Intracellular innate immune surveillance devices in pla

Science 354, DOI: 10.1126/science.aaf6395

Citation Report

#	Article	IF	CITATIONS
1	Two-faced TIRs trip the immune switch. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2445-2446.	7.1	1
3	Harnessing Effector-Triggered Immunity for Durable Disease Resistance. Phytopathology, 2017, 107, 912-919.	2.2	26
4	Evolutionary Origins of cGAS-STING Signaling. Trends in Immunology, 2017, 38, 733-743.	6.8	199
5	Transposon-Mediated NLR Exile to the Pollen Allows Rice Blast Resistance without Yield Penalty. Molecular Plant, 2017, 10, 665-667.	8.3	3
6	Plastic potential: how the phenotypes and adaptations of pathogens are influenced by microbial interactions within plants. Current Opinion in Plant Biology, 2017, 38, 78-83.	7.1	9
7	Plant Autoimmunity: When Good Things Go Bad. Current Biology, 2017, 27, R361-R363.	3.9	3
8	Communication in the Phytobiome. Cell, 2017, 169, 587-596.	28.9	251
9	Taking the stage: effectors in the spotlight. Current Opinion in Plant Biology, 2017, 38, 25-33.	7.1	74
10	Function, Discovery, and Exploitation of Plant Pattern Recognition Receptors for Broad-Spectrum Disease Resistance. Annual Review of Phytopathology, 2017, 55, 257-286.	7.8	535
11	What Do We Know About NOD-Like Receptors in Plant Immunity?. Annual Review of Phytopathology, 2017, 55, 205-229.	7.8	106
12	Epistatic influence in tomato Ve1â€mediated resistance. Plant Biology, 2017, 19, 843-847.	3.8	5
13	Evolutionary Convergence and Divergence in NLR Function and Structure. Trends in Immunology, 2017, 38, 744-757.	6.8	123
14	NLR members in inflammation-associated carcinogenesis. Cellular and Molecular Immunology, 2017, 14, 403-405.	10.5	31
15	Effectors of Filamentous Plant Pathogens: Commonalities amid Diversity. Microbiology and Molecular Biology Reviews, 2017, 81, .	6.6	166
16	Receptor Kinases in Plant-Pathogen Interactions: More Than Pattern Recognition. Plant Cell, 2017, 29, 618-637.	6.6	552
17	Structure–function analysis of the <i>Fusarium oxysporum</i> Avr2 effector allows uncoupling of its immuneâ€suppressing activity from recognition. New Phytologist, 2017, 216, 897-914.	7.3	72
18	Roq1 mediates recognition of the Xanthomonas and Pseudomonas effector proteins XopQ and HopQ1. Plant Journal, 2017, 92, 787-795.	5.7	136
19	Caught in the jump. Science, 2017, 357, 31-32.	12.6	4

#	Article	IF	CITATIONS
20	Host blood RNA signatures predict the outcome of tuberculosis treatment. Tuberculosis, 2017, 107, 48-58.	1.9	156
21	Signaling from the plasma-membrane localized plant immune receptor RPM1 requires self-association of the full-length protein. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7385-E7394.	7.1	108
22	The Intracellular Immune Receptor Sw-5b Confers Broad-Spectrum Resistance to Tospoviruses through Recognition of a Conserved 21-Amino Acid Viral Effector Epitope. Plant Cell, 2017, 29, 2214-2232.	6.6	77
23	A plant effectorâ€triggered immunity signaling sector is inhibited by patternâ€triggered immunity. EMBO Journal, 2017, 36, 2758-2769.	7.8	69
24	The structural basis of flagellin detection by NAIP5: A strategy to limit pathogen immune evasion. Science, 2017, 358, 888-893.	12.6	164
25	Differential Regulation of Two-Tiered Plant Immunity and Sexual Reproduction by ANXUR Receptor-Like Kinases. Plant Cell, 2017, 29, 3140-3156.	6.6	89
26	Interplay Between Innate Immunity and the Plant Microbiota. Annual Review of Phytopathology, 2017, 55, 565-589.	7.8	410
27	Expansion of pathogen recognition specificity in plants using pattern recognition receptors and artificially designed decoys. Science China Life Sciences, 2017, 60, 797-805.	4.9	11
28	Membrane Trafficking in Plant Immunity. Molecular Plant, 2017, 10, 1026-1034.	8.3	117
29	Analysis of the ZAR1 Immune Complex Reveals Determinants for Immunity and Molecular Interactions. Plant Physiology, 2017, 174, 2038-2053.	4.8	74
