Research and Development for Application in Video Capsule Endoscopy. Gastrointestinal Endoscopy Clinics of North America, 2021, 31, 387-397. An efficient deep convolutional neural network model for visual localization and automatic diagnosis of thyroid nodules on ultrasound images. Quantitative Imaging in Medicine and Surgery, 	1.3 0.3 0.7 0.6	 35 11 41 10 6

	CITATION	Report	
# 1905	ARTICLE DETECTION OF MORPHOLOGIC PATTERNS OF DIABETIC MACULAR EDEMA USING A DEEP LEARNING	IF 1.0	Citations 24
1906	APPROACH BASED ON OPTICAL COHERENCE TOMOGRAPHY IMAGES. Retina, 2021, 41, 1110-1117. Evolutionary genetic algorithm identifies <i>IL2RB</i> as a potential predictive biomarker for immune-checkpoint therapy in colorectal cancer. NAR Genomics and Bioinformatics, 2021, 3, Iqab016.	1.5	10
1907	EyeHealer: A large-scale anterior eye segment dataset with eye structure and lesion annotations. Precision Clinical Medicine, 2021, 4, 85-92.	1.3	6
1908	A Comparison of Two-Stage Classifier Algorithm with Ensemble Techniques On Detection of Diabetic Retinopathy. , 2021, , .		18
1909	Biomedical Image Segmentation and Analysis in Deep Learning. , 2021, 2, .		0
1910	Al-assistance for predictive maintenance of renewable energy systems. Energy, 2021, 221, 119775.	4.5	38
1911	A survey on artificial intelligence assurance. Journal of Big Data, 2021, 8, .	6.9	49
1912	Diagnosis of Onychomycosis: From Conventional Techniques and Dermoscopy to Artificial Intelligence. Frontiers in Medicine, 2021, 8, 637216.	1.2	17
1914	Data Anonymization for Pervasive Health Care: Systematic Literature Mapping Study. JMIR Medical Informatics, 2021, 9, e29871.	1.3	12
1915	MACHINE LEARNING BASED CLINICAL DECISION SUPPORT SYSTEM TO PREDICT FETAL HYPOXIA IN WOMEN DURING ANTENATAL CHECK-UP , 2021, , 82-90.		0
1916	Better Application of Bayesian Deep Learning to Diagnose Disease. , 2021, , .		2
1917	Machine Learning Solutions for Osteoporosis—A Review. Journal of Bone and Mineral Research, 2020, 36, 833-851.	3.1	82
1918	Predicting the Degradation of COVID-19 mRNA Vaccine with Graph Convolutional Networks. , 2021, , .		0
1919	Applications of deep learning in fundus images: A review. Medical Image Analysis, 2021, 69, 101971.	7.0	175
1920	Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis. Npj Digital Medicine, 2021, 4, 65.	5.7	294
1921	European Resuscitation Council Guidelines 2021: Basic Life Support. Resuscitation, 2021, 161, 98-114.	1.3	308
1922	Automated Quantification of Pathological Fluids in Neovascular Age-Related Macular Degeneration, and Its Repeatability Using Deep Learning. Translational Vision Science and Technology, 2021, 10, 17.	1.1	24
1923	Self-speculation of clinical features based on knowledge distillation for accurate ocular disease classification. Biomedical Signal Processing and Control, 2021, 67, 102491.	3.5	13

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1924	Missed diagnoses detection by adversarial learning. Knowledge-Based Systems, 2021, 2	220, 106903.	4.0	1
1925	DeepLearnMOR: a deep-learning framework for fluorescence image-based classification morphology. Plant Physiology, 2021, 186, 1786-1799.	of organelle	2.3	12
1926	Efficient and accurate identification of ear diseases using an ensemble deep learning m Reports, 2021, 11, 10839.	odel. Scientific	1.6	27
1927	Deep learning for gradability classification of handheld, non-mydriatic retinal images. So Reports, 2021, 11, 9469.	cientific	1.6	10
1928	Development of a Novel, Potentially Universal Machine Learning Algorithm for Predictic Complications After Total Hip Arthroplasty. Journal of Arthroplasty, 2021, 36, 1655-166		1.5	30
1929	Predicting sex from retinal fundus photographs using automated deep learning. Scienti 2021, 11, 10286.	fic Reports,	1.6	65
1930	Response to: Revisiting the Problem of Optic Nerve Detection in a Retinal Image Using Machine Learning. Asia-Pacific Journal of Ophthalmology, 2021, 10, 337.	Automated	1.3	0
1931	Automated Generation of Personalized Shock Wave Lithotripsy Protocols: Treatment P Deep Learning. JMIR Medical Informatics, 2021, 9, e24721.	lanning Using	1.3	5
1932	Development and validation of a clinically applicable deep learning strategy (HONORS) nodule classification at CT: A retrospective multicentre study. Lung Cancer, 2021, 155,	for pulmonary 78-86.	0.9	14
1933	Improving the Generalizability of Infantile Cataracts Detection via Deep Learning-Based Strategy and Multicenter Datasets. Frontiers in Medicine, 2021, 8, 664023.	Lens Partition	1.2	6
1934	A method for utilizing automated machine learning for histopathological classification based on Johnsen scores. Scientific Reports, 2021, 11, 9962.	of testis	1.6	25
1935	A novel diagnostic and prognostic approach for unresponsive patients with anthropon cutaneous leishmaniasis using artificial neural networks. PLoS ONE, 2021, 16, e025090	otic 04.	1.1	8
1936	Rapid Assessment of Acute Ischemic Stroke by Computed Tomography Using Deep Con Networks. Journal of Digital Imaging, 2021, 34, 637-646.	าvolutional Neural	1.6	25
1937	Detection of Diabetic Retinopathy Based on Convolutional Neural Networks: A Review. of Research in Computer Science, 0, , 1-15.	Asian Journal	0.0	1
1938	The application of machine learning for predicting recurrence in patients with early-stage endometrial cancer: a pilot study. Obstetrics and Gynecology Science, 2021, 64, 266-2		0.6	16
1939	Automated Retinal Fluid Volume Quantification. JAMA Ophthalmology, 2021, 139, 741	-742.	1.4	1
1941	Artificial intelligence assists identifying malignant <i>versus</i> benign liver lesions usin contrastâ€enhanced ultrasound. Journal of Gastroenterology and Hepatology (Australia 2875-2883.	ופ a), 2021, 36,	1.4	30
1942	Situated Accountability: Ethical Principles, Certification Standards, and Explanation Me Applied AI. , 2021, , .	thods in		11

		ATION REPORT	
#	Article	IF	Citations
1943	A Primer on the Use of Artificial Intelligence in Spine Surgery. Clinical Spine Surgery, 2021, 34, 316-321	0.7	12
1944	Transfer learning based robust automatic detection system for diabetic retinopathy grading. Neural Computing and Applications, 2021, 33, 13999-14019.	3.2	23
1945	Presenting artificial intelligence, deep learning, and machine learning studies to clinicians and healthcare stakeholders: an introductory reference with a guideline and a Clinical AI Research (CAIR) checklist proposal. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 92, 513-525.	1.2	42
1946	ESUR/ESUI position paper: developing artificial intelligence for precision diagnosis of prostate cancer using magnetic resonance imaging. European Radiology, 2021, 31, 9567-9578.	2.3	34
1947	E-TLCNN Classification using DenseNet on Various Features of Hypertensive Retinopathy (HR) for Predicting the Accuracy. , 2021, , .		17
1948	Glokom Hastalığının Evrişimli Sinir Ağı Mimarileri ile Tespiti. Deu Muhendislik Fakultesi Fen Muhendislik, 2021, 23, 521-529.	Ve 0.1	4
1950	Artificial intelligence in digital cariology: a new tool for the diagnosis of deep caries and pulpitis using convolutional neural networks. Annals of Translational Medicine, 2021, 9, 763-763.	0.7	29
1951	Considerations for Artificial Intelligence Real-World Implementation in Ophthalmology: Providers' and Patients' Perspectives. Asia-Pacific Journal of Ophthalmology, 2021, 10, 299-306.	1.3	11
1952	Deep Learning-Based Optical Coherence Tomography and Optical Coherence Tomography Angiography Image Analysis: An Updated Summary. Asia-Pacific Journal of Ophthalmology, 2021, 10, 253-260.	1.3	18
1953	Retinal photograph-based deep learning algorithms for myopia and a blockchain platform to facilitate artificial intelligence medical research: a retrospective multicohort study. The Lancet Digital Health, 2021, 3, e317-e329.	5.9	78
1954	Neural Network–Based Retinal Nerve Fiber Layer Profile Compensation for Glaucoma Diagnosis in Myopia: Model Development and Validation. JMIR Medical Informatics, 2021, 9, e22664.	1.3	5
1955	A deep learning system to diagnose the malignant potential of urothelial carcinoma cells in cytology specimens. Cancer Cytopathology, 2021, 129, 984-995.	1.4	22
1956	Clinical applications of artificial intelligence in cardiology on the verge of the decade. Cardiology Journal, 2021, 28, 460-472.	0.5	4
1957	Analysis and Comparison of Two Artificial Intelligence Diabetic Retinopathy Screening Algorithms in a Pilot Study: IDx-DR and Retinalyze. Journal of Clinical Medicine, 2021, 10, 2352.	1.0	19
1958	Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research. Experimental Neurology, 2021, 339, 113608.	2.0	20
1959	Cataract Detection Using Convolutional Neural Network with VGG-19 Model. , 2021, , .		20
1960	Artificial intelligence for the detection of age-related macular degeneration in color fundus photographs: A systematic review and meta-analysis. EClinicalMedicine, 2021, 35, 100875.	3.2	38
1961	An Effective Method for Detecting and Classifying Diabetic Retinopathy Lesions Based on Deep Learning. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-13.	0.7	28

#	Article	IF	CITATIONS
1962	Diagnostic accuracy of current machine learning classifiers for age-related macular degeneration: a systematic review and meta-analysis. Eye, 2022, 36, 994-1004.	1.1	13
1963	Interpreting Deep Learning Studies in Glaucoma: Unresolved Challenges. Asia-Pacific Journal of Ophthalmology, 2021, 10, 261-267.	1.3	14
1965	An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease. Nature Medicine, 2021, 27, 882-891.	15.2	113
1966	Automatic Image Selection Model Based on Machine Learning for Endobronchial Ultrasound Strain Elastography Videos. Frontiers in Oncology, 2021, 11, 673775.	1.3	3
1967	An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging. Journal of Ophthalmology, 2021, 2021, 1-10.	0.6	9
1968	A deep learning system for detecting diabetic retinopathy across the disease spectrum. Nature Communications, 2021, 12, 3242.	5.8	188
1969	Recently updated global diabetic retinopathy screening guidelines: commonalities, differences, and future possibilities. Eye, 2021, 35, 2685-2698.	1.1	35
1970	Automated NLP Extraction of Clinical Rationale for Treatment Discontinuation in Breast Cancer. JCO Clinical Cancer Informatics, 2021, 5, 550-560.	1.0	4
1971	Randomised controlled trials in medical AI: ethical considerations. Journal of Medical Ethics, 2022, 48, 899-906.	1.0	4
1972	Augmented Intelligence in Ophthalmology: The Six Rights. Asia-Pacific Journal of Ophthalmology, 2021, 10, 231-233.	1.3	1
1973	Economic Evaluations of Artificial Intelligence in Ophthalmology. Asia-Pacific Journal of Ophthalmology, 2021, 10, 307-316.	1.3	28
1974	Ethics of Artificial Intelligence in Medicine and Ophthalmology. Asia-Pacific Journal of Ophthalmology, 2021, 10, 289-298.	1.3	32
1975	Automated Identification of Referable Retinal Pathology in Teleophthalmology Setting. Translational Vision Science and Technology, 2021, 10, 30.	1.1	4
1976	An Optical Coherence Tomography-Based Deep Learning Algorithm for Visual Acuity Prediction of Highly Myopic Eyes After Cataract Surgery. Frontiers in Cell and Developmental Biology, 2021, 9, 652848.	1.8	10
1977	Deep Learning-based Diagnosis of Glaucoma Using Wide-field Optical Coherence Tomography Images. Journal of Glaucoma, 2021, 30, 803-812.	0.8	15
1978	Artificial intelligence in dermatology and healthcare: An overview. Indian Journal of Dermatology, Venereology and Leprology, 2021, 87, 1-11.	0.2	16
1979	Assessment and Evaluation of cancer CT images using deep learning Techniques. , 2021, , .		2
1980	A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies With Progress Highlights, and Future Promises. Proceedings of the IEEE, 2021, 109, 820-838.	16.4	339

#	Article	IF	CITATIONS
1982	Understanding inherent image features in CNN-based assessment of diabetic retinopathy. Scientific Reports, 2021, 11, 9704.	1.6	25
1983	Artificial intelligence for diagnosis of inherited retinal disease: an exciting opportunity and one step forward. British Journal of Ophthalmology, 2021, 105, 1187-1189.	2.1	7
1984	Machine learning can support dispatchers to better and faster recognize out-of-hospital cardiac arrest during emergency calls: A retrospective study. Resuscitation, 2021, 162, 218-226.	1.3	30
1985	Machine learning of EEG spectra classifies unconsciousness during GABAergic anesthesia. PLoS ONE, 2021, 16, e0246165.	1.1	14
1986	Automated Left Ventricular Dimension Assessment Using Artificial Intelligence Developed and Validated by a UK-Wide Collaborative. Circulation: Cardiovascular Imaging, 2021, 14, e011951.	1.3	12
1987	Automatically Diagnosing Disk Bulge and Disk Herniation With Lumbar Magnetic Resonance Images by Using Deep Convolutional Neural Networks: Method Development Study. JMIR Medical Informatics, 2021, 9, e14755.	1.3	12
1988	An automated computational image analysis pipeline for histological grading of cardiac allograft rejection. European Heart Journal, 2021, 42, 2356-2369.	1.0	36
1989	Artificial intelligence for classifying uncertain images by humans in determining choroidal vascular running pattern and comparisons with automated classification between artificial intelligence. PLoS ONE, 2021, 16, e0251553.	1.1	1
1990	Development and Validation of a Deep Learning Model Using Convolutional Neural Networks to Identify Scaphoid Fractures in Radiographs. JAMA Network Open, 2021, 4, e216096.	2.8	36
1991	From Reflection to Action: Combining Machine Learning with Expert Knowledge for Nutrition Goal Recommendations. , 2021, 2021, .		18
1992	Estimating dual-energy CT imaging from single-energy CT data with material decomposition convolutional neural network. Medical Image Analysis, 2021, 70, 102001.	7.0	34
1993	Logistic regression and machine learning predicted patient mortality from large sets of diagnosis codes comparably. Journal of Clinical Epidemiology, 2021, 133, 43-52.	2.4	20
1994	Convolutional Neural Networks for Pediatric Refractory Epilepsy Classification Using Resting-State Functional Magnetic Resonance Imaging. World Neurosurgery, 2021, 149, e1112-e1122.	0.7	7
1995	Deep learning to detect acute respiratory distress syndrome on chest radiographs: a retrospective study with external validation. The Lancet Digital Health, 2021, 3, e340-e348.	5.9	39
1996	Deep Learning-Based End-to-End Diagnosis System for Avascular Necrosis of Femoral Head. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 2093-2102.	3.9	13
1997	Cardiovascular Disease Prediction by Machine Learning Algorithms Based on Cytokines in Kazakhs of China. Clinical Epidemiology, 2021, Volume 13, 417-428.	1.5	26
1998	Deep Federated Learning for IoT-based Decentralized Healthcare Systems. , 2021, , .		19
1999	Automatic Hip Detection in Anteroposterior Pelvic Radiographs—A Labelless Practical Framework. Journal of Personalized Medicine, 2021, 11, 522.	1.1	10

		CITATION REPORT		
#	Article		IF	CITATIONS
2000	Advances in Deep Learning-Based Medical Image Analysis. Health Data Science, 2021,	2021,.	1.1	36
2001	Diabetic Retinopathy Screening and Registration in Europe—Narrative Review. Health (Switzerland), 2021, 9, 745.	ncare	1.0	8
2002	Impact of Artificial Intelligence on Medical Education in Ophthalmology. Translational and Technology, 2021, 10, 14.	Vision Science	1.1	20
2003	A Calibrated Multiexit Neural Network for Detecting Urothelial Cancer Cells. Computa Mathematical Methods in Medicine, 2021, 2021, 1-11.	tional and	0.7	3
2004	Response Prediction to Neoadjuvant Systemic Treatment in Breast Cancer—Yet Anot JCO Clinical Cancer Informatics, 2021, 5, 654-655.	her Algorithm?.	1.0	4
2005	Comparing Stacking Ensemble Techniques to Improve Musculoskeletal Fracture Image Journal of Imaging, 2021, 7, 100.	Classification.	1.7	13
2006	Current situation and prospect of artificial intelligence application in endoscopic diagr Helicobacter pylori infection. Artificial Intelligence in Gastrointestinal Endoscopy, 2021		0.2	0
2007	Machine Learning to Predict Outcomes in Patients with Acute Pulmonary Embolism W Discontinued Anticoagulant Therapy. Thrombosis and Haemostasis, 2022, 122, 570-55		1.8	10
2008	Quantification of Key Retinal Features in Early and Late Age-Related Macular Degenera Learning. American Journal of Ophthalmology, 2021, 226, 1-12.	tion Using Deep	1.7	32
2009	Moving from bytes to bedside: a systematic review on the use of artificial intelligence i care unit. Intensive Care Medicine, 2021, 47, 750-760.	in the intensive	3.9	101
2010	Big Data in Nephrology. Nature Reviews Nephrology, 2021, 17, 676-687.		4.1	10
2012	A Novel Hierarchical Deep Learning Framework for Diagnosing Multiple Visual Impairm the Clinical Environment. Frontiers in Medicine, 2021, 8, 654696.	ent Diseases in	1.2	3
2013	Post-Analysis of Predictive Modeling with an Epidemiological Example. Healthcare (Sw 9, 792.	itzerland), 2021,	1.0	0
2014	Overcoming barriers to implementation of artificial intelligence in gastroenterology. Ba Practice and Research in Clinical Gastroenterology, 2021, 52-53, 101732.	ailliere's Best	1.0	6
2015	Leveraging Machine Learning and Artificial Intelligence to Improve Peripheral Artery Die Detection, Treatment, and Outcomes. Circulation Research, 2021, 128, 1833-1850.	sease	2.0	54
2016	Quantification of Nonperfusion Area in Montaged Widefield OCT Angiography Using E Diabetic Retinopathy. Ophthalmology Science, 2021, 1, 100027.	Deep Learning in	1.0	12
2017	Describing the Structural Phenotype of the Glaucomatous Optic Nerve Head Using Art Intelligence. American Journal of Ophthalmology, 2022, 236, 172-182.	:ificial	1.7	23
2019	Radiographical assessment of tumour stroma and treatment outcomes using deep lea retrospective, multicohort study. The Lancet Digital Health, 2021, 3, e371-e382.	rning: a	5.9	29

щ		IF	CITATIONS
# 2020	ARTICLE Clinically applicable artificial intelligence algorithm for the diagnosis, evaluation, and monitoring of acute retinal necrosis. Journal of Zhejiang University: Science B, 2021, 22, 504-511.	IF 1.3	CITATIONS
2021	The Role of Telemedicine, In-Home Testing and Artificial Intelligence to Alleviate an Increasingly Burdened Healthcare System: Diabetic Retinopathy. Ophthalmology and Therapy, 2021, 10, 445-464.	1.0	20
2022	Tumor-Associated Tertiary Lymphoid Structures: From Basic and Clinical Knowledge to Therapeutic Manipulation. Frontiers in Immunology, 2021, 12, 698604.	2.2	35
2023	Volumetric Semantic Instance Segmentation of the Plasma Membrane of HeLa Cells. Journal of Imaging, 2021, 7, 93.	1.7	4
2024	Combined automated screening for age-related macular degeneration and diabetic retinopathy in primary care settings. Annals of Eye Science, 2021, 6, 12-12.	1.1	6
2025	Ensemble machine learning approach for screening of coronary heart disease based on echocardiography and risk factors. BMC Medical Informatics and Decision Making, 2021, 21, 187.	1.5	8
2026	Privacy-preserving Time-series Medical Images Analysis Using a Hybrid Deep Learning Framework. ACM Transactions on Internet Technology, 2021, 21, 1-21.	3.0	19
2027	Artificial intelligence in hospitals: providing a status quo of ethical considerations in academia to guide future research. Al and Society, 2022, 37, 1361-1382.	3.1	15
2028	Recent Progress in Detection and Profiling of Cancer Cellâ€Derived Exosomes. Small, 2021, 17, e2007971.	5.2	79
2029	Multidisease Deep Learning Neural Network for the Diagnosis of Corneal Diseases. American Journal of Ophthalmology, 2021, 226, 252-261.	1.7	23
2030	LumNet. , 2021, 5, 1-20.		0
2031	Reduction of missed thoracic findings in emergency whole-body computed tomography using artificial intelligence assistance. Quantitative Imaging in Medicine and Surgery, 2021, 11, 2486-2498.	1.1	11
2032	Deep Learning-Based Multi-Class Classification of Breast Digital Pathology Images. Cancer Management and Research, 2021, Volume 13, 4605-4617.	0.9	36
2033	Al in Measurement Science. Annual Review of Analytical Chemistry, 2021, 14, 1-19.	2.8	11
2034	Automated coronary calcium scoring using deep learning with multicenter external validation. Npj Digital Medicine, 2021, 4, 88.	5.7	59
2035	The use of explainable artificial intelligence to explore types of fenestral otosclerosis misdiagnosed when using temporal bone high-resolution computed tomography. Annals of Translational Medicine, 2021, 9, 969-969.	0.7	10
2036	Regression and Random Forest Machine Learning Have Limited Performance in Predicting Bowel Preparation in Veteran Population. Digestive Diseases and Sciences, 2021, , 1.	1.1	2
2037	A Deep Learning Model and a Dataset for Diagnosing Ophthalmology Diseases. Journal of Information and Knowledge Management, 2021, 20, 2150036.	0.8	1

		CITATION REPORT		
#	Article		IF	CITATIONS
2038	Role of Artificial Intelligence in Video Capsule Endoscopy. Diagnostics, 2021, 11, 1192.		1.3	22
2039	Machine learning in translation. Nature Biomedical Engineering, 2021, 5, 485-486.		11.6	4
2040	Five-Category Intelligent Auxiliary Diagnosis Model of Common Fundus Diseases Based Images. Translational Vision Science and Technology, 2021, 10, 20.	on Fundus	1.1	14
2041	Artificial Intelligence in Endoscopy. Digestive Diseases and Sciences, 2022, 67, 1553-15	572.	1.1	38
2042	Development and Comparison of Machine Learning Algorithms to Determine Visual Fiel Translational Vision Science and Technology, 2021, 10, 27.	d Progression.	1.1	8
2043	Machine learning in clinical decision making. Med, 2021, 2, 642-665.		2.2	49
2044	Multi-Modal Retinal Image Classification With Modality-Specific Attention Network. IEE on Medical Imaging, 2021, 40, 1591-1602.	E Transactions	5.4	43
2045	ResNet Based Deep Features and Random Forest Classifier for Diabetic Retinopathy De 2021, 21, 3883.	tection. Sensors,	2.1	40
2047	Diabetic Retinopathy detection using Weighted Filters and Classification using CNN. , 2	2021,,.		12
2048	Detection of flat colorectal neoplasia by artificial intelligence: A systematic review. Baill Practice and Research in Clinical Gastroenterology, 2021, 52-53, 101745.	iere's Best	1.0	9
2049	Histopathologic and Machine Deep Learning Criteria to Predict Lymphoma Transformat Marrow Biopsies. Archives of Pathology and Laboratory Medicine, 2021, , .	ion in Bone	1.2	10
2050	Diagnosis of normal chest radiographs using an autonomous deep-learning algorithm. (Radiology, 2021, 76, 473.e9-473.e15.	Clinical	0.5	17
2051	Classifying Retinal Degeneration in Histological Sections Using Deep Learning. Translat Science and Technology, 2021, 10, 9.	ional Vision	1.1	4
2052	Multi-Scale Feature Fusion with Adaptive Weighting for Diabetic Retinopathy Severity C Electronics (Switzerland), 2021, 10, 1369.	Classification.	1.8	9
2053	Adversarial Attack and Defence through Adversarial Training and Feature Fusion for Dia Retinopathy Recognition. Sensors, 2021, 21, 3922.	betic	2.1	57
2054	Gaps in standards for integrating artificial intelligence technologies into ophthalmic pra Current Opinion in Ophthalmology, 2021, 32, 431-438.	ctice.	1.3	13
2055	Classification of Myocardial ¹⁸ F-FDG PET Uptake Patterns Using Deep Lea Artificial Intelligence, 2021, 3, e200148.	rning. Radiology:	3.0	1
2056	Diagnosis of retinal disorders from Optical Coherence Tomography images using CNN. 16, e0254180.	PLoS ONE, 2021,	1.1	10

#	Article	IF	Citations
2057	Artificial intelligence in ophthalmology: Optimization of machine learning for ophthalmic care and research. Clinical and Experimental Ophthalmology, 2021, 49, 413-415.	1.3	12
2058	Semi-supervised generative adversarial networks for closed-angle detection on anterior segment optical coherence tomography images: an empirical study with a small training dataset. Annals of Translational Medicine, 2021, 9, 1073-1073.	0.7	6
2059	Research on an Intelligent Lightweight-Assisted Pterygium Diagnosis Model Based on Anterior Segment Images. Disease Markers, 2021, 2021, 1-8.	0.6	14
2060	Empowering clinical research in a decentralized world. Npj Digital Medicine, 2021, 4, 102.	5.7	31
2061	Learning Discriminative Representations for Fine-Grained Diabetic Retinopathy Grading. , 2021, , .		4
2062	A Scoping Review of Artificial Intelligence Algorithms in Clinical Decision Support Systems for Internal Medicine Subspecialties. ACI Open, 2021, 05, e67-e79.	0.2	3
2063	Visual Graphic Analysis of Imaging Diagnostic Analysis Research Literature Based on CiteSpace Bibliometrics. , 2021, , .		0
2064	Deep learning-based evaluation of the relationship between mandibular third molar and mandibular canal on CBCT. Clinical Oral Investigations, 2022, 26, 981-991.	1.4	24
2065	A Guide to Accessible Artificial Intelligence and Machine Learning for the 21st Century Retina Specialist. Ophthalmic Surgery Lasers and Imaging Retina, 2021, 52, 361-365.	0.4	5
2066	Deep Learning-Based Diabetic Retinopathy Detection. International Journal of Organizational and Collective Intelligence, 2021, 11, 38-48.	0.3	2
2067	Generative adversarial networks in ophthalmology: what are these and how can they be used?. Current Opinion in Ophthalmology, 2021, 32, 459-467.	1.3	11
2068	Using Slit-Lamp Images for Deep Learning-Based Identification of Bacterial and Fungal Keratitis: Model Development and Validation with Different Convolutional Neural Networks. Diagnostics, 2021, 11, 1246.	1.3	36
2069	Testing a Deep Learning Algorithm for Detection of Diabetic Retinopathy in a Spanish Diabetic Population and with MESSIDOR Database. Diagnostics, 2021, 11, 1385.	1.3	18
2070	Deep learning classification of cervical dysplasia using depth-resolved angular light scattering profiles. Biomedical Optics Express, 2021, 12, 4997.	1.5	1
2071	An artificial intelligence framework integrating longitudinal electronic health records with real-world data enables continuous pan-cancer prognostication. Nature Cancer, 2021, 2, 709-722.	5.7	41
2072	Self-Supervised Feature Learning and Phenotyping for Assessing Age-Related Macular Degeneration Using Retinal FundusÂlmages. Ophthalmology Retina, 2022, 6, 116-129.	1.2	15
2073	Multi-label classification of fundus images based on graph convolutional network. BMC Medical Informatics and Decision Making, 2021, 21, 82.	1.5	6
2074	PapSmear Image Recording System for Artificial Intelligence Data Collection. IOP Conference Series: Earth and Environmental Science, 2021, 794, 012109.	0.2	1

#	Article	IF	CITATIONS
2075	Development and validation of a deep learning-based automatic auscultatory blood pressure measurement method. Biomedical Signal Processing and Control, 2021, 68, 102742.	3.5	3
2077	A pilot study: Quantify lung volume and emphysema extent directly from twoâ€dimensional scout images. Medical Physics, 2021, 48, 4316-4325.	1.6	5
2078	Teleophthalmology and Artificial Intelligence As Game Changers in Ophthalmic Care After the COVID-19 Pandemic. Cureus, 2021, 13, e16392.	0.2	8
2079	Feature-based multi-criteria recommendation system using a weighted approach with ranking correlation. Intelligent Data Analysis, 2021, 25, 1013-1029.	0.4	20
2080	Development and Validation of Image-Based Deep Learning Models to Predict Surgical Complexity and Complications in Abdominal Wall Reconstruction. JAMA Surgery, 2021, 156, 933.	2.2	21
2081	Deep learning radiomics-based prediction of distant metastasis in patients with locally advanced rectal cancer after neoadjuvant chemoradiotherapy: A multicentre study. EBioMedicine, 2021, 69, 103442.	2.7	49
2082	Ultrawide Field Imaging in Diabetic Retinopathy: Exploring the Role of Quantitative Metrics. Journal of Clinical Medicine, 2021, 10, 3300.	1.0	9
2083	Deep learning-based automated detection for diabetic retinopathy and diabetic macular oedema in retinal fundus photographs. Eye, 2022, 36, 1433-1441.	1.1	51
2084	Clinical Role of Smartphone Fundus Imaging in Diabetic Retinopathy and Other Neuro-retinal Diseases. Current Eye Research, 2021, 46, 1605-1613.	0.7	17
2085	Applications of interpretability in deep learning models for ophthalmology. Current Opinion in Ophthalmology, 2021, 32, 452-458.	1.3	12
2086	Will Artificial Intelligence Replace the Movement Disorders Specialist for Diagnosing and Managing Parkinson's Disease?. Journal of Parkinson's Disease, 2021, 11, S117-S122.	1.5	9
2087	A Scoping Review of Artificial Intelligence and Machine Learning in Bariatric and Metabolic Surgery: Current Status and Future Perspectives. Obesity Surgery, 2021, 31, 4555-4563.	1.1	6
2088	A One-Dimensional Probabilistic Convolutional Neural Network for Prediction of Breast Cancer Survivability. Computer Journal, 0, , .	1.5	3
2089	An interpretable multiple-instance approach for the detection of referable diabetic retinopathy in fundus images. Scientific Reports, 2021, 11, 14326.	1.6	15
2090	Application of an Anomaly Detection Model to Screen for Ocular Diseases Using Color Retinal Fundus Images: Design and Evaluation Study. Journal of Medical Internet Research, 2021, 23, e27822.	2.1	17
2091	Deep Learning Application for Analyzing of Constituents and Their Correlations in the Interpretations of Medical Images. Diagnostics, 2021, 11, 1373.	1.3	7
2092	Vertically-nested Network for Automatic Vessel Segmentation. , 2021, , .		1
2093	Predictive modelling of hypoxic ischaemic encephalopathy risk following perinatal asphyxia. Heliyon, 2021, 7, e07411.	1.4	7

#	Article	IF	Citations
2094	From General Principles to Procedural Values: Responsible Digital Health Meets Public Health Ethics. Frontiers in Digital Health, 2021, 3, 690417.	1.5	4
2095	A prediction of hematoma expansion in hemorrhagic patients using a novel dual-modal machine learning strategy. Physiological Measurement, 2021, 42, 074005.	1.2	3
2096	Towards Resilient Artificial Intelligence: Survey and Research Issues. , 2021, , .		12
2097	Artificial intelligence in myopia: current and future trends. Current Opinion in Ophthalmology, 2021, 32, 413-424.	1.3	15
2098	A deep look into radiomics. Radiologia Medica, 2021, 126, 1296-1311.	4.7	176
2099	A Study on Deep Learning Predictive Models in Healthcare. Lecture Notes in Networks and Systems, 2022, , 863-876.	0.5	1
2100	Using machine learning to predict severe hypoglycaemia in hospital. Diabetes, Obesity and Metabolism, 2021, 23, 2311-2319.	2.2	15
2101	Using deep learning to identify the recurrent laryngeal nerve during thyroidectomy. Scientific Reports, 2021, 11, 14306.	1.6	12
2102	A Comprehensive Explanation Framework for Biomedical Time Series Classification. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 2398-2408.	3.9	24
2103	Topological Data Analysis for Eye Fundus Image Quality Assessment. Diagnostics, 2021, 11, 1322.	1.3	6
2104	Transfer Learning for an Automated Detection System of Fractures in Patients with Maxillofacial Trauma. Applied Sciences (Switzerland), 2021, 11, 6293.	1.3	5
2105	Performance Assessment of Artificial Intelligence Medical Device Software Using Synthetic Data. , 2021, , .		1
2106	Automated AI labeling of optic nerve head enables insights into cross-ancestry glaucoma risk and genetic discovery in >280,000 images from UKB and CLSA. American Journal of Human Genetics, 2021, 108, 1204-1216.	2.6	39
2107	Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthcare Journal, 2021, 8, e188-e194.	0.6	143
2108	Machine Learning Algorithm Using Electronic Chart-Derived Data to Predict Delirium After Elderly Hip Fracture Surgeries: A Retrospective Case-Control Study. Frontiers in Surgery, 2021, 8, 634629.	0.6	26
2109	Artificial Intelligence for Hospital Health Care: Application Cases and Answers to Challenges in European Hospitals. Healthcare (Switzerland), 2021, 9, 961.	1.0	18
2110	Artificial Intelligence–Assisted Early Detection of Retinitis Pigmentosa — the Most Common Inherited Retinal Degeneration. Journal of Digital Imaging, 2021, 34, 948-958.	1.6	12
2111	Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks. Nature Communications, 2021, 12, 4828.	5.8	107

#	Article	IF	CITATIONS
2112	Reinventing 2D Convolutions for 3D Images. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 3009-3018.	3.9	38
2114	Deep Learning for Detection of Pulmonary Metastasis on Chest Radiographs. Radiology, 2021, 301, 455-463.	3.6	19
2116	ANALYSIS OF TRANSFER LEARNING FOR SELECT RETINAL DISEASE CLASSIFICATION. Retina, 2022, 42, 174-183.	1.0	1
2117	Evaluation of focus and deep learning methods for automated image grading and factors influencing image quality in adaptive optics ophthalmoscopy. Scientific Reports, 2021, 11, 16641.	1.6	4
2118	Assessing the utility of deep neural networks in predicting postoperative surgical complications: a retrospective study. The Lancet Digital Health, 2021, 3, e471-e485.	5.9	41
2119	Prediction of Major Complications and Readmission After Lumbar Spinal Fusion: A Machine Learning–Driven Approach. World Neurosurgery, 2021, 152, e227-e234.	0.7	16
2120	Nephrology Lagging Behind in Machine Learning Utilization. Kidney Medicine, 2021, 3, 693-695.	1.0	1
2121	Segmenting thoracic cavities with neoplastic lesions. , 2021, 2021, .		0
2122	Deep Learning in Precision Medicine. Lecture Notes in Networks and Systems, 2022, , 223-232.	0.5	0
2123	Real-world artificial intelligence-based opportunistic screening for diabetic retinopathy in endocrinology and indigenous healthcare settings in Australia. Scientific Reports, 2021, 11, 15808.	1.6	30
2124	Development of an AI system for accurately diagnose hepatocellular carcinoma from computed tomography imaging data. British Journal of Cancer, 2021, 125, 1111-1121.	2.9	24
2126	Diagnostic performance of endoscopic ultrasoundâ€artificial intelligence using deep learning analysis of gallbladder polypoid lesions. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 3548-3555.	1.4	17
2127	Machine learning prediction of diabetic foot ulcers in the inpatient population. Vascular, 2022, 30, 1115-1123.	0.4	9
2128	Deep learning for diabetic retinopathy detection and classification based on fundus images: A review. Computers in Biology and Medicine, 2021, 135, 104599.	3.9	119
2129	Artificial Intelligence in Retina. Advances in Ophthalmology and Optometry, 2021, 6, 175-185.	0.3	5
2130	Evaluating the Work Productivity of Assembling Reinforcement through the Objects Detected by Deep Learning. Sensors, 2021, 21, 5598.	2.1	6
2131	Estimation of deracinated trees area in temperate forest with satellite images employing machine learning methods. PeerJ Computer Science, 2021, 7, e648.	2.7	0
2132	Deep Learning for Automated Diabetic Retinopathy Screening Fused With Heterogeneous Data From EHRs Can Lead to Earlier Referral Decisions. Translational Vision Science and Technology, 2021, 10, 18.	1.1	4

#	Article	IF	CITATIONS
2133	Ocular Disease Detection Using Advanced Neural Network Based Classification Algorithms. Asian Journal of Convergence in Technology, 2021, 7, 91-99.	0.2	5
2134	Establishment and validation of a computer-assisted colonic polyp localization system based on deep learning. World Journal of Gastroenterology, 2021, 27, 5232-5246.	1.4	6
2136	Hybrid deep learning model for risk prediction of fracture in patients with diabetes and osteoporosis. Frontiers of Medicine, 2022, 16, 496-506.	1.5	9
2137	MedicalGuard: U-Net Model Robust against Adversarially Perturbed Images. Security and Communication Networks, 2021, 2021, 1-8.	1.0	10
2138	Automated Detection and Diagnosis of Diabetic Retinopathy: A Comprehensive Survey. Journal of Imaging, 2021, 7, 165.	1.7	51
2139	Automated detection of retinal exudates and drusen in ultra-widefield fundus images based on deep learning. Eye, 2022, 36, 1681-1686.	1.1	19
2140	The PSYchiatric clinical outcome prediction (PSYCOP) cohort: leveraging the potential of electronic health records in the treatment of mental disorders. Acta Neuropsychiatrica, 2021, 33, 323-330.	1.0	9
2141	FLOP: Federated Learning on Medical Datasets using Partial Networks. , 2021, , .		31
2142	Application of Comprehensive Artificial intelligence Retinal Expert (CARE) system: a national real-world evidence study. The Lancet Digital Health, 2021, 3, e486-e495.	5.9	65
2143	Assessing Ischemic Stroke with Convolutional Image Features in Carotid Color Doppler. Ultrasound in Medicine and Biology, 2021, 47, 2266-2276.	0.7	10
2144	Deep Learning for Malignancy Risk Estimation of Pulmonary Nodules Detected at Low-Dose Screening CT. Radiology, 2021, 300, 438-447.	3.6	65
2145	Deep learning for predicting subtype classification and survival of lung adenocarcinoma on computed tomography. Translational Oncology, 2021, 14, 101141.	1.7	21
2146	Circumpapillary OCT-focused hybrid learning for glaucoma grading using tailored prototypical neural networks. Artificial Intelligence in Medicine, 2021, 118, 102132.	3.8	16
2147	A multi-scale segmentation-to-classification network for tiny microaneurysm detection in fundus images. Knowledge-Based Systems, 2021, 226, 107140.	4.0	26
2148	The Impact of Artificial Intelligence and Deep Learning in Eye Diseases: A Review. Frontiers in Medicine, 2021, 8, 710329.	1.2	26
2149	Development of Defect Detection Al Model for Wire + Arc Additive Manufacturing Using High Dynamic Range Images. Applied Sciences (Switzerland), 2021, 11, 7541.	1.3	21
2151	Artificial Intelligence in Chest Radiography Reporting Accuracy. Investigative Radiology, 2022, 57, 90-98.	3.5	16
2152	Artificial intelligence-assisted clinical decision support for childhood asthma management: A randomized clinical trial. PLoS ONE, 2021, 16, e0255261.	1.1	25

#	Article	IF	Citations
2154	WaveSleepNet: An interpretable deep convolutional neural network for the continuous classification of mouse sleep and wake. Journal of Neuroscience Methods, 2021, 360, 109224.	1.3	5
2155	Real-world validation of artificial intelligence algorithms for ophthalmic imaging. The Lancet Digital Health, 2021, 3, e463-e464.	5.9	8
2157	Gender Prediction for a Multiethnic Population via Deep Learning Across Different Retinal Fundus Photograph Fields: Retrospective Cross-sectional Study. JMIR Medical Informatics, 2021, 9, e25165.	1.3	13
2158	Image Preprocessing in Classification and Identification of Diabetic Eye Diseases. Data Science and Engineering, 2021, 6, 455-471.	4.6	48
2159	DeepUWF: An Automated Ultra-Wide-Field Fundus Screening System via Deep Learning. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 2988-2996.	3.9	13
2160	Development of a machine learning algorithm for predicting in-hospital and 1-year mortality after traumatic spinal cord injury. Spine Journal, 2022, 22, 329-336.	0.6	19
2161	Using Machine Learning Algorithms for Identifying Gait Parameters Suitable to Evaluate Subtle Changes in Gait in People with Multiple Sclerosis. Brain Sciences, 2021, 11, 1049.	1.1	12
2162	Performance of a Convolutional Neural Network and Explainability Technique for 12-Lead Electrocardiogram Interpretation. JAMA Cardiology, 2021, 6, 1285.	3.0	60
2163	Development of suction detection algorithms for a left ventricular assist device from patient data. Biomedical Signal Processing and Control, 2021, 69, 102910.	3.5	5
2164	Molecular subtyping of diffuse gliomas using magnetic resonance imaging: comparison and correlation between radiomics and deep learning. European Radiology, 2022, 32, 747-758.	2.3	31
2165	Artificial intelligence and ophthalmology: Current status. Archivos De La Sociedad Espanola De Oftalmologia, 2021, 96, 399-400.	0.1	1
2166	Diagnostic performance of deep-learning-based screening methods for diabetic retinopathy in primary care—A meta-analysis. PLoS ONE, 2021, 16, e0255034.	1.1	9
2167	Robust and Interpretable Convolutional Neural Networks to Detect Glaucoma in Optical Coherence Tomography Images. IEEE Transactions on Biomedical Engineering, 2021, 68, 2456-2466.	2.5	39
2168	Deep Learning Analysis of CT Images Reveals High-Grade Pathological Features to Predict Survival in Lung Adenocarcinoma. Cancers, 2021, 13, 4077.	1.7	10
2169	A deep learning approach to automatic gingivitis screening based on classification and localization in RGB photos. Scientific Reports, 2021, 11, 16831.	1.6	15
2170	Pulmonary COVID-19: Learning Spatiotemporal Features Combining CNN and LSTM Networks for Lung Ultrasound Video Classification. Sensors, 2021, 21, 5486.	2.1	25
2171	Classification of Class-Imbalanced Diabetic Retinopathy Images Using the Synthetic Data Creation by Generative Models. Lecture Notes in Networks and Systems, 2022, , 15-24.	0.5	1
2172	Differentiation of Active Corneal Infections from Healed Scars Using Deep Learning. Ophthalmology, 2022, 129, 139-146.	2.5	19

#	Article	IF	CITATIONS
2173	The three ghosts of medical AI: Can the black-box present deliver?. Artificial Intelligence in Medicine, 2022, 124, 102158.	3.8	73
2174	Imputation of the continuous arterial line blood pressure waveform from non-invasive measurements using deep learning. Scientific Reports, 2021, 11, 15755.	1.6	33
2175	Machine Learning, Predictive Analytics, and the Emperor's New Clothes: Why Artificial Intelligence Has Not Yet Replaced Conventional Approaches. Canadian Journal of Cardiology, 2021, 37, 1156-1158.	0.8	8
2176	Automated detection of retinopathy of prematurity by deep attention network. Multimedia Tools and Applications, 2021, 80, 36341-36360.	2.6	11
2177	Diagnostic assessment of deep learning for melanocytic lesions using whole-slide pathological images. Translational Oncology, 2021, 14, 101161.	1.7	21
2178	Detecting grades of diabetic retinopathy by extraction of retinal lesions using digital fundus images. Research on Biomedical Engineering, 2021, 37, 641-656.	1.5	2
2179	Artificial intelligence in healthcare—the road to precision medicine. Journal of Hospital Management and Health Policy, 0, 5, 29-29.	0.4	6
2180	Deep learning versus ophthalmologists for screening for glaucoma on fundus examination: A systematic review and metaâ€analysis. Clinical and Experimental Ophthalmology, 2021, 49, 1027-1038.	1.3	10
2181	Evaluation of a New Neural Network Classifier for Diabetic Retinopathy. Journal of Diabetes Science and Technology, 2022, 16, 1401-1409.	1.3	5
2182	Artificial intelligence-based detection of epimacular membrane from color fundus photographs. Scientific Reports, 2021, 11, 19291.	1.6	5
2183	Clinical, histological, and deep learning-based assessments and treatment of oral verruciform xanthoma: a case report. Oral Biology Research, 2021, 45, 150-155.	0.0	0
2184	Safety and Effectiveness of Mycophenolate Mofetil in Interstitial Lung Diseases: Insights from a Machine Learning Radiographic Model. Respiration, 2022, 101, 262-271.	1.2	8
2185	Deepening into the suitability of using pre-trained models of ImageNet against a lightweight convolutional neural network in medical imaging: an experimental study. PeerJ Computer Science, 2021, 7, e715.	2.7	23
2186	Automatic left ventricle volume calculation with explainability through a deep learning weak-supervision methodology. Computer Methods and Programs in Biomedicine, 2021, 208, 106275.	2.6	8
2187	Artificial intelligence for solid tumour diagnosis in digital pathology. British Journal of Pharmacology, 2021, 178, 4291-4315.	2.7	14
2188	Retinal applications of swept source optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA). Progress in Retinal and Eye Research, 2021, 84, 100951.	7.3	134
2191	Applications of Artificial Intelligence to Office Laryngoscopy: A Scoping Review. Laryngoscope, 2022, 132, 1993-2016.	1.1	19
2192	The Application of Projection Word Embeddings on Medical Records Scoring System. Healthcare (Switzerland), 2021, 9, 1298.	1.0	1

#	Article	IF	Citations
	The Combination of Artificial Intelligence and Extended Reality: A Systematic Review. Frontiers in		
2193	Virtual Reality, 2021, 2, .	2.5	22
2194	Automated detection of poor-quality data: case studies in healthcare. Scientific Reports, 2021, 11, 18005.	1.6	11
2195	High-throughput proteomics and AI for cancer biomarker discovery. Advanced Drug Delivery Reviews, 2021, 176, 113844.	6.6	54
2196	Defining Patient-Oriented Natural Language Processing: A New Paradigm for Research and Development to Facilitate Adoption and Use by Medical Experts. JMIR Medical Informatics, 2021, 9, e18471.	1.3	8
2197	Application of Artificial Intelligence in Cardiovascular Medicine. , 2021, 11, 1-12.		5
2198	Artificial intelligence in the GPs office: a retrospective study on diagnostic accuracy. Scandinavian Journal of Primary Health Care, 2021, 39, 448-458.	0.6	4
2199	Automated detection of severe diabetic retinopathy using deep learning method. Graefe's Archive for Clinical and Experimental Ophthalmology, 2022, 260, 849-856.	1.0	16
2201	Automatic diagnosis for aggressive posterior retinopathy of prematurity via deep attentive convolutional neural network. Expert Systems With Applications, 2022, 187, 115843.	4.4	10
2202	FairLens: Auditing black-box clinical decision support systems. Information Processing and Management, 2021, 58, 102657.	5.4	38
2203	A Review of Methods for Sleep Arousal Detection Using Polysomnographic Signals. Brain Sciences, 2021, 11, 1274.	1.1	15
2204	A Cascaded Deep Learning–Based Artificial Intelligence Algorithm for Automated Lesion Detection and Classification on Biparametric Prostate Magnetic Resonance Imaging. Academic Radiology, 2022, 29, 1159-1168.	1.3	21
2205	Deep-Learning–Based Pre-Diagnosis Assessment Module for Retinal Photographs: A Multicenter Study. Translational Vision Science and Technology, 2021, 10, 16.	1.1	11
2207	Predicting need for hospital-specific interventional care after surgery using electronic health record data. Surgery, 2021, 170, 790-796.	1.0	5
2208	How does that name sound? Name representation learning using accent-specific speech generation. Knowledge-Based Systems, 2021, 227, 107229.	4.0	0
2209	An Artificial Intelligence-Assisted Method for Dementia Detection Using Images from the Clock Drawing Test. Journal of Alzheimer's Disease, 2021, 83, 581-589.	1.2	19
2210	Encoding Retina Image to Words using Ensemble of Vision Transformers for Diabetic Retinopathy Grading. F1000Research, 0, 10, 948.	0.8	10
2211	Deep Convolutional Neural Networks (CNNs) to Detect Abnormality in Musculoskeletal Radiographs. Lecture Notes in Networks and Systems, 2022, , 107-117.	0.5	1
2212	Artificial intelligence in the diagnosis of gastric precancerous conditions by image-enhanced endoscopy: a multicenter, diagnostic study (with video). Gastrointestinal Endoscopy, 2021, 94, 540-548.e4.	0.5	44

#	Article	IF	CITATIONS
2213	Novel Computer-Aided Diagnosis Software for the Prevention of Retained Surgical Items. Journal of the American College of Surgeons, 2021, 233, 686-696.	0.2	6
2214	ASSESSMENT OF THE ELECTRICAL EQUIPMENT INSULATION STATE USING THE GRADIENT BOOSTING ALGORITHM. Vestnik ÄŒuvaÅjskogo Universiteta, 2021, , 94-102.	0.0	0
2215	Opening the Black Box: The Promise and Limitations of Explainable Machine Learning in Cardiology. Canadian Journal of Cardiology, 2022, 38, 204-213.	0.8	181
2217	Development of an artificial intelligence model using an automatic detection of furcation involvement through panoramic radiography. Journal of Japanese Society of Periodontology, 2021, 63, 119-128.	0.1	0
2218	Sensitivity and specificity of pseudocolor ultrawide field imaging in comparison to wide field fundus fluorescein angiography in detecting retinal neovascularization in diabetic retinopathy. Eye, 2021, , .	1.1	2
2219	An automatic framework for perioperative risks classification from retinal images of complex congenital heart disease patients. International Journal of Machine Learning and Cybernetics, 2022, 13, 471-483.	2.3	6
2220	Diagnosis of Pediatric Pneumonia with Ensemble of Deep Convolutional Neural Networks in Chest X-Ray Images. Arabian Journal for Science and Engineering, 2022, 47, 2123-2139.	1.7	37
2221	Automated bone mineral density prediction and fracture risk assessment using plain radiographs via deep learning. Nature Communications, 2021, 12, 5472.	5.8	57
2222	Convolutional neural networks to identify malformations of cortical development: A feasibility study. Seizure: the Journal of the British Epilepsy Association, 2021, 91, 81-90.	0.9	5
2223	Deep Learning for the Diagnosis of Stage inÂRetinopathy of Prematurity. Ophthalmology Retina, 2021, 5, 1027-1035.	1.2	31
2224	Effect of optical coherence tomography and angiography sampling rate towards diabetic retinopathy severity classification. Biomedical Optics Express, 2021, 12, 6660.	1.5	2
2225	Deep convolutional neural network-based algorithm for muscle biopsy diagnosis. Laboratory Investigation, 2022, 102, 220-226.	1.7	6
2226	Artificial intelligence in gynecologic cancers: Current status and future challenges – A systematic review. Artificial Intelligence in Medicine, 2021, 120, 102164.	3.8	52
2227	Leveraging Regular Fundus Images for Training UWF Fundus Diagnosis Models via Adversarial Learning and Pseudo-Labeling. IEEE Transactions on Medical Imaging, 2021, 40, 2911-2925.	5.4	30
2228	Adversarial attack vulnerability of medical image analysis systems: Unexplored factors. Medical Image Analysis, 2021, 73, 102141.	7.0	35
2229	A Novel Approach for Detection of Optic Disc and Lesion Location for Screening Diabetic Retinopathy. International Journal of Healthcare Information Systems and Informatics, 2021, 16, 1-21.	1.0	0
2230	SGUNet: Style-guided UNet for adversely conditioned fundus image super-resolution. Neurocomputing, 2021, 465, 238-247.	3.5	5
2231	Feasibility assessment of infectious keratitis depicted on slit-lamp and smartphone photographs using deep learning. International Journal of Medical Informatics, 2021, 155, 104583.	1.6	19

		CITATION REPORT		
#	Article		IF	CITATIONS
2232	Early detection of diabetic retinopathy from big data in hadoop framework. Displays, 2	021, 70, 102061.	2.0	7
2233	MVDRNet: Multi-view diabetic retinopathy detection by combining DCNNs and attention Pattern Recognition, 2021, 120, 108104.	on mechanisms.	5.1	31
2234	Artificial intelligence for bone cancer imaging. , 2022, , 75-90.			0
2235	Lightweight convolutional neural network with knowledge distillation for cervical cells classification. Biomedical Signal Processing and Control, 2022, 71, 103177.		3.5	25
2236	Unimodal regularisation based on beta distribution for deep ordinal regression. Patterr 2022, 122, 108310.	ı Recognition,	5.1	8
2238	Use of machine learning in bone cancers. , 2022, , 67-73.			0
2239	Recent Advances of Deep Learning in Biology. Studies in Computational Intelligence, 2	021, , 709-732.	0.7	3
2241	Automated Cataracts Screening from Slit-Lamp Images Employing Deep Learning. Lect Institute for Computer Sciences, Social-Informatics and Telecommunications Engineeri 282-291.	ure Notes of the ng, 2021, ,	0.2	0
2242	Application of artificial intelligence in the dental field: A literature review. Journal of Pro Research, 2022, 66, 19-28.	osthodontic	1.1	9
2243	Application of Deep Learning in Medical Imaging. , 2021, , .			1
2244	Sustainability of Healthcare Data Analysis IoT-Based Systems Using Deep Federated Le Internet of Things Journal, 2022, 9, 7338-7346.	arning. IEEE	5.5	58
2245	Artificial intelligence in preventive and managed healthcare. , 2021, , 675-697.			1
2246	A Deep Learning Method for Alerting Emergency Physicians about the Presence of Sub on Chest Radiographs. Journal of Clinical Medicine, 2021, 10, 254.	phrenic Free Air	1.0	5
2247	Deep convolutional neural network in medical image processing. , 2021, , 25-60.			27
2248	A smartphone-based test and predictive models for rapid, non-invasive, and point-of-ca of ocular and cardiovascular complications related to diabetes. Informatics in Medicine 2021, 24, 100485.	re monitoring 2 Unlocked,	1.9	5
2249	Anomaly Detection for Medical Images Using Self-Supervised and Translation-Consiste Transactions on Medical Imaging, 2021, 40, 3641-3651.	nt Features. IEEE	5.4	44
2250	Artificial Intelligence in Pediatrics. , 2021, , 1-18.			2
2251	Machine learning analysis to predict health outcomes among emergency department u Southern Brazil: a protocol study. Revista Brasileira De Epidemiologia, 2021, 24, e2100	users in 050.	0.3	1

#	Article	IF	CITATIONS
2252	DRDr: Automatic Masking of Exudates and Microaneurysms Caused by Diabetic Retinopathy Using Mask R-CNN and Transfer Learning. Transactions on Computational Science and Computational Intelligence, 2021, , 307-318.	0.3	9
2253	Discrimination of Diabetic Retinopathy From Optical Coherence Tomography Angiography Images Using Machine Learning Methods. IEEE Access, 2021, 9, 51689-51694.	2.6	14
2254	AIM in Otolaryngology and Head & Neck Surgery. , 2021, , 1-19.		0
2255	Prediction of Epiretinal Membrane from Retinal Fundus Images Using Deep Learning. Lecture Notes in Computer Science, 2021, , 3-13.	1.0	4
2256	Multicenter, Head-to-Head, Real-World Validation Study of Seven Automated Artificial Intelligence Diabetic Retinopathy Screening Systems. Diabetes Care, 2021, 44, 1168-1175.	4.3	84
2257	Learn like a Pathologist: Curriculum Learning by Annotator Agreement for Histopathology Image Classification. , 2021, , .		36
2258	Multi-Scale Attention Network for Diabetic Retinopathy Classification. IEEE Access, 2021, 9, 54190-54200.	2.6	57
2259	Knowledge Distillation with Adaptive Asymmetric Label Sharpening for Semi-supervised Fracture Detection in Chest X-Rays. Lecture Notes in Computer Science, 2021, , 599-610.	1.0	11
2260	Industrial Internet of Things (IIoT) with Cloud Teleophthalmology-Based Age-Related Macular Degeneration (AMD) Disease Prediction Model. Internet of Things, 2021, , 161-172.	1.3	2
2261	Data Analytics to Predict, Detect, and Monitor Chronic Autoimmune Diseases Using Machine Learning Algorithms. Advances in Medical Technologies and Clinical Practice Book Series, 2021, , 150-182.	0.3	2
2262	A Survey on Prematurity Detection of Diabetic Retinopathy Based on Fundus Images Using Deep Learning Techniques. Advances in Medical Technologies and Clinical Practice Book Series, 2021, , 140-155.	0.3	0
2263	Local-Global Dual Perception Based Deep Multiple Instance Learning for Retinal Disease Classification. Lecture Notes in Computer Science, 2021, , 55-64.	1.0	7
2264	A Novel Approach of Diabetic Retinopathy Early Detection Based on Multifractal Geometry Analysis for OCTA Macular Images Using Support Vector Machine. IEEE Access, 2021, 9, 22844-22858.	2.6	40
2265	Robust Collaborative Learning of Patch-Level and Image-Level Annotations for Diabetic Retinopathy Grading From Fundus Image. IEEE Transactions on Cybernetics, 2022, 52, 11407-11417.	6.2	27
2266	Recommendation Systems in Healthcare. Studies in Computational Intelligence, 2021, , 1-11.	0.7	1
2267	AMD Genetics: Methods and Analyses for Association, Progression, and Prediction. Advances in Experimental Medicine and Biology, 2021, 1256, 191-200.	0.8	6
2269	Detection of Referable Horizontal Strabismus in Children's Primary Gaze Photographs Using Deep Learning. Translational Vision Science and Technology, 2021, 10, 33.	1.1	15
2270	A Petri Dish for Histopathology Image Analysis. Lecture Notes in Computer Science, 2021, , 11-24.	1.0	17

#	Article	IF	CITATIONS
2271	DeepHistoClass: A Novel Strategy for Confident Classification of Immunohistochemistry Images Using Deep Learning. Molecular and Cellular Proteomics, 2021, 20, 100140.	2.5	11
2272	An Automated Method of Identifying Incorrectly Labelled Images Based on the Sequences of Loss Functions of Deep Learning Networks. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2021, , 261-269.	0.2	0
2273	Comparative Analysis of Various Deep Learning Algorithms for Diabetic Retinopathy Images. Studies in Computational Intelligence, 2021, , 97-106.	0.7	0
2274	Artificial intelligence and future surgery. Foregut Surgery, 2021, 1, 6.	0.0	0
2275	Predicting Age From Optical Coherence Tomography Scans With Deep Learning. Translational Vision Science and Technology, 2021, 10, 12.	1.1	13
2276	Next Big Challenges in Core Al Technology. Lecture Notes in Computer Science, 2021, , 90-115.	1.0	0
2277	Al for Humanity: The Global Challenges. Lecture Notes in Computer Science, 2021, , 116-126.	1.0	1
2278	Autofluorescence Image Reconstruction and Virtual Staining for In-Vivo Optical Biopsying. IEEE Access, 2021, 9, 32081-32093.	2.6	12
2279	Diagnostic Performance of Deep Learning-Based Lesion Detection Algorithm in CT for Detecting Hepatic Metastasis from Colorectal Cancer. Korean Journal of Radiology, 2021, 22, 912.	1.5	23
2280	Artificial Intelligence, Social Media and Depression. A New Concept of Health-Related Digital Autonomy. American Journal of Bioethics, 2021, 21, 4-20.	0.5	33
2281	Multi-Task Knowledge Distillation for Eye Disease Prediction. , 2021, , .		8
2282	Anomalous Gait Feature Classification From 3-D Motion Capture Data. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 696-703.	3.9	7
2283	Deep learning-based diabetic retinopathy detection for multiclass imbalanced data. , 2021, , 307-316.		0
2284	Inception recurrent convolutional neural network for object recognition. Machine Vision and Applications, 2021, 32, 1.	1.7	23
2285	Scope and challenges of machine learning-based diagnosis and prognosis in clinical dentistry: A literature review. Journal of Clinical and Translational Research, 0, , .	0.3	3
2286	Early detection and diagnosis using deep learning. , 2021, , 191-217.		1
2287	Development of a Deep Learning Model to Assist with Diagnosis of Hepatocellular Carcinoma. SSRN Electronic Journal, 0, , .	0.4	0
2288	Uncertainty Class Activation Map (U-CAM) Using Gradient Certainty Method. IEEE Transactions on Image Processing, 2021, 30, 1910-1924.	6.0	5

#	Article	IF	CITATIONS
2289	Feasibility study to improve deep learning in OCT diagnosis of rare retinal diseases with few-shot classification. Medical and Biological Engineering and Computing, 2021, 59, 401-415.	1.6	71
2290	Molecular Diversity of Clinically Stable Human Kidney Allografts. JAMA Network Open, 2021, 4, e2035048.	2.8	10
2291	Detection of active and inactive phases of thyroid-associated ophthalmopathy using deep convolutional neural network. BMC Ophthalmology, 2021, 21, 39.	0.6	30
2292	Classification of Diabetic Retinopathy Using PSO Clustering and Raspberry Pi. Lecture Notes in Networks and Systems, 2021, , 395-402.	0.5	0
2293	Deep learning-enabled medical computer vision. Npj Digital Medicine, 2021, 4, 5.	5.7	469
2294	A multimodal deep architecture for traditional Chinese medicine diagnosis. Concurrency Computation Practice and Experience, 2020, 32, e5781.	1.4	13
2295	Using veryâ€highâ€resolution satellite imagery and deep learning to detect and count African elephants in heterogeneous landscapes. Remote Sensing in Ecology and Conservation, 2021, 7, 369-381.	2.2	64
2296	Longitudinal Detection of Radiological Abnormalities with Time-Modulated LSTM. Lecture Notes in Computer Science, 2018, , 326-333.	1.0	22
2297	Ordinal Regression with Neuron Stick-Breaking for Medical Diagnosis. Lecture Notes in Computer Science, 2019, , 335-344.	1.0	18
2298	Intermediate Goals in Deep Learning for Retinal Image Analysis. Lecture Notes in Computer Science, 2019, , 276-281.	1.0	2
2299	Deep Learning in Smart Health: Methodologies, Applications, Challenges. , 2020, , 23-46.		2
2300	Incorporating Artificial Intelligence into Medical Cyber Physical Systems: A Survey. , 2020, , 153-178.		8
2301	Machine Learning and Artificial Intelligence. Success in Academic Surgery, 2020, , 155-168.	0.1	6
2302	New Frontiers in Explainable AI: Understanding the GI to Interpret the GO. Lecture Notes in Computer Science, 2019, , 27-47.	1.0	7
2303	Detection of Diabetic Retinopathy and Maculopathy in Eye Fundus Images Using Deep Learning and Image Augmentation. Lecture Notes in Computer Science, 2019, , 114-127.	1.0	10
2304	Dimensionality Reduction for Clustering and Cluster Tracking of Cytometry Data. Lecture Notes in Computer Science, 2019, , 624-640.	1.0	2
2305	A Lightweight Neural Network for Hard Exudate Segmentation of Fundus Image. Lecture Notes in Computer Science, 2019, , 189-199.	1.0	10
2306	Automatic Liver and Spleen Segmentation with CT Images Using Multi-channel U-net Deep Learning Approach. IFMBE Proceedings, 2020, , 33-41.	0.2	6

#	Article	IF	CITATIONS
2307	Case Study: Deep Convolutional Networks in Healthcare. Studies in Computational Intelligence, 2020, , 61-89.	0.7	1
2308	Radiologist-Level Stroke Classification on Non-contrast CT Scans with Deep U-Net. Lecture Notes in Computer Science, 2019, , 820-828.	1.0	11
2309	A R-CNN Based Approach for Microaneurysm Detection in Retinal Fundus Images. Lecture Notes in Computer Science, 2019, , 201-212.	1.0	6
2310	Techniques and Applications in Skin OCT Analysis. Advances in Experimental Medicine and Biology, 2020, 1213, 149-163.	0.8	11
2311	Towards Practical Unsupervised Anomaly Detection on Retinal Images. Lecture Notes in Computer Science, 2019, , 225-234.	1.0	23
2312	Machine Learning for Cancer Subtype Prediction with FSA Method. Lecture Notes in Computer Science, 2019, , 387-397.	1.0	2
2313	AttenNet: Deep Attention Based Retinal Disease Classification in OCT Images. Lecture Notes in Computer Science, 2020, , 565-576.	1.0	13
2314	Combining Fine- and Coarse-Grained Classifiers for Diabetic Retinopathy Detection. Communications in Computer and Information Science, 2020, , 242-253.	0.4	4
2315	Artificial Intelligence in Medical Diagnosis: Methods, Algorithms and Applications. Learning and Analytics in Intelligent Systems, 2020, , 27-37.	0.5	6
2316	Multi-task Learning for Fine-Grained Eye Disease Prediction. Lecture Notes in Computer Science, 2020, , 734-749.	1.0	4
2317	A Patch - Based Analysis for Retinal Lesion Segmentation with Deep Neural Networks. Lecture Notes on Data Engineering and Communications Technologies, 2020, , 677-685.	0.5	6
2318	Healthcare 4.0: A Voyage of Fog Computing with IOT, Cloud Computing, Big Data, and Machine Learning. Signals and Communication Technology, 2021, , 177-210.	0.4	10
2319	Machine Learning for Clinical Predictive Analytics. , 2020, , 199-217.		9
2320	Building a X-ray Database for Mammography on Vietnamese Patients and automatic Detecting ROI Using Mask-RCNN. Studies in Computational Intelligence, 2021, , 315-329.	0.7	2
2321	Image Processing and Machine Learning Techniques for Diabetic Retinopathy Detection: A Review. Lecture Notes in Computer Science, 2020, , 136-154.	1.0	6
2322	Deep Transfer Learning Based Web Interfaces for Biology Image Data Classification. Advances in Intelligent Systems and Computing, 2021, , 777-788.	0.5	1
2323	Scientific Discovery by Generating Counterfactuals Using Image Translation. Lecture Notes in Computer Science, 2020, , 273-283.	1.0	12
2324	Residual-CycleGAN Based Camera Adaptation for Robust Diabetic Retinopathy Screening. Lecture Notes in Computer Science, 2020, , 464-474.	1.0	4

#	Article	IF	CITATIONS
2325	AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes. Lecture Notes in Computer Science, 2020, , 562-572.	1.0	12
2326	GREEN: a Graph REsidual rE-ranking Network for Grading Diabetic Retinopathy. Lecture Notes in Computer Science, 2020, , 585-594.	1.0	17
2327	Cost-Sensitive Regularization for Diabetic Retinopathy Grading from Eye Fundus Images. Lecture Notes in Computer Science, 2020, , 665-674.	1.0	11
2328	Hybrid Deep Learning Gaussian Process for Diabetic Retinopathy Diagnosis and Uncertainty Quantification. Lecture Notes in Computer Science, 2020, , 206-215.	1.0	9
2329	Deep convolutional neural networks as a decision support tool in medical problems – malignant melanoma case study. Advances in Intelligent Systems and Computing, 2017, , 848-856.	0.5	15
2330	Zoom-in-Net: Deep Mining Lesions for Diabetic Retinopathy Detection. Lecture Notes in Computer Science, 2017, , 267-275.	1.0	151
2331	Lesion Detection and Grading of Diabetic Retinopathy via Two-Stages Deep Convolutional Neural Networks. Lecture Notes in Computer Science, 2017, , 533-540.	1.0	108
2332	A Data Analytics Pipeline for Smart Healthcare Applications. , 2017, , 181-192.		7
2333	Synthesis of Positron Emission Tomography (PET) Images via Multi-channel Generative Adversarial Networks (GANs). Lecture Notes in Computer Science, 2017, , 43-51.	1.0	57
2334	Deep Learning Through Two-Branch Convolutional Neuron Network for Glaucoma Diagnosis. Lecture Notes in Computer Science, 2017, , 191-201.	1.0	16
2335	Real-Time Polyps Segmentation for Colonoscopy Video Frames Using Compressed Fully Convolutional Network. Lecture Notes in Computer Science, 2018, , 393-404.	1.0	3
2336	Classification of Cancer Microscopic Images via Convolutional Neural Networks. Lecture Notes in Bioengineering, 2019, , 141-147.	0.3	6
2338	Automatic Caption Generation of Retinal Diseases with Self-trained RNN Merge Model. Advances in Intelligent Systems and Computing, 2020, , 1-10.	0.5	6
2339	A Classification Model Based on an Adaptive Neuro-fuzzy Inference System for Disease Prediction. Studies in Computational Intelligence, 2021, , 131-149.	0.7	3
2340	Automated Binary Classification of Diabetic Retinopathy by Convolutional Neural Networks. Advances in Intelligent Systems and Computing, 2021, , 177-187.	0.5	12
2341	Artificial Intelligence for Smart Healthcare Management: Brief Study. Smart Innovation, Systems and Technologies, 2021, , 365-373.	0.5	5
2342	Recent Advances in Deep Learning Techniques and Its Applications: An Overview. Lecture Notes in Bioengineering, 2021, , 103-122.	0.3	19
2343	Assessment and prediction of spine surgery invasiveness with machine learning techniques. Computers in Biology and Medicine, 2020, 121, 103796.	3.9	18

#	Article	IF	Citations
2344	Validation of a Deep Learning Model to Screen for Glaucoma Using Images from Different Fundus Cameras and Data Augmentation. Ophthalmology Glaucoma, 2019, 2, 224-231.	0.9	42
2345	Deep learning frameworks for diabetic retinopathy detection with smartphone-based retinal imaging systems. Pattern Recognition Letters, 2020, 135, 409-417.	2.6	81
2346	Automated detection of diabetic retinopathy using convolutional neural networks on a small dataset. Pattern Recognition Letters, 2020, 135, 293-298.	2.6	75
2348	Machine learning and natural language processing in psychotherapy research: Alliance as example use case Journal of Counseling Psychology, 2020, 67, 438-448.	1.4	56
2349	Machine diagnosis. Nature, 2019, , .	13.7	2
2350	Capacity building for universal eye health coverage in South East Asia beyond 2020. Eye, 2020, 34, 1262-1270.	1.1	15
2351	Epiretinal Membrane Detection at the Ophthalmologist Level using Deep Learning of Optical Coherence Tomography. Scientific Reports, 2020, 10, 8424.	1.6	31
2352	Effectiveness of transfer learning for enhancing tumor classification with a convolutional neural network on frozen sections. Scientific Reports, 2020, 10, 21899.	1.6	42
2353	An overview of clinical decision support systems: benefits, risks, and strategies for success. Npj Digital Medicine, 2020, 3, 17.	5.7	992
2354	Deep learningâ€based automated detection of human knee joint's synovial fluid from magnetic resonance images with transfer learning. IET Image Processing, 2020, 14, 1990-1998.	1.4	10
2355	Deep learning for medical image analysis: a brief introduction. Neuro-Oncology Advances, 2020, 2, iv35-iv41.	0.4	15
2356	Back to Basics in Paediatric Pneumonia—Defining a Breath and Setting Reference Standards to Innovate Respiratory Rate Counting. Journal of Tropical Pediatrics, 2021, 67, .	0.7	4
2357	Technology Can Augment, but Not Replace, Critical Human Skills Needed for Patient Care. Academic Medicine, 2021, 96, 37-43.	0.8	19
2358	An Artificial Intelligence Approach to the Assessment of Abnormal Lid Position. Plastic and Reconstructive Surgery - Clobal Open, 2020, 8, e3089.	0.3	12
2359	Deep Neural Network-Based Method for Detecting Obstructive Meibomian Gland Dysfunction With in Vivo Laser Confocal Microscopy. Cornea, 2020, 39, 720-725.	0.9	30
2360	Diagnosing Glaucoma With Spectral-Domain Optical Coherence Tomography Using Deep Learning Classifier. Journal of Glaucoma, 2020, 29, 287-294.	0.8	46
2361	Application of Artificial Intelligence in Gastrointestinal Endoscopy. Journal of Clinical Gastroenterology, 2021, 55, 110-120.	1.1	12
2362	Adversarial attack on deep learning-based dermatoscopic image recognition systems. Medicine (United) Tj ETQq1	10,7843 0.4	14 rgBT /Ove

#	ARTICLE Development and Validation of an Image-based Deep Learning Algorithm for Detection of Synchronous	IF	CITATIONS
2363	Peritoneal Carcinomatosis in Colorectal Cancer. Annals of Surgery, 2022, 275, e645-e651.	2.1	34
2364	Machine Learning for Surgical Phase Recognition. Annals of Surgery, 2021, 273, 684-693.	2.1	135
2365	Artificial Intelligence for Intraoperative Guidance. Annals of Surgery, 2022, 276, 363-369.	2.1	113
2394	Perspective on machine learning for advancing fluid mechanics. Physical Review Fluids, 2019, 4, .	1.0	174
2395	DRDr II: Detecting the Severity Level of Diabetic Retinopathy Using Mask RCNN and Transfer Learning. , 2020, , .		6
2396	Diabetic Retinopathy Grading Using ResNet Convolutional Neural Network. , 2020, , .		7
2397	DR-GAN: Conditional Generative Adversarial Network for Fine-Grained Lesion Synthesis on Diabetic Retinopathy Images. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 56-66.	3.9	51
2398	Seizure Type Classification Using EEG Signals and Machine Learning: Setting a Benchmark. , 2020, , .		35
2399	Possibility of predicting missing teeth using deep learning: a pilot study. Journal of Korean Academy of Oral Health, 2019, 43, 210.	0.1	1
2400	Large-scale image region documentation for fully automated image biomarker algorithm development and evaluation. Journal of Medical Imaging, 2017, 4, 024505.	0.8	13
2401	Classification of images based on small local features: a case applied to microaneurysms in fundus retina images. Journal of Medical Imaging, 2017, 4, 1.	0.8	3
2402	Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images. Journal of Medical Imaging, 2017, 4, 1.	0.8	126
2403	Fully automated detection of breast cancer in screening MRI using convolutional neural networks. Journal of Medical Imaging, 2018, 5, 1.	0.8	43
2404	Detecting mammographically occult cancer in women with dense breasts using deep convolutional neural network and Radon Cumulative Distribution Transform. Journal of Medical Imaging, 2019, 6, 1.	0.8	7
2405	Evaluation of data augmentation via synthetic images for improved breast mass detection on mammograms using deep learning. Journal of Medical Imaging, 2019, 7, 1.	0.8	25
2406	Explainable end-to-end deep learning for diabetic retinopathy detection across multiple datasets. Journal of Medical Imaging, 2020, 7, 044503.	0.8	30
2407	Brain decoding using deep convolutional network and its application in cross-subject analysis. , 2018, ,		2
2408	A convolutional neural network for intracranial hemorrhage detection in non-contrast CT. , 2018, , .		3

#	Article	IF	CITATIONS
2409	Lesion detection in ultra-wide field retinal images for diabetic retinopathy diagnosis. , 2018, , .		2
2410	Student beats the teacher: deep neural networks for lateral ventricles segmentation in brain MR. , 2018, , .		3
2411	Sequential neural networks for biologically informed glioma segmentation. , 2018, , .		18
2412	Fully automated disease severity assessment and treatment monitoring in retinopathy of prematurity using deep learning. , 2018, , .		14
2413	The application of deep learning for diabetic retinopathy prescreening in research eye-PACS. , 2018, , .		3
2414	Transfer deep learning mammography diagnostic model from public datasets to clinical practice: a comparison of model performance and mammography datasets. , 2018, , .		2
2415	Deep Learning approach predicting breast tumor response to neoadjuvant treatment using DCE-MRI volumes acquired before and after chemotherapy. , 2019, , .		5
2416	Deep learning for automated screening and semantic segmentation of age-related and juvenile atrophic macular degeneration. , 2019, , .		10
2417	Harnessing the power of deep learning for volumetric CT imaging with single or limited number of projections. , 2019, , .		5
2418	An end-to-end deep learning approach for landmark detection and matching in medical images. , 2020, , .		8
2419	Human factors challenges for the safe use of artificial intelligence in patient care. BMJ Health and Care Informatics, 2019, 26, e100081.	1.4	63
2420	New approaches to detection of atrial fibrillation. Heart, 2018, 104, 1898-1899.	1.2	4
2421	Clinical Concept Embeddings Learned from Massive Sources of Multimodal Medical Data. , 2019, , .		75
2422	Modeling patients' online medical conversations. , 2018, , .		6
2423	Expert Discussions Improve Comprehension of Difficult Cases in Medical Image Assessment. , 2020, , .		14
2424	A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy. , 2020, , .		225
2425	An adversarial approach for the robust classification of pneumonia from chest radiographs. , 2020, , .		14
2426	Hidden stratification causes clinically meaningful failures in machine learning for medical imaging. , 2020, 2020, 151-159.		152

ARTICLE IF CITATIONS On Visualizations in the Role of Universal Data Representation., 2020,,. 6 2427 HOLMES: Health OnLine Model Ensemble Serving for Deep Learning Models in Intensive Care Units., 2428 29 , . Automated Detection of Intracranial Hemorrhage on Head Computed Tomography with Deep Learning. 2429 8 2020,,. Classification of glomerular spikes using Convolutional Neural Network., 2020,,. 2430 Transfer Learning for COVID-19 Pneumonia Detection and Classification in Chest X-ray Images., 2020,,. 2431 16 Introduction to Machine Learning, Neural Networks, and Deep Learning. Translational Vision Science 1.1 and Technology, 2020, 9, 14. Artificial intelligence in pulmonary medicine: computer vision, predictive model and COVID-19. 2433 3.0 47 European Respiratory Review, 2020, 29, 200181. The primary use of artificial intelligence in cardiovascular diseases: what kind of potential role does 2434 0.2 artificial intelligence play in future medicine?. Journal of Geriatric Cardiology, 2019, 16, 585-591. Long Non-Coding RNA BANCR Is Overexpressed in Patients with Diabetic Retinopathy and Promotes 2435 0.5 24 Apoptosis of Retinal Pigment Epithelial Cells. Medical Science Monitor, 2019, 25, 2845-2851. Recent advances in the management and understanding of diabetic retinopathy. F1000Research, 2017, 6, 2436 2063. FDA Regulation of Predictive Clinical Decisionâ€Support Tools: What Does It Mean for Hospitals?. 2437 0.7 10 Journal of Hospital Medicine, 2021, 16, 244-246. Detection of Multi-Class Retinal Diseases Using Artificial Intelligence: An Expeditious Learning Using Deep CNN with Minimal Data. Biomedical and Pharmacology Journal, 2019, 12, 1577-1586. 2438 RAC-CNN: multimodal deep learning based automatic detection and classification of rod and cone photoreceptors in adaptive optics scanning light ophthalmoscope images. Biomedical Optics Express, 2439 1.5 30 2019, 10, 3815. Deep learning-based automated detection of retinal diseases using optical coherence tomography 2440 1.5 images. Biomedical Optics Express, 2019, 10, 6204. Noise reduction in optical coherence tomography images using a deep neural network with 2441 1.5 71 perceptually-sensitive loss function. Biomedical Óptics Express, 2020, 11, 817. Classification of advanced and early stages of diabetic retinopathy from non-diabetic subjects by an 2442 ordinary least squares modeling method applied to OCTA images. Biomedical Optics Express, 2020, 11, 4666. Real-time retinal layer segmentation of OCT volumes with GPU accelerated inferencing using a 2443 1.536 compressed, low-latency neural network. Biomedical Optics Express, 2020, 11, 3968. Automated identification of cone photoreceptors in adaptive optics optical coherence tomography 2444 1.5 images using transfer learning. Biomedical Optics Express, 2018, 9, 5353.