30	Mechanisms of immune regulation in allergic diseases: the role of regulatory T and B cells. Immunological Reviews, 2017, 278, 219-236.	6.0	234
31	Variability among Cucurbitaceae species (melon, cucumber and watermelon) in a genomic region containing a cluster of NBS-LRR genes. BMC Genomics, 2017, 18, 138.	2.8	16
32	NAIP/NLRC4 inflammasome activation in MRP8+ cells is sufficient to cause systemic inflammatory disease. Nature Communications, 2017, 8, 2209.	12.8	25
33	A Conserved EAR Motif Is Required for Avirulence and Stability of the Ralstonia solanacearum Effector PopP2 In Planta. Frontiers in Plant Science, 2017, 8, 1330.	3.6	17
34	Diversity of Amyloid Motifs in NLR Signaling in Fungi. Biomolecules, 2017, 7, 38.	4.0	26
35	Moving to the Field: Plant Innate Immunity in Crop Protection. International Journal of Molecular Sciences, 2017, 18, 640.	4.1	9
36	Regulated Forms of Cell Death in Fungi. Frontiers in Microbiology, 2017, 8, 1837.	3.5	90
37	Resistant and susceptible responses in alfalfa (Medicago sativa) to bacterial stem blight caused by Pseudomonas syringae pv. syringae. PLoS ONE, 2017, 12, e0189781.	2.5	31

#	Article	IF	CITATIONS
38	Comparative analysis of targeted long read sequencing approaches for characterization of a plant's immune receptor repertoire. BMC Genomics, 2017, 18, 564.	2.8	51
39	Plant Immunity. , 2017, , .		2
40	NLR surveillance of essential SEC-9 SNARE proteins induces programmed cell death upon allorecognition in filamentous fungi. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2292-E2301.	7.1	69
41	Pseudomonas syringae: what it takes to be a pathogen. Nature Reviews Microbiology, 2018, 16, 316-328.	28.6	501
42	Arabidopsis <i>nonresponding to oxylipins</i> locus <i>NOXY7</i> encodes a yeast GCN1 homolog that mediates noncanonical translation regulation and stress adaptation. Plant, Cell and Environment, 2018, 41, 1438-1452.	5.7	40
43	TIR Domain Proteins Are an Ancient Family of NAD+-Consuming Enzymes. Current Biology, 2018, 28, 421-430.e4.	3.9	217
44	Priming plant resistance by activation of redox-sensitive genes. Free Radical Biology and Medicine, 2018, 122, 171-180.	2.9	85
45	Defining essential processes in plant pathogenesis with <i>Pseudomonas syringae</i> pv. <i>tomato</i> DC3000 disarmed polymutants and a subset of key type III effectors. Molecular Plant Pathology, 2018, 19, 1779-1794.	4.2	37
46	Receptor-Like Cytoplasmic Kinases: Central Players in Plant Receptor Kinase–Mediated Signaling. Annual Review of Plant Biology, 2018, 69, 267-299.	18.7	303
47	Dominant integration locus drives continuous diversification of plant immune receptors with exogenous domain fusions. Genome Biology, 2018, 19, 23.	8.8	109
48	Calcium Signaling in Plant Autoimmunity: AÂGuardÂModel for AtSR1/CAMTA3-Mediated Immune Response. Molecular Plant, 2018, 11, 637-639.	8.3	24
49	Nucleosomes and DNA methylation shape meiotic DSB frequency in <i>Arabidopsis thaliana</i> transposons and gene regulatory regions. Genome Research, 2018, 28, 532-546.	5.5	190
50	The coming of age of EvoMPMI: evolutionary molecular plant–microbe interactions across multiple timescales. Current Opinion in Plant Biology, 2018, 44, 108-116.	7.1	92
51	Out of Water: The Origin and Early Diversification of Plant <i>R</i> -Genes. Plant Physiology, 2018, 177, 82-89.	4.8	117
52	IRF8 Regulates Transcription of Naips for NLRC4 Inflammasome Activation. Cell, 2018, 173, 920-933.e13.	28.9	142
53	The Monocot-Specific Receptor-like Kinase SDS2 Controls Cell Death and Immunity in Rice. Cell Host and Microbe, 2018, 23, 498-510.e5.	11.0	96
54	Structural basis for specific flagellin recognition by the NLR protein NAIP5. Cell Research, 2018, 28, 35-47.	12.0	59
55	The intracellular immune receptor Rx1 regulates the DNA-binding activity of a Golden2-like transcription factor. Journal of Biological Chemistry, 2018, 293, 3218-3233.	3.4	44