#	Article	IF	Citations
2445	Open-source, machine and deep learning-based automated algorithm for gestational age estimation through smartphone lens imaging. Biomedical Optics Express, 2018, 9, 6038.	1.5	8
2446	The intersection of genomics and big data with public health: Opportunities for precision public health. PLoS Medicine, 2020, 17, e1003373.	3.9	26
2447	Assessment of deep neural networks for the diagnosis of benign and malignant skin neoplasms in comparison with dermatologists: A retrospective validation study. PLoS Medicine, 2020, 17, e1003381.	3.9	28
2448	Comparing deep learning and concept extraction based methods for patient phenotyping from clinical narratives. PLoS ONE, 2018, 13, e0192360.	1.1	132
2449	Deep Learning in Medical Imaging. Neurospine, 2019, 16, 657-668.	1.1	186
2450	Deep Learning Model to Predict Postoperative Visual Acuity from Preoperative Multimedia Ophthalmic Data. Advanced Biomedical Engineering, 2020, 9, 241-248.	0.4	3
2451	Artificial Intelligence (AI)-aided Disease Prediction. BIO Integration, 2020, 1, .	0.9	22
2452	Performance of deep neural network-based artificial intelligence method in diabetic retinopathy screening: a systematic review and meta-analysis of diagnostic test accuracy. European Journal of Endocrinology, 2020, 183, 41-49.	1.9	36
2453	Automated Screening for Diabetic Retinopathy Using Compact Deep Networks. Journal of Computational Vision and Imaging Systems, 2017, 3, .	0.2	6
2454	VGC-based BAPL Score Classification of 18F-Florbetaben Amyloid Brain PET. Biomedical Science Letters, 2018, 24, 418-425.	0.0	12
2455	Classification of ¹⁸ F-Florbetaben Amyloid Brain PET Image using PCA-SVM. Biomedical Science Letters, 2019, 25, 99-106.	0.0	5
2456	Efficient Secure Neural Network Prediction Protocol Reducing Accuracy Degradation. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2020, E103.A, 1367-1380.	0.2	4
2457	Artificial Neural Networks based decision support system for the detection of diabetic retinopathy. Sakarya University Journal of Science, 0, , 424-431.	0.3	7
2458	Development of Fuzzy Logic-Base Diagnosis Expert System for Typhoid Fever. Jurnal Kejuruteraan, 2020, 32, 9-16.	0.2	2
2459	A Deep Learning Technique For Lung Nodule Classification Based on False Positive Reduction. Journal of Zankoy Sulaimani - Part A, 2019, 21, 107-116.	0.1	5
2461	Deep-learning classifier with ultrawide-field fundus ophthalmoscopy for detecting branch retinal vein occlusion. International Journal of Ophthalmology, 2019, 12, 94-99.	0.5	28
2462	Artificial intelligence on diabetic retinopathy diagnosis: an automatic classification method based on grey level co-occurrence matrix and naive Bayesian model. International Journal of Ophthalmology, 2019, 12, 1158-1162.	0.5	26
2463	A Systematic Review of Deep Learning Methods Applied to Ocular Images. Ciencia E IngenierÃa Neogranadina, 2019, 30, 9-26.	0.1	11

#	Article	IF	CITATIONS
2465	The proof of the pudding: in praise of a culture of real-world validation for medical artificial intelligence. Annals of Translational Medicine, 2019, 7, 161-161.	0.7	41
2466	A deep learning system for identifying lattice degeneration and retinal breaks using ultra-widefield fundus images. Annals of Translational Medicine, 2019, 7, 618-618.	0.7	36
2467	Artificial Intelligence in Global Health —A Framework and Strategy for Adoption and Sustainability. International Journal of MCH and AIDS, 2019, 9, 121-127.	0.3	20
2468	Blinded Visual Scoring of Images Using the Freely-available Software Blinder. Bio-protocol, 2018, 8, .	0.2	17
2469	Artificial Intelligence Versus Clinicians in Disease Diagnosis: Systematic Review. JMIR Medical Informatics, 2019, 7, e10010.	1.3	141
2470	An Interpretable and Expandable Deep Learning Diagnostic System for Multiple Ocular Diseases: Qualitative Study. Journal of Medical Internet Research, 2018, 20, e11144.	2.1	41
2471	A Human(e) Factor in Clinical Decision Support Systems. Journal of Medical Internet Research, 2019, 21, e11732.	2.1	52
2472	Implementation of National Health Informatization in China: Survey About the Status Quo. JMIR Medical Informatics, 2019, 7, e12238.	1.3	12
2473	Physician Confidence in Artificial Intelligence: An Online Mobile Survey. Journal of Medical Internet Research, 2019, 21, e12422.	2.1	165
2474	A Hematologist-Level Deep Learning Algorithm (BMSNet) for Assessing the Morphologies of Single Nuclear Balls in Bone Marrow Smears: Algorithm Development. JMIR Medical Informatics, 2020, 8, e15963.	1.3	38
2475	Deep Learning–Based Prediction of Refractive Error Using Photorefraction Images Captured by a Smartphone: Model Development and Validation Study. JMIR Medical Informatics, 2020, 8, e16225.	1.3	20
2476	Development of a Real-Time Risk Prediction Model for In-Hospital Cardiac Arrest in Critically Ill Patients Using Deep Learning: Retrospective Study. JMIR Medical Informatics, 2020, 8, e16349.	1.3	15
2477	Public Perception of Artificial Intelligence in Medical Care: Content Analysis of Social Media. Journal of Medical Internet Research, 2020, 22, e16649.	2.1	78
2478	Accuracy and Effects of Clinical Decision Support Systems Integrated With BMJ Best Practice–Aided Diagnosis: Interrupted Time SeriesÂStudy. JMIR Medical Informatics, 2020, 8, e16912.	1.3	14
2479	Artificial Intelligence and Big Data in Diabetes Care: A Position Statement of the Italian Association of Medical Diabetologists. Journal of Medical Internet Research, 2020, 22, e16922.	2.1	20
2480	Artificial Intelligence and Health Technology Assessment: Anticipating a New Level of Complexity. Journal of Medical Internet Research, 2020, 22, e17707.	2.1	53
2481	Technical Metrics Used to Evaluate Health Care Chatbots: Scoping Review. Journal of Medical Internet Research, 2020, 22, e18301.	2.1	66
2482	Deep Learning Methodology for Differentiating Glioma Recurrence From Radiation Necrosis Using Multimodal Magnetic Resonance Imaging: Algorithm Development and Validation. JMIR Medical Informatics, 2020, 8, e19805.	1.3	15

#	Article	IF	CITATIONS
2483	ls Artificial Intelligence Better Than Human Clinicians in Predicting Patient Outcomes?. Journal of Medical Internet Research, 2020, 22, e19918.	2.1	16
2484	The Internet of Things: Impact and Implications for Health Care Delivery. Journal of Medical Internet Research, 2020, 22, e20135.	2.1	178
2485	Automatic Grading of Stroke Symptoms for Rapid Assessment Using Optimized Machine Learning and 4-Limb Kinematics: Clinical Validation Study. Journal of Medical Internet Research, 2020, 22, e20641.	2.1	23
2486	Deep Learning–Based Detection of Early Renal Function Impairment Using Retinal Fundus Images: Model Development and Validation. JMIR Medical Informatics, 2020, 8, e23472.	1.3	24
2487	Improving Consensus Scoring of Crowdsourced Data Using the Rasch Model: Development and Refinement of a Diagnostic Instrument. Journal of Medical Internet Research, 2017, 19, e222.	2.1	14
2491	A Survey on Intelligent Screening for Diabetic Retinopathy. Chinese Medical Sciences Journal, 2019, 34, 90.	0.2	6
2492	FSMB Census of Licensed Physicians in the United States, 2018. Journal of Medical Regulation, 2019, 105, 7-23.	0.2	33
2493	Automated Cerebral Hemorrhage Detection Using RAPID. American Journal of Neuroradiology, 2021, 42, 273-278.	1.2	34
2494	Artificial Intelligence in Health Care: Current Applications and Issues. Journal of Korean Medical Science, 2020, 35, e379.	1.1	46
2495	Automatic Detection and Classification of Rib Fractures on Thoracic CT Using Convolutional Neural Network: Accuracy and Feasibility. Korean Journal of Radiology, 2020, 21, 869.	1.5	66
2496	Clinical Implementation of Deep Learning in Thoracic Radiology: Potential Applications and Challenges. Korean Journal of Radiology, 2020, 21, 511.	1.5	48
2497	Second-Generation Digital Health Platforms: Placing the Patient at the Center and Focusing on Clinical Outcomes. Frontiers in Digital Health, 2020, 2, 569178.	1.5	32
2498	Early Detection of Diabetic Retinopathy Using PCA-Firefly Based Deep Learning Model. Electronics (Switzerland), 2020, 9, 274.	1.8	226
2499	Intelligent Image Synthesis for Accurate Retinal Diagnosis. Electronics (Switzerland), 2020, 9, 767.	1.8	4
2500	Computer-Aided Detection of Lung Nodules in Chest X-Rays using Deep Convolutional Neural Networks. Sakarya University Journal of Computer and Information Sciences, 2019, 2, 41-52.	0.6	9
2501	A current status of teleophthalmology in low- and middle-income countries: literature review. Journal of Global Health Science, 2019, 1, .	1.7	4
2502	Performance Comparison of Carotid Artery Intima Media Thickness Classification by Deep Learning Methods. , 2019, , .		9
2503	Risk prediction platform for pancreatic fistula after pancreatoduodenectomy using artificial intelligence. World Journal of Gastroenterology, 2020, 26, 4453-4464.	1.4	31

#	Article	IF	CITATIONS
2504	Artificial intelligence and deep learning in ophthalmology - present and future (Review). Experimental and Therapeutic Medicine, 2020, 20, 3469-3473.	0.8	25
2505	Application of deep learning to predict advanced neoplasia using big clinical data in colorectal cancer screening of asymptomatic adults. Korean Journal of Internal Medicine, 2021, 36, 845-856.	0.7	4
2506	Artificial Intelligence and the Future of Internal Medicine Physicians. Korean Journal of Medicine, 2017, 92, 235-238.	0.1	1
2507	Applications of Machine Learning in Disease Pre-screening. Advances in Medical Diagnosis, Treatment, and Care, 2019, , 278-320.	0.1	3
2508	Deep Learning for Healthcare Biometrics. Advances in Medical Technologies and Clinical Practice Book Series, 2019, , 73-108.	0.3	3
2509	Can artificial Intelligence Prediction Algorithms Exceed Statistical Predictions?. Korean Circulation Journal, 2019, 49, 640.	0.7	6
2510	The neurologist and artificial intelligence: Titans at crossroads. Annals of Indian Academy of Neurology, 2019, 22, 264.	0.2	7
2511	Artificial intelligence/machine learning in diabetes care. Indian Journal of Endocrinology and Metabolism, 2019, 23, 495.	0.2	28
2512	Medios– An offline, smartphone-based artificial intelligence algorithm for the diagnosis of diabetic retinopathy. Indian Journal of Ophthalmology, 2020, 68, 391.	0.5	32
2513	Insights into the growing popularity of artificial intelligence in ophthalmology. Indian Journal of Ophthalmology, 2020, 68, 1339.	0.5	22
2514	Artificial intelligence in diabetic retinopathy: A natural step to the future. Indian Journal of Ophthalmology, 2019, 67, 1004.	0.5	71
2515	Commentary: Artificial intelligence and smartphone fundus photography – Are we at the cusp of revolutionary changes in retinal disease detection?. Indian Journal of Ophthalmology, 2020, 68, 396.	0.5	4
2516	Commentary: Rise of machine learning and artificial intelligence in ophthalmology. Indian Journal of Ophthalmology, 2019, 67, 1009.	0.5	9
2517	Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy – Artificial intelligence versus clinician for screening. Indian Journal of Ophthalmology, 2020, 68, 398.	0.5	39
2518	Automated Detection of Celiac Disease on Duodenal Biopsy Slides: A Deep Learning Approach. Journal of Pathology Informatics, 2019, 10, 7.	0.8	50
2519	Early Detection of Diabetic Eye Disease through Deep Learning using Fundus Images. EAI Endorsed Transactions on Pervasive Health and Technology, 2020, 6, 164588.	0.7	6
2520	A deep learning algorithm for detecting acute myocardial infarction. EuroIntervention, 2021, 17, 765-773.	1.4	31
2521	Deep Learning in the Medical Domain: Predicting Cardiac Arrest Using Deep Learning. Acute and Critical Care, 2018, 33, 117-120.	0.6	27

#	Article	IF	CITATIONS
2522	Artificial Intelligence and Ophthalmology. Türk Oftalmoloji Dergisi, 2020, 50, 37-43.	0.4	27
2523	Overview of Deep Learning in Gastrointestinal Endoscopy. Gut and Liver, 2019, 13, 388-393.	1.4	132
2524	Artificial Intelligence in Gastrointestinal Endoscopy. Clinical Endoscopy, 2020, 53, 132-141.	0.6	48
2525	Accuracy of deep learning, a machine learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting idiopathic macular holes. PeerJ, 2018, 6, e5696.	0.9	26
2526	Prognostic analysis of histopathological images using pre-trained convolutional neural networks: application to hepatocellular carcinoma. PeerJ, 2020, 8, e8668.	0.9	23
2527	Detection and visualization of abnormality in chest radiographs using modality-specific convolutional neural network ensembles. PeerJ, 2020, 8, e8693.	0.9	27
2528	Artificial intelligence system can achieve comparable results to experts for bone age assessment of Chinese children with abnormal growth and development. PeerJ, 2020, 8, e8854.	0.9	18
2529	Experimental Artificial Intelligence Systems in Ophthalmology: An Overview. , 2021, , 87-99.		0
2530	Al and Glaucoma. , 2021, , 113-125.		0
2531	Towards the Localisation of Lesions inÂDiabetic Retinopathy. Lecture Notes in Networks and Systems, 2021, , 100-107.	0.5	1
2532	Google and DeepMind: Deep Learning Systems in Ophthalmology. , 2021, , 161-176.		0
2533	Overview of Artificial Intelligence Systems in Ophthalmology. , 2021, , 31-53.		0
2535	Establishment of a Knowledge-and-Data-Driven Artificial Intelligence System with Robustness and Interpretability in Laboratory Medicine. SSRN Electronic Journal, 0, , .	0.4	0
2536	Technical Aspects of Deep Learning in Ophthalmology. , 2021, , 69-75.		0
2537	Semi-Supervised Auto-Encoder Graph Network for Diabetic Retinopathy Grading. IEEE Access, 2021, 9, 140759-140767.	2.6	14
2538	Thyroid ultrasound image classification using a convolutional neural network. Annals of Translational Medicine, 2021, 9, 1526-1526.	0.7	19
2539	Singapore Eye Lesions Analyzer (SELENA): The Deep Learning System for Retinal Diseases. , 2021, , 177-185.		3
2540	Artificial Intelligence in Age-Related Macular Degeneration (AMD). , 2021, , 101-112.		3

#	Article	IF	CITATIONS
2541	Clinician Preimplementation Perspectives of a Decision-Support Tool for the Prediction of Cardiac Arrhythmia Based on Machine Learning: Near-Live Feasibility and Qualitative Study. JMIR Human Factors, 2021, 8, e26964.	1.0	16
2543	Selected Image Analysis Methods for Ophthalmology. , 2021, , 77-86.		0
2544	Use of predictive models to identify patients who are likely to benefit from refraction at a follow-up visit after cataract surgery. Indian Journal of Ophthalmology, 2021, 69, 2695.	0.5	1
2545	WDCCNet: Weighted Double-Classifier Constraint Neural Network for Mammographic Image Classification. IEEE Transactions on Medical Imaging, 2022, 41, 559-570.	5.4	6
2548	A Study of Dimensionality Reduction $\hat{a} \in \mathbb{M}$ s Influence on Heart Disease Prediction. , 2021, , .		2
2549	Differential Biases and Variabilities of Deep Learning–Based Artificial Intelligence and Human Experts in Clinical Diagnosis: Retrospective Cohort and Survey Study. JMIR Medical Informatics, 2021, 9, e33049.	1.3	5
2550	Analysis of Various Techniques and Methods for the Prediction of Diabetic Eye Disease in Type 2 Diabetes. , 2021, , .		1
2551	Computer Assisted Grade Diagnosis Using Feature Fusion and Network Algorithm Flow. Journal of Physics: Conference Series, 2021, 2033, 012006.	0.3	0
2552	Classification of diabetic retinopathy through identification of diagnostic keywords. , 2021, , .		4
2553	Artificial Intelligence and Obstetric Ultrasound. Donald School Journal of Ultrasound in Obstetrics and Gynecology, 2021, 15, 218-222.	0.1	2
2554	Artificial Intelligence in COPD: New Venues to Study a Complex Disease. Barcelona Respiratory Network, 2021, 6, 144-160.	0.5	2
2555	A non-invasive diabetes diagnosis method based on novel scleral imaging instrument and Al. , 2021, , .		2
2556	Vision Transformerâ€based recognition of diabetic retinopathy grade. Medical Physics, 2021, 48, 7850-7863.	1.6	46
2557	Calculation of ophthalmic diagnostic parameters on a single eye image based on deep neural network. Multimedia Tools and Applications, 2022, 81, 2311-2331.	2.6	3
2558	Artificial intelligence and early esophageal cancer. Artificial Intelligence in Gastrointestinal Endoscopy, 2021, 2, 198-210.	0.2	1
2559	A framework for validating AI in precision medicine: considerations from the European ITFoC consortium. BMC Medical Informatics and Decision Making, 2021, 21, 274.	1.5	28
2560	A Deep-Learning Based Visual Sensing Concept for a Robust Classification of Document Images under Real-World Hard Conditions. Sensors, 2021, 21, 6763.	2.1	4
2561	An Explainable Deep Learning Ensemble Model for Robust Diagnosis of Diabetic Retinopathy Grading. ACM Transactions on Multimedia Computing, Communications and Applications, 2021, 17, 1-24.	3.0	17

#	Article	IF	CITATIONS
2562	Deep Learning Radiomics to Predict Regional Lymph Node Staging for Hilar Cholangiocarcinoma. Frontiers in Oncology, 2021, 11, 721460.	1.3	13
2563	Differentiable biology: using deep learning for biophysics-based and data-driven modeling of molecular mechanisms. Nature Methods, 2021, 18, 1169-1180.	9.0	44
2564	Attitudes of medical workers in China toward artificial intelligence in ophthalmology: a comparative survey. BMC Health Services Research, 2021, 21, 1067.	0.9	19
2565	A Proposed Framework for Machine Learning-Aided Triage in Public Specialty Ophthalmology Clinics in Hong Kong. Ophthalmology and Therapy, 2021, 10, 703-713.	1.0	2
2566	Automatic identification of triple negative breast cancer in ultrasonography using a deep convolutional neural network. Scientific Reports, 2021, 11, 20474.	1.6	7
2567	Identifying Peripheral Neuropathy in Colour Fundus Photographs Based on Deep Learning. Diagnostics, 2021, 11, 1943.	1.3	6
2568	Multi-Modal Multi-Instance Learning for Retinal Disease Recognition. , 2021, , .		10
2569	Development of deep learning-based detecting systems for pathologic myopia using retinal fundus images. Communications Biology, 2021, 4, 1225.	2.0	18
2571	Deep learning on fundus images detects glaucoma beyond the optic disc. Scientific Reports, 2021, 11, 20313.	1.6	40
2572	Ophthalmology Going Greener: A Narrative Review. Ophthalmology and Therapy, 2021, 10, 845-857.	1.0	13
2573	Updates in deep learning research in ophthalmology. Clinical Science, 2021, 135, 2357-2376.	1.8	19
2574	Deep Learning-Based Computer-Aided Detection System for Automated Treatment Response Assessment of Brain Metastases on 3D MRI. Frontiers in Oncology, 2021, 11, 739639.	1.3	11
2575	Superiority of Supervised Machine Learning on Reading Chest X-Rays in Intensive Care Units. Frontiers in Medicine, 2021, 8, 676277.	1.2	1
2576	A Deep Learning Approach for Retinal Image Feature Extraction. Pertanika Journal of Science and Technology, 2021, 29, .	0.3	1
2577	A Deep Learning Model to Intelligently Identify the Working Status of Screw Pumps for Oil Well Lifting. , 2021, , .		0
2579	Experiments with Social Good: Feminist Critiques of Artificial Intelligence in Healthcare in India. Catalyst Feminism Theory Technoscience, 2021, 7, .	0.1	2
2580	Severity Grading and Early Retinopathy Lesion Detection through Hybrid Inception-ResNet Architecture. Sensors, 2021, 21, 6933.	2.1	9
2581	Detection Accuracy and Latency of Colorectal Lesions with Computer-Aided Detection System Based on Low-Bias Evaluation. Diagnostics, 2021, 11, 1922.	1.3	1

#	Article	IF	CITATIONS
2582	Implementation and Application of an Intelligent Pterygium Diagnosis System Based on Deep Learning. Frontiers in Psychology, 2021, 12, 759229.	1.1	10
2583	Deep Transfer Learning-Based COVID-19 Prediction Using Chest X-Rays. Journal of Health Management, 2021, 23, 730-746.	0.4	8
2584	Fundus image segmentation via hierarchical feature learning. Computers in Biology and Medicine, 2021, 138, 104928.	3.9	13
2585	Separating Hope from Hype. Radiologic Clinics of North America, 2021, 59, 1063-1074.	0.9	6
2586	CatÃleg i valoració de les plantes aquÃtiques de l'estany de Sils (La Selva, Catalunya). Collectanea Botanica, 0, 35, 002.	0.2	1
2587	Current Status of Clinical Study on Traditional East Asian Medicine Using Taiwan Health Insurance Claim Data. Journal of Korean Medicine Rehabilitation, 2017, 27, 67-75.	0.2	3
2588	A Study of Nuclei Classification Methods in Histopathological Images. Smart Innovation, Systems and Technologies, 2018, , 78-88.	0.5	3
2592	Le rÃ1e des Méga données dans l'évolution de la pratique médicale. Bulletin De L'Academie Nationale Medecine, 2018, 202, 225-240.	e De	0
2593	Commentary: Change in trends of imaging the retina. Indian Journal of Ophthalmology, 2018, 66, 1620.	0.5	0
2594	Paradigm shift – For effective management of diabetic retinopathy and glaucoma. Indian Journal of Ophthalmology, 2018, 66, 893.	0.5	Ο
2595	Using Fully Convolutional Networks for Semantic Segmentation of Diabetic Retinopathy Lesions in Retinal Images. , 2018, , .		1
2597	Applying a new mammographic imaging marker to predict breast cancer risk. , 2018, , .		Ο
2598	Transfer learning for diabetic retinopathy. , 2018, , .		8
2599	Present Status of Clinical Decision Support System (CDSS) and Proposal of Ethical Guideline for Artificial Intelligence Development in Medical Field. Journal of Health Science (El Monte), 2018, 6, .	0.1	0
2600	Evolving AI from Research to Real Life $\hat{a} \in$ " Some Challenges and Suggestions. , 2018, , .		3
2601	Anesthesia research in the artificial intelligence era. Anesthesia and Pain Medicine, 2018, 13, 248-255.	0.5	1
2602	Two Fronts of Future Medicine. International Neurourology Journal, 2018, 22, S63-64.	0.5	0
2607	Long short-term memory based electrocardiogram diagnosis for premature ventricular contraction in children. , 2018, , .		0

#	Article	IF	CITATIONS
2608	Technological solutions for intelligent data processing in the food industry. Vestnik Voronežskogo Gosudarstvennogo Universiteta inženernyh Tehnologij, 2018, 80, 256-263.	0.1	2
2610	Random Inception Module and Its Parallel Implementation. Lecture Notes in Computer Science, 2019, , 96-106.	1.0	0
2611	Presentation of Topographic Information. , 2019, , 51-82.		1
2612	Friend or Foe? The Influence of Artificial Intelligence on Human Performance in Medical Chart Coding. SSRN Electronic Journal, 0, , .	0.4	1
2613	An Explainable Al-Based Computer Aided Detection System for Diabetic Retinopathy Using Retinal Fundus Images. Lecture Notes in Computer Science, 2019, , 457-468.	1.0	4
2614	Integration of Machine Learning Techniques as Auxiliary Diagnosis of Inherited Metabolic Disorders: Promising Experience with Newborn Screening Data. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2019, , 334-349.	0.2	3
2615	An approach to classification of data with highly localized unmarked features using neural networks. Computer Science, 2019, 20, 407.	0.4	1
2616	Industry 4.0 and the digital transformation journey. APPEA Journal, 2019, 59, 643.	0.4	3
2617	Euler Recurrent Neural Network: Tracking the Input Contribution to Prediction on Sequential Data. Communications in Computer and Information Science, 2019, , 738-748.	0.4	0
2618	High-Resolution Diabetic Retinopathy Image Synthesis Manipulated by Grading and Lesions. Lecture Notes in Computer Science, 2019, , 505-513.	1.0	14
2619	Using Supervised Pretraining to Improve Generalization of Neural Networks on Binary Classification Problems. Lecture Notes in Computer Science, 2019, , 410-425.	1.0	8
2620	Big Data, Real-World Data, and Machine Learning. , 2019, , 167-195.		0
2621	Aggressive Posterior Retinopathy of Prematurity Automated Diagnosis via a Deep Convolutional Network. Lecture Notes in Computer Science, 2019, , 165-172.	1.0	4
2622	A Multi-class Deep All-CNN forÂDetection of Diabetic Retinopathy Using Retinal Fundus Images. Lecture Notes in Computer Science, 2019, , 191-199.	1.0	4
2623	Image Analysis for Ophthalmology: Segmentation and Quantification of Retinal Vascular Systems. Modeling and Simulation in Science, Engineering and Technology, 2019, , 543-580.	0.4	4
2624	Diabetic Retinopathy Recognition Using an Enhanced Semi-Supervised Generative Adversarial Networks. Journal of Image and Signal Processing, 2019, 08, 1-8.	0.1	1
2625	Retinal Detachment Screening with Ensembles of Neural Network Models. Lecture Notes in Computer Science, 2019, , 251-260.	1.0	2
2626	Diabetic Retinopathy Detection Using Collective Intelligence. Journal of Scientific Innovation in Medicine, 2020, 3, .	0.1	3

	CITATION REF	PORT	
# 2627	ARTICLE Statistical Tests for Replacing Human Decision Makers with Algorithms. SSRN Electronic Journal, 0, , .	IF 0.4	CITATIONS
2628	Integrating diabetic retinopathy detection with noncommunicable disease clinics at government hospitals in Kerala through teleophthalmology. Kerala Journal of Ophthalmology, 2019, 31, 121.	0.1	0
2631	Computerized assessment of glaucoma severity based on color fundus images. , 2019, , .		1
2632	Computer-based detection of age-related macular degeneration and glaucoma using retinal images and clinical data. , 2019, , .		0
2633	Automatic liver segmentation with CT images based on 3D U-net deep learning approach. , 2019, , .		0
2635	Deep Learning Performance on Medical Image, Data and Signals. Sakarya University Journal of Computer and Information Sciences, 2019, 2, 28-40.	0.6	1
2636	Retinal Blood Vessel Segmentation using Deep Learning. The Journal of Korean Institute of Information Technology, 2019, 17, 77-82.	0.1	1
2637	Derin ×ğrenme Modelleri ve Uygulama Alanlarına İlişkin Bir Derleme. DÜMF Mühendislik Dergisi, 2019 409-445.	, 10, , 0.2	19
2639	Deep CNN with Residual Connections and Range Normalization for Clinical Text Classification. Computer Science and Information Technology, 2019, 7, 111-127.	0.1	2
2642	Automated Identification of Diabetic Retinopathy using Pixel-based Segmentation Approach. , 2019, , .		2
2645	Diagnosis of Celiac Disease and Environmental Enteropathy on Biopsy Images Using Color Balancing on Convolutional Neural Networks. Advances in Intelligent Systems and Computing, 2020, 1069, 750-765.	0.5	6
2646	Remote Optical Estimation of Respiratory Rate Based on a Deep Learning Human Pose Detector. IFMBE Proceedings, 2020, , 234-241.	0.2	0
2649	Comprehensive Study on Diabetic Retinopathy. Advances in Intelligent Systems and Computing, 2020, , 155-163.	0.5	3
2650	Performance Analysis of Deep Learning Network Models of Localized Images in Chest X-ray Decision Support System. , 2019, , .		0
2653	The Development and Trend of ECG Diagnosis Assisted by Artificial Intelligence. , 2019, , .		1
2657	Artificial Intelligence based AFB microscopy for Pulmonary Tuberculosis in North India: A pilot study. International Journal of Scientific and Research Publications, 2019, 9, p9669.	0.0	3
2660	Computer aided diabetic retinopathy detection based on ophthalmic photography: a systematic review and Meta-analysis. International Journal of Ophthalmology, 2019, 12, 1908-1916.	0.5	4
2661	How Will the Digital Tools Change Healthcare?. Journal of Sleep Medicine, 2019, 16, 71-74.	0.4	2

	CITATION RE	PORT	
#	ARTICLE	IF	CITATIONS
2662	Respiratory healthcare by design: Computational approaches bringing respiratory precision and personalised medicine closer to bedside. Morphologie, 2019, 103, 194-202.	0.5	8
2663	Das digitale Versorgungsangebot an Patienten seitens pharmazeutischer Unternehmen. , 2020, , 277-300.		0
2664	Efficiency Optimization of Capsule Network Model Based on Vector Element. International Journal of Pattern Recognition and Artificial Intelligence, 2020, 34, 2052006.	0.7	0
2665	Artificial Intelligence in Retinal Vascular Imaging. Retina Atlas, 2020, , 133-145.	0.0	1
2666	Clinician Cognition and Artificial Intelligence in Medicine. , 2020, , 193-266.		0
2667	Flying Health – Think Tank und Ökosystem für Next Generation Healthcare. FOM-Edition, 2020, , 157-170.	0.1	0
2668	A Review of General Cyberspace. Computer Science and Application, 2020, 10, 893-905.	0.0	0
2669	Applications of Artificial Intelligence for the Detection, Management, and Treatment of Diabetic Retinopathy. International Ophthalmology Clinics, 2020, 60, 127-145.	0.3	7
2670	Back to the Feature: A Neural-Symbolic Perspective on Explainable Al. Lecture Notes in Computer Science, 2020, , 39-55.	1.0	3
2671	Examination of the Optic Nerve in Glaucoma. Essentials in Ophthalmology, 2020, , 59-69.	0.0	0
2673	Effective Detection of Compensated Cirrhosis Using Machine Learning. SSRN Electronic Journal, 0, , .	0.4	0
2674	An Integrated Image Processing and Deep Learning Approach for Diabetic Retinopathy Classification. Communications in Computer and Information Science, 2020, , 3-15.	0.4	2
2678	Cost Analysis of Teleophthalmology Screening for Diabetic Retinopathy Using Teleophthalmology Billing Codes. Ophthalmic Surgery Lasers and Imaging Retina, 2020, 51, S26-S34.	0.4	6
2683	Machine Learning Approaches on Diabetic Retinopathy Prediction. International Journal of Scientific Research in Computer Science Engineering and Information Technology, 2020, , 341-345.	0.2	1
2688	Diffuser-based computational imaging funduscope. Optics Express, 2020, 28, 19641.	1.7	6
2689	Deep Learning Techniques for Electronic Health Record (EHR) Analysis. Studies in Computational Intelligence, 2021, , 73-103.	0.7	7
2690	Deep Learning Approach for Imputation of Missing Values in Actigraphy Data: Algorithm Development Study. JMIR MHealth and UHealth, 2020, 8, e16113.	1.8	18
2693	Application of Machine Learning in Rhinology: A State of the Art Review. Korean Journal of Otorhinolaryngology-Head and Neck Surgery, 2020, 63, 341-349.	0.0	0

	Сітатіо	n Report	
#	Article	IF	Citations
2694	Performance and Limitation of Machine Learning Algorithms for Diabetic Retinopathy Screening: Meta-analysis. Journal of Medical Internet Research, 2021, 23, e23863.	2.1	42
2695	FA-1D-CNN Implementation to Improve Diagnosis of Heart Disease Risk Level. , 0, , .		8
2696	Explainable Deep Learning for Referable Diabetic Retinopathy. , 2020, , .		0
2697	Realization of Intelligent Computer Aided System in Physical Education and Training. Computer-Aided Design and Applications, 0, , 80-91.	0.4	5
2702	Research on Deep Learning in the Detection and Classification of Diabetic Retinopathy. , 2021, , .		2
2703	Artificial intelligence as a tool to aid in the differentiation of equine ophthalmic diseases with an emphasis on equine uveitis. Equine Veterinary Journal, 2022, 54, 847-855.	0.9	5
2704	A generalized deep learning-based framework for assistance to the human malaria diagnosis from microscopic images. Neural Computing and Applications, 2022, 34, 14223-14238.	3.2	7
2705	Smartphone Ophthalmoscopy: is there a place for it?. Clinical Ophthalmology, 2021, Volume 15, 4333-4337.	0.9	4
2706	Influence and optimization of neural network topology on steel performance prediction model. Journal of Physics: Conference Series, 2021, 2044, 012083.	0.3	0
2707	Deep learning in pervasive health monitoring, design goals, applications, and architectures: An overview and a brief synthesis. Smart Health, 2021, 22, 100221.	2.0	5
2708	Artificial intelligence in ophthalmology and visual sciences: Current implications and future directions. Artificial Intelligence in Medical Imaging, 2021, 2, 95-103.	0.3	1
2709	Potential role of artificial intelligence in craniofacial surgery. Archives of Craniofacial Surgery, 2021, 22, 223-231.	0.4	10
2710	Pulling Up by the Causal Bootstraps. , 2021, , .		1
2711	Numerical detection of diabetic retinopathy stages by multifractal analysis for OCTA macular images using multistage artificial neural network. Journal of Ambient Intelligence and Humanized Computing, 0, , 1.	3.3	1
2712	An online diabetic retinopathy screening tool for patients with type 2 diabetes. International Journal of Ophthalmology, 2021, 14, 1748-1755.	0.5	2
2713	Artificial intelligence in arthroplasty. Arthroplasty, 2021, 3, 37.	0.9	12
2716	Artificial Intelligence in the Assessment of Macular Disorders. , 2020, , 89-118.		0
2717	Fuzzy Image Processing and Deep Learning for Microaneurysms Detection. Lecture Notes in Computer Science, 2020, , 321-339.	1.0	2

#	Article	IF	CITATIONS
2718	Public Health Informatics in the Larger Context of Biomedical and Health Informatics. Computers in Health Care, 2020, , 31-41.	0.2	1
2719	Deep Multi-Instance Learning with Induced Self-Attention for Medical Image Classification. , 2020, , .		12
2720	Identifying the Level of Diabetic Retinopathy Using Deep Convolution Neural Network. , 2020, , .		2
2721	Application of artificial intelligence in medical imaging and Al-aided US diagnosis. Acta Hepatologica Japonica, 2020, 61, 623-636.	0.0	0
2722	Plasma cytokines for predicting diabetic retinopathy among type 2 diabetic patients via machine learning algorithms. Aging, 2021, 13, 1972-1988.	1.4	3
2723	Artificial intelligence and complex statistical modeling in glaucoma diagnosis and management. Current Opinion in Ophthalmology, 2021, 32, 105-117.	1.3	8
2724	Automated detection of multiple structural changes of diabetic macular oedema in SDOCT retinal images through transfer learning in CNNs. IET Image Processing, 2020, 14, 4067-4075.	1.4	6
2725	Generalizing deep whole-brain segmentation for post-contrast MRI with transfer learning. Journal of Medical Imaging, 2020, 7, 064004.	0.8	4
2726	Artificial Intelligence and the Future of Spine Surgery. Clinical Spine Surgery, 2021, 34, 216-219.	0.7	1
2727	Medical Image Analysis using Deep Learning: A Review. , 2020, , .		3
2728	COVID-19 Detection in X-ray Images using CNN Algorithm. , 2020, , .		24
2729	Progress of Artificial Intelligence in Gynecological Malignant Tumors. Cancer Management and Research, 2020, Volume 12, 12823-12840.	0.9	14
2730	Artificial Intelligence: Help or HindranceÂforÂFamilyÂPhysicians?. Pakistan Journal of Medical Sciences, 2020, 37, 288-291.	0.3	2
2731	The contribution of AI in the detection of the Diabetic Retinopathy. , 2020, , .		7
2732	The usage of deep neural network improves distinguishing COVID-19 from other suspected viral pneumonia by clinicians on chest CT: a real-world study. European Radiology, 2021, 31, 3864-3873.	2.3	16
2733	Non-architectural improvements for ECG classification using deep neural network. , 2020, , .		0
2734	Two-Stage Classification Method for MSI Status Prediction Based on Deep Learning Approach. Applied Sciences (Switzerland), 2021, 11, 254.	1.3	9
2736	Deep Learning Model for Accurate Automatic Determination of Phakic Status in Pediatric and Adult Ultrasound Biomicroscopy Images. Translational Vision Science and Technology, 2020, 9, 63.	1.1	3

ARTICLE IF CITATIONS Demonstration of the potential of white-box machine learning approaches to gain insights from 2737 1.1 19 cardiovascular disease electrocardiograms. PLoS ONE, 2020, 15, e0243615. Automated Diabetic Retinopathy Screening With Montage Fundus Images., 2020, , . Microaneurysms segmentation and diabetic retinopathy detection by learning discriminative 2739 1.4 7 representations. IET Image Processing, 2020, 14, 4571-4578. Automatic Diagnosis of Pneumothorax From Chest Radiographs: A Systematic Literature Review. IEEE 2740 Access, 2021, 9, 145817-145839. Performance Evaluation of Hybrid Machine Learning Algorithms for Medical Image Classification. 2741 0.8 1 Studies in Big Data, 2021, , 281-299. Automated Detection of Diabetic Retinopathy from Smartphone Fundus Videos. Lecture Notes in 2742 1.0 Computer Science, 2020, , 83-92. The Latest Trends in Attention Mechanisms and Their Application in Medical Imaging. Journal of the 2743 0.1 3 Korean Society of Radiology, 2020, 81, 1305. Molecular Subtyping of Diffuse Gliomas Using Magnetic Resonance Imaging: Comparison and 2744 0.4 Correlation Between Radiomics and Deep Learning. SSRN Electronic Journal, 0, , . An Automated Workflow for Lung Nodule Follow-Up Recommendation Using Deep Learning. Lecture 2745 1.0 4 Notes in Computer Science, 2020, , 369-377. 2748 Human-Centered AI for Medical Imaging. Human-computer Interaction Series, 2021, , 539-570. 0.4 Survey on Deep Learning Techniques for Medical Imaging Application Area. Learning and Analytics in 2749 2 0.5 Intelligent Systems, 2020, , 149-189. Early Detection of Diabetic Eye Disease from Fundus Images with Deep Learning. Lecture Notes in 2750 1.0 Computer Science, 2020, , 234-241. Artificial intelligence in laser refractive surgery â€" Potential and promise!. Indian Journal of 2751 0.5 3 Ophthalmology, 2020, 68, 2650. Artificial intelligence: How is it changing medical sciences and its future?. Indian Journal of 0.1 66 Dermatology, 2020, 65, 365. Predicting Coronary Artery Calcium Score from Retinal Fundus Photographs Using Convolutional 2753 1.0 1 Neural Networks. Lecture Notes in Computer Science, 2020, , 599-612. Research Progress of Artificial Intelligence Technology in Diagnosis and Quality Control of Digestive Endoscopy. Advances in Clinical Medicine, 2020, 10, 2720-2726. 2754 Disease Diagnosis and Treatment Using Deep Learning Algorithms for the Healthcare System. Advances 2755 0.3 6 in Medical Technologies and Clinical Practice Book Series, 2020, , 99-114. Key references., 2020,, 481-502.