#	Article	IF	CITATIONS
56	Sustaining global agriculture through rapid detection and deployment of genetic resistance to deadly crop diseases. New Phytologist, 2018, 219, 45-51.	7.3	25
57	Constant vigilance: plant functions guarded by resistance proteins. Plant Journal, 2018, 93, 637-650.	5.7	28
58	A dominantâ€interfering <i>camta3</i> mutation compromises primary transcriptional outputs mediated by both cell surface and intracellular immune receptors in <i>Arabidopsis thaliana</i> . New Phytologist, 2018, 217, 1667-1680.	7.3	73
59	The role of water in plant–microbe interactions. Plant Journal, 2018, 93, 771-780.	5.7	120
60	Translational Research: Exploring and Creating Genetic Diversity. Trends in Plant Science, 2018, 23, 42-52.	8.8	36
61	Sugar flux and signaling in plant–microbe interactions. Plant Journal, 2018, 93, 675-685.	5.7	180
62	Transcriptâ€level expression control of plant NLR genes. Molecular Plant Pathology, 2018, 19, 1267-1281.	4.2	82
63	Resistance protein Pit interacts with the GEF OsSPK1 to activate OsRac1 and trigger rice immunity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11551-E11560.	7.1	35
64	Transcription factors involved in basal immunity in mammals and plants interact with the same MAMP-responsive cis-sequence from Arabidopsis thaliana. Plant Molecular Biology, 2018, 98, 565-578.	3.9	7
65	Genome-wide functional analyses of plant coiled–coil NLR-type pathogen receptors reveal essential roles of their N-terminal domain in oligomerization, networking, and immunity. PLoS Biology, 2018, 16, e2005821.	5.6	52
66	Dynamic transcriptomes of resistant and susceptible peach lines after infestation by green peach aphids (Myzus persicae Sülzer) reveal defence responses controlled by the Rm3 locus. BMC Genomics, 2018, 19, 846.	2.8	23
67	The AMSH3 ESCRT-III-Associated Deubiquitinase Is Essential for Plant Immunity. Cell Reports, 2018, 25, 2329-2338.e5.	6.4	12
68	Danger signals activate a putative innate immune system during regeneration in a filamentous fungus. PLoS Genetics, 2018, 14, e1007390.	3.5	27
69	Modulation of ACD6 dependent hyperimmunity by natural alleles of an Arabidopsis thaliana NLR resistance gene. PLoS Genetics, 2018, 14, e1007628.	3.5	25
70	Receptors and Signaling Pathways for Recognition of Bacteria in Livestock and Crops: Prospects for Beneficial Microbes in Healthy Growth Strategies. Frontiers in Immunology, 2018, 9, 2223.	4.8	31
71	Profile of Jonathan D. G. Jones. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10191-10194.	7.1	0
72	Distinct modes of derepression of an <i>Arabidopsis</i> immune receptor complex by two different bacterial effectors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10218-10227.	7.1	83
73	Nanodiagnostics Tools for Microbial Pathogenic Detection in Crop Plants. Nanotechnology in the Life Sciences, 2018, , 355-384.	0.6	2

#	Article	IF	CITATIONS
74	NRG1 functions downstream of EDS1 to regulate TIR-NLR-mediated plant immunity in <i>Nicotiana benthamiana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10979-E10987.	7.1	185
75	Genome Editing for Crop Improvement – Applications in Clonally Propagated Polyploids With a Focus on Potato (Solanum tuberosum L.). Frontiers in Plant Science, 2018, 9, 1607.	3.6	65
76	Adult plant resistance in maize to northern leaf spot is a feature of partial loss-of-function alleles of Hm1. PLoS Pathogens, 2018, 14, e1007356.	4.7	16
77	Immune receptor genes and pericentromeric transposons as targets of common epigenetic regulatory elements. Plant Journal, 2018, 96, 1178-1190.	5.7	33
78	Uncoiling CNLs: Structure/function approaches to understanding CC domain function in plant NLRs. Plant and Cell Physiology, 2018, 59, 2398-2408.	3.1	59