#	Article	IF	CITATIONS
2757	Uberwasted App for Reporting and Collecting Waste Using Location Based and Deep Learning Technologies. Communications in Computer and Information Science, 2020, , 178-188.	0.4	0
2758	An Automated Aggressive Posterior Retinopathy of Prematurity Diagnosis System by Squeeze and Excitation Hierarchical Bilinear Pooling Network. Lecture Notes in Computer Science, 2020, , 165-174.	1.0	2
2759	Medical Text and Image Processing: Applications, Issues and Challenges. Learning and Analytics in Intelligent Systems, 2020, , 237-262.	0.5	12
2760	Commentary: Artificial intelligence – A game changer. Indian Journal of Ophthalmology, 2020, 68, 405.	0.5	4
2761	Diabetic retinopathy: A right time to intervene. Indian Journal of Ophthalmology, 2020, 68, 305.	0.5	3
2763	Deep Learning-Based Software Energy Consumption Profiling. Lecture Notes on Data Engineering and Communications Technologies, 2020, , 73-83.	0.5	1
2766	Development and Validation of Machine Learning Models: Electronic Health Record Data To Predict Visual Acuity After Cataract Surgery. , 2021, 25, 1-1.		6
2767	Hypertensive Fundus Changes. Retina Atlas, 2020, , 85-97.	0.0	3
2769	Convolutional Neural Network for Classification of Diabetic Retinopathy Grade. Lecture Notes in Computer Science, 2020, , 104-118.	1.0	0
2770	Enhanced Intelligence Using Collective Data Augmentation for CNN Based Cataract Detection. Lecture Notes in Electrical Engineering, 2020, , 148-160.	0.3	2
2771	Performance Comparison of Deep Learning Models for Black Lung Detection on Chest X-ray Radiographs. , 2020, , .		10
2772	Quantitative Methods in Ocular Fundus Imaging: Analysis of Retinal Microvasculature. Applied and Numerical Harmonic Analysis, 2020, , 157-174.	0.1	0
2773	Automated Grading in Diabetic Retinopathy Using Image Processing and Modified EfficientNet. Lecture Notes in Computer Science, 2020, , 505-515.	1.0	2
2774	Evaluation of the clinical efficacy of a TW3-based fully automated bone age assessment system using deep neural networks. Imaging Science in Dentistry, 2020, 50, 237.	0.6	9
2775	Improve Bone Age Assessment by Learning from Anatomical Local Regions. Lecture Notes in Computer Science, 2020, , 631-640.	1.0	6
2776	Factors in Color Fundus Photographs That Can Be Used by Humans to Determine Sex of Individuals. Translational Vision Science and Technology, 2020, 210, 1737.	1.1	0
2777	A Deep Learning Approach to Detect the Demarcation Line in OCT Images. Communications in Computer and Information Science, 2020, , 387-399.	0.4	0
2778	Knowledge-Guided Pretext Learning for Utero-Placental Interface Detection. Lecture Notes in Computer Science, 2020, 12261, 582-593.	1.0	3

#	Article	IF	CITATIONS
2779	Information Retrieval in Conjunction With Deep Learning. Advances in Computational Intelligence and Robotics Book Series, 2020, , 300-311.	0.4	1
2780	The Significance of the Study of the Brain's Hippocampus for the Progress of Biologically-Inspired Computational Systems. Advances in Computational Intelligence and Robotics Book Series, 2020, , 63-79.	0.4	0
2781	Deep Learning in Computational Neuroscience. Advances in Computer and Electrical Engineering Book Series, 2020, , 43-63.	0.2	5
2784	Machine Learning Aprroach for Early Detection of Glaucoma from Visual Fields. , 2020, , .		2
2785	Automated Detection of Diabetic Retinopathy using Deep Residual Learning. International Journal of Computer Applications, 2020, 177, 25-32.	0.2	7
2787	Lesion-Aware Transformers for Diabetic Retinopathy Grading. , 2021, , .		44
2788	Prototypical Cross-domain Self-supervised Learning for Few-shot Unsupervised Domain Adaptation. , 2021, , .		69
2789	Fair Feature Distillation for Visual Recognition. , 2021, , .		13
2791	Extracting architectural patterns of deep neural networks for disease detection. , 2020, , .		0
2793	Đœethods of Machine Learning in Ophthalmology: Review. Oftalmologiya, 2020, 17, 20-31.	0.2	3
2796	CHEF. Proceedings of the VLDB Endowment, 2021, 14, 2410-2418.	2.1	0
2797	ЦÐ~ÐÐОВЕПÐТОЛОГІÐ~ Ð' ÐĐžÐ'ОТІ ĐœĐ•Đ"Đ~ЧÐОЇ ЛÐБОÐÐТОÐІЇ. / ÐÐĐĐ›Ð	†Ð¢Ð~ЧE)ĐõĐ™ ĐžÐ″
2798	Grading Diabetic Retinopathy Severity Using Modern Convolution Neural Networks (CNN). , 2021, , .		1
2799	Chest X-Ray Image to Classify Lung diseases in Different Resolution Size using DenseNet-121 Architectures. , 2021, , .		4
2800	Deep Learning–Assisted Multiphoton Microscopy to Reduce Light Exposure and Expedite Imaging in Tissues With High and Low Light Sensitivity. Translational Vision Science and Technology, 2021, 10, 30.	1.1	8
2801	Narrative online guides for the interpretation of digital-pathology images and tissue-atlas data. Nature Biomedical Engineering, 2022, 6, 515-526.	11.6	17
2802	Deep Learning for Detecting Subretinal Fluid and Discerning Macular Status by Fundus Images in Central Serous Chorioretinopathy. Frontiers in Bioengineering and Biotechnology, 2021, 9, 651340.	2.0	5
2803	Diabetic Retinopathy Classification Techniques in Medical Analysis Using Deep Representations. Lecture Notes in Electrical Engineering, 2022, , 1597-1605.	0.3	0

#	Article	IF	CITATIONS
2804	Deep learning models for screening of high myopia using optical coherence tomography. Scientific Reports, 2021, 11, 21663.	1.6	15
2805	Automation of Lung Ultrasound Interpretation via Deep Learning for the Classification of Normal versus Abnormal Lung Parenchyma: A Multicenter Study. Diagnostics, 2021, 11, 2049.	1.3	12
2806	<i>What if you have a humanoid AI robot doctor?</i> : An investigation of public trust in South Korea. Journal of Communication in Healthcare, 2022, 15, 276-285.	0.8	1
2807	Label-Free Histology and Evaluation of Human Pancreatic Cancer with Coherent Nonlinear Optical Microscopy. Analytical Chemistry, 2021, 93, 15550-15558.	3.2	12
2808	Machine intelligence in non-invasive endocrine cancer diagnostics. Nature Reviews Endocrinology, 2022, 18, 81-95.	4.3	25
2809	Nuclear Medicine and Artificial Intelligence: Best Practices for Algorithm Development. Journal of Nuclear Medicine, 2022, 63, 500-510.	2.8	43
2810	Pre-Consultation System Based on the Artificial Intelligence Has a Better Diagnostic Performance Than the Physicians in the Outpatient Department of Pediatrics. Frontiers in Medicine, 2021, 8, 695185.	1.2	4
2811	Developing an iOS application that uses machine learning for the automated diagnosis of blepharoptosis. Graefe's Archive for Clinical and Experimental Ophthalmology, 2022, 260, 1329-1335.	1.0	4
2812	ROLE OF ARTIFICIAL INTELLIGENCE IN DIABETES MANAGEMENT. International Journal of Engineering Technologies and Management Research, 2020, 7, 80-88.	0.1	0
2813	A Deep Learning Model for Skin Lesion Analysis Using Gaussian Adversarial Networks. Advances in Intelligent Systems and Computing, 2021, , 1015-1022.	0.5	0
2815	Using Machine Learning to Predict Primary Care and Advance Workforce Research. Annals of Family Medicine, 2020, 18, 334-340.	0.9	4
2816	Application of Logistic Regression Methods to Retinal Damage Detection on Digital Fundus Images. International Journal of Scientific Research in Computer Science Engineering and Information Technology, 2020, , 103-109.	0.2	1
2817	The Promise of Big Data and Digital Solutions in Building a Cardiovascular Learning System: Opportunities and Barriers. Methodist DeBakey Cardiovascular Journal, 2021, 16, 212.	0.5	7
2818	Optimized KFCM Segmentation and RNN Based Classification System for Diabetic Retinopathy Detection. Lecture Notes in Electrical Engineering, 2021, , 1309-1322.	0.3	2
2820	Boosting Traditional Healthcare-Analytics with Deep Learning AI: Techniques, Frameworks and Challenges. Studies in Computational Intelligence, 2021, , 335-365.	0.7	3
2822	Improving the accuracy of diabetes retinopathy image classification using augmentation. , 2020, , .		6
2825	An investigation of Deep Learning Algorithms applied to automated diagnosis for Diabetic Retinopathy. , 2020, , .		0
2826	GLO-YOLO., 2020,,.		2

#	Article	IF	CITATIONS
2827	Performance of deep learning to detect mastoiditis using multiple conventional radiographs of mastoid. PLoS ONE, 2020, 15, e0241796.	1.1	8
2828	Survey of General Practitioners on Tele-Ophthalmology Practice in Singapore. Annals of the Academy of Medicine, Singapore, 2020, 49, 712-716.	0.2	2
2830	Artificial Intelligence in the assessment of diabetic retinopathy from fundus photographs. Seminars in Ophthalmology, 2020, 35, 325-332.	0.8	7
2833	Digitizing the Pharma Neurons – A Technological Operation in Progress!. Reviews on Recent Clinical Trials, 2020, 15, 178-187.	0.4	0
2834	Screening Diabetic Retinopathy Using an Automated Retinal Image Analysis System in Independent and Assistive Use Cases in Mexico: Randomized Controlled Trial. JMIR Formative Research, 2021, 5, e25290.	0.7	7
2835	Application of Artificial Intelligence in Targeting Retinal Diseases. Current Drug Targets, 2020, 21, 1208-1215.	1.0	9
2836	Enabling Machine Learning in Critical Care. , 2017, 17, 198-199.		4
2837	Automated Detection of Diabetic Retinopathy using Deep Learning. AMIA Summits on Translational Science Proceedings, 2018, 2017, 147-155.	0.4	21
2838	The Potential of Quantum Computing and Machine Learning to Advance Clinical Research and Change the Practice of Medicine. Missouri Medicine, 2018, 115, 463-467.	0.3	12
2839	Building the Thermometer for Mental Health. Cerebrum: the Dana Forum on Brain Science, 2018, 2018, .	0.1	5
2840	A Comparison of Patient History- and EKG-based Cardiac Risk Scores. AMIA Summits on Translational Science Proceedings, 2019, 2019, 82-91.	0.4	0
2841	Predictive Models for Diabetic Retinopathy from Non-Image Teleretinal Screening Data. AMIA Summits on Translational Science Proceedings, 2019, 2019, 472-477.	0.4	5
2843	Comparing Artificial Intelligence Platforms for Histopathologic Cancer Diagnosis. Federal Practitioner: for the Health Care Professionals of the VA, DoD, and PHS, 2019, 36, 456-463.	0.6	5
2844	Clinical Concept Embeddings Learned from Massive Sources of Multimodal Medical Data. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2020, 25, 295-306.	0.7	34
2845	Assessing Contribution of Higher Order Clinical Risk Factors to Prediction of Outcome in Aneurysmal Subarachnoid Hemorrhage Patients. AMIA Annual Symposium proceedings, 2019, 2019, 848-856.	0.2	1
2846	The Impact of Medical Big Data Anonymization on Early Acute Kidney Injury Risk Prediction. AMIA Summits on Translational Science Proceedings, 2020, 2020, 617-625.	0.4	1
2847	A Review of Challenges and Opportunities in Machine Learning for Health. AMIA Summits on Translational Science Proceedings, 2020, 2020, 191-200.	0.4	25
2848	The role of artificial intelligence in colon polyps detection. Gastroenterology and Hepatology From Bed To Bench, 2020, 13, 191-199.	0.6	1

			REPORT	
#	Article		IF	CITATIONS
2849	DeepLN: an artificial intelligence-based automated system for lung cancer screening. A Translational Medicine, 2020, 8, 1126.	Annals of	0.7	2
2850	A review on recent advancements in diagnosis and classification of cancers using artifi			

			0
#	Article	IF	CITATIONS
2867	Automated diabetic retinopathy screening for primary care settings using deep learning. Intelligence-based Medicine, 2021, 5, 100045.	1.4	4
2868	Artificial intelligence in dry eye disease. Ocular Surface, 2022, 23, 74-86.	2.2	20
2869	Enhancing Analytical Reasoning in the Intensive Care Unit. Critical Care Clinics, 2022, 38, 51-67.	1.0	1
2870	Convolutional neural network performance compared to radiologists in detecting intracranial hemorrhage from brain computed tomography: A systematic review and meta-analysis. European Journal of Radiology, 2022, 146, 110073.	1.2	16
2872	Medical Image Classification Using Generalized Zero Shot Learning. , 2021, , .		15
2873	Comparison of Transfer Learning Strategies for Diabetic Retinopathy Detection. , 2021, , .		0
2874	All you need are a few pixels: semantic segmentation with PixelPick. , 2021, , .		13
2875	Electronic tools in clinical laboratory diagnostics: key examples, limitations, and value in laboratory medicine. Journal of Laboratory Medicine, 2021, 45, 319-324.	1.1	0
2876	Predicting Central Serous Chorioretinopathy Recurrence Using Machine Learning. Frontiers in Physiology, 2021, 12, 649316.	1.3	3
2877	CinE caRdiac magneTic resonAnce to predIct veNTricular arrhYthmia (CERTAINTY). Scientific Reports, 2021, 11, 22683.	1.6	6
2878	In-Person Verification of Deep Learning Algorithm for Diabetic Retinopathy Screening Using Different Techniques Across Fundus Image Devices. Translational Vision Science and Technology, 2021, 10, 17.	1.1	8
2879	Segmentation of Lymph Nodes in Ultrasound Images Using U-Net Convolutional Neural Networks and Gabor-Based Anisotropic Diffusion. Journal of Medical and Biological Engineering, 2021, 41, 942-952.	1.0	5
2880	Study on Horizon Scanning with a Focus on the Development of AI-Based Medical Products: Citation Network Analysis. Therapeutic Innovation and Regulatory Science, 2022, 56, 263-275.	0.8	4
2881	Accuracy of Image-Based Automated Diagnosis in the Identification and Classification of Acute Burn Injuries. A Systematic Review. European Journal of Burn Care, 2021, 2, 281-292.	0.4	2
2882	Validation of Computer-Aided Diagnosis of Diabetic Retinopathy from Retinal Photographs of Diabetic Patients from Telecamps. Telehealth and Medicine Today, 0, , .	0.0	0
2883	Robust feature space separation for deep convolutional neural network training. Discover Artificial Intelligence, 2021, 1, 1.	2.1	3
2884	Artificial Intelligent Multi-Modal Point-of-Care System for Predicting Response of Transarterial Chemoembolization in Hepatocellular Carcinoma. Frontiers in Bioengineering and Biotechnology, 2021, 9, 761548.	2.0	1
2885	Deep learning–assisted prostate cancer detection on bi-parametric MRI: minimum training data size requirements and effect of prior knowledge. European Radiology, 2022, 32, 2224-2234.	2.3	48

#	Article	IF	CITATIONS
2886	Pivotal Evaluation of an Artificial Intelligence System for Autonomous Detection of Referrable and Vision-Threatening Diabetic Retinopathy. JAMA Network Open, 2021, 4, e2134254.	2.8	83
2887	Artificial Intelligence: Review of Current and Future Applications in Medicine. , 2021, 38, 527-538.		12
2888	Artificial Intelligence to Detect Meibomian Gland Dysfunction From in-vivo Laser Confocal Microscopy. Frontiers in Medicine, 2021, 8, 774344.	1.2	9
2889	Predictive model and risk analysis for diabetic retinopathy using machine learning: a retrospective cohort study in China. BMJ Open, 2021, 11, e050989.	0.8	18
2890	Artificial Intelligence, Heuristic Biases, and the Optimization of Health Outcomes: Cautionary Optimism. Journal of Clinical Medicine, 2021, 10, 5284.	1.0	9
2891	In Vivo Imaging-Based Techniques for Early Diagnosis of Oral Potentially Malignant Disorders—Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 2021, 18, 11775.	1.2	9
2892	Automatic Screening and Identifying Myopic Maculopathy on Optical Coherence Tomography Images Using Deep Learning. Translational Vision Science and Technology, 2021, 10, 10.	1.1	17
2893	The Emergence of Artificial Intelligence in Cardiology: Current and Future Applications. Current Cardiology Reviews, 2022, 18, .	0.6	5
2895	Honest-but-Curious Nets: Sensitive Attributes of Private Inputs Can Be Secretly Coded into the Classifiers' Outputs. , 2021, , .		11
2896	Opportunities and Challenges: Classification of Skin Disease Based on Deep Learning. Chinese Journal of Mechanical Engineering (English Edition), 2021, 34, .	1.9	19
2897	Automated recognition of objects and types of forceps in surgical images using deep learning. Scientific Reports, 2021, 11, 22571.	1.6	6
2898	Screening Referable Diabetic Retinopathy Using a Semi-automated Deep Learning Algorithm Assisted Approach. Frontiers in Medicine, 2021, 8, 740987.	1.2	7
2901	Identification of Diabetic Retinopathy through Machine Learning. Mobile Information Systems, 2021, 2021, 1-8.	0.4	30
2902	Prediction of Cardiovascular Parameters With Supervised Machine Learning From Singapore "l―Vessel Assessment and OCT-Angiography: A Pilot Study. Translational Vision Science and Technology, 2021, 10, 20.	1.1	8
2903	A deep learning model for identifying diabetic retinopathy using optical coherence tomography angiography. Scientific Reports, 2021, 11, 23024.	1.6	32
2904	The contribution of human factors and ergonomics to the design and delivery of safe future healthcare Journal, 2021, 8, e574-e579.	0.6	7
2905	Integrative multiomics-histopathology analysis for breast cancer classification. Npj Breast Cancer, 2021, 7, 147.	2.3	21
2906	The Effectiveness of a Deep Learning Model to Detect Left Ventricular Systolic Dysfunction from Electrocardiograms. International Heart Journal, 2021, 62, 1332-1341.	0.5	10

#	Article	IF	CITATIONS
2907	Applications of AI in Healthcare and Assistive Technologies. Learning and Analytics in Intelligent Systems, 2022, , 11-31.	0.5	3
2908	Artificial intelligence can assist with diagnosing retinal vein occlusion. International Journal of Ophthalmology, 2021, 14, 1895-1902.	0.5	16
2909	Can deep learning revolutionize clinical understanding and diagnosis of optic neuropathy?. Artificial Intelligence in the Life Sciences, 2021, 1, 100018.	1.6	4
2910	Development of a Deep Learning Model to Assist With Diagnosis of Hepatocellular Carcinoma. Frontiers in Oncology, 2021, 11, 762733.	1.3	6
2911	Deepfakes in Ophthalmology. Ophthalmology Science, 2021, 1, 100079.	1.0	20
2912	Deep learning-based diagnosis of temporal lobe epilepsy associated with hippocampal sclerosis: An MRI study. Epilepsy Research, 2021, 178, 106815.	0.8	7
2913	Deep learning model improves radiologists' performance in detection and classification of breast lesions. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2021, 33, 682-693.	0.7	5
2914	A Multi-Center Clinical Study of the Automated Fundus Screening Medical Device Al-100. SSRN Electronic Journal, 0, , .	0.4	0
2916	Diagnose Like a Radiologist: Hybrid Neuro-Probabilistic Reasoning for Attribute-Based Medical Image Diagnosis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 7400-7416.	9.7	9
2917	Narrative review of artificial intelligence in diabetic macular edema: Diagnosis and predicting treatment response using optical coherence tomography. Indian Journal of Ophthalmology, 2021, 69, 2999.	0.5	10
2918	An overview of artificial intelligence and big data analytics for smart healthcare: requirements, applications, and challenges. , 2021, , 243-254.		5
2919	Telemedicine in diabetic retinopathy screening in India. Indian Journal of Ophthalmology, 2021, 69, 2977.	0.5	6
2920	Retinal Photograph-Based Deep Learning System for Detection of Hyperthyroidism: A Multicenter, Diagnostic Study. SSRN Electronic Journal, 0, , .	0.4	0
2921	Public patient views of artificial intelligence in healthcare: A nominal group technique study. Digital Health, 2021, 7, 205520762110636.	0.9	14
2922	Convolutional Neural Networks (CNN). , 2021, , 83-109.		3
2924	Commentary: Smartphone imaging integrated with offline artificial intelligence – A boon for the screening of diabetic retinopathy. Indian Journal of Ophthalmology, 2021, 69, 3154.	0.5	0
2925	The use of deep learning technology for the detection of optic neuropathy. Quantitative Imaging in Medicine and Surgery, 2022, 12, 2129-2143.	1.1	3
2927	CARNet: Cascade attentive RefineNet for multi-lesion segmentation of diabetic retinopathy images. Complex & Intelligent Systems, 2022, 8, 1681-1701.	4.0	13

	CI	tation Report	
#	Article	IF	Citations
2928	Machine learning algorithms predict extended postoperative opioid use in primary total knee arthroplasty. Knee Surgery, Sports Traumatology, Arthroscopy, 2022, 30, 2573-2581.	2.3	22
2929	Deep Learning for Orthopedic Disease Based on Medical Image Analysis: Present and Future. Applied Sciences (Switzerland), 2022, 12, 681.	1.3	10
2931	Physician Knowledge Base: Clinical Decision Support Systems. Yonsei Medical Journal, 2022, 63, 8.	0.9	3
2932	Development of a knowledge mining approach to uncover heterogeneous risk predictors of acute kidney injury across age groups. International Journal of Medical Informatics, 2022, 158, 104661.	1.6	1
2933	Association between patient-, tooth- and treatment-level factors and root canal treatment failure: A retrospective longitudinal and machine learning study. Journal of Dentistry, 2022, 117, 103937.	1.7	7
2934	DeepLN: an artificial intelligence-based automated system for lung cancer screening. Annals of Translational Medicine, 2020, 8, 1126-1126.	0.7	17
2935	EdgeAI: Diabetic Retinopathy Detection in Intel Architecture. , 2020, , .		2
2936	Neural Nework-based Mobile App Framework to Aid Resource-poor Setting Community Health. , 2020), , .	0

2937 A Review on Recent Advancements in Diagnosis and Classification of Cancers Using Artificial

		CITATION	i Report	
			IF	CITATIONS
Veural Netwo	ork and			3

2950	Interpretable Retinal Disease Classification from OCT Images Using Deep Neural Network and Explainable AI. , 2021, , .		3
2951	A-PSPNet: A novel segmentation method of renal ultrasound image. , 2021, , .		1
2952	Grouping and Decoupling Mechanism for Diabetic Retinopathy Image Grading. , 2021, , .		2
2953	Visual interpretability analysis of Deep CNNs using an Adaptive Threshold method on Diabetic Retinopathy images. , 2021, , .		2
2954	Segmentation of Laser Marks of Diabetic Retinopathy in the Fundus Photographs Using Lightweight U-Net. Journal of Diabetes Research, 2021, 2021, 1-10.	1.0	10
2955	Deep learning-based approach for corneal ulcer screening. , 2021, , .		3
2956	Generalisability and performance of an OCT-based deep learning classifier for community-based and hospital-based detection of gonioscopic angle closure. British Journal of Ophthalmology, 2023, 107, 511-517.	2.1	10
2957	Enhancing Quality of Healthcare and Patient Safety: Oversight of Physician Assistants, Nurses, and Pharmacists in Era of COVID-19 and Beyond. Telehealth and Medicine Today, 0, , .	0.0	0
2958	Beyond $L_{p} $ Norms: Delving Deeper into Robustness to Physical Image Transformations. , 2021, , .		0
2959	An Efficient Deep Learning Network for Automatic Detection of Neovascularization in Color Fundus Images. , 2021, 2021, 3688-3692.		1
2960	Artificial intelligence for detecting keratoconus. The Cochrane Library, 2021, 2021, .	1.5	2
2961	Image-Based Differentiation of Bacterial and Fungal Keratitis Using Deep Convolutional Neural Networks. Ophthalmology Science, 2022, 2, 100119.	1.0	22
2962	Efficient Breast Cancer Classification Using Histopathological Images and a Simple VGG. Revista De Informatica Teorica E Aplicada, 2022, 29, 102-114.	0.2	1
2963	Feasibility and clinical utility of handheld fundus cameras for retinal imaging. Eye, 2023, 37, 274-279.	1.1	14
2964	Classification ofÂFundus Images forÂDiabetic Retinopathy Using Machine Learning: aÂBrief Review. Advances in Intelligent Systems and Computing, 2022, , 37-45.	0.5	3
2965	Transfer Learning-based Computer-aided Diagnosis System for Predicting Grades of Diabetic Retinopathy. Computers, Materials and Continua, 2022, 71, 4573-4590.	1.5	1
2966	Development of novel deep multimodal representation learningâ€based model for the differentiation of liver tumors on Bâ€mode ultrasound images. Journal of Gastroenterology and Hepatology (Australia), 2022, 37, 678-684.	1.4	10
2967	Development of cost-effective IoT module-based pipe classification system for flexible manufacturing system of painting process of high-pressure pipe. International Journal of Advanced Manufacturing Technology, 2022, 119, 5453-5466.	1.5	4

#

ARTICLE

#	Article	IF	CITATIONS
2969	A Transfer Learning and U-Net-based automatic detection of diabetic retinopathy from fundus images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2022, 10, 663-674.	1.3	30
2970	Application of artificial intelligence in cataract management: current and future directions. Eye and Vision (London, England), 2022, 9, 3.	1.4	27
2971	Application of Artificial Intelligence in Diagnosis of Craniopharyngioma. Frontiers in Neurology, 2021, 12, 752119.	1.1	3
2972	Elevated Coronary Artery Calcium Quantified by a Validated Deep Learning Model From Lung Cancer Radiotherapy Planning Scans Predicts Mortality. JCO Clinical Cancer Informatics, 2022, 6, e2100095.	1.0	9
2973	A Lightweight Deep Learning Approach for Diabetic Retinopathy Classification. Communications in Computer and Information Science, 2022, , 277-287.	0.4	8
2974	Karotis Arter Intima-Medya Kalınlığı Ultrason Görüntülerinde Derin Öğrenme Modellerinin Karşılaştırılması: CAIMTUSNet. Bilişim Teknolojileri Dergisi, 2022, 15, 1-12.	0.2	9
2975	How Explainability Contributes to Trust in AI. SSRN Electronic Journal, 0, , .	0.4	1
2976	Machine Learning for Clinical Decision-Making: Challenges and Opportunities in Cardiovascular Imaging. Frontiers in Cardiovascular Medicine, 2021, 8, 765693.	1.1	26
2977	Deep learning model calibration for improving performance in class-imbalanced medical image classification tasks. PLoS ONE, 2022, 17, e0262838.	1.1	24
2978	The adoption of deep learning interpretability techniques on diabetic retinopathy analysis: a review. Medical and Biological Engineering and Computing, 2022, 60, 633-642.	1.6	14
2979	Machine learning in knee arthroplasty: specific data are key—a systematic review. Knee Surgery, Sports Traumatology, Arthroscopy, 2022, 30, 376-388.	2.3	30
2980	Artificial intelligence perspective in the future of endocrine diseases. Journal of Diabetes and Metabolic Disorders, 2022, 21, 971-978.	0.8	8
2981	Rule-based decision support systems for eHealth. , 2022, , 87-99.		1
2982	Diagnostic Performance of Deep Learning Classifiers in Measuring Peripheral Anterior Synechia Based on Swept Source Optical Coherence Tomography Images. Frontiers in Medicine, 2021, 8, 775711.	1.2	3
2983	Annual Research Review: Translational machine learning for child and adolescent psychiatry. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2022, 63, 421-443.	3.1	21
2984	Simplifying Diagnosis of Fetal Alcohol Syndrome Using Machine Learning Methods. Frontiers in Pediatrics, 2021, 9, 707566.	0.9	4
2985	Clinically applicable deep learning-based decision aids for treatment of neovascular AMD. Graefe's Archive for Clinical and Experimental Ophthalmology, 2022, 260, 2217-2230.	1.0	8
2986	Challenges for ocular disease identification in the era of artificial intelligence. Neural Computing and Applications, 2023, 35, 22887-22909.	3.2	3

#	Article	IF	CITATIONS
2987	Classification of Diabetic Retinopathy Severity Based on GCA Attention Mechanism. IEEE Access, 2022, 10, 2729-2739.	2.6	13
2988	A U-Net Approach to Apical Lesion Segmentation on Panoramic Radiographs. BioMed Research International, 2022, 2022, 1-7.	0.9	24
2989	Regulatory-approved deep learning/machine learning-based medical devices in Japan as of 2020: A systematic review. , 2022, 1, e0000001.		17
2990	Deep Learning Application to Clinical Decision Support System in Sleep Stage Classification. Journal of Personalized Medicine, 2022, 12, 136.	1.1	17
2991	Diagnostic Value of Artificial Intelligence-Assisted Endoscopic Ultrasound for Pancreatic Cancer: A Systematic Review and Meta-Analysis. Diagnostics, 2022, 12, 309.	1.3	19
2993	Using artificial intelligence to risk stratify COVID-19 patients based on chest X-ray findings. Intelligence-based Medicine, 2022, 6, 100049.	1.4	7
2994	Deep learning-based risk classification and auxiliary diagnosis of macular edema. Intelligence-based Medicine, 2022, 6, 100053.	1.4	8
2995	Ethics, emerging research trends, issues and challenges. , 2022, , 317-368.		1
2996	Clinical decision support in primary care for better diagnosis and management of retinal disease. Australasian journal of optometry, The, 2022, 105, 562-572.	0.6	2
2997	The application of artificial intelligence in nuclear cardiology. Annals of Nuclear Medicine, 2022, 36, 111-122.	1.2	9
2998	Application Research of Artificial Intelligence Screening System for Diabetic Retinopathy. Journal of Healthcare Engineering, 2022, 2022, 1-10.	1.1	5
2999	Fault diagnosis of rolling bearings based on multi-scale deep subdomain adaptation network. Journal of Intelligent and Fuzzy Systems, 2022, , 1-11.	0.8	2
3001	CNN with Multiple Inputs for Automatic Glaucoma Assessment Using Fundus Images. International Journal of Image and Graphics, 2023, 23, .	1.2	14
3002	Al in health and medicine. Nature Medicine, 2022, 28, 31-38.	15.2	638
3003	A holistic overview of deep learning approach in medical imaging. Multimedia Systems, 2022, 28, 881-914.	3.0	37
3004	Recognizing workers' construction activities on a reinforcement processing area through the position relationship of objects detected by faster R-CNN. Engineering, Construction and Architectural Management, 2023, 30, 1657-1678.	1.8	5
3005	CX-ToM: Counterfactual explanations with theory-of-mind for enhancing human trust in image recognition models. IScience, 2022, 25, 103581.	1.9	19
3006	Artificial Intelligence Applications in the Imaging of Epilepsy and Its Comorbidities: Present and Future. Epilepsy Currents, 2022, 22, 91-96.	0.4	5

#	Article	IF	Citations
3007	End-to-end diabetic retinopathy grading based on fundus fluorescein angiography images using deep learning. Graefe's Archive for Clinical and Experimental Ophthalmology, 2022, 260, 1663-1673.	1.0	15
3008	Evaluating a Deep Learning Diabetic Retinopathy Grading System Developed on Mydriatic Retinal Images When Applied to Non-Mydriatic Community Screening. Journal of Clinical Medicine, 2022, 11, 614.	1.0	8
3009	Necessity of Local Modification for Deep Learning Algorithms to Predict Diabetic Retinopathy. International Journal of Environmental Research and Public Health, 2022, 19, 1204.	1.2	6
3013	Diabetic retinopathy classification using VGG16 neural network. Research on Biomedical Engineering, 2022, 38, 761-772.	1.5	25
3014	The impact of social class and service type on preference for AI service robots. International Journal of Emerging Markets, 2022, 17, 1049-1066.	1.3	8
3015	Transfer Learning of the ResNet-18 and DenseNet-121 Model Used to Diagnose Intracranial Hemorrhage in CT Scanning. Current Pharmaceutical Design, 2022, 28, 287-295.	0.9	26
3016	Deep multimodal learning for lymph node metastasis prediction of primary thyroid cancer. Physics in Medicine and Biology, 2022, 67, 035008.	1.6	15
3017	Deep learning for prediction of population health costs. BMC Medical Informatics and Decision Making, 2022, 22, 32.	1.5	6
3018	Clinical validation of saliency maps for understanding deep neural networks in ophthalmology. Medical Image Analysis, 2022, 77, 102364.	7.0	25
3019	Automated identification of pulmonary arteries and veins depicted in non-contrast chest CT scans. Medical Image Analysis, 2022, 77, 102367.	7.0	16
3020	A systematic review of artificial intelligence for pediatric physiotherapy practice: Past, present, and future. Neuroscience Informatics, 2022, 2, 100045.	2.8	10
3022	Convergence Between IoT and AI for Smart Health and Predictive Medicine. Internet of Things, 2022, , 69-84.	1.3	5
3023	Quantum Computing: The Future of Big Data and Artificial Intelligence in Spine. Spine Surgery and Related Research, 2022, 6, 93-98.	0.4	9
3025	Artificial Intelligence and Machine Learning: What You Always Wanted to Know but Were Afraid to Ask. , 2022, 1, 70-78.		9
3026	COPD identification and grading based on deep learning of lung parenchyma and bronchial wall in chest CT images. British Journal of Radiology, 2022, 95, 20210637.	1.0	9
3027	Imaging diabetic retinal disease: clinical imaging requirements. Acta Ophthalmologica, 2022, 100, 752-762.	0.6	9
3029	A No-Math Primer on the Principles of Machine Learning for Radiologists. Seminars in Ultrasound, CT and MRI, 2022, 43, 133-141.	0.7	1
3030	Decision Support Systems in HF based on Deep Learning Technologies. Current Heart Failure Reports, 2022, 19, 38-51.	1.3	2

#	Article	IF	Citations
3031	Study protocol: retrospectively mining multisite clinical data to presymptomatically predict seizure onset for individual patients with Sturge-Weber. BMJ Open, 2022, 12, e053103.	0.8	2
3032	Automatic classification of informative laryngoscopic images using deep learning. Laryngoscope Investigative Otolaryngology, 2022, 7, 460-466.	0.6	13
3033	Artificial Intelligence and the Practice of Neurology in 2035. Neurology, 2022, 98, 238-245.	1.5	9
3034	Explainable Artificial Intelligence for Predictive Modeling in Healthcare. Journal of Healthcare Informatics Research, 2022, 6, 228-239.	5.3	49
3035	Machine learning outperforms clinical experts in classification of hip fractures. Scientific Reports, 2022, 12, 2058.	1.6	10
3036	Establishment of a Knowledgeâ€andâ€Dataâ€Driven Artificial Intelligence System with Robustness and Interpretability in Laboratory Medicine. Advanced Intelligent Systems, 2022, 4, .	3.3	3
3037	TATL: Task agnostic transfer learning for skin attributes detection. Medical Image Analysis, 2022, 78, 102359.	7.0	12
3039	Synthetic Medical Images for Robust,ÂPrivacy-Preserving Training of Artificial Intelligence. Ophthalmology Science, 2022, 2, 100126.	1.0	11
3040	Standardized use inspection of workers' personal protective equipment based on deep learning. Safety Science, 2022, 150, 105689.	2.6	24
3041	Development and Internal Validation of a Nomogram to Predict Mortality During the ICU Stay of Thoracic Fracture Patients Without Neurological Compromise: An Analysis of the MIMIC-III Clinical Database. Frontiers in Public Health, 2021, 9, 818439.	1.3	4
3042	Pediatric Diabetic Retinopathy: Updates in Prevalence, Risk Factors, Screening, and Management. Current Diabetes Reports, 2021, 21, 56.	1.7	15
3043	A Dual Weighted Shared Capsule Network for Diabetic Retinopathy Fundus Classification. , 2021, , .		2
3044	Diagnosis of Diabetic Retinopathy through Retinal Fundus Images and 3D Convolutional Neural Networks with Limited Number of Samples. Wireless Communications and Mobile Computing, 2021, 2021, 1-15.	0.8	34
3045	Accelerations of the Fetal Heart Rate in the Screening for Fetal Growth Restriction at 34-38 Week's Gestation. Global Journal of Pediatrics & Neonatal Care, 2021, 3, .	0.1	0
3047	A Fully Automatic Evaluation Model of Difficult Airway Based on Semi-Supervised Deep Learning with a Few Labeled Samples. SSRN Electronic Journal, 0, , .	0.4	0
3048	Understanding the Research Landscape of Deep Learning in Biomedical Science: Scientometric Analysis. Journal of Medical Internet Research, 2022, 24, e28114.	2.1	3
3049	AIM in Endocrinology. , 2022, , 673-688.		0
3052	Advanced pattern recognition tools for disease diagnosis. , 2022, , 195-229.		0

#	Article	IF	CITATIONS
3053	Using machine learning for healthcare challenges and opportunities. Informatics in Medicine Unlocked, 2022, 30, 100924.	1.9	47
3054	Erklâbare KI in der medizinischen Diagnose – Erfolge und Herausforderungen. , 2022, , 727-754.		0
3055	Stratification of the Lesions in Color Fundus Images of Diabetic Retinopathy Patients Using Deep Learning Models and Machine Learning Classifiers. Lecture Notes in Electrical Engineering, 2022, , 653-666.	0.3	11
3056	Meta Learning and the Al Learning Process. , 2022, , 407-421.		0
3057	Automatic semantic segmentation and detection of vertebras and intervertebral discs by neural networks. Computer Methods and Programs in Biomedicine Update, 2022, 2, 100055.	2.3	8
3058	Application of Artificial Intelligence to Monitoring of Medication Adherence for Tuberculosis Treatment in Africa: A Pilot Study. SSRN Electronic Journal, 0, , .	0.4	1
3059	Intracranial hemorrhage detection and classification using deep learning. , 2022, , 1-14.		2
3062	Skin Disease Detection Using Machine Learning Techniques. Advances in Intelligent Systems and Computing, 2022, , 129-136.	0.5	1
3063	Acceptability of artificial intelligence-based retina screening in general population. Indian Journal of Ophthalmology, 2022, 70, 1140.	0.5	13
3064	Retinal Image Analysis Approach for Diabetic Retinopathy Grading. Communications in Computer and Information Science, 2022, , 152-165.	0.4	0
3067	Artificial Intelligence in Ophthalmology. , 2022, , 1553-1566.		1
3068	Weakly supervised training for eye fundus lesion segmentation in patients with diabetic retinopathy. Mathematical Biosciences and Engineering, 2022, 19, 5293-5311.	1.0	5
3069	Artificial intelligence in the management of neurological disorders: its prevalence and prominence. , 2022, , 193-221.		0
3070	Artificial Intelligence in Pediatrics. , 2022, , 1029-1045.		0
3071	Characterizing Infectious Keratitis Using Artificial Intelligence. International Ophthalmology Clinics, 2022, 62, 41-53.	0.3	1
3072	A review of the application of machine learning in adult obesity studies. , 2022, 2, 32-48.		4
3073	Pre-Hospital Prediction of Adverse Outcomes in Patients with Suspected COVID-19: Development, Application and Comparison of Machine Learning and Deep Learning Methods. SSRN Electronic Journal, 0, , .	0.4	1
3074	A Hybrid VDV Model for Automatic Diagnosis of Pneumothorax Using Class-Imbalanced Chest X-Rays Dataset. IEEE Access, 2022, 10, 27670-27683.	2.6	5

#	Article	IF	Citations
3075	Artificial Intelligence and Deep Learning in Ophthalmology. , 2022, , 1519-1552.		5
3076	Artificial intelligence in ophthalmology - Machines think!. Indian Journal of Ophthalmology, 2022, 70, 1075.	0.5	7
3077	AIM in Otolaryngology and Head and Neck Surgery. , 2022, , 983-1001.		0
3078	Detection and Classification of Age-Related Macular Degeneration Using Integration of DenseNet169 and Convolutional Neural Network. Lecture Notes in Networks and Systems, 2022, , 226-238.	O.5	1
3079	Feasibility of a deep learning-based diagnostic platform to evaluate lower urinary tract disorders in men using simple uroflowmetry. Investigative and Clinical Urology, 2022, 63, 301.	1.0	5
3080	The Potential of Quantum Computing in Healthcare. Advances in Systems Analysis, Software Engineering, and High Performance Computing Book Series, 2022, , 81-101.	0.5	3
3081	Aging and Alzheimer's Disease. , 2022, , 1057-1072.		0
3084	MedRDF: A Robust and Retrain-Less Diagnostic Framework for Medical Pretrained Models Against Adversarial Attack. IEEE Transactions on Medical Imaging, 2022, 41, 2130-2143.	5.4	5
3085	Machine learning and deep learning algorithms in disease prediction. , 2022, , 123-152.		2
3087	Deep Red Lesion Classification for Early Screening of Diabetic Retinopathy. Mathematics, 2022, 10, 686.	1.1	2
3088	Machine Learning–Based Anomaly Detection Techniques in Ophthalmology. JAMA Ophthalmology, 2022, 140, 189.	1.4	1
3089	Emerging Trends and Research Foci in Artificial Intelligence for Retinal Diseases: Bibliometric and Visualization Study. Journal of Medical Internet Research, 2022, 24, e37532.	2.1	19
3090	Deep Learning Application Pros And Cons Over Algorithm. , 0, 1, 1-13.		24
3091	An Artificial Neural Network Model for Pediatric Mortality Prediction in Two Tertiary Pediatric Intensive Care Units in South Africa. A Development Study. Frontiers in Pediatrics, 2022, 10, 797080.	0.9	2
3092	Lumbar Spine Computed Tomography to Magnetic Resonance Imaging Synthesis Using Generative Adversarial Network: Visual Turing Test. Diagnostics, 2022, 12, 530.	1.3	5
3093	Deep learning model for multi-classification of infectious diseases from unstructured electronic medical records. BMC Medical Informatics and Decision Making, 2022, 22, 41.	1.5	16
3094	The intercapillary space spectrum as a marker of diabetic retinopathy severity on optical coherence tomography angiography. Scientific Reports, 2022, 12, 3089.	1.6	7
3095	Identification of Diabetic Retinopathy Using Weighted Fusion Deep Learning Based on Dual-Channel Fundus Scans. Diagnostics, 2022, 12, 540.	1.3	32

#	Article	IF	Citations
3096	A Classification Tree Model with Optical Coherence Tomography Angiography Variables to Screen Early-Stage Diabetic Retinopathy in Diabetic Patients. Journal of Ophthalmology, 2022, 2022, 1-9.	0.6	3
3097	Artificial intelligence enabled automated diagnosis and grading of ulcerative colitis endoscopy images. Scientific Reports, 2022, 12, 2748.	1.6	38
3098	Quantitative estimation of pulmonary artery wedge pressure from chest radiographs by a regression convolutional neural network. Heart and Vessels, 2022, 37, 1387-1394.	0.5	6
3099	Screening of Common Retinal Diseases Using Six-Category Models Based on EfficientNet. Frontiers in Medicine, 2022, 9, 808402.	1.2	10
3100	The Utility of Machine Learning Algorithms for the Prediction of Early Revision Surgery After Primary Total Hip Arthroplasty. Journal of the American Academy of Orthopaedic Surgeons, The, 2022, 30, 513-522.	1.1	11
3101	Machine Learning Methods for Diagnosis of Eye-Related Diseases: A Systematic Review Study Based on Ophthalmic Imaging Modalities. Archives of Computational Methods in Engineering, 2022, 29, 3861-3918.	6.0	13
3102	Untangling Computer-Aided Diagnostic System for Screening Diabetic Retinopathy Based on Deep Learning Techniques. Sensors, 2022, 22, 1803.	2.1	21
3103	A Deep Learning Algorithm for Classifying Diabetic Retinopathy Using Optical Coherence Tomography Angiography. Translational Vision Science and Technology, 2022, 11, 39.	1.1	8
3104	Artificial Intelligence and Cardiovascular Genetics. Life, 2022, 12, 279.	1.1	13
3105	Application of Al and ML Techniques for Revolutionized Health Care System. , 2022, , .		1
3106	Protecting Personal Healthcare Record Using Blockchain & Federated Learning Technologies. , 2022, , .		21
3107	Classification of Diabetic Foot Ulcers Using Class Knowledge Banks. Frontiers in Bioengineering and Biotechnology, 2021, 9, 811028.	2.0	16
3108	DİYABETİK RETİNOPATİ TESPİTİ İÇİN ATOM ARAMA OPTİMİZASYONU İLE ÖZELLİK SEÇİ	'Mİ Y׾	NTEIMİ., O,
3109	Artificial Intelligence for Glaucoma. Ophthalmology Glaucoma, 2022, 5, e16-e25.	0.9	9
3110	Interpretable instance disease prediction based on causal feature selection and effect analysis. BMC Medical Informatics and Decision Making, 2022, 22, 51.	1.5	2
3111	An automated exudate detection scheme supporting diabetic retinopathy screening using spatial-spectral-statistical feature maps. Multimedia Tools and Applications, 2022, 81, 9829-9853.	2.6	2
3112	Research on 3D Rendering Effect of Marine Bionic Packaging Container Based on Deep Learning and Visualization. Scientific Programming, 2022, 2022, 1-12.	0.5	0
3113	An Outperforming Artificial Intelligence Model to Identify Referable Blepharoptosis for General Practitioners. Journal of Personalized Medicine, 2022, 12, 283.	1.1	5

#	Article	IF	CITATIONS
3114	Development and Clinical Validation of Semi-Supervised Generative Adversarial Networks for Detection of Retinal Disorders in Optical Coherence Tomography Images Using Small Dataset. Asia-Pacific Journal of Ophthalmology, 2022, 11, 219-226.	1.3	3
3115	Federated Learning for Multicenter Collaboration in Ophthalmology. Ophthalmology Retina, 2022, 6, 657-663.	1.2	20
3116	Artificial intelligence to detect malignant eyelid tumors from photographic images. Npj Digital Medicine, 2022, 5, 23.	5.7	19
3117	Machine Learning for Predicting In-Hospital Mortality After Traumatic Brain Injury in Both High-Income and Low- and Middle-Income Countries. Neurosurgery, 2022, 90, 605-612.	0.6	13
3118	Rapid Automated Analysis of Skull Base Tumor Specimens Using Intraoperative Optical Imaging and Artificial Intelligence. Neurosurgery, 2022, 90, 758-767.	0.6	8
3119	A Comprehensive Review on the Diabetic Retinopathy, Glaucoma and Strabismus Detection Techniques Based on Machine Learning and Deep Learning. European Journal of Medical and Health Sciences, 2022, , 24-40.	0.1	2
3120	Deep learning model using retinal vascular images for classifying schizophrenia. Schizophrenia Research, 2022, 241, 238-243.	1.1	12
3121	Interdisciplinary Collaboration Opportunities, Challenges, and Solutions for Artificial Intelligence in Ultrasound. Current Medical Imaging, 2022, 18, 1046-1051.	0.4	2
3122	A Clinical Decision Support System for the Prediction of Quality of Life in ALS. Journal of Personalized Medicine, 2022, 12, 435.	1.1	6
3123	Development of CNN models for the enteral feeding tube positioning assessment on a small scale data set. BMC Medical Imaging, 2022, 22, 52.	1.4	1
3124	Artificial intelligence to classify ear disease from otoscopy: A systematic review and metaâ€analysis. Clinical Otolaryngology, 2022, 47, 401-413.	0.6	19
3125	Al Estimation of Gestational Age from Blind Ultrasound Sweeps in Low-Resource Settings. , 2022, 1, .		20
3126	DCNN-based prediction model for detection of age-related macular degeneration from color fundus images. Medical and Biological Engineering and Computing, 2022, 60, 1431-1448.	1.6	10
3127	Detection of signs of disease in external photographs of the eyes via deep learning. Nature Biomedical Engineering, 2022, 6, 1370-1383.	11.6	31
3128	Multi-task Deep Learning of Myocardial Blood Flow and Cardiovascular Risk Traits from PET Myocardial Perfusion Imaging. Journal of Nuclear Cardiology, 2022, 29, 3300-3310.	1.4	3
3129	Performance analysis of deep neural networks through transfer learning in retinal detachment diagnosis using fundus images. Sadhana - Academy Proceedings in Engineering Sciences, 2022, 47, 1.	0.8	9
3130	The Application of Deep Learning Model in Recruitment Decision. Wireless Communications and Mobile Computing, 2022, 2022, 1-13.	0.8	0
3131	Hypertensive eye disease. Nature Reviews Disease Primers, 2022, 8, 14.	18.1	25

#	Article	IF	CITATIONS
3132	Machine learning based on automated breast volume scanner (<scp>ABVS</scp>) radiomics for differential diagnosis ofÂbenign and malignant <scp>Blâ€RADS</scp> 4 lesions. International Journal of Imaging Systems and Technology, 0, , .	2.7	2
3133	Voting Classification-Based Diabetes Mellitus Prediction Using Hypertuned Machine-Learning Techniques. Mobile Information Systems, 2022, 2022, 1-16.	0.4	20
3134	Use of realâ€ŧime artificial intelligence in detection of abnormal image patterns in standard sonographic reference planes in screening for fetal intracranial malformations. Ultrasound in Obstetrics and Gynecology, 2022, 59, 304-316.	0.9	23
3135	Diagnostic accuracy of a commercially available deep-learning algorithm in supine chest radiographs following trauma. British Journal of Radiology, 2022, 95, 20210979.	1.0	14
3136	Development of an automatic detection model using artificial intelligence for the detection of cyst-like radiolucent lesions of the jaws on panoramic radiographs with small training datasets. Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology, 2022, 34, 553-560.	0.2	5
3137	Cross-ethnicity/race generalization failure of behavioral prediction from resting-state functional connectivity. Science Advances, 2022, 8, eabj1812.	4.7	45
3138	Cross-Camera External Validation for Artificial Intelligence Software in Diagnosis of Diabetic Retinopathy. Journal of Diabetes Research, 2022, 2022, 1-5.	1.0	5
3139	Detection of ring cell cancer in histopathological images with region of interest determined by SLIC superpixels method. Neural Computing and Applications, 2022, 34, 13499-13512.	3.2	3
3140	Trends and hot topics in radiology, nuclear medicine and medical imaging from 2011–2021: a bibliometric analysis of highly cited papers. Japanese Journal of Radiology, 2022, 40, 847-856.	1.0	8
3141	Applications of Artificial Intelligence in Myopia: Current and Future Directions. Frontiers in Medicine, 2022, 9, 840498.	1.2	6
3142	Precision medicine in stroke: towards personalized outcome predictions using artificial intelligence. Brain, 2022, 145, 457-475.	3.7	54
3143	Predictions of cervical cancer identification by photonic method combined with machine learning. Scientific Reports, 2022, 12, 3762.	1.6	13
3144	Active label cleaning for improved dataset quality under resource constraints. Nature Communications, 2022, 13, 1161.	5.8	22
3147	Are the imaging-based techniques for early diagnosis of oral potentially malignant lesions effective?. Evidence-Based Dentistry, 2022, 23, 26-27.	0.3	0
3148	Use of U-Net Convolutional Neural Networks for Automated Segmentation of Fecal Material for Objective Evaluation of Bowel Preparation Quality in Colonoscopy. Diagnostics, 2022, 12, 613.	1.3	5
3149	Potential of Internet of Medical Things (IoMT) applications in building a smart healthcare system: A systematic review. Journal of Oral Biology and Craniofacial Research, 2022, 12, 302-318.	0.8	93
3150	Epidemiological predictive modeling: lessons learned from the Kuopio ischemic heart disease risk factor study. Annals of Epidemiology, 2022, 70, 1-8.	0.9	4
3151	Deep learning-enabled pelvic ultrasound images for accurate diagnosis of ovarian cancer in China: a retrospective, multicentre, diagnostic study. The Lancet Digital Health, 2022, 4, e179-e187.	5.9	37

#	Article	IF	Citations
3152	Integrating Behavioral, Economic, and Technical Insights to Understand and Address Algorithmic Bias: A Human-Centric Perspective. ACM Transactions on Management Information Systems, 2022, 13, 1-27.	2.1	5
3153	Machine Learning for Predicting Discharge Disposition After Traumatic Brain Injury. Neurosurgery, 2022, 90, 768-774.	0.6	6
3154	Deep learning radiomics based onÂcontrast-enhanced ultrasound images for assisted diagnosis of pancreatic ductal adenocarcinoma and chronic pancreatitis. BMC Medicine, 2022, 20, 74.	2.3	20
3155	Multiple lesion segmentation in diabetic retinopathy with dual-input attentive RefineNet. Applied Intelligence, 2022, 52, 14440-14464.	3.3	8
3156	Augmentation-Consistent Clustering Network for Diabetic Retinopathy Grading with Fewer Annotations. Journal of Healthcare Engineering, 2022, 2022, 1-10.	1.1	1
3157	Development and validation of an ensemble machine learning framework for detection of all-cause advanced hepatic fibrosis: a retrospective cohort study. The Lancet Digital Health, 2022, 4, e188-e199.	5.9	18
3158	Impact of Incomplete Blinking Analyzed Using a Deep Learning Model With the Keratograph 5M in Dry Eye Disease. Translational Vision Science and Technology, 2022, 11, 38.	1.1	7
3159	ODGNet: a deep learning model for automated optic disc localization and glaucoma classification using fundus images. SN Applied Sciences, 2022, 4, 1.	1.5	19
3160	Novel technical and privacy-preserving technology for artificial intelligence in ophthalmology. Current Opinion in Ophthalmology, 2022, Publish Ahead of Print, .	1.3	9
3161	â€~lf You're Going to Trust the Machine, Then That Trust Has Got to Be Based on Something':. Science an Technology Studies, 0, , .	d 0.6	10
3162	The future of artificial intelligence in medicine: Medical-legal considerations for health leaders. Healthcare Management Forum, 2022, 35, 185-189.	0.6	15
3163	The medical algorithmic audit. The Lancet Digital Health, 2022, 4, e384-e397.	5.9	85
3164	King Abdullah International Medical Research Center (KAIMRC)'s big ocular images data set. , 2022, , .		1
3165	Role of Artificial Intelligence in Diagnosis and Treatment of Various Medical Diseases in Patients. AMEI S Current Trends in Diagnosis & Treatment, 2022, 5, 92-98.	0.1	0
3166	Artificial intelligence deployment in diabetic retinopathy: the last step of the translation continuum. The Lancet Digital Health, 2022, 4, e208-e209.	5.9	13
3167	Artificial intelligence in functional imaging of the lung. British Journal of Radiology, 2022, 95, 20210527.	1.0	8
3168	Diabetic Macular Edema Detection Using End-to-End Deep Fusion Model and Anatomical Landmark Visualization on an Edge Computing Device. Frontiers in Medicine, 2022, 9, 851644.	1.2	5
3169	Transport features predict if a molecule is odorous. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116576119.	3.3	18

#	Article	IF	CITATIONS
3170	Identification and Extracting Method of Exterior Building Information on 3D Map. Buildings, 2022, 12, 452.	1.4	4
3171	Rapid, automated nerve histomorphometry through open-source artificial intelligence. Scientific Reports, 2022, 12, 5975.	1.6	9
3172	Annotation and segmentation of diabetic retinopathy lesions: an explainable AI application. , 2022, , .		1
3173	Dual-Branch Convolutional Neural Network Based on Ultrasound Imaging in the Early Prediction of Neoadjuvant Chemotherapy Response in Patients With Locally Advanced Breast Cancer. Frontiers in Oncology, 2022, 12, 812463.	1.3	6
3175	Is this good enough? On expert perception of brain tumor segmentation quality. , 2022, , .		0
3176	Performance evaluation of lightweight convolutional neural networks on retinal lesion segmentation. , 2022, , .		Ο
3177	The User Experience of AI. Med, 2022, 3, 228-232.	2.2	1
3178	Using artificial intelligence reading label system in diabetic retinopathy grading training of junior ophthalmology residents and medical students. BMC Medical Education, 2022, 22, 258.	1.0	10
3179	Deep learning-based framework for segmentation of multiclass rib fractures in CT utilizing a multi-angle projection network. International Journal of Computer Assisted Radiology and Surgery, 2022, 17, 1115-1124.	1.7	2
3180	Hierarchical confounder discovery in the experiment-machine learning cycle. Patterns, 2022, 3, 100451.	3.1	1
3181	A cost-aware framework for the development of AI models for healthcare applications. Nature Biomedical Engineering, 2022, 6, 1384-1398.	11.6	12
3182	Real-time diabetic retinopathy screening by deep learning in a multisite national screening programme: a prospective interventional cohort study. The Lancet Digital Health, 2022, 4, e235-e244.	5.9	82
3183	The Use of Artificial Intelligence in Complementary and Alternative Medicine: A Systematic Scoping Review. Frontiers in Pharmacology, 2022, 13, 826044.	1.6	14
3184	Automated detection of myopic maculopathy from color fundus photographs using deep convolutional neural networks. Eye and Vision (London, England), 2022, 9, 13.	1.4	14
3185	Retinal photograph-based deep learning predicts biological age, and stratifies morbidity and mortality risk. Age and Ageing, 2022, 51, .	0.7	25
3186	Multi-scale convolutional neural network for automated AMD classification using retinal OCT images. Computers in Biology and Medicine, 2022, 144, 105368.	3.9	33
3187	Computer-Generated R.E.N.A.L. Nephrometry Scores Yield Comparable Predictive Results to Those of Human-Expert Scores in Predicting Oncologic and Perioperative Outcomes. Journal of Urology, 2022, 207, 1105-1115.	0.2	9
3188	Differentiating Crohn's disease from intestinal tuberculosis using a fusion correlation neural network. Knowledge-Based Systems, 2022, 244, 108570.	4.0	10

#	Article	IF	CITATIONS
3189	A deep learning approach for detection of shallow anterior chamber depth based on the hidden features of fundus photographs. Computer Methods and Programs in Biomedicine, 2022, 219, 106735.	2.6	10
3190	BFENet: A two-stream interaction CNN method for multi-label ophthalmic diseases classification with bilateral fundus images. Computer Methods and Programs in Biomedicine, 2022, 219, 106739.	2.6	12
3191	CCT-Net: Category-Invariant Cross-Domain Transfer for Medical Single-to-Multiple Disease Diagnosis. , 2021, , .		3
3192	Study of Machine and Deep Learning Classifications for IOT Enabled Healthcare Devices. , 2021, , .		21
3193	Importance of Histopathology Images in disease detection and Cancer Survival Prediction Analysis. , 2021, , .		0
3194	Improved Automatic Grading of Diabetic Retinopathy Using Deep Learning and Principal Component Analysis. , 2021, 2021, 3898-3901.		6
3195	A stratified analysis of a deep learning algorithm in the diagnosis of diabetic retinopathy in a realâ€world study. Journal of Diabetes, 2022, 14, 111-120.	0.8	12
3196	Uses And Trends In Hematopoietic Cell Transplantation In The United States of America:A Machine Learning Review. , 2021, , .		0
3197	Human Versus Machine: How Do We Know Who Is Winning? ROC Analysis for Comparing Human and Machine Performance under Varying Cost-Prevalence Assumptions. Methods of Information in Medicine, 2021, , .	0.7	1
3198	A Survey on Exploring Deep Learning in Medical Image Processing. , 2021, , .		0
3199	Application of AI and IoT in Clinical Medicine: Summary and Challenges. Current Medical Science, 2021, 41, 1134-1150.	0.7	30
3201	A Hybrid Deep Learning Construct for Detecting Keratoconus From Corneal Maps. Translational Vision Science and Technology, 2021, 10, 16.	1.1	23
3202	Predicting Retinal Diseases using Efficient Image Processing and Convolutional Neural Network (CNN). Journal of Engineering Advancements, 0, , 221-227.	0.7	0
3203	A Medical Reagent Grade Judgment System Based on Color Intelligent Recognition. , 2021, , .		0
3204	Comparisons of deep learning algorithms for diagnosing bacterial keratitis via external eye photographs. Scientific Reports, 2021, 11, 24227.	1.6	16
3205	Curcumin is a Potential Adjuvant to Alleviates Diabetic Retinal Injury via Reducing Oxidative Stress and Maintaining Nrf2 Pathway Homeostasis. Frontiers in Pharmacology, 2021, 12, 796565.	1.6	17
3206	Trustworthy AI: Closing the gap between development and integration of AI systems in ophthalmic practice. Progress in Retinal and Eye Research, 2022, 90, 101034.	7.3	34
3207	Diabetic Retinopathy Improved Detection Using Deep Learning. Applied Sciences (Switzerland), 2021, 11, 11970.	1.3	16

#	Article	IF	CITATIONS
3208	Data Homogeneity Effect in Deep Learning-Based Prediction of Type 1 Diabetic Retinopathy. Journal of Diabetes Research, 2021, 2021, 1-9.	1.0	2
3209	Deep-Learning-Based Diagnosis of Cassava Leaf Diseases Using Vision Transformer. , 2021, , .		5
3210	An assessment of attenuation correction of SPECT MPI images generated by deep learning model. , 2022, , 93-101.		0
3211	Applications of artificial intelligence in the thorax: a narrative review focusing on thoracic radiology. Journal of Thoracic Disease, 2021, 13, 6943-6962.	0.6	10
3212	The Utility of Universal Newborn Eye Screening: A Review. Ophthalmic Surgery Lasers and Imaging Retina, 2021, 52, S6-S16.	0.4	1
3213	SUPRDAD: A Robust Feature Extractor Better Recognizes Low-Prevalent Retinal Diseases. , 2021, , .		0
3214	Diabetic Retinopathy Classification with pre-trained Image Enhancement Model. , 2021, , .		4
3215	Artificial intelligence for diabetic retinopathy. Chinese Medical Journal, 2022, 135, 253-260.	0.9	14
3216	Implementation of artificial intelligence in the histological assessment of pulmonary subsolid nodules. Translational Lung Cancer Research, 2021, 10, 4574-4586.	1.3	5
3218	A SYSTEMATIC REVIEW OF ARTIFICIAL INTELLIGENCE APPLICATIONS IN PEDIATRIC PHYSICAL THERAPY: PAST, PRESENT, AND FUTURE. , 2021, , 70-74.		0
3219	A convolutional deep learning model for improving mammographic breast-microcalcification diagnosis. Scientific Reports, 2021, 11, 23925.	1.6	12
3220	An Efficient Transfer Learning Based Approach for Detecting the Abnormal Fundus Images. , 2021, , .		2
3221	Deep Learning-based Techniques for the Automatic Classification of Fundus Images: A Comparative Study. , 2021, , .		2
3222	Development and validation pathways of artificial intelligence tools evaluated in randomised clinical trials. BMJ Health and Care Informatics, 2021, 28, e100466.	1.4	6
3223	Weakly-supervised lesion analysis with a CNN-based framework for COVID-19. Physics in Medicine and Biology, 2021, 66, 245027.	1.6	2
3224	Macular Vascular Geometry Changes With Sex and Age in Healthy Subjects: A Fundus Photography Study. Frontiers in Medicine, 2021, 8, 778346.	1.2	6
3225	Newborn Eye Screening as an Application of Al. Ophthalmic Surgery Lasers and Imaging Retina, 2021, 52, S17-S22.	0.4	1
3226	A Case Study of Quantizing Convolutional Neural Networks for Fast Disease Diagnosis on Portable Medical Devices. Sensors, 2022, 22, 219.	2.1	11

#	Article	IF	CITATIONS
3228	Machine and Deep Learning Algorithms and Applications. Synthesis Lectures on Signal Processing, 2021, 12, 1-123.	0.3	1
3229	Two hybrid CNN Algorithms with An Android Application for Detection of GLAUCOMA. , 2021, , .		1
3230	Detecting Distal Radial Fractures from Wrist Radiographs Using a Deep Convolutional Neural Network with an Accuracy Comparable to Hand Orthopedic Surgeons. Journal of Digital Imaging, 2022, 35, 39-46.	1.6	13
3231	Comparison of Machine Learning Techniques for Mortality Prediction in a Prospective Cohort of Older Adults. International Journal of Environmental Research and Public Health, 2021, 18, 12806.	1.2	7
3232	3D asymmetric expectationâ€maximization attention network for brain tumor segmentation. NMR in Biomedicine, 2022, 35, e4657.	1.6	7
3233	Diagnosis of Diabetic Retinopathy Utilizing Computer-Aided Diagnosis System. , 2020, 3, 1-23.		0
3234	Understanding required to consider AI applications to the field of ophthalmology. Taiwan Journal of Ophthalmology, 2022, .	0.3	4
3235	Recent Advancements on Recommendation Systems in Healthcare-Assisted System. Lecture Notes in Electrical Engineering, 2022, , 587-605.	0.3	2
3236	Artificial Intelligence in Neuroimaging: Clinical Applications. Investigative Magnetic Resonance Imaging, 2022, 26, 1.	0.2	14
3237	On Convolutional Neural Networks and Transfer Learning for Classifying Breast Cancer on Histopathological Images UsingÂGPU. IFMBE Proceedings, 2022, , 1993-1998.	0.2	1
3238	Augmented Intelligence: Deep Learning Models for Healthcare. Studies in Computational Intelligence, 2022, , 167-187.	0.7	1
3239	Artificial intelligence in food science and nutrition: a narrative review. Nutrition Reviews, 2022, 80, 2288-2300.	2.6	22
3240	Automated Computer-Aided Diagnosis of Diabetic Retinopathy Based on Segmentation and Classification using K-nearest neighbor algorithm in retinal images. Computer Journal, 2023, 66, 2011-2032.	1.5	4
3241	A Survey of Dental Caries Segmentation and Detection Techniques. Scientific World Journal, The, 2022, 2022, 1-19.	0.8	6
3242	Intelligent detection and applied research on diabetic retinopathy based on the residual attention network. International Journal of Imaging Systems and Technology, 2022, 32, 1789-1800.	2.7	8
3243	Editorial: Improving Diagnosis, Treatment, and Prognosis of Neuropsychiatric Disorders by Leveraging Neuroimaging-based Machine Learning. Frontiers in Neuroscience, 2022, 16, 891337.	1.4	0
3244	An Image Diagnosis Algorithm for Keratitis Based on Deep Learning. Neural Processing Letters, 2022, 54, 2007-2024.	2.0	4
3245	The Next Steps in Ocular Imaging in Uveitis. Ocular Immunology and Inflammation, 2023, 31, 785-792.	1.0	3

#	Article	IF	CITATIONS
3246	Diagnosis of Retinal Diseases Based on Bayesian Optimization Deep Learning Network Using Optical Coherence Tomography Images. Computational Intelligence and Neuroscience, 2022, 2022, 1-15.	1.1	23
3247	LightEyes: A Lightweight Fundus Segmentation Network for Mobile Edge Computing. Sensors, 2022, 22, 3112.	2.1	7
3248	Eyeing severe diabetes upfront. Nature Biomedical Engineering, 2022, 6, 1321-1322.	11.6	1
3249	A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images. Nature Communications, 2022, 13, 2096.	5.8	73
3250	PANORAMİK RADYOGRAFLARDA APİKAL PATOLOJİ TEŞHİSİ İÇİN YAPAY ZEKA YETERLİ GÜVENİ FARKLI EŞİK DEĞERLERDE KARŞILAŞTIRMALI ÇALIŞMA. Selcuk Dental Journal, 0, , .	LİRLİK 0.1	DÜZEYİN
3251	Supervised segmentation with domain adaptation for small sampled orbital CT images. Journal of Computational Design and Engineering, 2022, 9, 783-792.	1.5	4
3252	Diabetic Retinopathy Grading by Deep Graph Correlation Network on Retinal Images Without Manual Annotations. Frontiers in Medicine, 2022, 9, 872214.	1.2	9
3253	Deep learning and the future of the Model for Endâ€Stage Liver Disease–sodium score. Liver Transplantation, 2022, 28, 1128-1130.	1.3	1
3254	Epistemo-ethical constraints on Al-human decision making for diagnostic purposes. Ethics and Information Technology, 2022, 24, 1.	2.3	1
3255	Patients' Perspectives on Artificial Intelligence in Dentistry: A Controlled Study. Journal of Clinical Medicine, 2022, 11, 2143.	1.0	8
3256	Deep learning for electromagnetically induced transparency (EIT) metasurface optimization design. Journal Physics D: Applied Physics, 2022, 55, 315001.	1.3	7
3257	Artificial Intelligence in Healthcare: An Overview. , 0, , .		0
3258	Deep feature fusion classification network (DFFCNet): Towards accurate diagnosis of COVID-19 using chest X-rays images. Biomedical Signal Processing and Control, 2022, 76, 103677.	3.5	16
3282	A critical review on diagnosis of diabetic retinopathy using machine learning and deep learning. Multimedia Tools and Applications, 2022, 81, 25613-25655.	2.6	40
3283	Use of deep learning to predict the need for aggressive nutritional supplementation during head and neck radiotherapy. Radiotherapy and Oncology, 2022, 171, 129-138.	0.3	6
3284	Artificial intelligence-enabled decision support in nephrology. Nature Reviews Nephrology, 2022, 18, 452-465.	4.1	21
3285	Artificial intelligence in peritoneal dialysis: general overview. Renal Failure, 2022, 44, 682-687.	0.8	5
3286	Self-Supervised Generalized Zero Shot Learning for Medical Image Classification Using Novel	5.4	19

#	Article	IF	CITATIONS
3287	Anterior segment biometric measurements explain misclassifications by a deep learning classifier for detecting gonioscopic angle closure. British Journal of Ophthalmology, 2023, 107, 349-354.	2.1	5
3289	Medicinal Attributes of Heterocyclic Compounds in Rheumatoid Arthritis: Recent Developments and SAR Studies. Current Topics in Medicinal Chemistry, 2022, 22, 1821-1846.	1.0	Ο
3290	Artificial Intelligence in Diabetic Retinopathy Screening. A Review. Ceska A Slovenska Oftalmologie, 2021, 77, 223-230.	0.1	1
3291	Artificial Intelligence in Diabetic Retinopathy: Insights from a Meta-Analysis of Deep Learning. Studies in Health Technology and Informatics, 2019, 264, 1556-1557.	0.2	4
3292	<i>Hercules</i> : Deep Hierarchical Attentive Multilevel Fusion Model With Uncertainty Quantification for Medical Image Classification. IEEE Transactions on Industrial Informatics, 2023, 19, 274-285.	7.2	25
3295	Development of a Machine Learning Algorithm for Prediction of Complications and Unplanned Readmission Following Primary Anatomic Total Shoulder Replacements. Journal of Shoulder and Elbow Arthroplasty, 2022, 6, 247154922210754.	0.5	1
3296	Emerging computational technologies in human leishmaniasis: where are we?. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2022, 116, 981-985.	0.7	2
3297	Comparison of the Consistency of the Vertical Cup/Disc Ratio Analyzed by Daytona Combined with Artificial Intelligence, OCT and OCTA. Hans Journal of Ophthalmology, 2022, 11, 113-120.	0.0	0
3298	Soft Computing and Machine Learning Techniques for e-Health Data Analytics. Studies in Computational Intelligence, 2022, , 83-104.	0.7	2
3299	Developing clinical decision support system using machine learning methods for type 2 diabetes drug management. Indian Journal of Endocrinology and Metabolism, 2022, 26, 44.	0.2	2
3300	Artificial intelligence and medical education: A global mixed-methods study of medical students' perspectives. Digital Health, 2022, 8, 205520762210890.	0.9	12
3301	Diagnostic Categorization and Neurocognitive Prediction Employing Neuroimaging Data Using Deep Learning in Alzheimer's Illness. Advances in Medical Technologies and Clinical Practice Book Series, 2022, , 202-223.	0.3	0
3302	A Label Uncertainty-Guided Multi-Stream Model for Disease Screening. , 2022, , .		1
3303	Improved Classification of Stages in Diabetic Retinopathy Disease using Deep Learning Algorithm. , 2022, , .		1
3304	Cardiovascular Risk Assessment Using Artificial Intelligence-Enabled Event Adjudication and Hematologic Predictors. Circulation: Cardiovascular Quality and Outcomes, 2022, 15, 101161CIRCOUTCOMES121008007.	0.9	5
3305	Big Data Fusion Method Based on Internet of Things Collection. Computational Intelligence and Neuroscience, 2022, 2022, 1-9.	1.1	0
3306	Inteligencia artificial, ¿transformación de la reumatologÃa? - Parte I. Global Rheumatology, 0, , .	0.0	3
3308	Transfer Learning-Based Model for Diabetic Retinopathy Diagnosis Using Retinal Images. Brain Sciences, 2022, 12, 535.	1.1	25

#	Article	IF	CITATIONS
3309	Real-time detection of the recurrent laryngeal nerve in thoracoscopic esophagectomy using artificial intelligence. Surgical Endoscopy and Other Interventional Techniques, 2022, 36, 5531-5539.	1.3	5
3310	A Method for Diagnosing Diabetic Retinopathy Based on Ocular Fundus Imaging. Journal of the Russian Universities Radioelectronics, 2022, 25, 82-91.	0.1	0
3311	Deep Learning for Ocular Disease Recognition: An Inner-Class Balance. Computational Intelligence and Neuroscience, 2022, 2022, 1-12.	1.1	23
3312	Improved Deep Convolutional Neural Networks via Boosting for Predicting the Quality of In Vitro Bovine Embryos. Electronics (Switzerland), 2022, 11, 1363.	1.8	6
3313	A novel diabetic retinopathy grading using modified deep neural network with segmentation of blood vessels and retinal abnormalities. Multimedia Tools and Applications, 2022, 81, 39605-39633.	2.6	5
3314	Developments in the detection of diabetic retinopathy: a state-of-the-art review of computer-aided diagnosis and machine learning methods. Artificial Intelligence Review, 2023, 56, 915-964.	9.7	24
3316	Oral Cancer Screening by Artificial Intelligence-Oriented Interpretation of Optical Coherence Tomography Images. Radiology Research and Practice, 2022, 2022, 1-10.	0.6	6
3317	Application of Artificial Intelligence in Discovery and Development of Anticancer and Antidiabetic Therapeutic Agents. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-16.	0.5	5
3318	Deep learning algorithms for detection of diabetic macular edema in OCT images: A systematic review and meta-analysis. European Journal of Ophthalmology, 2023, 33, 278-290.	0.7	2
3319	<scp>OVASO</scp> : Integrated binary <scp>CNN</scp> models to classify <scp>COVID</scp> â€19, pneumonia and healthy lung in Xâ€ray images. International Journal of Imaging Systems and Technology, 0, , .	2.7	2
3320	Effectiveness of a computer-assisted algorithm for onsite screening of diabetic retinopathy from retinal photographs at diabetic outpatient clinics. , 0, , .		0
3321	External Validation of Deep Learning Algorithms for Radiologic Diagnosis: A Systematic Review. Radiology: Artificial Intelligence, 2022, 4, .	3.0	87
3322	Automatic surgical phase recognition in laparoscopic inguinal hernia repair with artificial intelligence. Hernia: the Journal of Hernias and Abdominal Wall Surgery, 2022, 26, 1669-1678.	0.9	12
3323	A Novel $ N$ -Gram-Based Image Classification Model and Its Applications in Diagnosing Thyroid Nodule and Retinal OCT Images. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-9.	0.7	1
3324	Artificial Intelligence for Screening of Multiple Retinal and Optic Nerve Diseases. JAMA Network Open, 2022, 5, e229960.	2.8	45
3325	Artificial intelligence-based strategies to identify patient populations and advance analysis in age-related macular degeneration clinical trials. Experimental Eye Research, 2022, 220, 109092.	1.2	2
3326	Hibrit Bir Model Oluşturarak Diyabetik Retinopati Sınıflandırılması. European Journal of Science and Technology, 0, , .	0.5	1
3327	Prevalence and predictors for being unscreened for diabetic retinopathy: a population-based study over a decade. Canadian Journal of Ophthalmology, 2022, , .	0.4	2

#	Article	IF	Citations
 3328	Ophthalmology and Artificial Intelligence: Present or Future? A Diabetic Retinopathy Screening	0.2	1
3328	Perspective of the Pursuit for Fairness. Frontiers in Ophthalmology, 2022, 2, .	0.2	1
3329	Can machine learning models predict failure of revision total hip arthroplasty?. Archives of Orthopaedic and Trauma Surgery, 2023, 143, 2805-2812.	1.3	9
3330	A computer-aided diagnosis system for detecting various diabetic retinopathy grades based on a hybrid deep learning technique. Medical and Biological Engineering and Computing, 2022, 60, 2015-2038.	1.6	23
3331	DeepLN: A Multi-Task AI Tool to Predict the Imaging Characteristics, Malignancy and Pathological Subtypes in CT-Detected Pulmonary Nodules. Frontiers in Oncology, 2022, 12, .	1.3	4
3332	Multi-scale Multi-instance Multi-feature Joint Learning Broad Network (M3JLBN) for gastric intestinal metaplasia subtype classification. Knowledge-Based Systems, 2022, 249, 108960.	4.0	3
3335	Automatic Detection of Atrial Fibrillation from Single-Lead ECG Using Deep Learning of the Cardiac Cycle. BME Frontiers, 2022, 2022, .	2.2	9
3336	Equity Challenges for Artificial Intelligence Algorithms in Health Care. Chest, 2022, 161, 1343-1346.	0.4	7
3337	Human-centered explainability for life sciences, healthcare, and medical informatics. Patterns, 2022, 3, 100493.	3.1	9
3338	The Role of Different Retinal Imaging Modalities in Predicting Progression of Diabetic Retinopathy: A Survey. Sensors, 2022, 22, 3490.	2.1	14
3339	End-to-end multi-task learning approaches for the joint epiretinal membrane segmentation and screening in OCT images. Computerized Medical Imaging and Graphics, 2022, 98, 102068.	3.5	10
3340	Precision diagnostic approach to predict 5-year risk for microvascular complications in type 1 diabetes. EBioMedicine, 2022, 80, 104032.	2.7	7
3341	Digital health in medicine: Important considerations in evaluating health economic analysis. The Lancet Regional Health - Western Pacific, 2022, 23, 100476.	1.3	6
3342	High/Low Quality Style Transfer for Mutual Conversion of OCT Images Using Contrastive Unpaired Translation Generative Adversarial Networks. Lecture Notes in Computer Science, 2022, , 210-220.	1.0	1
3343	Computational Approach for Detection of Diabetes from Ocular Scans. Computational Intelligence and Neuroscience, 2022, 2022, 1-8.	1.1	3
3344	Validation of an autonomous artificial intelligence–based diagnostic system for holistic maculopathy screening in a routine occupational health checkup context. Graefe's Archive for Clinical and Experimental Ophthalmology, 2022, 260, 3255-3265.	1.0	3
3345	Survival stacking with multiple data types using pseudo-observation-based-AUC loss. Journal of Biopharmaceutical Statistics, 2022, 32, 858-870.	0.4	2
3347	Artificial Intelligence Based on Machine Learning in Pharmacovigilance: A Scoping Review. Drug Safety, 2022, 45, 477-491.	1.4	16
3348	Deep learning model for the automatic classification of COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy: a multi-center retrospective study. Scientific Reports, 2022, 12, 8214.	1.6	20

#	Article	IF	Citations
3349	The Validation of Deep Learning-Based Grading Model for Diabetic Retinopathy. Frontiers in Medicine, 2022, 9, .	1.2	7
3350	Recognition of esophagitis in endoscopic images using transfer learning. World Journal of Gastrointestinal Endoscopy, 2022, 14, 311-319.	0.4	0
3351	A Surgeon's Guide to Artificial Intelligence-Driven Predictive Models. American Surgeon, 2023, 89, 11-19.	0.4	6
3352	Classifying COVID-19 and viral pneumonia lung infections through deep convolutional neural neural network model using chest X-Ray images. Journal of Medical Physics, 2022, 47, 57.	0.1	3
3353	Deep Learning Based Classification of Wrist Cracks from X-ray Imaging. Computers, Materials and Continua, 2022, 73, 1827-1844.	1.5	1
3354	Application and observation of artificial intelligence in clinical practice of fundus screening for diabetic retinopathy with non-mydriatic fundus photography: a retrospective observational study of T2DM patients in Tianjin, China. Therapeutic Advances in Chronic Disease, 2022, 13, 204062232210973.	1.1	3
3355	Prediction of Retinopathy in Diabetic Affected Persons using Deep Learning algorithms. , 2022, , .		1
3357	Deep Learning for Diabetic Retinopathy Disease. International Journal of Advanced Research in Science, Communication and Technology, 0, , 646-652.	0.0	0
3358	Automated Multi-View Multi-Modal Assessment of COVID-19 Patients Using Reciprocal Attention and Biomedical Transform. Frontiers in Public Health, 2022, 10, .	1.3	1
3359	Evaluating machine learning classifiers for glaucoma referral decision support in primary care settings. Scientific Reports, 2022, 12, .	1.6	1
3360	A deep learning method to assist with chronic atrophic gastritis diagnosis using white light images. Digestive and Liver Disease, 2022, 54, 1513-1519.	0.4	14
3361	Ar-HGSO: Autoregressive-Henry Gas Sailfish Optimization enabled deep learning model for diabetic retinopathy detection and severity level classification. Biomedical Signal Processing and Control, 2022, 77, 103712.	3.5	13
3362	An Online Platform for Early Eye Disease Detection using Deep Convolutional Neural Networks. , 2022, , .		2
3364	A SYSTEMATIC REVIEW OF DEEP LEARNING APPLICATIONS FOR OPTICAL COHERENCE TOMOGRAPHY IN AGE-RELATED MACULAR DEGENERATION. Retina, 2022, 42, 1417-1424.	1.0	9
3365	Diabetic retinopathy screening in the emerging era of artificial intelligence. Diabetologia, 2022, 65, 1415-1423.	2.9	34
3366	Comparison of Photographic Screening Methods for Diabetic Retinopathy – A Meta-analysis. Ophthalmic Epidemiology, 0, , 1-9.	0.8	0
3367	IMNets: Deep Learning Using an Incremental Modular Network Synthesis Approach for Medical Imaging Applications. Applied Sciences (Switzerland), 2022, 12, 5500.	1.3	35
3368	Beyond bias and discrimination: redefining the Al ethics principle of fairness in healthcare machine-learning algorithms. Al and Society, 2023, 38, 549-563.	3.1	33

#	Article	IF	CITATIONS
3369	Investigations of CNN for Medical Image Analysis for Illness Prediction. Computational Intelligence and Neuroscience, 2022, 2022, 1-13.	1.1	5
3370	Enhancement of Detection of Diabetic Retinopathy Using Harris Hawks Optimization with Deep Learning Model. Computational Intelligence and Neuroscience, 2022, 2022, 1-13.	1.1	53
3371	Segmentation of Dental Restorations on Panoramic Radiographs Using Deep Learning. Diagnostics, 2022, 12, 1316.	1.3	8
3372	DeepDRiD: Diabetic Retinopathy—Grading and Image Quality Estimation Challenge. Patterns, 2022, 3, 100512.	3.1	58
3373	A Novel Focal Ordinal Loss for Assessment of Knee Osteoarthritis Severity. Neural Processing Letters, 2022, 54, 5199-5224.	2.0	6
3375	Artificial Intelligence in Predicting Systemic Parameters and Diseases From Ophthalmic Imaging. Frontiers in Digital Health, 0, 4, .	1.5	15
3376	Variability of Grading DR Screening Images among Non-Trained Retina Specialists. Journal of Clinical Medicine, 2022, 11, 3125.	1.0	5
3377	Automation of dry eye disease quantitative assessment: A review. Clinical and Experimental Ophthalmology, 2022, 50, 653-666.	1.3	6
3378	Predicting persistent central serous chorioretinopathy using multiple optical coherence tomographic images by deep learning. Scientific Reports, 2022, 12, .	1.6	1
3379	Fully Automatic Epiretinal Membrane Segmentation in OCT Scans Using Convolutional Networks. Advances in Medical Diagnosis, Treatment, and Care, 2022, , 88-121.	0.1	0
3380	Feature-Based Convolutional Neural Network for Very-high-resolution Urban Imagery Classification. Photogrammetric Engineering and Remote Sensing, 2022, 88, 399-405.	0.3	0
3381	Prediction of preterm birth using artificial intelligence: a systematic review. Journal of Obstetrics and Gynaecology, 2022, 42, 1662-1668.	0.4	12
3382	Deep Learning for Chinese Language Sentiment Extraction and Analysis. Mathematical Problems in Engineering, 2022, 2022, 1-12.	0.6	2
3383	Artificial Intelligence Aiding Medical Diagnosis Focusing on Diabetic Retinopathy. Advances in Medical Diagnosis, Treatment, and Care, 2022, , 66-87.	0.1	0
3384	Using Artificial Intelligence to Establish Chest X-Ray Image Recognition Model to Assist Crucial Diagnosis in Elder Patients With Dyspnea. Frontiers in Medicine, 0, 9, .	1.2	6
3385	Survey of Deep-Learning Techniques in Big-Data Analytics. Wireless Personal Communications, 2022, 126, 1321-1343.	1.8	8
3386	Widen the Applicability of a Convolutional Neural-Network-Assisted Glaucoma Detection Algorithm of Limited Training Images across Different Datasets. Biomedicines, 2022, 10, 1314.	1.4	5
3387	Noninvasive Screening Tool for Hyperkalemia Using a Single-Lead Electrocardiogram and Deep Learning: Development and Usability Study. JMIR Medical Informatics, 2022, 10, e34724.	1.3	6

#	Article	IF	CITATIONS
3388	Decisions are not all equal—Introducing a utility metric based on case-wise raters' perceptions. Computer Methods and Programs in Biomedicine, 2022, 221, 106930.	2.6	4
3389	EfficientNet embedded with spatial attention for recognition of multi-label fundus disease from color fundus photographs. Biomedical Signal Processing and Control, 2022, 77, 103768.	3.5	6
3390	The Role of Data Analytics and Artificial Intelligence (AI) in Ocular Telehealth. , 2023, , 213-232.		1
3394	Current status of artificial intelligence for medicine. Taiwan Journal of Ophthalmology, 2022, 12, 121.	0.3	0
3395	Machine Learning in Medical Imaging – Clinical Applications and Challenges in Computer Vision. , 2022, , 79-99.		3
3396	Interpretable Hybrid Model for an Automated Patient-Wise Categorization of Hypertensive and Normotensive Electrocardiogram Signals. SSRN Electronic Journal, 0, , .	0.4	0
3397	Overview of Artificial Intelligence in Medicine. , 2022, , 23-34.		2
3398	Should AI-Enabled Medical Devices be Explainable?. SSRN Electronic Journal, 0, , .	0.4	0
3401	EDR-Net: Lightweight Deep Neural Network Architecture for Detecting Referable Diabetic Retinopathy. IEEE Transactions on Biomedical Circuits and Systems, 2022, 16, 467-478.	2.7	10
3404	Early Detection of Skin Cancer - Solution for Identifying and Defining Skin Cancers using Al. , 2022, , .		0
3405	A Big Wave of Deep Learning in Medical Imaging - Analysis of Theory and Applications. , 2022, , .		8
3406	Approach for Electronic Medical Record Data Analysis. Journal of Health Informatics and Statistics, 2022, 47, 1-8.	0.1	0
3407	Development of a Novel Scar Screening System with Machine Learning. Plastic and Reconstructive Surgery, 2022, 150, 465e-472e.	0.7	6
3408	How Explainability Contributes to Trust in Al. , 2022, , .		15
3409	A multi-scale gated network for retinal hemorrhage detection. Applied Intelligence, 0, , .	3.3	1
3410	HRUNET: Hybrid Residual U - Net for automatic severity prediction of Diabetic Retinopathy. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2023, 11, 530-541.	1.3	3
3411	Retinal microvasculature and vasoreactivity changes in hypertension using optical coherence tomography-angiography. Graefe's Archive for Clinical and Experimental Ophthalmology, 2022, 260, 3505-3515.	1.0	6
3413	Deep learning in the grading of diabetic retinopathy: A review. IET Computer Vision, 2022, 16, 667-682.	1.3	4