79	Soil mixture composition alters Arabidopsis susceptibility to <i>Pseudomonas syringae</i> infection. Plant Direct, 2018, 2, e00044.	1.9	9
80	Plant–Pathogen Warfare under Changing Climate Conditions. Current Biology, 2018, 28, R619-R634.	3.9	494
81	Extreme resistance: The GLK–Rx1 alliance. Journal of Biological Chemistry, 2018, 293, 3234-3235.	3.4	3
82	Nucleotideâ€binding resistance gene signatures in sugar beet, insights from a new reference genome. Plant Journal, 2018, 95, 659-671.	5.7	48
83	Structural, Functional, and Genomic Diversity of Plant NLR Proteins: An Evolved Resource for Rational Engineering of Plant Immunity. Annual Review of Phytopathology, 2018, 56, 243-267.	7.8	152
84	Regulation of pattern recognition receptor signalling by phosphorylation and ubiquitination. Current Opinion in Plant Biology, 2018, 45, 162-170.	7.1	43
85	Epigenetic and transcriptional control of chickpea WRKY40 promoter activity under Fusarium stress and its heterologous expression in Arabidopsis leads to enhanced resistance against bacterial pathogen. Plant Science, 2018, 276, 250-267.	3.6	31
86	Platyhelminthes: Molecular Dissection of the Planarian Innate Immune System. , 2018, , 95-115.		3
87	Toward Biomaterials for Enhancing Immune Checkpoint Blockade Therapy. Advanced Functional Materials, 2018, 28, 1802540.	14.9	92
88	Autoimmunity in plants. Planta, 2018, 248, 751-767.	3.2	39
89	Efficient identification of NLR by using a genome-wide protein domain and motif survey program, Ex-DOMAIN. Plant Biotechnology, 2018, 35, 177-180.	1.0	1
90	A Dispensable Chromosome Is Required for Virulence in the Hemibiotrophic Plant Pathogen Colletotrichum higginsianum. Frontiers in Microbiology, 2018, 9, 1005.	3.5	45
91	Negative regulation of resistance proteinâ€mediated immunity by master transcription factors SARD1 and CBP60g. Journal of Integrative Plant Biology, 2018, 60, 1023-1027.	8.5	14

#	Article	IF	CITATIONS
92	CRISPR Crops: Plant Genome Editing Toward Disease Resistance. Annual Review of Phytopathology, 2018, 56, 479-512.	7.8	197
93	Polymorphic residues in rice NLRs expand binding and response to effectors of the blast pathogen. Nature Plants, 2018, 4, 576-585.	9.3	127
94	Prospects of Understanding the Molecular Biology of Disease Resistance in Rice. International Journal of Molecular Sciences, 2018, 19, 1141.	4.1	38
95	Antagonism of Transcription Factor MYC2 by EDS1/PAD4 Complexes Bolsters Salicylic Acid Defense in Arabidopsis Effector-Triggered Immunity. Molecular Plant, 2018, 11, 1053-1066.	8.3	111
96	Expression profile of the STAND protein Nwd1 in the developing and mature mouse central nervous system. Journal of Comparative Neurology, 2018, 526, 2099-2114.	1.6	16
97	A DREPP protein interacted with PeaT1 from Alternaria tenuissima and is involved in elicitor-induced disease resistance in Nicotiana plants. Journal of Plant Research, 2018, 131, 827-837.	2.4	3
98	Active photosynthetic inhibition mediated by MPK3/MPK6 is critical to effector-triggered immunity. PLoS Biology, 2018, 16, e2004122.	5.6	161
99	The bacterial type III-secreted protein AvrRps4 is a bipartite effector. PLoS Pathogens, 2018, 14, e1006984.	4.7	23
100	In planta proximity dependent biotin identification (BioID). Scientific Reports, 2018, 8, 9212.	3.3	70
101	Never Walk Alone: Clathrin-Coated Vesicle (CCV) Components in Plant Immunity. Annual Review of Phytopathology, 2019, 57, 387-409.	7.8	40
102	The proteasome regulator PTRE1 contributes to the turnover of SNC1 immune receptor. Molecular Plant Pathology, 2019, 20, 1566-1573.	4.2	7
103	Plant-Microbe Interactions Facing Environmental Challenge. Cell Host and Microbe, 2019, 26, 183-192.	11.0	206
104	Small RNAs – Big Players in Plant-Microbe Interactions. Cell Host and Microbe, 2019, 26, 173-182.	11.0	206
105	Evolution of negative immune regulators. PLoS Pathogens, 2019, 15, e1007913.	4.7	10
106	Cellular and Transcriptional Responses of Resistant and Susceptible Cultivars of Alfalfa to the Root Lesion Nematode, Pratylenchus penetrans. Frontiers in Plant Science, 2019, 10, 971.	3.6	19
107	Exploration of Plant-Microbe Interactions for Sustainable Agriculture in CRISPR Era. Microorganisms, 2019, 7, 269.	3.6	87
108	A Species-Wide Inventory of NLR Genes and Alleles in Arabidopsis thaliana. Cell, 2019, 178, 1260-1272.e14.	28.9	265
109	An Evolutionarily Ancient Immune System Governs the Interactions between Pseudomonas syringae and an Early-Diverging Land Plant Lineage. Current Biology, 2019, 29, 2270-2281.e4.	3.9	50

#	Article	IF	CITATIONS
110	Cross-reactivity of a rice NLR immune receptor to distinct effectors from the rice blast pathogen Magnaporthe oryzae provides partial disease resistance. Journal of Biological Chemistry, 2019, 294, 13006-13016.	3.4	29
111	Time to Fight: Molecular Mechanisms of Age-Related Resistance. Phytopathology, 2019, 109, 1500-1508.	2.2	52
112	The plant hypersensitive response: concepts, control and consequences. Molecular Plant Pathology, 2019, 20, 1163-1178.	4.2	369
113	RPW8/HR repeats control NLR activation in Arabidopsis thaliana. PLoS Genetics, 2019, 15, e1008313.	3.5	56
114	Responding to Threats Both Foreign and Domestic: NOD-Like Receptors in Corals. Integrative and Comparative Biology, 2019, 59, 819-829.	2.0	7
115	An EDS1-SAG101 Complex Is Essential for TNL-Mediated Immunity in <i>Nicotiana benthamiana</i> . Plant Cell, 2019, 31, 2456-2474.	6.6	100
116	Perturbations of the ZED1 pseudokinase activate plant immunity. PLoS Pathogens, 2019, 15, e1007900.	4.7	43
117	Mai1 Protein Acts Between Host Recognition of Pathogen Effectors and Mitogen-Activated Protein Kinase Signaling. Molecular Plant-Microbe Interactions, 2019, 32, 1496-1507.	2.6	18
118	Bacterial twist to an antiviral defence. Nature, 2019, 574, 638-639.	27.8	3
119	Orthologous receptor kinases quantitatively affect the host status of barley to leaf rust fungi. Nature Plants, 2019, 5, 1129-1135.	9.3	37
120	Challenging battles of plants with phloem-feeding insects and prokaryotic pathogens. Proceedings of the United States of America, 2019, 116, 23390-23397.	7.1	98
121	TIR domains of plant immune receptors are NAD ⁺ -cleaving enzymes that promote cell death. Science, 2019, 365, 799-803.	12.6	337
122	Structural and biochemical studies of an NB-ARC domain from a plant NLR immune receptor. PLoS ONE, 2019, 14, e0221226.	2.5	43
123	Guardians of the Cell: Effector-Triggered Immunity Steers Mammalian Immune Defense. Trends in Immunology, 2019, 40, 939-951.	6.8	13
124	A Bacterial Effector Mimics a Host HSP90 Client to Undermine Immunity. Cell, 2019, 179, 205-218.e21.	28.9	53
125	Engineering Broad-Spectrum Bacterial Blight Resistance by Simultaneously Disrupting Variable TALE-Binding Elements of Multiple Susceptibility Genes in Rice. Molecular Plant, 2019, 12, 1434-1446.	8.3	207
126	AvrRpm1 Functions as an ADP-Ribosyl Transferase to Modify NOI-domain Containing Proteins, Including Arabidopsis and Soybean RPM1-interacting Protein 4. Plant Cell, 2019, 31, tpc.00020.2019.	6.6	45
127	The cytological basis of powdery mildew resistance in wild Chinese Vitis species. Plant Physiology and Biochemistry, 2019, 144, 244-253.	5.8	18

#	Article	IF	CITATIONS
128	RNA-Targeted Antiviral Immunity: More Than Just RNA Silencing. Trends in Microbiology, 2019, 27, 792-805.	7.7	105
129	Molecular Dialog Between Parasitic Plants and Their Hosts. Annual Review of Phytopathology, 2019, 57, 279-299.	7.8	74
130	Subsets of NLR genes show differential signatures of adaptation during colonization of new habitats. New Phytologist, 2019, 224, 367-379.	7.3	54
131	Diversity and Evolution of Type III Secreted Effectors: A Case Study of Three Families. Current Topics in Microbiology and Immunology, 2019, 427, 201-230.	1.1	9