#	Article	IF	CITATIONS
3414	Multiple Ocular Disease Diagnosis Using Fundus Images Based on Multi-Label Deep Learning Classification. Electronics (Switzerland), 2022, 11, 1966.	1.8	6
3415	A state-of-the-art technique to perform cloud-based semantic segmentation using deep learning 3D U-Net architecture. BMC Bioinformatics, 2022, 23, .	1.2	8
3416	Intelligent cataract surgery supervision and evaluation via deep learning. International Journal of Surgery, 2022, 104, 106740.	1.1	6
3417	On the role of deep learning model complexity in adversarial robustness for medical images. BMC Medical Informatics and Decision Making, 2022, 22, .	1.5	7
3418	A Deep Learning Framework for Earlier Prediction of Diabetic Retinopathy from Fundus Photographs. BioMed Research International, 2022, 2022, 1-15.	0.9	14
3419	Bayesian statisticsâ€guided label refurbishment mechanism: Mitigating label noise in medical image classification. Medical Physics, 0, , .	1.6	1
3420	Automatic Detection of Abnormalities and Grading of Diabetic Retinopathy in 6-Field Retinal Images: Integration of Segmentation Into Classification. Translational Vision Science and Technology, 2022, 11, 19.	1.1	2
3421	Artificial intelligence using deep learning analysis of endoscopic ultrasonography images for the differential diagnosis of pancreatic masses. Endoscopy, 2023, 55, 140-149.	1.0	11
3422	Application of the deep learning algorithm in nutrition research – using serum pyridoxal 5′-phosphate as an example. Nutrition Journal, 2022, 21, .	1.5	3
3423	UNIConv: An enhanced Uâ€Net based InceptionV3 convolutional model for DR semantic segmentation in retinal fundus images. Concurrency Computation Practice and Experience, 2022, 34, .	1.4	8
3424	Now you see it! Using wearable cameras to gain insights into the lived experience of cardiovascular conditions. European Journal of Cardiovascular Nursing, 2022, 21, 750-755.	0.4	4
3425	Triaging Medical Referrals Based on Clinical Prioritisation Criteria Using Machine Learning Techniques. International Journal of Environmental Research and Public Health, 2022, 19, 7384.	1.2	6
3426	Ureteral calculi lithotripsy for single ureteral calculi: can DNN-assisted model help preoperatively predict risk factors for sepsis?. European Radiology, 2022, 32, 8540-8549.	2.3	5
3427	Optical coherence tomography image based eye disease detection using deep convolutional neural network. Health Information Science and Systems, 2022, 10, .	3.4	13
3428	How Platform-User Power Relations Shape Algorithmic Accountability. , 2022, , .		6
3429	FLED-Block: Federated Learning Ensembled Deep Learning Blockchain Model for COVID-19 Prediction. Frontiers in Public Health, 0, 10, .	1.3	20
3430	Healthsheet: Development of a Transparency Artifact for Health Datasets. , 2022, , .		13
3431	Radiomics quality score in renal masses: a systematic assessment on current literature. British Journal of Radiology, 2022, 95, .	1.0	3

#	Article	IF	CITATIONS
3432	Designing Equitable Health Care Outreach Programs From Machine Learning Patient Risk Scores. Medical Care Research and Review, 2023, 80, 216-227.	1.0	0
3433	A deep convolutional neural network to predict the curve progression of adolescent idiopathic scoliosis: a pilot study. BMC Musculoskeletal Disorders, 2022, 23, .	0.8	7
3434	Hemorrhage semantic segmentation in fundus images for the diagnosis of diabetic retinopathy by using a convolutional neural network. Journal of Big Data, 2022, 9, .	6.9	29
3435	Deep learning with transfer learning in pathology. Case study: classification of basal cell carcinoma. Romanian Journal of Morphology and Embryology, 2022, 62, 1017-1028.	0.4	8
3436	Improving disease prevention, diagnosis, and treatment using novel bionic technologies. Bioengineering and Translational Medicine, 2023, 8, .	3.9	2
3437	SwinBTS: A Method for 3D Multimodal Brain Tumor Segmentation Using Swin Transformer. Brain Sciences, 2022, 12, 797.	1.1	58
3438	Image based early detection of diabetic retinopathy: A systematic review on Artificial Intelligence (AI) based recent trends and approaches. Journal of Intelligent and Fuzzy Systems, 2022, 43, 6709-6741.	0.8	3
3439	Research Progress of Artificial Intelligence Image Analysis in Systemic Disease-Related Ophthalmopathy. Disease Markers, 2022, 2022, 1-10.	0.6	5
3440	Application of endoscopic ultrasonography for detecting esophageal lesions based on convolutional neural network. World Journal of Gastroenterology, 2022, 28, 2457-2467.	1.4	0
3441	Machine Learning and Deep Learning based Al Tools for Development of Diagnostic Tools. , 2022, , 399-420.		1
3442	Hybrid Deep Learning Models for Diabetic Retinopathy Classification. Lecture Notes in Networks and Systems, 2022, , 167-178.	0.5	4
3443	Introduction to supervised machine learning in clinical epidemiology. Annals of Clinical Epidemiology, 2022, 4, 63-71.	0.3	4
3444	Grading and Classification of Retinal Images for Detecting Diabetic Retinopathy Using Convolutional Neural Network. Lecture Notes in Electrical Engineering, 2022, , 607-614.	0.3	5
3445	Data augmentation for medical image analysis. , 2022, , 279-302.		2
3446	Calibrating Histopathology Image Classifiers Using Label Smoothing. Lecture Notes in Computer Science, 2022, , 273-282.	1.0	1
3447	Artificial Intelligence Applications in Pathological Diagnosis of Gastric Cancer. SSRN Electronic Journal, 0, , .	0.4	0
3448	Is blockchain the breakthrough we are looking for to facilitate genomic data sharing? The European Union perspective. Digital Health, 2022, 8, 205520762211142.	0.9	0
3449	Convolutional Neural Networks Based Classifier for Diabetic Retinopathy. Journal of Medical Imaging and Health Informatics, 2022, 12, 131-137.	0.2	0

#	Article	IF	CITATIONS
3450	Deep Residual Network for Diagnosis of Retinal Diseases Using Optical Coherence Tomography Images. Interdisciplinary Sciences, Computational Life Sciences, 2022, 14, 906-916.	2.2	8
3451	The Development and Clinical Application of Innovative Optical Ophthalmic Imaging Techniques. Frontiers in Medicine, 0, 9, .	1.2	6
3452	The utility of machine learning algorithms for the prediction of patient-reported outcome measures following primary hip and knee total joint arthroplasty. Archives of Orthopaedic and Trauma Surgery, 2023, 143, 2235-2245.	1.3	10
3453	A Deep Learning Approach for Classification of Dentinal Tubule Occlusions. Applied Artificial Intelligence, 2022, 36, .	2.0	3
3454	SCRIB: Set-Classifier with Class-Specific Risk Bounds for Blackbox Models. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36, 7497-7505.	3.6	1
3455	Development and Implementation of a Health Equity-Focused Python and Machine Learning Module in an Introductory BME Course. Biomedical Engineering Education, 2022, 2, 167-174.	0.6	4
3456	A structural characterization of shortcut features for prediction. European Journal of Epidemiology, 2022, 37, 563-568.	2.5	3
3457	Systematic Bibliometric and Visualized Analysis of Research Hotspots and Trends on the Application of Artificial Intelligence in Ophthalmic Disease Diagnosis. Frontiers in Pharmacology, 0, 13, .	1.6	4
3458	Which Color Channel Is Better for Diagnosing Retinal Diseases Automatically in Color Fundus Photographs?. Life, 2022, 12, 973.	1.1	4
3460	Ameliorated Automated Facial Fracture Detection System using CNN. International Journal of Advanced Research in Science, Communication and Technology, 0, , 148-153.	0.0	2
3461	Deep Learning Models for Segmenting Non-perfusion Area of Color Fundus Photographs in Patients With Branch Retinal Vein Occlusion. Frontiers in Medicine, 0, 9, .	1.2	6
3462	AdvU-Net: Generating Adversarial Example Based on Medical Image and Targeting U-Net Model. Journal of Sensors, 2022, 2022, 1-13.	0.6	5
3463	Diagnosis of urogenital cancer combining deep learning algorithms and surface-enhanced Raman spectroscopy based on small extracellular vesicles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 281, 121603.	2.0	9
3464	Self-evolving vision transformer for chest X-ray diagnosis through knowledge distillation. Nature Communications, 2022, 13, .	5.8	18
3465	Performance of Deep Learning Models in Automatic Measurement of Ellipsoid Zone Area on Baseline Optical Coherence Tomography (OCT) Images From the Rate of Progression of USH2A-Related Retinal Degeneration (RUSH2A) Study. Frontiers in Medicine, 0, 9, .	1.2	5
3466	Aprendizado de Máquinas aplicado ao diagnóstico por imagem: uma revisão integrativa. Conjeturas, 2022, 22, 265-284.	0.0	0
3467	The influence of personalized learning intervention system on student learning a study of junior middle school. Interactive Technology and Smart Education, 2022, 19, 441.	3.8	0
3468	Neural network-based method for diagnosis and severity assessment of Graves' orbitopathy using orbital computed tomography. Scientific Reports, 2022, 12, .	1.6	6

#	Article	IF	CITATIONS
3469	Automated image curation in diabetic retinopathy screening using deep learning. Scientific Reports, 2022, 12, .	1.6	7
3470	Analyzing Transfer Learning of Vision Transformers for Interpreting Chest Radiography. Journal of Digital Imaging, 2022, 35, 1445-1462.	1.6	25
3471	Detection of Diabetic Retinopathy using Deep Learning: A Review. International Journal of Recent Technology and Engineering, 2022, 11, 138-143.	0.2	0
3472	A Diabetic Retinopathy Classification Framework Based on Deep-Learning Analysis of OCT Angiography. Translational Vision Science and Technology, 2022, 11, 10.	1.1	16
3473	A medical question answering system using large language models and knowledge graphs. International Journal of Intelligent Systems, 2022, 37, 8548-8564.	3.3	12
3474	Quantification of hematoma and perihematomal edema volumes in intracerebral hemorrhage study: Design considerations in an artificial intelligence validation (QUANTUM) study. Clinical Trials, 2022, 19, 534-544.	0.7	6
3475	Retinal Glaucoma Public Datasets: What Do We Have and What Is Missing?. Journal of Clinical Medicine, 2022, 11, 3850.	1.0	4
3476	Deep Learning for Automatic Detection of Recurrent Retinal Detachment after Surgery Using Ultraâ€Widefield Fundus Images: A Singleâ€Center Study. Advanced Intelligent Systems, 2022, 4, .	3.3	8
3477	Shifting machine learning for healthcare from development to deployment and from models to data. Nature Biomedical Engineering, 2022, 6, 1330-1345.	11.6	69
3478	Deep convolutional neural network-based skeletal classification of cephalometric image compared with automated-tracing software. Scientific Reports, 2022, 12, .	1.6	4
3479	Artificial intelligence and corneal diseases. Current Opinion in Ophthalmology, 2022, 33, 407-417.	1.3	9
3480	A comprehensive empirical study on bug characteristics of deep learning frameworks. Information and Software Technology, 2022, 151, 107004.	3.0	7
3481	A Machine Learning–Based Prognostic Model for the Prediction of Early Death After Traumatic Brain Injury: Comparison with the Corticosteroid Randomization After Significant Head Injury (CRASH) Model. World Neurosurgery, 2022, 166, e125-e134.	0.7	5
3482	Multi-Model Domain Adaptation for Diabetic Retinopathy Classification. Frontiers in Physiology, 0, 13, .	1.3	4
3484	A novel few-shot classification framework for diabetic retinopathy detection and grading. Measurement: Journal of the International Measurement Confederation, 2022, 200, 111485.	2.5	14
3485	CSGNet: Cascade semantic guided net for retinal vessel segmentation. Biomedical Signal Processing and Control, 2022, 78, 103930.	3.5	9
3486	Anomaly segmentation in retinal images with poisson-blending data augmentation. Medical Image Analysis, 2022, 81, 102534.	7.0	9
3487	When does AI pay off? AI-adoption intensity, complementary investments, and R&D strategy. Technovation, 2022, 118, 102590.	4.2	17

#	Article	IF	CITATIONS
3488	DeepHeart: Semi-Supervised Sequence Learning for Cardiovascular Risk Prediction. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32, .	3.6	71
3489	Redes neuronales convolucionales: un modelo de Deep Learning en imágenes diagnósticas. Revisión de tema. Revista Colombiana De Radiologila, 2021, 32, 5591-5599.	0.0	0
3490	Machine learning-based clustering in cervical spondylotic myelopathy patients to identify heterogeneous clinical characteristics. Frontiers in Surgery, 0, 9, .	0.6	6
3491	Validating automated eye disease screening Al algorithm in community and in-hospital scenarios. Frontiers in Public Health, 0, 10, .	1.3	8
3492	Optimized convolutional neural network-based comprehensive early diagnosis method for multiple eye disease recognition. Journal of Electronic Imaging, 2022, 31, .	0.5	2
3493	Applications of artificial intelligence in ocular oncology. IP International Journal of Ocular Oncology and Oculoplasty, 2022, 8, 84-87.	0.0	0
3494	Efficacy of Artificial Intelligence-Assisted Discrimination of Oral Cancerous Lesions from Normal Mucosa Based on the Oral Mucosal Image: A Systematic Review and Meta-Analysis. Cancers, 2022, 14, 3499.	1.7	11
3495	Diabetic Retinopathy Detection Using Genetic Algorithm-Based CNN Features and Error Correction Output Code SVM Framework Classification Model. Wireless Communications and Mobile Computing, 2022, 2022, 1-13.	0.8	5
3496	Editorial: Machine Learning in Action: Stroke Diagnosis and Outcome Prediction. Frontiers in Neurology, 0, 13, .	1.1	2
3497	Machine Learning for Endometrial Cancer Prediction and Prognostication. Frontiers in Oncology, 0, 12, .	1.3	10
3499	Classification of diabetic retinopathy based on improved deep forest model. Biomedical Signal Processing and Control, 2023, 79, 104020.	3.5	3
3501	Uncertainty-Aware Deep Learning Methods for Robust Diabetic Retinopathy Classification. IEEE Access, 2022, 10, 76669-76681.	2.6	12
3502	Toward an Efficient Deep Learning Model for Lung pathologies Detection In X-ray Images. , 2022, , .		10
3503	An Ensembled Method For Diabetic Retinopathy Classification using Transfer Learning. , 2022, , .		1
3504	mTOCS: Mobile Teleophthalmology in Community Settings to improve Eye-health in Diabetic Population. , 2022, , .		0
3505	Classification of Retinal Detachment using Deep Learning through Retinal Fundus Images. , 2022, , .		1
3506	Automated multidimensional deep learning platform for referable diabetic retinopathy detection: a multicentre, retrospective study. BMJ Open, 2022, 12, e060155.	0.8	5
3507	Subtle <scp>QRS</scp> changes are associated with reduced ejection fraction, diastolic dysfunction, and heart failure development and therapy responsiveness: Applications for artificial intelligence to <scp>ECG</scp> . Annals of Noninvasive Electrocardiology, 2022, 27, .	0.5	7

#	Article	IF	CITATIONS
3509	A Multicenter Clinical Study of the Automated Fundus Screening Algorithm. Translational Vision Science and Technology, 2022, 11, 22.	1.1	10
3510	The assessment of fundus image quality labeling reliability among graders with different backgrounds. PLoS ONE, 2022, 17, e0271156.	1.1	5
3511	Practical Application of Artificial Intelligence Technology in Glaucoma Diagnosis. Journal of Ophthalmology, 2022, 2022, 1-12.	0.6	1
3512	Application in medicine: Has artificial intelligence stood the test of time. Chinese Medical Journal, 0, Publish Ahead of Print, .	0.9	0
3513	Application of artificial intelligence-based dual-modality analysis combining fundus photography and optical coherence tomography in diabetic retinopathy screening in a community hospital. BioMedical Engineering OnLine, 2022, 21, .	1.3	10
3514	Emerging Applications of Deep Learning in Bone Tumors: Current Advances and Challenges. Frontiers in Oncology, 0, 12, .	1.3	12
3515	Clinically focused multi-cohort benchmarking as a tool for external validation of artificial intelligence algorithm performance in basic chest radiography analysis. Scientific Reports, 2022, 12, .	1.6	4
3516	Determinants of the implementation of an artificial intelligence-supported device for the screening of diabetic retinopathy in primary care – a qualitative study. Health Informatics Journal, 2022, 28, 146045822211128.	1.1	7
3517	Base on Megapixel Color Fundus Photos for Multi-label Disease Classification. , 2022, , .		0
3518	Artificial intelligence in retinal imaging for cardiovascular disease prediction: current trends and future directions. Current Opinion in Ophthalmology, 2022, 33, 440-446.	1.3	14
3519	Clinically Applicable Pathological Diagnosis System for Cell Clumps in Endometrial Cancer Screening via Deep Convolutional Neural Networks. Cancers, 2022, 14, 4109.	1.7	3
3520	Segmentation Method of Cerebral Aneurysms Based on Entropy Selection Strategy. Entropy, 2022, 24, 1062.	1.1	0
3521	RDD-Net: retinal disease diagnosis network: a computer-aided diagnosis technique using graph learning and feature descriptors. Visual Computer, 2023, 39, 4657-4670.	2.5	2
3522	Secure deep learning for distributed data against maliciouscentral server. PLoS ONE, 2022, 17, e0272423.	1.1	2
3523	Deep Learning in Dermatology: A Systematic Review of Current Approaches, Outcomes, and Limitations. JID Innovations, 2023, 3, 100150.	1.2	12
3524	Emulating Clinical Diagnostic Reasoning for Jaw Cysts with Machine Learning. Diagnostics, 2022, 12, 1968.	1.3	1
3526	Quantitative approaches in multimodal fundus imaging: State of the art and future perspectives. Progress in Retinal and Eye Research, 2023, 92, 101111.	7.3	16
3527	Development and validation of an abnormality-derived deep-learning diagnostic system for major respiratory diseases. Npj Digital Medicine, 2022, 5, .	5.7	14

#	Article	IF	CITATIONS
3528	Development and Validation of a Deep Learning Model for Brain Tumor Diagnosis and Classification Using Magnetic Resonance Imaging. JAMA Network Open, 2022, 5, e2225608.	2.8	16
3529	Classification of diabetic retinopathy with feature selection over deep features using nature-inspired wrapper methods. Applied Soft Computing Journal, 2022, 128, 109462.	4.1	28
3530	Innovations in thoracic imaging: <scp>CT</scp> , radiomics, <scp>AI</scp> and xâ€ray velocimetry. Respirology, 2022, 27, 818-833.	1.3	17
3531	Applications of natural language processing in ophthalmology: present and future. Frontiers in Medicine, 0, 9, .	1.2	6
3532	The Role of Medical Image Modalities and AI in the Early Detection, Diagnosis and Grading of Retinal Diseases: A Survey. Bioengineering, 2022, 9, 366.	1.6	6
3533	Deep learning: applications in retinal and optic nerve diseases. Australasian journal of optometry, The, 2023, 106, 466-475.	0.6	3
3534	Construct and Validate a Predictive Model for Surgical Site Infection after Posterior Lumbar Interbody Fusion Based on Machine Learning Algorithm. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-11.	0.7	2
3535	Automated segmentation and feature discovery of age-related macular degeneration and Stargardt disease via self-attended neural networks. Scientific Reports, 2022, 12, .	1.6	5
3536	Alzheimer's Disease Prediction Using Attention Mechanism with Dual-Phase 18F-Florbetaben Images. Nuclear Medicine and Molecular Imaging, 0, , .	0.6	0
3537	Application of machine learning in predicting blood flow and red cell distribution in capillary vessel networks. Journal of the Royal Society Interface, 2022, 19, .	1.5	2
3539	Improving detection and classification of diabetic retinopathy using CUDA and Mask RCNN. Signal, Image and Video Processing, 2023, 17, 1265-1273.	1.7	5
3540	The utilization of artificial neural networks for the prediction of 90-day unplanned readmissions following total knee arthroplasty. Archives of Orthopaedic and Trauma Surgery, 2023, 143, 3279-3289.	1.3	7
3541	Automated diagnosing primary open-angle glaucoma from fundus image by simulating human's grading with deep learning. Scientific Reports, 2022, 12, .	1.6	15
3542	A Survey of CNN-Based Network Intrusion Detection. Applied Sciences (Switzerland), 2022, 12, 8162.	1.3	26
3543	Determination of gastric atrophy with artificial intelligence compared to the assessments of the modified Kyoto and <scp>OLGA</scp> classifications. JGH Open, 2022, 6, 704-710.	0.7	1
3544	Understanding and Applying Deep Learning. Neural Computation, 0, , 1-22.	1.3	0
3545	Multi-objective metaheuristics with intelligent deep learning model for pancreatic tumor diagnosis. Journal of Intelligent and Fuzzy Systems, 2022, , 1-12.	0.8	0
3546	Artificial intelligence in screening, diagnosis, and classification of diabetic macular edema: A systematic review. Survey of Ophthalmology, 2023, 68, 42-53.	1.7	10

#	Article	IF	CITATIONS
3547	Deep learning in orthopaedic research. Bone and Joint Journal, 2022, 104-B, 909-910.	1.9	6
3548	Methylation risk scores are associated with a collection of phenotypes within electronic health record systems. Npj Genomic Medicine, 2022, 7, .	1.7	19
3549	R WE ready for reimbursement? A round up of developments in real-world evidence relating to health technology assessment: part 9. Journal of Comparative Effectiveness Research, 0, , .	0.6	2
3551	Predicting demographic characteristics from anterior segment OCT images with deep learning: A study protocol. PLoS ONE, 2022, 17, e0270493.	1.1	1
3552	An active deep learning method for diabetic retinopathy detection in segmented fundus images using artificial bee colony algorithm. Artificial Intelligence Review, 2023, 56, 3291-3318.	9.7	25
3553	Telemedicine and delivery of ophthalmic care in rural and remote communities: Drawing from Australian experience. Clinical and Experimental Ophthalmology, 2022, 50, 793-800.	1.3	5
3554	Novel deep learning–based computer-aided diagnosis system for predicting inflammatory activity in ulcerative colitis. Gastrointestinal Endoscopy, 2023, 97, 335-346.	0.5	10
3555	A Deep Learning Model for Automated Segmentation of Geographic Atrophy Imaged Using Swept-Source OCT. Ophthalmology Retina, 2023, 7, 127-141.	1.2	5
3556	Artificial intelligence and deep learning in ophthalmology: Current status and future perspectives. Advances in Ophthalmology Practice and Research, 2022, 2, 100078.	0.3	19
3557	Potential Use of Artificial Intelligence in Healthcare System. The Chinese Journal of Artificial Intelligence, 2022, 01, .	0.0	0
3558	Digital innovations for retinal care in diabetic retinopathy. Acta Diabetologica, 2022, 59, 1521-1530.	1.2	3
3559	Attitudes of optometrists towards artificial intelligence for the diagnosis of retinal disease: A crossâ€sectional mailâ€out survey. Ophthalmic and Physiological Optics, 2022, 42, 1170-1179.	1.0	5
3561	Robust automated prediction of the revised Vienna Classification in colonoscopy using deep learning: development and initial external validation. Journal of Gastroenterology, 2022, 57, 879-889.	2.3	4
3562	Real-World Translation of Artificial Intelligence in Neuro-Ophthalmology: The Challenges of Making an Artificial Intelligence System Applicable to Clinical Practice. Journal of Neuro-Ophthalmology, 2022, 42, 287-291.	0.4	0
3563	Multi-label classification of fundus images with graph convolutional network and LightGBM. Computers in Biology and Medicine, 2022, 149, 105909.	3.9	9
3564	Accounting for diversity in Al for medicine. Computer Law and Security Review, 2022, 47, 105735.	1.3	13
3566	Development and training of a machine learning algorithm to identify patients at risk for recurrence following an arthroscopic Bankart repair (CLEARER): protocol for a retrospective, multicentre, cohort study. BMJ Open, 2022, 12, e055346.	0.8	1
3567	Deep Learning for Diabetic Retinopathy Analysis: A Review, Research Challenges, and Future Directions. Sensors, 2022, 22, 6780.	2.1	24

#	Article	IF	Citations
3569	A novel combined deep learning methodology to non-invasively estimate hemoglobin levels in blood with high accuracy. Medical Engineering and Physics, 2022, 108, 103891.	0.8	2
3570	Collaboration of features optimization techniques for the effective diagnosis of glaucoma in retinal fundus images. Advances in Engineering Software, 2022, 173, 103283.	1.8	13
3571	Focused Attention in Transformers for interpretable classification of retinal images. Medical Image Analysis, 2022, 82, 102608.	7.0	22
3572	Automatic detection of stroke lesion from diffusion-weighted imaging via the improved YOLOv5. Computers in Biology and Medicine, 2022, 150, 106120.	3.9	16
3573	Prediction of the response to photodynamic therapy in patients with chronic central serous chorioretinopathy based on optical coherence tomography using deep learning. Photodiagnosis and Photodynamic Therapy, 2022, 40, 103107.	1.3	2
3574	Bayesian neural networks enabled snapshot polarized light scattering spectroscopy with uncertainty quantification. Optics and Lasers in Engineering, 2023, 160, 107298.	2.0	4
3575	Deep CNN for COPD identification by Multi-View snapshot integration of 3D airway tree and lung field. Biomedical Signal Processing and Control, 2023, 79, 104162.	3.5	7
3576	Microaneurysms detection in retinal images using a multi-scale approach. Biomedical Signal Processing and Control, 2023, 79, 104184.	3.5	5
3577	Automatic grading of Diabetic macular edema based on end-to-end network. Expert Systems With Applications, 2023, 213, 118835.	4.4	2
3578	Interpretable Self-Supervised Facial Micro-Expression Learning to Predict Cognitive State and Neurological Disorders. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 818-826.	3.6	3
3579	Delving intoÂLocal Features forÂOpen-Set Domain Adaptation inÂFundus Image Analysis. Lecture Notes in Computer Science, 2022, , 682-692.	1.0	1
3580	Using Semantic Segmentation to Identify Short Process of Incus in Different Microscopic Surgical Scenarios Via Transfer Learning. SSRN Electronic Journal, 0, , .	0.4	0
3581	Performance of the AIDRScreening system in detecting diabetic retinopathy in the fundus photographs of Chinese patients: a prospective, multicenter, clinical study. Annals of Translational Medicine, 2022, 10, 1088-1088.	0.7	8
3582	Neural Annotation Refinement: Development ofÂaÂNew 3D Dataset forÂAdrenal Gland Analysis. Lecture Notes in Computer Science, 2022, , 503-513.	1.0	3
3583	Artificial Intelligence for Diabetes-related Complications: The Eye as a Window to the Systemic Health. RSC Nanoscience and Nanotechnology, 2022, , 305-345.	0.2	0
3584	Review of Pedestrian Trajectory Prediction Methods: Comparing Deep Learning and Knowledge-Based Approaches. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 24126-24144.	4.7	28
3585	Detection of lesions in the optic nerve with magnetic resonance imaging using a 3D convolutional neural network. NeuroImage: Clinical, 2022, 36, 103187.	1.4	2
3586	Deep Treatment Response Assessment andÂPrediction ofÂColorectal Cancer Liver Metastases. Lecture Notes in Computer Science, 2022, , 482-491.	1.0	3

# 3587	ARTICLE Artificial intelligence and computational modeling. , 2022, , 223-235.	IF	CITATIONS 0
3588	Basics of Smart Healthcare Engineering ManagementÂand Risk Analytics. , 2022, , 1-19.		0
3589	Identifying malignant nodules on chest X-rays: A validation study of radiologist versus artificial intelligence diagnostic accuracy. , 2022, 1, 137.		5
3590	Learning Robust Representation forÂJoint Grading ofÂOphthalmic Diseases viaÂAdaptive Curriculum andÂFeature Disentanglement. Lecture Notes in Computer Science, 2022, , 523-533.	1.0	4
3591	The Role of Artificial Intelligence and Machine Learning in Surgery. , 2022, , 79-89.		1
3592	Exploring the Effectiveness of Artificial Intelligence, Machine Learning and Deep Learning in Trauma Triage: A Systematic Review and Meta-Analysis. SSRN Electronic Journal, 0, , .	0.4	1
3593	My journey in ophthalmology as a retina-vitreous surgeon: Crusade against blindness due to diabetic retinopathy. Indian Journal of Ophthalmology, 2022, 70, 3175.	0.5	1
3594	Breast imaging and deep learning: past, present, and future. Advances in Magnetic Resonance Technology and Applications, 2022, , 589-609.	0.0	0
3595	Automatic Classification of Retinal Diseases with Transfer Learning-Based Lightweight Convolutional Neural Network. SSRN Electronic Journal, 0, , .	0.4	1
3596	Investigating the Vulnerability of Federated Learning-Based Diabetic Retinopathy Grade Classification to Gradient Inversion Attacks. Lecture Notes in Computer Science, 2022, , 183-192.	1.0	4
3597	Performance Analysis between YOLOv5s and YOLOv5m Model to Detect and Count Blood Cells: Deep Learning Approach. , 2022, , .		5
3598	Implementation of Machine Learning Pipelines for Clinical Practice: Development and Validation Study. JMIR Medical Informatics, 2022, 10, e37833.	1.3	7
3599	Approach for Electronic Medical Record Data Analysis. Journal of Health Informatics and Statistics, 2022, 47, S1-S8.	0.1	0
3600	DeepRetino: Ophthalmic Disease Classification from Retinal Images using Deep Learning. , 2022, , .		0
3601	Knowledge Graph of Artificial Intelligence in Medicine: A Scientometric Analysis. , 2022, , .		0
3602	An Explainable Tool to Support Age-related Macular Degeneration Diagnosis. , 2022, , .		1
3603	CCNET: Cross Coordinate Network for Joint Diabetic Retinopathy and Diabetic Macular Edema Grading. , 2022, , .		1
3604	A multi-task deep learning framework for perineural invasion recognition in gastric cancer whole slide images. Biomedical Signal Processing and Control, 2023, 79, 104261.	3.5	9

# 3605	ARTICLE SARS-CoV-2: Has artificial intelligence stood the test of time. Chinese Medical Journal, 2022, 135, 1792-1802.	IF 0.9	CITATIONS 0
3606	Classification of Diabetic Retinopathy Fundus Images using Deep Neural Network. , 2022, , .		0
3607	Classification of Diabetic Retinopathy Based on B-ResNet. , 2022, , .		0
3608	Explainable Retinopathy Diagnosis and Localisation by means of Class Activation Mapping. , 2022, , .		1
3609	Classification of Ocular Diseases on Fundus Images Using Weighted MobileNetV2. , 2022, , .		1
3611	Moving the field forward: detection of epileptiform abnormalities on scalp electroencephalography using deep learning—clinical application perspectives. Brain Communications, 2022, 4, .	1.5	5
3612	Pre-hospital prediction of adverse outcomes in patients with suspected COVID-19: Development, application and comparison of machine learning and deep learning methods. Computers in Biology and Medicine, 2022, 151, 106024.	3.9	6
3613	Detection of Diabetic Retinopathy in Retinal Fundus Images Using CNN Classification Models. Electronics (Switzerland), 2022, 11, 2740.	1.8	14
3614	Automatic quantifying and monitoring follow-ups for implantable collamer lens implantation using AS-OCT images. Frontiers in Physics, 0, 10, .	1.0	1
3615	DL 101: Basic introduction to deep learning with its application in biomedical related fields. Statistics in Medicine, 2022, 41, 5365-5378.	0.8	0
3616	Enabling Fairness in Healthcare Through Machine Learning. Ethics and Information Technology, 2022, 24, .	2.3	11
3617	Automated machine learning–based classification of proliferative and non-proliferative diabetic retinopathy using optical coherence tomography angiography vascular density maps. Graefe's Archive for Clinical and Experimental Ophthalmology, 2023, 261, 391-399.	1.0	8
3618	Deep Learning-Based Noise Reduction Improves Optical Coherence Tomography Angiography Imaging of Radial Peripapillary Capillaries in Advanced Glaucoma. Current Eye Research, 2022, 47, 1600-1608.	0.7	4
3619	Ensemble neural network model for detecting thyroid eye disease using external photographs. British Journal of Ophthalmology, 2023, 107, 1722-1729.	2.1	7
3620	Diagnosis of Early Glottic Cancer Using Laryngeal Image and Voice Based on Ensemble Learning of Convolutional Neural Network Classifiers. Journal of Voice, 2022, , .	0.6	11
3621	Artificial intelligence (AI) diagnostic tools: utilizing a convolutional neural network (CNN) to assess periodontal bone level radiographically—a retrospective study. BMC Oral Health, 2022, 22, .	0.8	23
3622	Deep learning predicts the differentiation of kidney organoids derived from human induced pluripotent stem cells. Kidney Research and Clinical Practice, 2023, 42, 75-85.	0.9	10
3623	Automatic identification of septal flash phenomenon in patients with complete left bundle branch block. Medical Image Analysis, 2022, 82, 102619.	7.0	1

#	Article	IF	CITATIONS
3624	Cataract Detection on Ocular Fundus Images Using Machine Learning. Lecture Notes in Networks and Systems, 2023, , 185-192.	0.5	2
3625	Detecting glaucoma from multi-modal data using probabilistic deep learning. Frontiers in Medicine, 0, 9, .	1.2	6
3626	A survey on recent developments in diabetic retinopathy detection through integration of deep learning. Multimedia Tools and Applications, 2023, 82, 17321-17351.	2.6	8
3627	Deep multiple instance learning for automatic glaucoma prevention and auto-annotation using color fundus photography. Progress in Artificial Intelligence, 2022, 11, 397-409.	1.5	6
3628	Medical Staff and Resident Preferences for Using Deep Learning in Eye Disease Screening: Discrete Choice Experiment. Journal of Medical Internet Research, 2022, 24, e40249.	2.1	4
3629	From real-world electronic health record data to real-world results using artificial intelligence. Annals of the Rheumatic Diseases, 2023, 82, 306-311.	0.5	24
3630	Deep Learning Techniques for the Effective Prediction of Alzheimer's Disease: A Comprehensive Review. Healthcare (Switzerland), 2022, 10, 1842.	1.0	5
3631	A new method proposed to Melanoma-skin cancer lesion detection and segmentation based on hybrid convolutional neural network. Multimedia Tools and Applications, 2023, 82, 11873-11896.	2.6	4
3632	The development and deployment of machine learning models. Knee Surgery, Sports Traumatology, Arthroscopy, 2022, 30, 3917-3923.	2.3	12
3633	Endocytoscopic Observation of Esophageal Lesions: Our Own Experience and a Review of the Literature. Diagnostics, 2022, 12, 2222.	1.3	2
3634	Automatic interpretation and clinical evaluation for fundus fluorescein angiography images of diabetic retinopathy patients by deep learning. British Journal of Ophthalmology, 2023, 107, 1852-1858.	2.1	42
3635	Big Data and Machine Learning in Healthcare: Concepts, Technologies, and Opportunities. Lecture Notes on Data Engineering and Communications Technologies, 2023, , 123-135.	0.5	1
3639	Evaluation of Generative Adversarial Networks for High-Resolution Synthetic Image Generation of Circumpapillary Optical Coherence Tomography Images for Glaucoma. JAMA Ophthalmology, 2022, 140, 974.	1.4	9
3641	Deep Transfer Learning Approaches to Predict Glaucoma, Cataract, Choroidal Neovascularization, Diabetic Macular Edema, DRUSEN and Healthy Eyes: An Experimental Review. Archives of Computational Methods in Engineering, 2023, 30, 521-541.	6.0	30
3642	Using machine learning to determine the shared and unique risk factors for marijuana use among child-welfare versus community adolescents. PLoS ONE, 2022, 17, e0274998.	1.1	1
3643	Training deep learning models to work on multiple devices by cross domain learning with no additional annotations. Ophthalmology, 2022, , .	2.5	4
3644	Evolution of research trends in artificial intelligence for breast cancer diagnosis and prognosis over the past two decades: A bibliometric analysis. Frontiers in Oncology, 0, 12, .	1.3	0
3645	Artificial intelligence applied to ophthalmology and optometry: A citation network analysis. Journal of Optometry, 2022, 15, S82-S90.	0.7	4

#	Article	IF	CITATIONS
3646	Concurrent Learning of Patch and Image-Based Features by CNN for Diabetic Retinopathy Detection. Journal of Uncertain Systems, 2022, 15, .	0.4	0
3649	Deep neural networks allow expert-level brain meningioma segmentation and present potential for improvement of clinical practice. Scientific Reports, 2022, 12, .	1.6	6
3650	Predicting lymphovascular invasion in clinically node-negative breast cancer detected by abbreviated magnetic resonance imaging: Transfer learning vs. radiomics. Frontiers in Oncology, 0, 12, .	1.3	2
3651	Mucosa-interfacing electronics. Nature Reviews Materials, 2022, 7, 908-925.	23.3	35
3652	Treatment Discontinuation Prediction in Patients With Diabetes Using a Ranking Model: Machine Learning Model Development. JMIR Bioinformatics and Biotechnology, 2022, 3, e37951.	0.4	0
3653	Using artificial intelligence in diabetic retinopathy. , 0, 1, 71-78.		0
3654	Retinal Microvasculature. JACC: Heart Failure, 2022, 10, 785-791.	1.9	5
3655	An Artificial Intelligence Approach to Guiding the Management of Heart Failure Patients Using Predictive Models: A Systematic Review. Biomedicines, 2022, 10, 2188.	1.4	7
3656	Japan Ocular Imaging Registry: a national ophthalmology real-world database. Japanese Journal of Ophthalmology, 2022, 66, 499-503.	0.9	3
3657	Effective Utilization of Multiple Convolutional Neural Networks for Chest X-Ray Classification. SN Computer Science, 2022, 3, .	2.3	3
3658	Pancreatic Cancer Detection on CT Scans with Deep Learning: A Nationwide Population-based Study. Radiology, 2023, 306, 172-182.	3.6	36
3659	Artificial intelligence promotes the diagnosis and screening of diabetic retinopathy. Frontiers in Endocrinology, 0, 13, .	1.5	15
3660	A Multi-Label Classification with an Adversarial-Based Denoising Autoencoder for Medical Image Annotation. ACM Transactions on Management Information Systems, 2023, 14, 1-21.	2.1	8
3661	Automatic detection of crohn disease in wireless capsule endoscopic images using a deep convolutional neural network. Applied Intelligence, 2023, 53, 12632-12646.	3.3	3
3662	CDC_Net: multi-classification convolutional neural network model for detection of COVID-19, pneumothorax, pneumonia, lung Cancer, and tuberculosis using chest X-rays. Multimedia Tools and Applications, 2023, 82, 13855-13880.	2.6	30
3663	Al in Health Science: A Perspective. Current Pharmaceutical Biotechnology, 2023, 24, 1149-1163.	0.9	4
3664	Engaging patients in identifying risk factors for ALS. SSM Qualitative Research in Health, 2022, , 100179.	0.6	1
3665	Automated fracture screening using an object detection algorithm on whole-body trauma computed tomography. Scientific Reports, 2022, 12, .	1.6	9

		TIATION REPORT	
#	Article	IF	Citations
3666	Interpretable machine learning prediction of all-cause mortality. Communications Medicine, 2022, 2,	,. 1.9	17
3667	Deep Multi-Task Learning for Diabetic Retinopathy Grading in Fundus Images. Proceedings of the AA Conference on Artificial Intelligence, 2021, 35, 2826-2834.	Al 3.6	13
3668	Iterative Quality Control Strategies for Expert Medical Image Labeling. , 0, 9, 60-71.		3
3669	Redesigning Relations: Coordinating Machine Learning Variables and Sociobuilt Contexts in COVID-1 and Beyond. Future of Business and Finance, 2022, , 179-205.	19 0.3	1
3670	Reliable Visual Question Answering: Abstain Rather Than Answer Incorrectly. Lecture Notes in Computer Science, 2022, , 148-166.	1.0	4
3671	Artificial Intelligence in the Diagnosis and Management of Keratoconus. , 2022, , 275-289.		1
3672	Deep-Learning-Based Automated Scoring for the Severity of Toxic Comments Using Electra. , 2022, ,		0
3673	The Challenges of Regulating Artificial Intelligence in Healthcare Comment on "Clinical Decision Support and New Regulatory Frameworks for Medical Devices: Are We Ready for It? - A Viewpoint Paper". International Journal of Health Policy and Management, 0, , .	0.5	5
3674	Influence of Different Types of Retinal Cameras on the Performance of Deep Learning Algorithms in Diabetic Retinopathy Screening. Life, 2022, 12, 1610.	1.1	4
3675	Algorithmic transparency and interpretability measures improve radiologists' performance in BI-F 4 classification. European Radiology, 0, , .	RADS 2.3	2
3676	Automatic volumetric diagnosis of hepatocellular carcinoma based on four-phase CT scans with minimum extra information. Frontiers in Oncology, 0, 12, .	1.3	4
3678	Diagnosis of Depth of Submucosal Invasion in Colorectal Cancer with Al Using Deep Learning. Cancers, 2022, 14, 5361.	1.7	6
3679	Detection of Fall Risk in Multiple Sclerosis by Gait Analysis—An Innovative Approach Using Feature Selection Ensemble and Machine Learning Algorithms. Brain Sciences, 2022, 12, 1477.	1.1	2
3680	Bone Fracture Detection Using Deep Supervised Learning from Radiological Images: A Paradigm Shif Diagnostics, 2022, 12, 2420.	t. 1.3	41
3681	Artificial intelligence using deep learning to predict the anatomical outcome of rhegmatogenous retinal detachment surgery: a pilot study. Graefe's Archive for Clinical and Experimental Ophthalmology, 2023, 261, 715-721.	1.0	2
3682	Characterization of technologies in digital health applied in vision care. Journal of Optometry, 2022,	, 0.7	2
3683	Modified capsule network for diabetic retinopathy detection and classification using fundus images. Journal of Intelligent and Fuzzy Systems, 2022, , 1-22.	0.8	0
3684	Detection and Classification of Human-Carrying Baggage Using DenseNet-161 and Fit One Cycle. Big Data and Cognitive Computing, 2022, 6, 108.	g 2.9	3