132	The Rise of Plant Resistosomes. Trends in Immunology, 2019, 40, 670-673.	6.8	11
133	Cell-autonomous immunity by IFN-induced GBPs in animals and plants. Current Opinion in Immunology, 2019, 60, 71-80.	5.5	31
134	Cryo-EM studies of NAIP–NLRC4 inflammasomes. Methods in Enzymology, 2019, 625, 177-204.	1.0	6
135	A host–pathogen interactome uncovers phytopathogenic strategies to manipulate plant <scp>ABA</scp> responses. Plant Journal, 2019, 100, 187-198.	5.7	34
136	Plant Immunity: Thinking Outside and Inside the Box. Trends in Plant Science, 2019, 24, 587-601.	8.8	111
137	NLR singletons, pairs, and networks: evolution, assembly, and regulation of the intracellular immunoreceptor circuitry of plants. Current Opinion in Plant Biology, 2019, 50, 121-131.	7.1	187
138	A strong NF-κB p65 responsive cis-regulatory sequence from Arabidopsis thaliana interacts with WRKY40. Plant Cell Reports, 2019, 38, 1139-1150.	5.6	6
139	<scp>NLRP</scp> 1 – One <scp>NLR</scp> to guard them all. EMBO Journal, 2019, 38, e102494.	7.8	11
140	The NLRP1 inflammasome: new mechanistic insights and unresolved mysteries. Current Opinion in Immunology, 2019, 60, 37-45.	5.5	131
141	Help wanted: helper NLRs and plant immune responses. Current Opinion in Plant Biology, 2019, 50, 82-94.	7.1	196
142	A resistosome-activated â€~death switch'. Nature Plants, 2019, 5, 457-458.	9.3	20
143	ChilV3 Acts as a Novel Target of WRKY40 to Mediate Pepper Immunity Against <i>Ralstonia solanacearum</i> Infection. Molecular Plant-Microbe Interactions, 2019, 32, 1121-1133.	2.6	21
144	Paving the Way to Tospovirus Infection: Multilined Interplays with Plant Innate Immunity. Annual Review of Phytopathology, 2019, 57, 41-62.	7.8	53
145	Early signalling mechanisms underlying receptor kinase-mediated immunity in plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180310.	4.0	18

#	Article	IF	CITATIONS
146	Transcriptome-based identification and validation of reference genes for plant-bacteria interaction studies using Nicotiana benthamiana. Scientific Reports, 2019, 9, 1632.	3.3	34
147	New QTL for resistance to Puccinia polysora Underw in maize. Journal of Applied Genetics, 2019, 60, 147-150.	1.9	8
148	Functional degradation: A mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes. Science, 2019, 364, .	12.6	271
149	RRM Transcription Factors Interact with NLRs and Regulate Broad-Spectrum Blast Resistance in Rice. Molecular Cell, 2019, 74, 996-1009.e7.	9.7	69
150	El dominio STK de la proteÃna de resistencia a la bacteriosis vascular de yuca RXAM1 interactúa con una E3 Ubiquitin Ligasa. Acta Biologica Colombiana, 2019, 24, 139-149.	0.4	0
151	Ligand-triggered allosteric ADP release primes a plant NLR complex. Science, 2019, 364, .	12.6	334
152	A pentangular plant inflammasome. Science, 2019, 364, 31-32.	12.6	28
153	Mechanism of plant immune activation and signaling: Insight from the first solved plant resistosome structure. Journal of Integrative Plant Biology, 2019, 61, 902-907.	8.5	4
154	A Plant Immune Receptor Adopts a Two-Step Recognition Mechanism to Enhance Viral EffectorÂPerception. Molecular Plant, 2019, 12, 248-262.	8.3	56
155	Convergence of cellâ€surface and intracellular immune receptor signalling. New Phytologist, 2019, 221, 1676-1678.	7.3	20
156	Gene-Based Approaches to Durable Disease Resistance in Triticeae Cereals. , 2019, , 165-182.		2
157	An EDS1 heterodimer signalling surface enforces timely reprogramming of immunity genes in Arabidopsis. Nature Communications, 2019, 10, 772.	12.8	103
158	Contribution of recent technological advances to future resistance breeding. Theoretical and Applied Genetics, 2019, 132, 713-732.	3.6	35
159	Resistant and susceptible cacao genotypes exhibit defense gene polymorphism and unique early responses to Phytophthora megakarya inoculation. Plant Molecular Biology, 2019, 99, 499-516.	3.9	24
160	The <i>de Novo</i> Reference Genome and Transcriptome Assemblies of the Wild Tomato Species <i>Solanum chilense</i> Highlights Birth and Death of NLR Genes Between Tomato Species. G3: Genes, Genomes, Genetics, 2019, 9, 3933-3941.	1.8	37
161	A Coevolved EDS1-SAG101-NRG1 Module Mediates Cell Death Signaling by TIR-Domain Immune Receptors. Plant Cell, 2019, 31, 2430-2455.	6.6	198
162	Alien domains shaped the modular structure of plant NLR proteins. Genome Biology and Evolution, 2019, 11, 3466-3477.	2.5	21
163	The origin and evolution of cell-intrinsic antibacterial defenses in eukaryotes. Current Opinion in Genetics and Development, 2019, 58-59, 111-122.	3.3	14

ARTICLE IF CITATIONS # Interaction between arbuscular mycorrhizal fungi andÂBacillusÂspp. in soil enhancing growth of crop 5.1 98 164 plants. Fungal Biology and Biotechnology, 2019, 6, 23. The Ubiquitin Code of NODs Signaling Pathways in Health and Disease. Frontiers in Immunology, 2019, 4.8 10, 2648. Programmed Cell Death in<i>Neurospora crassa</i>Is Controlled by the Allorecognition 166 2.9 32 Determinant<i>rcd-1</i>. Genetics, 2019, 213, 1387-1400. A functional investigation of the suppression of CpG and UpA dinucleotide frequencies in plant RNA virus genomes. Scientific Reports, 2019, 9, 18359. Using forward genetics in $\langle i \rangle$ Nicotiana benthamiana $\langle i \rangle$ to uncover the immune signaling pathway mediating recognition of the <i>Xanthomonas perforans</i> effector XopJ4. New Phytologist, 2019, 168 7.3 60 221, 1001-1009. Wheat WD40-repeat protein TaHOS15 functions in a histone deacetylase complex to fine-tune defense responses to<i>Blumeria graminis</i>f.sp.<i>tritici</i>. Journal of Experimental Botany, 2019, 70, 4.8 255-268. Differential regulation of TNLâ€mediated immune signaling by redundant helper CNLs. New Phytologist, 170 7.3 186 2019, 222, 938-953. Multiple intramolecular trafficking signals in RESISTANCE TO POWDERY MILDEW 8.2 are engaged in 171 5.7 activation of cell death and defense. Plant Journal, 2019, 98, 55-70. The Arabidopsis <scp>RRM</scp> domain protein <scp>EDM</scp>3 mediates raceâ€specific disease 172 resistance by controlling H3K9me2â€dependent alternative polyadenylation of <i><scp>RPP</scp>7</i> 5.7 24 immune receptor transcripts. Plant Journal, 2019, 97, 646-660. An evolutionarily conserved non-synonymous SNP in a leucine-rich repeat domain determines 3.6 anthracnose resistance in watermelon. Theoretical and Applied Genetics, 2019, 132, 473-488. Revisiting the Origin of Plant NBS-LRR Genes. Trends in Plant Science, 2019, 24, 9-12. 174 8.8 128 Sunflower resistance to multiple downy mildew pathotypes revealed by recognition of conserved 5.7 74 effectors of the oomycete <i>Plasmopára halstedii</i>. Plant Journal, 2019, 97, 730-748. Necrotrophic Exploitation and Subversion of Plant Defense: A Lifestyle or Just a Phase, and 176 2.2 35 Implications in Breeding Resistance. Phytopathology, 2019, 109, 332-346. Extracellular ATP Shapes a Defense-Related Transcriptome Both Independently and along with Other Defense Signaling Pathways. Plant Physiology, 2019, 179, 1144-1158. 4.8 99 Postâ€translational modifications in effectors and plant proteins involved in hostâ€"pathogen conflicts. 178 10 2.4 Plant Pathology, 2019, 68, 628-644. Molecular mapping of the Cf-10 gene by combining SNP/InDel-index and linkage analysis in tomato 179 (Solanum lycopersicum). BMC Plant Biology, 2019, 19, 15. An Arabidopsis thaliana leucine-rich repeat protein harbors an adenylyl cyclase catalytic center and 180 3.556 affects responses to pathogens. Journal of Plant Physiology, 2019, 232, 12-22. Role of lysine residues of the <i>Magnaporthe oryzae</i> effector AvrPizâ€t in effector―and 4.2 PAMPâ€triggered immunity. Molecular Plant Pathology, 2019, 20, 599-608.