#	Article	IF	CITATIONS
3685	Predicting rare outcomes in abdominal wall reconstruction using image-based deep learning models. Surgery, 2023, 173, 748-755.	1.0	4
3686	The upcoming role of Artificial Intelligence (AI) for retinal and glaucomatous diseases. Journal of Optometry, 2022, 15, S50-S57.	0.7	10
3687	Detection, growth quantification, and malignancy prediction of pulmonary nodules using deep convolutional networks in follow-up CT scans. , 0, , 7-1-7-20.		0
3688	Machine learning models for predicting in-hospital mortality in patient with sepsis: Analysis of vital sign dynamics. Frontiers in Medicine, 0, 9, .	1.2	2
3689	Contemporary Advances in Computer-Assisted Bone Histomorphometry and Identification of Bone Cells in Culture. Calcified Tissue International, 2023, 112, 1-12.	1.5	2
3690	An overview of artificial intelligence in diabetic retinopathy and other ocular diseases. Frontiers in Public Health, 0, 10, .	1.3	37
3691	Automatic identification of benign pigmented skin lesions from clinical images using deep convolutional neural network. BMC Biotechnology, 2022, 22, .	1.7	3
3692	Mixed and constrained input mutation for effective fuzzing of deep learning systems. Information Sciences, 2022, 614, 497-517.	4.0	1
3693	Deep Learning and Blockchain for Electronic Health Record in Healthcare System. Lecture Notes in Networks and Systems, 2023, , 429-436.	0.5	0
3694	Diabetic Retinopathy and Eye Screening: Diabetic Patients Standpoint, Their Practice, and Barriers; A Cross-Sectional Study. Journal of Clinical Medicine, 2022, 11, 6351.	1.0	3
3695	Detection of Proximal Caries Lesions on Bitewing Radiographs Using Deep Learning Method. Caries Research, 2022, 56, 455-463.	0.9	11
3696	Clinical evaluation of Al-assisted screening for diabetic retinopathy in rural areas of midwest China. PLoS ONE, 2022, 17, e0275983.	1.1	6
3697	Deep attentive convolutional neural network for automatic grading of imbalanced diabetic retinopathy in retinal fundus images. Biomedical Optics Express, 2022, 13, 5813.	1.5	4
3698	A Deep Learning Model System for Diagnosis and Management of Adnexal Masses. Cancers, 2022, 14, 5291.	1.7	2
3699	Research on Assistant Diagnosis of Fundus Optic Neuropathy Based on Deep Learning. Current Eye Research, 2023, 48, 51-59.	0.7	0
3700	Deep Ensemble Learning for Retinal Image Classification. Translational Vision Science and Technology, 2022, 11, 39.	1.1	5
3701	Demystifying Supervised Learning in Healthcare 4.0: A New Reality of Transforming Diagnostic Medicine. Diagnostics, 2022, 12, 2549.	1.3	64
3702	Systematic bibliometric and visualized analysis of research hotspots and trends on the application of artificial intelligence in diabetic retinopathy. Frontiers in Endocrinology, 0, 13, .	1.5	2

#	Article	IF	CITATIONS
3703	To pretrain or not? A systematic analysis of the benefits of pretraining in diabetic retinopathy. PLoS ONE, 2022, 17, e0274291.	1.1	2
3704	An automatic early screening system of eye diseases using UWF fundus images based on deep neural networks. Intelligence-based Medicine, 2022, , 100079.	1.4	0
3708	Accuracy and feasibility with Al-assisted OCT in retinal disorder community screening. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	4
3709	CoT-XNet: contextual transformer with Xception network for diabetic retinopathy grading. Physics in Medicine and Biology, 2022, 67, 245003.	1.6	12
3710	A manifesto on explainability for artificial intelligence in medicine. Artificial Intelligence in Medicine, 2022, 133, 102423.	3.8	41
3711	Study and validation of an explainable machine learning-based mortality prediction following emergency surgery in the elderly: A prospective observational study. International Journal of Surgery, 2022, 107, 106954.	1.1	4
3712	Machine learning in medicine: a practical introduction to techniques for data pre-processing, hyperparameter tuning, and model comparison. BMC Medical Research Methodology, 2022, 22, .	1.4	16
3713	Publication trends of artificial intelligence in retina in 10 years: Where do we stand?. Frontiers in Medicine, 0, 9, .	1.2	0
3714	Deep Learning in Medicine. Are We Ready?. Annals of the Academy of Medicine, Singapore, 2019, 48, 1-4.	0.2	4
3715	Interpreting Medical Images. , 2022, , 343-371.		4
3715 3716	Interpreting Medical Images. , 2022, , 343-371. A Survey of Deep Learning Architectures for Privacy-Preserving Machine Learning With Fully Homomorphic Encryption. IEEE Access, 2022, 10, 117477-117500.	2.6	4
	A Survey of Deep Learning Architectures for Privacy-Preserving Machine Learning With Fully	2.6	
3716	A Survey of Deep Learning Architectures for Privacy-Preserving Machine Learning With Fully Homomorphic Encryption. IEEE Access, 2022, 10, 117477-117500.	2.6	14
3716 3717	A Survey of Deep Learning Architectures for Privacy-Preserving Machine Learning With Fully Homomorphic Encryption. IEEE Access, 2022, 10, 117477-117500. Integration of AI for Clinical Decision Support. , 2022, , 285-308.	2.6	14 2
3716 3717 3718	A Survey of Deep Learning Architectures for Privacy-Preserving Machine Learning With Fully Homomorphic Encryption. IEEE Access, 2022, 10, 117477-117500. Integration of AI for Clinical Decision Support., 2022, , 285-308. Digital Health Literacy and the Emerging Role of Technology in Vocal Health., 2022, , 161-179. Graph Adversarial Transfer Learning for Diabetic Retinopathy Classification. IEEE Access, 2022, 10,		14 2 0
3716 3717 3718 3719	A Survey of Deep Learning Architectures for Privacy-Preserving Machine Learning With Fully Homomorphic Encryption. IEEE Access, 2022, 10, 117477-117500. Integration of AI for Clinical Decision Support. , 2022, , 285-308. Digital Health Literacy and the Emerging Role of Technology in Vocal Health. , 2022, , 161-179. Graph Adversarial Transfer Learning for Diabetic Retinopathy Classification. IEEE Access, 2022, 10, 119071-119083.		14 2 0 5
3716 3717 3718 3719 3720	A Survey of Deep Learning Architectures for Privacy-Preserving Machine Learning With Fully Homomorphic Encryption. IEEE Access, 2022, 10, 117477-117500. Integration of AI for Clinical Decision Support. , 2022, , 285-308. Digital Health Literacy and the Emerging Role of Technology in Vocal Health. , 2022, , 161-179. Graph Adversarial Transfer Learning for Diabetic Retinopathy Classification. IEEE Access, 2022, 10, 119071-119083. Introducing AI in Medicine. , 2022, , 3-20.		14 2 0 5 0
 3716 3717 3718 3719 3720 3721 	A Survey of Deep Learning Architectures for Privacy-Preserving Machine Learning With Fully Homomorphic Encryption. IEEE Access, 2022, 10, 117477-117500. Integration of Al for Clinical Decision Support., 2022,, 285-308. Digital Health Literacy and the Emerging Role of Technology in Vocal Health., 2022,, 161-179. Graph Adversarial Transfer Learning for Diabetic Retinopathy Classification. IEEE Access, 2022, 10, 119071-119083. Introducing Al in Medicine., 2022,, 3-20. Al in Medicine: Some Pertinent History., 2022,, 21-50. A CNN Approach for Detecting Red and White Lesions in Retinal Fundus Images. Lecture Notes in	2.6	14 2 0 5 0 2

#	Article	IF	CITATIONS
3724	Machine Learning Systems. , 2022, , 135-211.		0
3725	Multi-Stream Deep Neural Network for Diabetic Retinopathy Severity Classification Under a Boosting Framework. IEEE Access, 2022, 10, 113172-113183.	2.6	19
3726	Colon cancer stage detection in colonoscopy images using YOLOv3 MSF deep learning architecture. Biomedical Signal Processing and Control, 2023, 80, 104283.	3.5	6
3727	Artificial intelligence in eye care. The Optician, 2018, 2018, 184107-1.	0.0	Ο
3728	A Systematic Review of Transfer Learning-Based Approaches for Diabetic Retinopathy Detection. Gazi University Journal of Science, 2023, 36, 1140-1157.	0.6	3
3729	Optical Coherence Tomography Classification through Deep Learning. , 2022, , .		0
3730	All Attention U-NET for Semantic Segmentation of Intracranial Hemorrhages In Head CT Images. , 2022, ,		1
3731	A Predictive Machine Learning Tool for Asthma Exacerbations: Results from a 12-Week, Open-Label Study Using an Electronic Multi-Dose Dry Powder Inhaler with Integrated Sensors. Journal of Asthma and Allergy, 0, Volume 15, 1623-1637.	1.5	11
3732	Causal deep learning reveals the comparative effectiveness of antihyperglycemic treatments in poorly controlled diabetes. Nature Communications, 2022, 13, .	5.8	6
3733	LAC-GAN: Lesion attention conditional GAN for Ultra-widefield image synthesis. Neural Networks, 2023, 158, 89-98.	3.3	5
3734	Efficient labeling of retinal fundus photographs using deep active learning. Journal of Medical Imaging, 2022, 9, .	0.8	0
3736	Radiographic findings involved in knee osteoarthritis progression are associated with pain symptom frequency and baseline disease severity: a population-level analysis using deep learning. Knee Surgery, Sports Traumatology, Arthroscopy, 2023, 31, 586-595.	2.3	7
3737	The effectiveness of artificial intelligence-based automated grading and training system in education of manual detection of diabetic retinopathy. Frontiers in Public Health, 0, 10, .	1.3	6
3738	Multitask Learning for Joint Grading of Diabetic Retinopathy and Macular Edema Using Transformer. Lecture Notes in Networks and Systems, 2023, , 877-889.	0.5	Ο
3739	Deep Learning Improves Prediction of Cardiovascular Disease-Related Mortality and Admission in Patients with Hypertension: Analysis of the Korean National Health Information Database. Journal of Clinical Medicine, 2022, 11, 6677.	1.0	3
3740	Use of artificial intelligence in ophthalmology: a narrative review. Sao Paulo Medical Journal, 2022, 140, 837-845.	0.4	3
3741	Class-Aware Attention Network for infectious keratitis diagnosis using corneal photographs. Computers in Biology and Medicine, 2022, 151, 106301.	3.9	1
3742	Comparative analysis of deep convolution neural network models on small scale datasets. Optik, 2022, 271, 170238.	1.4	0

#	Article	IF	CITATIONS
3743	An efficient ensemble method for detecting spinal curvature type using deep transfer learning and soft voting classifier. Expert Systems With Applications, 2023, 213, 119290.	4.4	10
3744	Can the Future be Bright with Advances in Diabetic Eye Care?. Endocrinology and Metabolism Clinics of North America, 2022, , .	1.2	0
3745	Attention-Driven Cascaded Network for Diabetic Retinopathy Grading from Fundus Images. Biomedical Signal Processing and Control, 2023, 80, 104370.	3.5	11
3746	Multi-point attention-based semi-supervised learning for diabetic retinopathy classification. Biomedical Signal Processing and Control, 2023, 80, 104412.	3.5	3
3748	Category weighted network and relation weighted label for diabetic retinopathy screening. Computers in Biology and Medicine, 2023, 152, 106408.	3.9	6
3749	Benchmark datasets driving artificial intelligence development fail to capture the needs of medical professionals. Journal of Biomedical Informatics, 2023, 137, 104274.	2.5	7
3750	Artificial Intelligence and Neurologic Physical Therapy. Journal of Neurologic Physical Therapy, 2023, 47, 1-2.	0.7	0
3751	GradFuzz: Fuzzing deep neural networks with gradient vector coverage for adversarial examples. Neurocomputing, 2023, 522, 165-180.	3.5	2
3752	The Gap in the Thickness: Estimating Effectiveness of Pulmonary Nodule Detection in Thick- and Thin-SectionÂCT Images with 3D Deep Neural Networks. Computer Methods and Programs in Biomedicine, 2023, 229, 107290.	2.6	1
3753	Automatic classification of retinal diseases with transfer learning-based lightweight convolutional neural network. Biomedical Signal Processing and Control, 2023, 81, 104365.	3.5	5
3754	Combating medical noisy labels by disentangled distribution learning and consistency regularization. Future Generation Computer Systems, 2023, 141, 567-576.	4.9	2
3755	How does artificial intelligence impact digital healthcare initiatives? A review of AI applications in dental healthcare. International Journal of Information Management Data Insights, 2023, 3, 100144.	6.5	14
3756	Radiomics-Based Assessment of OCT Angiography Images for Diabetic Retinopathy Diagnosis. Ophthalmology Science, 2023, 3, 100259.	1.0	7
3757	Application of deep learning algorithms for diabetic retinopathy screening. Annals of Translational Medicine, 2022, 10, 1298-1298.	0.7	2
3758	The medical profession transformed by artificial intelligence: Qualitative study. Digital Health, 2022, 8, 205520762211439.	0.9	4
3759	Diabetic Foot Ulcer Ischemia and Infection Classification Using EfficientNet Deep Learning Models. IEEE Open Journal of Engineering in Medicine and Biology, 2022, 3, 189-201.	1.7	6
3760	Prospective studies on artificial intelligence (Al)-based diabetic retinopathy screening. Annals of Translational Medicine, 2022, 10, 1297-1297.	0.7	3
3761	TMM-Nets: Transferred Multi- to Mono-Modal Generation for Lupus Retinopathy Diagnosis. IEEE Transactions on Medical Imaging, 2023, 42, 1083-1094.	5.4	4

#	Article	IF	CITATIONS
3762	Stakeholder Perspectives of Clinical Artificial Intelligence Implementation: Systematic Review of Qualitative Evidence. Journal of Medical Internet Research, 0, 25, e39742.	2.1	18
3763	Digital Health Applications to Establish a Remote Diagnosis of Orthopedic Knee Disorders: Scoping Review. Journal of Medical Internet Research, 0, 25, e40504.	2.1	1
3764	Transfer Learning for Medical Image Classification on Multiple Datasets using PubMedCLIP. , 2022, , .		1
3765	Pterygium Screening and Lesion Area Segmentation Based on Deep Learning. Journal of Healthcare Engineering, 2022, 2022, 1-9.	1.1	1
3766	Diabetic Retinopathy Detection Using CNN Model. Smart Innovation, Systems and Technologies, 2023, , 133-143.	0.5	0
3767	SEmbedNet: Hardware-Friendly CNN for Ectopic Beat Classification on STM32-Based Edge Device. , 2022, , .		0
3768	Tumor microenvironment-associated lactate metabolism regulates the prognosis and precise checkpoint immunotherapy outcomes of patients with lung adenocarcinoma. European Journal of Medical Research, 2022, 27, .	0.9	3
3769	Development and validation of a system for the prediction of challenging behaviors of people with autism spectrum disorder based on a smart wearable shirt: A mixed-methods design. Frontiers in Behavioral Neuroscience, 0, 16, .	1.0	2
3770	Deep Learning Approach in Image Diagnosis of Pseudomonas Keratitis. Diagnostics, 2022, 12, 2948.	1.3	3
3771	Deep Learning-Based Glaucoma Screening Using Regional RNFL Thickness in Fundus Photography. Diagnostics, 2022, 12, 2894.	1.3	3
3772	Detection of Diabetic Retinopathy using Convolutional Neural Networks for Feature Extraction and Classification (DRFEC). Multimedia Tools and Applications, 2023, 82, 29943-30001.	2.6	12
3773	Screening Retinal Images and Extraction of the Retinal Blood Vessel for Identifying Diseases and Classification of Arteries and Veins by using Deep Learning. Recent Advances in Electrical and Electronic Engineering, 2022, 16, .	0.2	0
3774	Comparison of artificial intelligence and human-based prediction and stratification of the risk of long-term kidney allograft failure. Communications Medicine, 2022, 2, .	1.9	3
3775	Automatic Diagnosis of Diabetic Retinopathy Stage Focusing Exclusively on Retinal Hemorrhage. Medicina (Lithuania), 2022, 58, 1681.	0.8	2
3776	A Novel original feature fusion network for joint diabetic retinopathy and diabetic Macular edema grading. Neural Computing and Applications, 2023, 35, 6699-6712.	3.2	1
3777	Reduced serum calcium is associated with a higher risk of retinopathy in non-diabetic individuals: The Chinese Multi-provincial Cohort Study. Frontiers in Endocrinology, 0, 13, .	1.5	2
3778	Edge Computing versus Cloud Computing: Impact on Retinal Image Pre-processing. , 2022, , .		0
3779	Automatic Detection of Horner Syndrome by Using Facial Images. Journal of Healthcare Engineering, 2022, 2022, 1-9.	1.1	2

	CITATIO	IN REPORT	
#	Article	IF	CITATIONS
3780	Applications of Deep Learning in Endocrine Neoplasms. Surgical Pathology Clinics, 2023, 16, 167-176.	0.7	1
3781	Perspectives of diabetic retinopathy—challenges and opportunities. Eye, 2023, 37, 2183-2191.	1.1	4
3782	Using Artificial Intelligence to Analyse the Retinal Vascular Network: The Future of Cardiovascular Risk Assessment Based on Oculomics? A Narrative Review. Ophthalmology and Therapy, 2023, 12, 657-674	. 1.0	7
3783	Knowledge, attitudes, and practices towards artificial intelligence among young pediatricians: A nationwide survey in France. Frontiers in Pediatrics, 0, 10, .	0.9	3
3784	A Systematic Literature Review on Diabetic Retinopathy Using an Artificial Intelligence Approach. Big Data and Cognitive Computing, 2022, 6, 152.	2.9	6
3785	Automatic detection and diagnosis of thyroid ultrasound images based on attention mechanism. Computers in Biology and Medicine, 2023, 155, 106468.	3.9	2
3786	Deep Learning in Diverse Intelligent Sensor Based Systems. Sensors, 2023, 23, 62.	2.1	7
3787	Machine Learning Styles for Diabetic Retinopathy Detection: A Review and Bibliometric Analysis. Big Data and Cognitive Computing, 2022, 6, 154.	2.9	3
3788	Efficacy of a Deep Learning System for Screening Myopic Maculopathy Based on Color Fundus Photographs. Ophthalmology and Therapy, 2023, 12, 469-484.	1.0	6
3789	Detection of five severity levels of diabetic retinopathy using ensemble deep learning model. Multimedia Tools and Applications, 2023, 82, 19005-19020.	2.6	6
3790	A Systematic Review on Diabetic Retinopathy Detection Using Deep Learning Techniques. Archives of Computational Methods in Engineering, 2023, 30, 2211-2256.	6.0	6
3791	Quantitative Analysis of Retinal Vascular Leakage in Retinal Vasculitis Using Machine Learning. Applied Sciences (Switzerland), 2022, 12, 12751.	1.3	1
3792	Deep learningâ€assisted diagnosis of parotid gland tumors by using contrastâ€enhanced CT imaging. Oral Diseases, 2023, 29, 3325-3336.	1.5	1
3794	Classification of diabetic retinopathy: Past, present and future. Frontiers in Endocrinology, 0, 13, .	1.5	23
3795	Diabetic retinopathy detection using a pretrained machine learning model. , 2022, , .		1
3796	Application of deep learning as an ancillary diagnostic tool for thyroid FNA cytology. Cancer Cytopathology, 2023, 131, 217-225.	1.4	7
3797	Artificial intelligence-enabled rapid and symptom-based medication recommendation system (COV-MED) for the COVID-19 patients. Journal of Ideas in Health, 2022, 5, .	0.1	0
3798	Artificial intelligence applications in pathological diagnosis of gastric cancer. Heliyon, 2022, 8, e12431.	1.4	7

#	Article	IF	CITATIONS
3799	Artificial intelligence use in diabetes. Latin American Journal of Ophthalmology, 0, 5, 6.	0.0	0
3800	Joint grading of diabetic retinopathy and diabetic macular edema using an adaptive attention block and semisupervised learning. Applied Intelligence, 2023, 53, 16797-16812.	3.3	2
3801	A Hybrid Artificial Intelligence Model for Detecting Keratoconus. Applied Sciences (Switzerland), 2022, 12, 12979.	1.3	2
3802	Classification of diabetic retinopathy stages based on neural networks. Sistemnyj Analiz I Prikladnaâ Informatika, 2022, , 12-21.	0.1	0
3803	Artificial intelligence vs. radiologist: accuracy of wrist fracture detection on radiographs. European Radiology, 2023, 33, 3974-3983.	2.3	9
3804	TraineR: A crowd training platform for deep learning image labeling tasks. Software Impacts, 2022, 14, 100450.	0.8	0
3805	Artificial intelligence (AI): a new window to revamp the vector-borne disease control. Parasitology Research, 2023, 122, 369-379.	0.6	1
3806	Application of artificial intelligence models for detecting the pterygium that requires surgical treatment based on anterior segment images. Frontiers in Neuroscience, 0, 16, .	1.4	0
3807	Medical Image Classification Based on Semi-Supervised Generative Adversarial Network and Pseudo-Labelling. Sensors, 2022, 22, 9967.	2.1	0
3808	Human Health during Space Travel: State-of-the-Art Review. Cells, 2023, 12, 40.	1.8	13
3809	Artificial Intelligence in Pediatric Nephrology—A Call for Action. , 2023, 30, 17-24.		1
3810	Overview of global publications on machine learning in diabetic retinopathy from 2011 to 2021: Bibliometric analysis. Frontiers in Endocrinology, 0, 13, .	1.5	5
3813	Exome-wide association analysis of CT imaging-derived hepatic fat in a medical biobank. Cell Reports Medicine, 2022, 3, 100855.	3.3	3
3814	CT-based COPD identification using multiple instance learning with two-stage attention. Computer Methods and Programs in Biomedicine, 2023, 230, 107356.	2.6	2
3815	Vitreoretinal Surgical Instrument Tracking in Three Dimensions Using Deep Learning. Translational Vision Science and Technology, 2023, 12, 20.	1.1	3
3816	A Deep Learning-Based Framework for Retinal Disease Classification. Healthcare (Switzerland), 2023, 11, 212.	1.0	4
3817	Harnessing the Power of Artificial Intelligence. , 2022, , 241-244.		0
3818	Segmentation-Assisted Fully Convolutional Neural Network Enhances Deep Learning Performance to Identify Proliferative Diabetic Retinopathy. Journal of Clinical Medicine, 2023, 12, 385.	1.0	7

#	Article	IF	CITATIONS
3819	Diabetic retinopathy: Looking forward to 2030. Frontiers in Endocrinology, 0, 13, .	1.5	48
3820	Test accuracy of artificial intelligence-based grading of fundus images in diabetic retinopathy screening: A systematic review. Journal of Medical Screening, 2023, 30, 97-112.	1.1	4
3821	Application of Deep Convolutional Neural Networks MobileNetV2 and Xception for Detecting Cardiac Arrhythmia. Lecture Notes in Networks and Systems, 2023, , 581-589.	0.5	0
3822	Automated Detection of Aortic Stenosis Using Machine Learning. Journal of the American Society of Echocardiography, 2023, 36, 411-420.	1.2	3
3824	TrEnD: A transformerâ€based encoderâ€decoder model with adaptive patch embedding for mass segmentation in mammograms. Medical Physics, 0, , .	1.6	0
3825	Computer aided diagnosis of diabetic macular edema in retinal fundus and OCT images: A review. Biocybernetics and Biomedical Engineering, 2023, 43, 157-188.	3.3	8
3826	An Intelligent Technique for Detecting Diabetic Retinopathy by Comparative Analysis Based on Deep Learning. Lecture Notes in Electrical Engineering, 2023, , 363-377.	0.3	0
3827	AMTLDC: a new adversarial multi-source transfer learning framework to diagnosis of COVID-19. Evolving Systems, 2023, 14, 1101-1115.	2.4	4
3829	Energy- efficient model "Inception V3 based on deep convolutional neural network―using cloud platform for detection of COVID-19 infected patients. Epidemiologic Methods, 2023, 12, .	0.8	2
3830	Comparing Deep Feature Extraction Strategies for Diabetic Retinopathy Stage Classification from Fundus Images. Arabian Journal for Science and Engineering, 2023, 48, 10335-10354.	1.7	4
3831	Achievements and prospects for the application of artificial intelligence technologies in medicine: an overview. Part 1. Sociology of Medicine, 2023, 21, 83-96.	0.2	2
3832	Use of artificial intelligence for the diagnosis of cholesteatoma. Laryngoscope Investigative Otolaryngology, 2023, 8, 201-211.	0.6	3
3833	Artificial intelligence and machine learning in ophthalmology: A review. Indian Journal of Ophthalmology, 2023, 71, 11.	0.5	8
3834	Opportunities and challenges in application of artificial intelligence in pharmacology. Pharmacological Reports, 2023, 75, 3-18.	1.5	8
3835	Artificial intelligence technology for myopia challenges: A review. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	2
3836	Uncertainty, Evidence, and the Integration of Machine Learning into Medical Practice. Journal of Medicine and Philosophy, 2023, 48, 84-97.	0.4	3
3837	The Classification of Common Macular Diseases Using Deep Learning on Optical Coherence Tomography Images with and without Prior Automated Segmentation. Diagnostics, 2023, 13, 189.	1.3	3
3838	Use of Deep Neural Networks in the Detection and Automated Classification of Lesions Using Clinical Images in Ophthalmology, Dermatology, and Oral Medicine—A Systematic Review. Journal of Digital Imaging, 2023, 36, 1060-1070.	1.6	7

#	Article	IF	CITATIONS
3839	Combining convolutional neural networks and self-attention for fundus diseases identification. Scientific Reports, 2023, 13, .	1.6	9
3840	Deep learning of renal scans in children with antenatal hydronephrosis. Journal of Pediatric Urology, 2023, 19, 514.e1-514.e7.	0.6	3
3842	Semi-supervised Multi-domain Learning forÂMedical Image Classification. Communications in Computer and Information Science, 2023, , 22-33.	0.4	0
3843	A deep learning method to detect opioid prescription and opioid use disorder from electronic health records. International Journal of Medical Informatics, 2023, 171, 104979.	1.6	1
3844	Deep Learning Methods for Real-time Detection and Analysis of Wagner Ulcer Classification System. , 2022, , .		2
3845	Federated Deep Learning for Automated Detection of Diabetic Retinopathy. , 2022, , .		3
3846	Recent Developments Used for Early Detection of Diabetic Macular Edema by Retinal Images: A survey. , 2022, , .		0
3847	Diabetic Retinopathy Detection: Improving Accuracy Using Multiple Transfer Learning Features from Pre-trained Deep Learning Networks. , 2022, , .		0
3848	An Intelligent Model to Predict Pneumonia Using Deep Extreme Machine Learning. , 2022, , .		0
3849	An XGBoost risk prediction model of cardiovascular and cerebrovascular diseases with plateau healthcare dataset. , 2022, , .		0
3850	The Applications of Artificial Intelligence in Digestive System Neoplasms: A Review. Health Data Science, 2023, 3, .	1.1	3
3851	Comprehensive Review on the Use of Artificial Intelligence in Ophthalmology and Future Research Directions. Diagnostics, 2023, 13, 100.	1.3	7
3852	An Overview of Deep-Learning-Based Methods for Cardiovascular Risk Assessment with Retinal Images. Diagnostics, 2023, 13, 68.	1.3	6
3853	Unsupervised Domain Adaptation for Image Classification Using Non-Euclidean Triplet Loss. Electronics (Switzerland), 2023, 12, 99.	1.8	Ο
3854	Application of Deep Learning to Retinal-Image-Based Oculomics for Evaluation of Systemic Health: A Review. Journal of Clinical Medicine, 2023, 12, 152.	1.0	6
3855	Application of Artificial Intelligence in Precision Medicine for Diabetic Macular Edema. Asia-Pacific Journal of Ophthalmology, 2023, 12, 486-494.	1.3	3
3856	Prediction of Diabetic Neuropathy Using Machine Learning Techniques. Journal of Korean Diabetes, 2022, 23, 238-244.	0.1	1
3857	Predicting the future development of diabetic retinopathy using a deep learning algorithm for the analysis of non-invasive retinal imaging. BMJ Open Ophthalmology, 2022, 7, e001140.	0.8	6

CITATION REPOI	5Т.

#	Article	IF	CITATIONS
3858	Deep Learning Model for the Detection of Corneal Edema Before Descemet Membrane Endothelial Keratoplasty on Optical Coherence Tomography Images. Translational Vision Science and Technology, 2022, 11, 19.	1.1	7
3859	The Need for Artificial Intelligence Based Risk Factor Analysis for Age-Related Macular Degeneration: A Review. Diagnostics, 2023, 13, 130.	1.3	7
3860	Vision-Based Eye Image Classification for Ophthalmic Measurement Systems. Sensors, 2023, 23, 386.	2.1	4
3861	Deep Learning for the Detection and Classification of Diabetic Retinopathy with an Improved Activation Function. Healthcare (Switzerland), 2023, 11, 97.	1.0	4
3862	Towards Assessing Data Bias inÂClinical Trials. Lecture Notes in Computer Science, 2022, , 57-74.	1.0	0
3863	Interpretable Hybrid Model for an Automated Patient-Wise Categorization of Hypertensive and Normotensive Electrocardiogram Signals. SSRN Electronic Journal, 0, , .	0.4	0
3864	A deep feature fusion and selectionâ€based retinal eye disease detection from <scp>OCT</scp> images. Expert Systems, 2023, 40, .	2.9	3
3865	Detection of sarcopenia using deep learning-based artificial intelligence body part measure system (AIBMS). Frontiers in Physiology, 0, 14, .	1.3	4
3866	Development and evaluation of deep learning algorithms for assessment of acute burns and the need for surgery. Scientific Reports, 2023, 13, .	1.6	2
3867	Intelligent Diagnosis of Multiple Peripheral Retinal Lesions in Ultra-widefield Fundus Images Based on Deep Learning. Ophthalmology and Therapy, 2023, 12, 1081-1095.	1.0	3
3868	<scp>Privacyâ€preserving</scp> data mining and machine learning in healthcare: Applications, challenges, and solutions. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2023, 13, .	4.6	6
3869	A Privacy Protection Framework for Medical Image Security without Key Dependency Based on Visual Cryptography and Trusted Computing. Computational Intelligence and Neuroscience, 2023, 2023, 1-11.	1.1	5
3870	EyeDeep-Net: a multi-class diagnosis of retinal diseases using deep neural network. Neural Computing and Applications, 2023, 35, 10551-10571.	3.2	9
3871	A new generative approach for optical coherence tomography data scarcity: unpaired mutual conversion between scanning presets. Medical and Biological Engineering and Computing, 2023, 61, 1093-1112.	1.6	1
3872	Effects of Expert-Determined Reference Standards in Evaluating the Diagnostic Performance of a Deep Learning Model: A Malignant Lung Nodule Detection Task on Chest Radiographs. Korean Journal of Radiology, 2023, 24, 155.	1.5	3
3873	Using Transfer Learning of Convolutional Neural Network on Neck Radiographs to Identify Acute Epiglottitis. Journal of Digital Imaging, 2023, 36, 893-901.	1.6	1
3875	Implicit Bias and Machine Learning in Health Care. Southern Medical Journal, 2023, 116, 62-64.	0.3	1
3876	Diabetic Retinopathy Detection Using Transfer and Reinforcement Learning with Effective Image Preprocessing and Data Augmentation Techniques. Intelligent Systems Reference Library, 2023, , 33-61.	1.0	3

#	Article	IF	CITATIONS
3877	Using deep learning to detect diabetic retinopathy on handheld non-mydriatic retinal images acquired by field workers in community settings. Scientific Reports, 2023, 13, .	1.6	8
3878	Interpretable hybrid model for an automated patient-wise categorization of hypertensive and normotensive electrocardiogram signals. Computer Methods and Programs in Biomedicine Update, 2023, 3, 100097.	2.3	1
3879	Detection and classification of Diabetic Retinopathy Lesions using deep learning. , 2023, , 241-264.		2
3880	Implementing Predictive Models in Artificial Intelligence through OCT Biomarkers for Age-Related Macular Degeneration. Photonics, 2023, 10, 149.	0.9	0
3881	Automatic Multilabel Classification of Multiple Fundus Diseases Based on Convolutional Neural Network With Squeeze-and-Excitation Attention. Translational Vision Science and Technology, 2023, 12, 22.	1.1	4
3882	Application of artificial intelligence in medical care: review of current status. International Journal of Advances in Medicine, 2023, 10, 177-185.	0.0	0
3883	Image augmentation and automated measurement of endotracheal-tube-to-carina distance on chest radiographs in intensive care unit using a deep learning model with external validation. Critical Care, 2023, 27, .	2.5	3
3884	Convolutional neural network for detecting rib fractures on chest radiographs: a feasibility study. BMC Medical Imaging, 2023, 23, .	1.4	8
3885	Ensemble of deep convolutional neural networks is more accurate and reliable than board-certified ophthalmologists at detecting multiple diseases in retinal fundus photographs. British Journal of Ophthalmology, 2024, 108, 417-423.	2.1	3
3886	Unsupervised Domain Adaptation Using Feature Disentanglement andÂGCNs forÂMedical Image Classification. Lecture Notes in Computer Science, 2023, , 735-748.	1.0	1
3887	Research progress and application of artificial intelligence in thyroid associated ophthalmopathy. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	1
3888	Artificial intelligence and machine learning in ocular oncology: Retinoblastoma. Indian Journal of Ophthalmology, 2023, 71, 424.	0.5	15
3889	Al telemedicine screening in ophthalmology: health economic considerations. The Lancet Global Health, 2023, 11, e318-e320.	2.9	4
3890	Blood Vessel Segmentation with Classification Model for Diabetic Retinopathy Screening. Computers, Materials and Continua, 2023, 75, 2265-2281.	1.5	0
3891	Earlier Detection of Alzheimer's Disease Using 3D-Convolutional Neural Networks. Computer Systems Science and Engineering, 2023, 46, 2601-2618.	1.9	0
3892	Multimodal deep learning of fundus abnormalities and traditional risk factors for cardiovascular risk prediction. Npj Digital Medicine, 2023, 6, .	5.7	10
3893	A deep learning model for detection of leukocytes under various interference factors. Scientific Reports, 2023, 13, .	1.6	4
3894	Development of a metabolite-based deep learning algorithm for clinical precise diagnosis of the progression of diabetic kidney disease. Biomedical Signal Processing and Control, 2023, 83, 104625.	3.5	3

#	Article	IF	CITATIONS
3895	Introducing and Integrating Machine Learning in an Operations Research Curriculum: An Application-Driven Course. INFORMS Transactions on Education, 2023, 23, 64-83.	0.4	4
3896	Support for a Unified Health Record to Combat Disparities in Health Care. Journal of Bone and Joint Surgery - Series A, 0, Publish Ahead of Print, .	1.4	2
3897	Secure Convolutional Neural Network-Based Internet-of-Healthcare Applications. IEEE Access, 2023, 11, 36787-36804.	2.6	1
3898	Retrospective Study of Convolutional Neural Network for Medical Image Analysis and a Deep Insight Through Histopathological Dataset. Lecture Notes in Electrical Engineering, 2023, , 47-58.	0.3	0
3900	Building a new regional home for implementation science: Annual Midwest Clinical & Translational Research Meetings. Journal of Investigative Medicine, 2023, 71, 567-576.	0.7	0
3903	Circulating Biomarkers to Predict Diabetic Retinopathy in Patients with Diabetic Kidney Disease. Vision (Switzerland), 2023, 7, 34.	0.5	3
3904	Age Group Classification of Dental Radiography without Precise Age Information Using Convolutional Neural Networks. Healthcare (Switzerland), 2023, 11, 1068.	1.0	1
3905	On the Analyses of Medical Images Using Traditional Machine Learning Techniques and Convolutional Neural Networks. Archives of Computational Methods in Engineering, 2023, 30, 3173-3233.	6.0	16
3906	Usefulness of copper filters in digital chest radiography based on the relationship between effective detective quantum efficiency and deep learning-based segmentation accuracy of the tumor area. Radiological Physics and Technology, 2023, 16, 299-309.	1.0	1
3907	An Interpretable Machine Learning Model for Predicting 10-Year Total Hip Arthroplasty Risk. Journal of Arthroplasty, 2023, 38, S44-S50.e6.	1.5	5
3908	Hybrid adaptive deep learning classifier for early detection of diabetic retinopathy using optimal feature extraction and classification. Journal of Diabetes and Metabolic Disorders, 0, , .	0.8	1
3909	<i>Microcellâ€Net</i> : A deep neural network for <scp>multiâ€class</scp> classification of microscopic blood cell images. Expert Systems, 2023, 40, .	2.9	1
3910	Artificial Intelligence in Healthcare: Review, Ethics, Trust Challenges & Future Research Directions. Engineering Applications of Artificial Intelligence, 2023, 120, 105894.	4.3	38
3911	Diagnostic performance for severity grading of hip osteoarthritis and osteonecrosis of femoral head on radiographs: Deep learning model vs. board-certified orthopaedic surgeons. Osteoarthritis Imaging, 2023, 3, 100092.	0.3	Ο
3912	Radiological analysis of coronal angulation of femoral neck fracture. Journal of Radiation Research and Applied Sciences, 2023, 16, 100550.	0.7	0
3913	Diabetic retinopathy detection using principal component analysis multi-label feature extraction and classification. International Journal of Cognitive Computing in Engineering, 2023, 4, 78-88.	5.5	18
3914	Machine Learning for Decision Support in the ICU. , 2022, , 1514-1529.		0
3915	Improving medical image segmentation and classification using a novel joint deep learning model. , 2023, , .		0

#	Article	IF	CITATIONS
3916	Longitudinal fundus imaging and its genome-wide association analysis provide evidence for a human retinal aging clock. ELife, 0, 12, .	2.8	8
3917	Artificial intelligence in diabetic retinopathy: Bibliometric analysis. Computer Methods and Programs in Biomedicine, 2023, 231, 107358.	2.6	13
3918	Eye tracking based deep learning analysis for the early detection of diabetic retinopathy: A pilot study. Biomedical Signal Processing and Control, 2023, 84, 104830.	3.5	3
3920	Artificial Intelligence in the Management of Diabetic Macular Edema. , 2022, , 173-183.		0
3921	Extensive deep learning model to enhance electrocardiogram application via latent cardiovascular feature extraction from identity identification. Computer Methods and Programs in Biomedicine, 2023, 231, 107359.	2.6	3
3922	Advancing 3D medical image analysis with variable dimension transform based supervised 3D pre-training. Neurocomputing, 2023, 529, 11-22.	3.5	5
3923	Application of Artificial Intelligence to the Monitoring of Medication Adherence for Tuberculosis Treatment in Africa: Algorithm Development and Validation. , 0, 2, e40167.		6
3924	Artificial Intelligence–Enabled Evaluation of Pain Sketches to Predict Outcomes in Headache Surgery. Plastic and Reconstructive Surgery, 2023, 151, 405-411.	0.7	9
3925	Bibliometric Analysis of Deep Learning Applications in Diabetes. Journal of Trends in Computer Science and Smart Technology, 2022, 4, 291-306.	2.2	0
3926	A deep convolutional neural network for diabetic retinopathy detection via mining local and longâ€range dependence. CAAI Transactions on Intelligence Technology, 2024, 9, 153-166.	3.4	11
3927	Predefined domain specific embeddings of food concepts and recipes: A case study on heterogeneous recipe datasets. , 2022, , .		1
3928	Deep Learning Models for Cystoscopic Recognition of Hunner Lesion in Interstitial Cystitis. European Urology Open Science, 2023, 49, 44-50.	0.2	4
3929	Improving the diagnostic performance of computed tomography angiography for intracranial large arterial stenosis by a novel super-resolution algorithm based on multi-scale residual denoising generative adversarial network. Clinical Imaging, 2023, 96, 1-8.	0.8	2
3930	Artificial Intelligence Approaches in Diabetic Prediction. Advances in Computer and Electrical Engineering Book Series, 2023, , 451-477.	0.2	0
3931	Clinician-Facing Al in the Wild: Taking Stock of the Sociotechnical Challenges and Opportunities for HCI. ACM Transactions on Computer-Human Interaction, 2023, 30, 1-39.	4.6	5
3932	Effective Deep Learning Data Augmentation Techniques for Diabetic Retinopathy Classification. Procedia Computer Science, 2023, 218, 1156-1165.	1.2	4
3934	A deep learning-based framework for automatic detection of drug resistance in tuberculosis patients. Egyptian Informatics Journal, 2023, 24, 139-148.	4.4	4
3936	From 2 dimensions to 3rd dimension: Quantitative prediction of anterior chamber depth from anterior segment photographs via deep-learning. , 2023, 2, e0000193.		3

#	Article	IF	CITATIONS
3937	Convolutional Neural Networks Accurately Identify Ungradable Images in a Diabetic Retinopathy Telemedicine Screening Program. Telemedicine Journal and E-Health, 0, , .	1.6	1
3938	Deep Learning and Medical Image Processing Techniques for Diabetic Retinopathy: A Survey of Applications, Challenges, and Future Trends. Journal of Healthcare Engineering, 2023, 2023, 1-18.	1.1	10
3939	Cellular Senescence: From Mechanisms to Current Biomarkers and Senotherapies. Pharmacological Reviews, 2023, 75, 675-713.	7.1	12
3940	Early gastric cancer segmentation in gastroscopic images using a co-spatial attention and channel attention based triple-branch ResUnet. Computer Methods and Programs in Biomedicine, 2023, 231, 107397.	2.6	7
3941	Validation of a deep learning system for the detection of diabetic retinopathy in Indigenous Australians. British Journal of Ophthalmology, 2024, 108, 268-273.	2.1	3
3942	Deep Learning for Image Segmentation: A Focus on Medical Imaging. Computers, Materials and Continua, 2023, 75, 1995-2024.	1.5	2
3943	Deep-Learning-Based Automatic Segmentation of Parotid Gland on Computed Tomography Images. Diagnostics, 2023, 13, 581.	1.3	2
3945	Development and Application of a Standardized Testset for an Artificial Intelligence Medical Device Intended for the Computer-Aided Diagnosis of Diabetic Retinopathy. Journal of Healthcare Engineering, 2023, 2023, 1-9.	1.1	1
3947	Machine learning and deep learning in medicine and neuroimaging. , 2023, 1, 102-122.		4
3948	Integrating artificial intelligence into an ophthalmologist's workflow: obstacles and opportunities. Expert Review of Ophthalmology, 2023, 18, 45-56.	0.3	2
3949	Cartography of Genomic Interactions Enables Deep Analysis of Single-Cell Expression Data. Nature Communications, 2023, 14, .	5.8	8
3950	Performance of ChatGPT on USMLE: Potential for Al-assisted medical education using large language models. , 2023, 2, e0000198.		1,046
3951	IoT Based Diabetic Retinopathy Monitoring System. , 2022, , .		0
3952	Detection of Microaneurysms Using Gabor Walsh-Hadamard Transform and Deep Autoencoder. , 2022, ,		0
3953	Uncertainty Quantification to Improve the Classification of Melanoma and Basal Skin Cancer Using ResNet Model. Journal of Uncertain Systems, 2023, 16, .	0.4	2
3954	Artificial Intelligence Software for Diabetic Eye Screening: Diagnostic Performance and Impact of Stratification. Journal of Clinical Medicine, 2023, 12, 1408.	1.0	3
3955	Overview of Recent Trends in Medical Image Processing. Advances in Computer and Electrical Engineering Book Series, 2023, , 146-160.	0.2	0
3956	AES-CSFS: an automatic evaluation system for corneal sodium fluorescein staining based on deep learning. Therapeutic Advances in Chronic Disease, 2023, 14, 204062232211482.	1.1	4

		CITATION RE	PORT	
#	Article		IF	CITATIONS
3957	Deep Learning for Lymphoma Detection on Microscopic Images. , 2023, , 203-215.			0
3958	Detecting hand joint ankylosis and subluxation in radiographic images using deep learn the development of an automatic radiographic scoring system for joint destruction. PL 18, e0281088.	ning: A step in oS ONE, 2023,	1.1	5
3959	Genome-wide Association Studies of Retinal Vessel Tortuosity Identify Numerous Nove Genes and Pathways Associated With Ocular and Cardiometabolic Diseases. Ophthalm 2023, 3, 100288.		1.0	1
3960	DDPIS: Diabetes Disease Prediction by Improvising SVM. International Journal of Reliab E-Healthcare, 2023, 12, 1-11.	le and Quality	1.0	4
3961	Artificial intelligence-assisted diagnosis of ocular surface diseases. Frontiers in Cell and Developmental Biology, 0, 11, .		1.8	3
3962	A Virtual Reading Center Model Using Crowdsourcing to Grade Photographs for Tracho Validation Study. Journal of Medical Internet Research, 0, 25, e41233.	oma:	2.1	0
3963	The Role of Artificial Intelligence in Echocardiography. Journal of Imaging, 2023, 9, 50.		1.7	20
3964	Follow-up Rates After Teleretinal Screening for Diabetic Retinopathy: Assessing Patient Care. Journal of Vitreoretinal Diseases, 2023, 7, 125-131.	Barriers to	0.2	0
3965	Telemedicine in ophthalmology. Part 1. "Common teleophthalmology― Ophthalm 13, 43-52.	ology Journal, 2020,	0.1	3
3966	Identification of clinical heterogeneity and construction of a novel subtype predictive r patients with ankylosing spondylitis: An unsupervised machine learning study. Internat Immunopharmacology, 2023, 117, 109879.	nodel in ional	1.7	5
3967	Collaborative Differentially Private Federated Learning Framework for the Prediction of Retinopathy. , 2023, , .	Diabetic		6
3968	Clinical applications of deep learning in breast MRI. Biochimica Et Biophysica Acta: Rev 2023, 1878, 188864.	iews on Cancer,	3.3	5
3969	Estimation of Visual Function Using Deep Learning From Ultra-Widefield Fundus Image Retinitis Pigmentosa. JAMA Ophthalmology, 2023, 141, 305.	s of Eyes With	1.4	2
3970	An Empirical Survey on Explainable Al Technologies: Recent Trends, Use-Cases, and Cat Technical and Application Perspectives. Electronics (Switzerland), 2023, 12, 1092.	regories from	1.8	10
3971	Determinants of implementing artificial intelligence-based clinical decision support toc healthcare: a scoping review protocol. BMJ Open, 2023, 13, e068373.	ils in	0.8	9
3972	Machine Learning Algorithms for Predicting Treatment Outcomes of Oropharyngeal Ca Surgery. Korean Journal of Otorhinolaryngology-Head and Neck Surgery, 2023, 66, 241	incer After I-247.	0.0	0
3973	Survey on Automatic Detection of Diabetic Retinopathy Screening. , 2022, , .			1
3974	Automatic landmark correspondence detection in medical images with an application timage registration. Journal of Medical Imaging, 2023, 10, .	to deformable	0.8	2

#	Article	IF	CITATIONS
3975	Clinical Outcome Future Prediction with Decision Tree and Naive Bayes Models. Advances in Science and Technology, 0, , .	0.2	0
3976	Predicting and Classifying Diabetic Retinopathy (DR) Using 5-Class Label Based on Pre-Trained Deep Learning Models. Advances in Science and Technology, 0, , .	0.2	0
3977	Computer-aided classification of indirect immunofluorescence patterns on esophagus and split skin for the detection of autoimmune dermatoses. Frontiers in Immunology, 0, 14, .	2.2	3
3978	Skin Cancer Prediction using Deep Learning. International Journal of Advanced Research in Science, Communication and Technology, 0, , 570-574.	0.0	3
3979	Classification and Segmentation of Diabetic Retinopathy: A Systemic Review. Applied Sciences (Switzerland), 2023, 13, 3108.	1.3	7
3980	An Introduction to Swept Source OCT. , 2023, , 1-20.		0
3981	Using deep leaning models to detect ophthalmic diseases: A comparative study. Frontiers in Medicine, 0, 10, .	1.2	0
3982	Discriminating Healthy Optic Discs and Visible Optic Disc Drusen on Fundus Autofluorescence and Color Fundus Photography Using Deep Learning—A Pilot Study. Journal of Clinical Medicine, 2023, 12, 1951.	1.0	1
3983	Artificial Intelligence for Diabetic Retinopathy Screening Using Color Retinal Photographs: From Development to Deployment. Ophthalmology and Therapy, 2023, 12, 1419-1437.	1.0	11
3984	Artificial intelligence-enabled electrocardiographic screening for left ventricular systolic dysfunction and mortality risk prediction. Frontiers in Cardiovascular Medicine, 0, 10, .	1.1	4
3985	Early diagnosis of diabetic retinopathy using deep learning techniques. , 2023, , 17-33.		1
3986	Machine learning for prediction of bleeding in acute myocardial infarction patients after percutaneous coronary intervention. Therapeutic Advances in Chronic Disease, 2023, 14, 204062232311585.	1.1	1
3987	Usability and Clinician Acceptance of a Deep Learning-Based Clinical Decision Support Tool for Predicting Glaucomatous Visual Field Progression. Journal of Glaucoma, 2023, 32, 151-158.	0.8	1
3988	WAVES – The Lucile Packard Children's Hospital Pediatric Physiological Waveforms Dataset. Scientific Data, 2023, 10, .	2.4	1
3989	Echocardiography-based AI for detection and quantification of atrial septal defect. Frontiers in Cardiovascular Medicine, 0, 10, .	1.1	1
3990	Emergency department use and Artificial Intelligence in Pelotas: design and baseline results. Revista Brasileira De Epidemiologia, 0, 26, .	0.3	0
3991	International publication trends in the application of artificial intelligence in ophthalmology research: an updated bibliometric analysis. Annals of Translational Medicine, 2023, 11, 219-219.	0.7	3
3992	Intelligent Diagnosis of Diabetic Kidney Disease Based on Heterogeneous Data. , 2022, , .		0

#	Article	IF	CITATIONS
3993	Automated Diabetic Retinopathy Grading based on the Modified Capsule Network Architecture. IETE Journal of Research, 0, , 1-12.	1.8	0
3994	Role of RWD / RWE in health technology assessment. , 2023, 3, 01-08.		0
3995	Big Data in Chronic Kidney Disease: Evolution or Revolution?. BioMedInformatics, 2023, 3, 260-266.	1.0	0
3996	Federated learningâ€based colorectal cancer classification by convolutional neural networks and general visual representation learning. International Journal of Imaging Systems and Technology, 2023, 33, 951-964.	2.7	3
3997	A novel convolutional neural network architecture for diabetic retinopathy screening. , 2022, , .		0
3998	Neural Network Based Classification of Breast Cancer Histopathological Image from Intraoperative Rapid Frozen Sections. Journal of Digital Imaging, 0, , .	1.6	0
3999	Retinal imageâ€based artificial intelligence in detecting and predicting kidney diseases: Current advances and future perspectives. View, 0, , 20220070.	2.7	0
4000	Approaching Artificial Intelligence in Orthopaedics: Predictive Analytics and Machine Learning to Prognosticate Arthroscopic Rotator Cuff Surgical Outcomes. Journal of Clinical Medicine, 2023, 12, 2369.	1.0	7
4001	Applications of Artificial Intelligence in Orthodontics—An Overview and Perspective Based on the Current State of the Art. Applied Sciences (Switzerland), 2023, 13, 3850.	1.3	2
4002	Deep learning based computer-aided automatic prediction and grading system for diabetic retinopathy. Multimedia Tools and Applications, 2023, 82, 39255-39302.	2.6	7
4004	Artificial intelligence technology in MR neuroimaging. Еradiologist's perspective. , 2023, 3, 6-17.		0
4005	Biomonitoring and precision health in deep space supported by artificial intelligence. Nature Machine Intelligence, 2023, 5, 196-207.	8.3	5
4006	Current Status and Future Direction of Artificial Intelligence in Healthcare and Medical Education. Korean Medical Education Review, 2020, 22, 99-114.	0.1	4
4007	Automated deep learning for classification of dental implant radiographs using a large multi-center dataset. Scientific Reports, 2023, 13, .	1.6	8
4008	Wayfinding artificial intelligence to detect clinically meaningful spots of retinal diseases: Artificial intelligence to help retina specialists in real world practice. PLoS ONE, 2023, 18, e0283214.	1.1	0
4009	Automated Diagnosis of Diabetic Retinopathy Using Deep Learning: On the Search of Segmented Retinal Blood Vessel Images for Better Performance. Bioengineering, 2023, 10, 413.	1.6	4
4011	Effectiveness of artificial intelligence screening in preventing vision loss from diabetes: a policy model. Npj Digital Medicine, 2023, 6, .	5.7	5
4012	Deep Learning Models for Medical Image Analysis in Smart Healthcare System: A Review. Lecture Notes in Networks and Systems, 2023, , 376-387.	0.5	0

#	Article	IF	CITATIONS
4013	Dual Multi-Scale CNN for Multi-layer Breast Cancer Classification at Multi-Resolution. , 2022, , .		0
4014	Editorial: Molecular imaging in retinal diseases. Frontiers in Medicine, 0, 10, .	1.2	0
4016	Deep Transfer Learning Strategy to Diagnose Eye-Related Conditions and Diseases: An Approach Based on Low-Quality Fundus Images. IEEE Access, 2023, 11, 37403-37411.	2.6	1
4017	Accuracy improvement for classifying retinal OCT images by diseases using deep learning-based selective denoising approach. Journal of Innovative Optical Health Sciences, 0, , .	0.5	Ο
4018	"Quo Vadis Diagnosisâ€: Application of Informatics in Early Detection of Pneumothorax. Diagnostics, 2023, 13, 1305.	1.3	1
4020	Retinal Glaucoma Detection from Digital Fundus Images using Deep Learning Approach. , 2023, , .		4
4021	Skin Lesion Segmentation in Dermoscopic Images with Noisy Data. Journal of Digital Imaging, 2023, 36, 1712-1722.	1.6	4
4022	Prediction of anti-vascular endothelial growth factor agent-specific treatment outcomes in neovascular age-related macular degeneration using a generative adversarial network. Scientific Reports, 2023, 13, .	1.6	2
4023	Combating deep fakes by the power of artificial intelligence and block chain in healthcare applications. , 2023, , 253-271.		0
4024	RASS: Enabling privacy-preserving and authentication in online Al-driven healthcare applications. ISA Transactions, 2023, 141, 20-29.	3.1	1
4026	Digital Twin in Health Care. , 2023, , 209-231.		1
4027	ENRICHing medical imaging training sets enables more efficient machine learning. Journal of the American Medical Informatics Association: JAMIA, 2023, 30, 1079-1090.	2.2	3
4028	Deep learning for diabetic retinopathy assessments: a literature review. Multimedia Tools and Applications, 2023, 82, 41701-41766.	2.6	6
4030	An interpretable and interactive deep learning algorithm for a clinically applicable retinal fundus diagnosis system by modelling finding-disease relationship. Scientific Reports, 2023, 13, .	1.6	3
4031	An Elaboration on Sample Size Planning for Performing a One-Sample Sensitivity and Specificity Analysis by Basing on Calculations on a Specified 95% Confidence Interval Width. Diagnostics, 2023, 13, 1390.	1.3	3
4032	Deep-learning performance in identifying and classifying dental implant systems from dental imaging: a systematic review and meta-analysis. Journal of Periodontal and Implant Science, 2024, 54, 3.	0.9	5
4033	Global trends and performances in diabetic retinopathy studies: A bibliometric analysis. Frontiers in Public Health, 0, 11, .	1.3	6
4034	Contrastive learning-based pretraining improves representation and transferability of diabetic retinopathy classification models. Scientific Reports, 2023, 13, .	1.6	Ο

#	Article	IF	Citations
4035	Deep Learning for Echocardiography: Introduction for Clinicians and Future Vision: State-of-the-Art Review. Life, 2023, 13, 1029.	1.1	0
4036	An explainable artificial intelligence-enabled electrocardiogram analysis model for the classification of reduced left ventricular function. European Heart Journal Digital Health, 2023, 4, 254-264.	0.7	2
4037	Association of collagen deep learning classifier with prognosis and chemotherapy benefits in stage <scp>llâ€III</scp> colon cancer. Bioengineering and Translational Medicine, 2023, 8, .	3.9	3
4038	Retinal Disease Detection Using Deep Learning Techniques: A Comprehensive Review. Journal of Imaging, 2023, 9, 84.	1.7	1
4039	Detection of Retinopathy Solutions Using Artificial Intelligence Approaches. Mühendislik Bilimleri Ve Araştırmaları Dergisi, 0, , .	0.3	0
4040	Retinal age as a predictive biomarker of the diabetic retinopathy grade. Archivos De La Sociedad Espanola De Oftalmologia, 2023, 98, 265-269.	0.1	1
4041	A New Approach to Recognize a Patient with Diabetic Retinopathy using Pre-trained Deep Neural Network EfficientNetB0. , 2023, , .		1
4043	Readiness for Artificial Intelligence in Biobanking. Biopreservation and Biobanking, 2023, 21, 119-120.	0.5	3
4044	Interpretation of EKG with Image Recognition and Convolutional Neural Networks. Current Problems in Cardiology, 2023, 48, 101744.	1.1	2
4045	Automated detection of myopic maculopathy using five-category models based on vision outlooker for visual recognition. Frontiers in Computational Neuroscience, 0, 17, .	1.2	0
4046	"lf I Had All the Time in the World― Ophthalmologists' Perceptions of Anchoring Bias Mitigation in Clinical Al Support. , 2023, , .		4
4047	Enhancing physicians' radiology diagnostics of COVID-19's effects on lung health by leveraging artificial intelligence. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	0
4048	Redefining Industry 5.0 in Ophthalmology and Digital Metrology: A Global Perspective. Mapan - Journal of Metrology Society of India, 2023, 38, 527-545.	1.0	1
4049	Multimodal medical tensor fusion network-based DL framework for abnormality prediction from the radiology CXRs and clinical text reports. Multimedia Tools and Applications, 2023, 82, 44431-44478.	2.6	2
4050	Deep learning techniques for oral cancer diagnosis. , 2023, , 175-193.		0
4051	Artificial Intelligence for Global Healthcare. Medical Virology, 2023, , 1-21.	2.1	1
4052	A fully-automatic semi-supervised deep learning model for difficult airway assessment. Heliyon, 2023, 9, e15629.	1.4	5
4053	Diagnostic accuracy of convolutional neural network–based machine learning algorithms in endoscopic severity prediction of ulcerative colitis: a systematic review and meta-analysis. Gastrointestinal Endoscopy, 2023, 98, 145-154.e8.	0.5	4

ARTICLE IF CITATIONS Provisioning a Predictor Model for Alzheimers Prediction using Learning Approaches., 2023,,. 1 4064 Diabetic Retinopathy Grading with Weakly-Supervised Lesion Priors., 2023, , . Detection of Autism Spectrum Disorder byÂaÂFast Deep Neural Network. Communications in Computer 4081 0.4 0 and Information Science, 2022, , 539-553. A Few-shot approach to MRI-based Knee Disorder Diagnosis using Fuzzy Layers. , 2022, , . 4085 Insights into artificial intelligence in myopia management: from a data perspective. Graefe's Archive 4091 1.0 1 for Clinical and Experimental Ophthalmology, 2024, 262, 3-17. Deep Convolutional Neural Network forÂlmage Quality Assessment andÂDiabetic Retinopathy Grading. 4096 1.0 Lecture Notes in Computer Science, 2023, , 31-37. Diabetic Retinal Overlap Lesion Segmentation Network. Lecture Notes in Computer Science, 2023, , 4097 1.0 0 38-45. A Transfer Learning Based Model Ensemble Method forÂlmage Quality Assessment andÂDiabetic 4098 1.0 Retinopathy Grading. Lecture Notes in Computer Science, 2023, , 178-185. nnU-Net Pre- and Postprocessing Strategies forÂUW-OCTA Segmentation Tasks inÂDiabetic Retinopathy 4099 1.0 0 Analysis. Lecture Notes in Computer Science, 2023, , 5-15. Bag ofÂTricks forÂDeveloping Diabetic Retinopathy Analysis Framework toÂOvercome Data Scarcity. 1.0 Lecture Notes in Computer Science, 2023, , 59-73. Jumping Shift: A Logarithmic Quantization Method for Low-Power CNN Acceleration., 2023, , . 0 4110 Save our Sight (SOS): a collective call-to-action for enhanced retinal care across health systems in 1.1 high income countries. Eye, 0, , . The future application of artificial intelligence and telemedicine in the retina: A perspective. Taiwan 4128 0.3 0 Journal of Ophthalmology, 2023, 13, 133. Automated detection and multi-stage classification of diabetic retinopathy through CNN. AIP 4134 0.3 Conference Proceedings, 2023, , . 4136 Teleophthalmology for Vision Centres., 2023, , 463-469. 0 Beyond Predictions: Explainability and Learning from Machine Learning., 2023, , 199-218. OCT Imaging and Applications in the Retina., 2023, , 119-144. 4138 0 Retinal Screening of Patients with Diabetes in Primary Care Clinics Why Has Uptake of This Promising 4139 Idea Been So Low?., 2023, , 351-353.

#	Article	IF	CITATIONS
4140	Artificial Intelligence in Predicting Systemic Disease from Ocular Imaging. , 2023, , 219-242.		1
4141	Screening for Diabetic Retinopathy in Denmark. , 2023, , 367-377.		0
4142	Transfer Learning for Artificial Intelligence in Ophthalmology. , 2023, , 181-198.		2
4153	On Neural-Network-Based Detection for Hypertensive Subjects Using Classification of Retinal Fundus Photographs. , 2023, , .		0
4155	Trustworthy artificial intelligence in healthcare. , 2023, , 145-177.		0
4165	STACKMAPS: A Visualization Technique for Diabetic Retinopathy Grading. , 2023, , .		0
4168	Artificial intelligence in retinal disease: clinical application, challenges, and future directions. Graefe's Archive for Clinical and Experimental Ophthalmology, 2023, 261, 3283-3297.	1.0	8
4169	Data-driven approaches to generating knowledge: Machine learning, artificial intelligence, and predictive modeling. , 2023, , 217-255.		1
4179	A survey of bone abnormalities detection using machine learning algorithms. AIP Conference Proceedings, 2023, , .	0.3	0
4182	ExRAN: Deep Ensemble Majority Voting using Transfer Learning for Brain tumor Identification from Magnetic Resonance Imaging. , 2023, , .		1
4184	A Review of Predictive and Contrastive Self-supervised Learning for Medical Images. , 2023, 20, 483-513.		5
4188	Artificial Intelligence in Human Locomotor System. , 2023, , 261-296.		0
4212	Efficient CNN based detection of diabetic retinopathy. AIP Conference Proceedings, 2023, , .	0.3	0
4217	Al-Aided Disease Prediction in Visualized Medicine. Advances in Experimental Medicine and Biology, 2023, , 107-126.	0.8	0
4219	Role of Deep Learning in Healthcare Industry: Limitations, Challenges and Future Scope. , 2023, , 1-22.		0
4220	Detecting Multi Thoracic Diseases in Chest X-Ray Images Using Deep Learning Techniques. , 2023, , .		1
4223	Artificial Intelligence and the Medicine of the Future. Practical Issues in Geriatrics, 2023, , 175-204.	0.3	1
4226	Domain Modelling For A Lightweight Convolutional Network Focused On Automated Exudate Detection in Retinal Fundus Images. , 2023, , .		1

#	Article	IF	CITATIONS
4227	A Regulatory Science Perspective on Performance Assessment of Machine Learning Algorithms in Imaging. Neuromethods, 2023, , 705-752.	0.2	0
4229	Application of Artificial Intelligence in Diagnosing Oral and Maxillofacial Lesions, Facial Corrective Surgeries, and Maxillofacial Reconstructive Procedures. , 2023, , 287-328.		1
4230	Early Kidney Stone Detection Among Patients Using a Deep Learning Model on an Image Dataset. Lecture Notes in Networks and Systems, 2023, , 779-793.	0.5	0
4238	The future of health diagnosis and treatment: an exploration of deep learning frameworks and innovative applications. , 2023, , 1-21.		0
4239	Deep learning IoT in medical and healthcare. , 2023, , 245-261.		1
4242	Deep learning for clinical decision-making and improved healthcare outcome. , 2023, , 187-201.		0
4243	M-HEALTH System forÂDetecting COVID-19 inÂChest X-Rays Using Deep Learning andÂData Security Approaches. Lecture Notes in Networks and Systems, 2023, , 73-86.	0.5	0
4252	GAN-based Image-to-Image Translation of Fundus Photography: Topcon to Eidon. , 2023, , .		0
4255	An Evaluation Metric forÂPrediction Stability withÂImprecise Data. Lecture Notes in Computer Science, 2023, , 430-441.	1.0	0
4258	Artificial intelligence assisted food science and nutrition perspective for smart nutrition research and healthcare. Systems Microbiology and Biomanufacturing, 0, , .	1.5	0
4266	Using Deep Learning for the Detection of Ocular Diseases Caused by Diabetes. Lecture Notes on Data Engineering and Communications Technologies, 2023, , 111-120.	0.5	0
4267	Data Mining in Medicine. , 2023, , 607-636.		0
4271	Accuracy of deep neural learning models in the imaging prediction of pathological complete response after neoadjuvant chemoradiotherapy for locally advanced rectal cancer: a systematic review. Langenbeck's Archives of Surgery, 2023, 408, .	0.8	0
4274	Detection and Classification of Diabetic Retinopathy Using Pretrained Deep Neural Networks. , 2023, , .		0
4276	Intelligence-Based Medicine: The Academic Perspective and Deep Humanism. , 2023, , 51-59.		0
4278	Health Guardian: Using Multi-modal Data to Understand Individual Health. , 2023, , .		0
4280	Convolutional Neural Networks forÂDiabetic Retinopathy Grading fromÂiPhone Fundus Images. Lecture Notes in Computer Science, 2023, , 685-697.	1.0	0
4289	Deep Learning-Based Detection and Classification of Uveal Melanoma Using Convolutional Neural Networks and SHAP Analysis. , 2023, , .		0

#	Article	IF	CITATIONS
4290	Image quality assessment of retinal fundus photographs for diabetic retinopathy in the machine learning era: a review. Eye, 2024, 38, 426-433.	1.1	1
4297	Multiple stakeholders drive diverse interpretability requirements for machine learning in healthcare. Nature Machine Intelligence, 2023, 5, 824-829.	8.3	0
4308	Analysis of Deep Learning Techniques for Prediction of Eye Diseases: A Systematic Review. Archives of Computational Methods in Engineering, 2024, 31, 487-520.	6.0	2
4312	IoT-Enabled Applications for Elderly Support and Care: A Systematic Review. Cognitive Science and Technology, 2023, , 697-705.	0.2	0
4315	Al-integrated ocular imaging for predicting cardiovascular disease: advancements and future outlook. Eye, 2024, 38, 464-472.	1.1	2
4319	Thick Data Analytics for Identifying Eye Conditions using Siamese Lookalike Neural Networ. , 2023, , .		0
4329	Learning Self-Supervised Representations for Label Efficient Cross-Domain Knowledge Transfer on Diabetic Retinopathy Fundus Images. , 2023, , .		0
4330	A Framework for Identifying Diabetic Retinopathy Based on patch attention and lesion location. , 2023, , .		0
4338	Hierarchical Discriminative Learning Improves Visual Representations of Biomedical Microscopy. , 2023, , .		2
4340	Diabetic Retinopathy Grading based on a Sparse Network Fusion of Heterogeneous ConvNeXt Models with Category Attention. , 2023, , .		0
4341	AI and GNN Model for Predictive Analytics on Patient Data and Its Usefulness in Digital Healthcare Technologies. Studies in Computational Intelligence, 2023, , 331-345.	0.7	0
4344	Retinal Fundus Image Classification Using Hybrid Deep Learning Model. , 2023, , .		0
4345	A Health Diagnosis System based on Transfer Learning and Multi-scale Dilated Convolution from Binocular Fundus Image Pairs. , 2023, , .		0
4351	Machine learning for medical processing: algorithms and analysis. , 2023, , .		0
4358	An efficient approach for the detection of retinopathy of prematurity using deep learning networks. AIP Conference Proceedings, 2023, , .	0.3	0
4361	Robust Data-Driven Region of Interest Segmentation for Breast Thermography. , 2023, , 683-703.		0
4362	Multi-relational Graph Convolutional Neural Networks forÂCarotid Artery Stenosis Diagnosis viaÂFundus Images. Lecture Notes in Computer Science, 2023, , 122-131.	1.0	1
4363	Artificial intelligence in healthcare: a perspective from Google. , 2024, , 341-344.		0

# 4364	ARTICLE Artificial intelligence in ophthalmology I: retinal diseases. , 2024, , 107-112.	IF	Citations 0
4368	Diabetic Retinopathy Detection with Weighted Cross-Entropy Loss. , 2023, , .		0
4371	Deep Learning Model with Progressive GAN for Diabetic Retinopathy. Advances in Intelligent Systems and Computing, 2023, , 611-621.	0.5	0
4374	Automated Classification of Diabetic Retinopathy Using Deep Learning Architecture. Lecture Notes in Networks and Systems, 2023, , 309-321.	0.5	0
4375	Comparative Analysis of Diabetic Retinopathy Classification Approaches Using Machine Learning and Deep Learning Techniques. Archives of Computational Methods in Engineering, 2024, 31, 919-955.	6.0	1
4378	A Comprehensive Review of Glaucoma Detection from Fundus Images using Deep Learning. , 2023, , .		0
4380	The use of Image Processing for the Classification of Diabetic Retinopathy. , 2023, , .		0
4381	Analysis of Diabetes Disease Prediction Using Machine Learning Algorithms. , 2023, , .		0
4383	Classification of Fluid Filled Abnormalities In Retinal Optical Coherence Tomography Images Using Chicken Swarm Optimized Deep Learning Classifier. , 2023, , .		0
4385	Toward Transparent Sequence Models with Model-Based Tree Markov Model. , 2023, , .		0
4391	Federated Uncertainty-Aware Aggregation forÂFundus Diabetic Retinopathy Staging. Lecture Notes in Computer Science, 2023, , 222-232.	1.0	0
4392	Class Specific Feature Disentanglement andÂText Embeddings forÂMulti-label Generalized Zero Shot CXR Classification. Lecture Notes in Computer Science, 2023, , 276-286.	1.0	0
4393	Machine Learning Based Diabetic Retinopathy Detection and Classification. , 2023, , 103-136.		0
4394	Data AUDIT: Identifying Attribute Utility- andÂDetectability-Induced Bias inÂTask Models. Lecture Notes in Computer Science, 2023, , 442-452.	1.0	0
4403	Robustness Stress Testing inÂMedical Image Classification. Lecture Notes in Computer Science, 2023, , 167-176.	1.0	0
4404	Can We Revitalize Interventional Healthcare with Al-XR Surgical Metaverses?. , 2023, , .		0
4408	De-identification andÂObfuscation ofÂGender Attributes fromÂRetinal Scans. Lecture Notes in Computer Science, 2023, , 91-101.	1.0	0
4410	Smart Diagnosis System For Diabetic Retinopathy. , 2023, , .		1

ARTICLE IF CITATIONS Text Summarization: GPT Perspective., 2023,,. 0 4411 Explainable artificial intelligence for gastrointestinal cancer using CNN-a review. AIP Conference 4423 0.3 Proceedings, 2023, , . How Artificial Intelligence is Transforming Medicine: The Future of Pharmaceutical Research. 4450 0.8 0 Advanced Technologies and Societal Change, 2023, , 133-150. Ophthalmic diagnostic assistance system based on deep learning algorithm., 2023,,. 4458 The Role of Machine Learning in Big Data Analytics: Current Practices and Challenges. Transactions on 4462 0.3 0 Computational Science and Computational Intelligence, 2024, , 47-74. Deep Learningâ€"Prediction., 2023, , 189-202. 4464 CNN Based COVID-19 Detection and Analysis Using X-Ray Images., 2023,,. 4465 0 Pseudopapilledema Diagnosis Based on a Hybrid Approach Using Deep Transfer Learning., 2023, , . 4467 Retinopathy diagnosis using computer vision. AIP Conference Proceedings, 2023, , . 0.3 0 4468 A review on pulmonary carcinoma using machine learning. AIP Conference Proceedings, 2023, , . 4470 Digitalization, Comparative Advantages, and Digital Divide., 0,,. 4474 1 Advanced Machine Learning Techniques for Early Detection of Leukemia. Communications in Computer 4479 0.4 and Information Science, 2023, , 3-13. Severity diagnosis of diabetic retinopathy using transfer learning with googlenet convolution neural 4481 0.3 0 network architecture. AIP Conference Proceedings, 2023, , . Stateful Defenses for Machine Learning Models Are Not Yet Secure Against Black-box Attacks., 2023, , . 4482 Multi-Headed CNN and Vision Transformer-Based Diabetic Retinopathy Classification., 2023,,. 0 4487 Using Machine Learning to Predict Patient Health Outcomes., 2023,,. 4488 Detection of Diabetic Retinopathy using Transfer Learning., 2023,,. 4489 0 4490 Retinal Diseases Classification System Using OCT Images Combined with CNN Models., 2023,,.

#	Article	IF	Citations
4492	Artificial Intelligence (AI) as a Transitional Tool for Sustainable Food Systems. World Sustainability Series, 2024, , 305-328.	0.3	0
4500	Enhancing Medical Image Analysis and Disease Surveillance in Healthcare: A Study on PSO- ACO Optimization using Swarm Intelligence. , 2023, , .		0
4501	A Deep Learning Framework for Detection and Classification of Diabetic Retinopathy in Fundus Images Using Residual Neural Networks. , 2023, , .		0
4502	Harnessing Artificial Intelligence for Precise Pulmonary Disease Diagnosis. , 2023, , .		0
4504	Deep Learning for IoT. Internet of Things, 2024, , 113-129.	1.3	0
4505	Al Based Automated Detection & amp; Classification of Diabetic Retinopathy. , 2023, , .		0
4509	Transfer Learning for Classification of Retinal Disease using Fundus Imaging. , 2023, , .		0
4513	Deeper Notions of Correctness in Image-Based DNNs: Lifting Properties from Pixel to Entities. , 2023, , .		0
4514	Machine Learning in Invasive and Noninvasive Coronary Angiography. Current Atherosclerosis Reports, 0, , .	2.0	0
4520	Deep Learning for the Investigation of Lung and Pancreatic Tumors. , 2023, , .		0
4522	Improving Regularization of Deep Learning Models in Fundus Analysis. , 2023, , .		0
4524	Multimodal Learning forÂlmproving Performance andÂExplainability ofÂChest X-Ray Classification. Lecture Notes in Computer Science, 2023, , 107-116.	1.0	0
4525	Smartphone-Based AI Detection of Ocular Diseases. , 2023, , .		0
4528	Advanced Bone Fracture Detection Through Deep Learning with Radiological Imaging. , 2023, , .		0
4531	Integrating DCNNs with Genetic Algorithm for Diabetic Retinopathy Classification. Communications in Computer and Information Science, 2023, , 44-60.	0.4	0
4538	Detection of Glaucoma and Diabetic Retinopathy Using Fundus Images and Deep Learning. , 2023, , .		0
4542	Transfer Learning Based Classification ofÂDiabetic Retinopathy onÂtheÂKaggle EyePACS Dataset. Lecture Notes in Electrical Engineering, 2023, , 89-99.	0.3	0
4544	Role of Artificial Intelligence in mode of Diabetic Retinopathy Imaging Techniques: A Review Artificial Intelligence in Diabetic Retinopathy. , 2023, , .		0

#	Article	IF	CITATIONS
4545 4547	Long-Term Human State Monitoring Study. , 2023, , . Cup-Disk Ratio Segmentation Joint withÂKey Retinal Vascular Information Under Diagnostic	1.0	0
4553	andÂScreening Scenarios. Lecture Notes in Computer Science, 2024, , 313-326. Modified U-Net Architecture for Diabetic Retinopathy Fundus Image Segmentation. , 2023, , .	1.0	0
4554	Validation of Automatic Diabetic Retinopathy Screening and Diagnosis via Deep Neural Networks on Multi-modal Retinal Fundus Image Datasets. , 2023, , .		0
4555	Automated analysis of fundus images for the diagnosis of retinal diseases: a review. Research on Biomedical Engineering, 2024, 40, 225-251.	1.5	0
4559	Intelligent Framework for Smart Health Application using Image Analysis and Knowledge Relegation Approach. , 2023, , 151-165.		0
4571	Explainable AI in Healthcare Application. Advances in Computational Intelligence and Robotics Book Series, 2024, , 123-176.	0.4	6
4574	Advances in Quantum Medical Image Analysis Using Machine Learning: Current Status and Future Directions. , 2023, , .		0
4579	Deep Learning-Based Classification of Eye Conditions. , 2023, , .		0
4581	Smart Sensor-Based Point-Of-Care Diagnostics in Ophthalmology: The Potential for Theranocloud as Combination of Theragnostic and Cloud Computing. , 2024, , 439-473.		0
4582	ChatGPT and Beyond: An overview of the growing field of large language models and their use in ophthalmology. Eye, 0, , .	1.1	0
4585	Artificial Intelligence in Neuroscience. , 2024, , 158-166.		0
4605	Diagnostics and decision-making systems. , 2024, , 67-89.		0
4606	Artificial intelligence in forensic anthropology: State of the art and Skeleton-ID project. , 2024, , 83-153.		0
4613	Healthcare digital transformation through the adoption of artificial intelligence. , 2024, , 87-110.		0
4614	GlorotUniform Kernel Initializer based Conv2D Sequential Convolutional Neural Network for Diabetic Retinopathy Detection. , 2023, , .		0
4618	Applications of Deep Learning in Healthcare in the Framework of Industry 5.0. Advances in Web Technologies and Engineering Book Series, 2024, , 69-85.	0.4	0
4619	Recent Advances, Challenges, and Applications of Deep Learning in Healthcare Systems for Medical Diagnosis and Treatment. , 2023, , .		0

#	Article	IF	Citations
4623	Predictive Modeling for Disease Progression in Chronic Conditions Using Machine Learning. , 2023, , .		0
4625	Estimation of diabetic retinopathy using deep learning. AIP Conference Proceedings, 2024, , .	0.3	0
4626	Inverse design of electromagnetically induced transparency (EIT) metamaterials based on autoencoder with reconstruction error. , 2023, , .		0
4627	Understanding the Role of Saliency Maps for Biomarker Research in 3D Medical Imaging Classification. , 2023, , .		0
4633	Binary Classification of Medical Images by Symbolic Regression. Advances in Intelligent Systems and Computing, 2024, , 516-527.	0.5	0
4636	Endorsement of Pneumonia using Artificial Intelligence (AI). , 2023, , .		0
4638	Automatic Screening of Pathological Myopia Using Deep Learning. , 2023, , .		0
4642	Deep learning generative adversarial network model for automated detection of diabetic retinopathy. AIP Conference Proceedings, 2024, , .	0.3	0
4645	Classification Of Retinal Fundus Images Using Convolution Neural Network (CNN). , 2023, , .		0
4646	Clinical utility of handheld fundus and smartphone-based camera for monitoring diabetic retinal diseases: a review study. International Ophthalmology, 2024, 44, .	0.6	1
4650	Human Skin Diseases Identification and Treatment Suggestion by Sri Lankan Ayurveda Medicine Using Machine Learning. , 2023, , .		0
4652	Deep Learning-Assisted Physical Education and Resource Allocation Management in Higher Education. , 2023, , .		0
4653	A Robust Deep Learning Detection Approach for Retinopathy of Prematurity. Lecture Notes in Networks and Systems, 2024, , 400-412.	0.5	0
4655	Deep Learning Tools for Covid-19 Pneumonia Classification. Lecture Notes in Electrical Engineering, 2024, , 601-608.	0.3	0
4656	Transfer-Ensemble Learning Based Deep Convolutional Neural Networks for Diabetic Retinopathy Classification. , 2023, , .		0
4657	Expeditious Detection of Diabetic Retinopathy Using ResNet 50 CNN Algorithm. , 2023, , .		0
4664	Artificial Intelligence Applications in Healthcare. Synthesis Lectures on Engineering Science and Technology, 2024, , 175-192.	0.2	0
4665	A Novel Approach to Identify Diabetic Macular Edema Using a Minimal CNN Model. , 2023, , .		ο

		CITATION REPORT	
#	Article	IF	CITATIONS
4666	Cascaded Learning Approach for Evaluating Diabetic Retinopathy Severity. , 2023, , .		0
4667	Research on Application of Deep Learning in Esophageal Cancer Pathological Detection. Lecture N of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2 , 95-105.	otes 024, 0.2	0
4678	A Thorough Examination of Al Integration in Diagnostic Imaging. Advances in Medical Diagnosis, Treatment, and Care, 2024, , 156-177.	0.1	0
4680	Diabetic Retinopathy Severity Detection an Automated Tool. Smart Innovation, Systems and Technologies, 2024, , 215-228.	0.5	0
4683	SynthEnsemble: A Fusion of CNN, Vision Transformer, and Hybrid Models for Multi-Label Chest X-R Classification. , 2023, , .	ау	0
4686	An Approach to Classify Ocular Toxoplasmosis Images using Deep Learning Models. , 2023, , .		0
4688	Autonomous Diagnosis System of Breast Cancer. , 2024, , .		0
4689	Towards Label-Efficient Deep Learning forÂMyopic Maculopathy Classification. Lecture Notes in Computer Science, 2024, , 31-45.	1.0	0
4690	Gastric Ulcer Detection in Endoscopic Images Using MobileNetV3-Small. Lecture Notes in Comput Science, 2024, , 214-225.	er 1.0	0
4695	Al in healthcare. , 2024, , 67-78.		0
4702	Machine Learning Advancements in E-Health. Advances in Medical Diagnosis, Treatment, and Care, , 174-194.	2024, 0.1	0
4713	Deep learning for multisource medical information processing. , 2024, , 45-76.		0
4717	Deep Learning Model for Diagnosing the Severity of Diabetic Retinopathy. Lecture Notes in Netwo and Systems, 2024, , 417-431.	rks 0.5	0
4728	Artificial Intelligence in Medical Imaging by Machine Learning and Deep Learning. Advances in Med Technologies and Clinical Practice Book Series, 2024, , 121-159.	ical 0.3	0
4730	Diabetic retinopathy and choroidopathy: Pathophysiology, imaging findings, and treatment update 2024, , 227-247.	25. ,	0
4731	The Strategic Efficacy of Artificial Intelligence (AI) in Medical Tourism. Advances in Hospitality, Tourism and the Services Industry, 2024, , 99-138.	0.2	0
4738	Healthcare Artificial Intelligence in India and Ethical Aspects. , 2024, , 107-150.		0