#	Article	IF	CITATIONS
182	The oomycete microbe-associated molecular pattern Pep-13 triggers SERK3/BAK1-independent plant immunity. Plant Cell Reports, 2019, 38, 173-182.	5.6	8
183	Nucleic Acid Sensing in Mammals and Plants: Facts and Caveats. International Review of Cell and Molecular Biology, 2019, 345, 225-285.	3.2	25
184	<i>Rpp1</i> Encodes a ULP1-NBS-LRR Protein That Controls Immunity to <i>Phakopsora pachyrhizi</i> in Soybean. Molecular Plant-Microbe Interactions, 2019, 32, 120-133.	2.6	26
185	Pathogen enrichment sequencing (PenSeq) enables population genomic studies in oomycetes. New Phytologist, 2019, 221, 1634-1648.	7.3	43
186	Signaling mechanisms underlying systemic acquired resistance to microbial pathogens. Plant Science, 2019, 279, 81-86.	3.6	121
187	Genetic modification to improve disease resistance in crops. New Phytologist, 2020, 225, 70-86.	7.3	158
188	Programmed Cell Death in the Evolutionary Race against Bacterial Virulence Factors. Cold Spring Harbor Perspectives in Biology, 2020, 12, a036459.	5.5	30
189	Wheat gene <i>Sr60</i> encodes a protein with two putative kinase domains that confers resistance to stem rust. New Phytologist, 2020, 225, 948-959.	7.3	102
190	Extreme resistance to <i>Potato virus Y</i> in potato carrying the <i>Ry</i> _{<i>sto</i>} gene is mediated by a <scp>TIR</scp> â€ <scp>NLR</scp> immune receptor. Plant Biotechnology Journal, 2020, 18, 655-667.	8.3	57
191	Arabidopsis CAMTA Transcription Factors Regulate Pipecolic Acid Biosynthesis and Priming of Immunity Genes. Molecular Plant, 2020, 13, 157-168.	8.3	78
192	The <i>Arabidopsis</i> PAD4 Lipase-Like Domain Is Sufficient for Resistance to Green Peach Aphid. Molecular Plant-Microbe Interactions, 2020, 33, 328-335.	2.6	15
193	Engineering plant leucine rich repeat-receptors for enhanced pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). , 2020, , 1-31.		2
194	Structure–function analysis of ZAR1 immune receptor reveals key molecular interactions for activity. Plant Journal, 2020, 101, 352-370.	5.7	18
195	Plant and Animal Innate Immunity Complexes: Fighting Different Enemies with Similar Weapons. Trends in Plant Science, 2020, 25, 80-91.	8.8	33
196	An Expansin-Like Candidate Effector Protein from <i>Pratylenchus penetrans</i> Modulates Immune Responses in <i>Nicotiana benthamiana</i> . Phytopathology, 2020, 110, 684-693.	2.2	4
197	NBS-LRR genes—Plant health sentinels: Structure, roles, evolution and biotechnological applications. , 2020, , 63-120.		9
198	Structures of plant resistosome reveal how NLR immune receptors are activated. ABIOTECH, 2020, 1, 147-150.	3.9	5
199	The Evolutionary Origins of Programmed Cell Death Signaling. Cold Spring Harbor Perspectives in Biology, 2020, 12, a036442.	5.5	30

#	Article	IF	CITATIONS
200	The genomes of rhizobia. Advances in Botanical Research, 2020, , 213-249.	1.1	17
201	Effector-triggered immunity and pathogen sensing in metazoans. Nature Microbiology, 2020, 5, 14-26.	13.3	79
202	Nanovehicles for Plant Modifications towards Pest- and Disease-Resistance Traits. Trends in Plant Science, 2020, 25, 198-212.	8.8	38
203	Plant E3 ligases <scp>SNIPER</scp> 1 and <scp>SNIPER</scp> 2 broadly regulate the homeostasis of sensor <scp>NLR</scp> immune receptors. EMBO Journal, 2020, 39, e104915.	7.8	38
204	Identification of NLR-associated Amyloid Signaling Motifs in Bacterial Genomes. Journal of Molecular Biology, 2020, 432, 6005-6027.	4.2	19
205	SUSA2 is an F-box protein required for autoimmunity mediated by paired NLRs SOC3-CHS1 and SOC3-TN2. Nature Communications, 2020, 11, 5190.	12.8	19
206	Enteroviral 3C protease activates the human NLRP1 inflammasome in airway epithelia. Science, 2020, 370, .	12.6	151
207	Discovery of a Family of Mixed Lineage Kinase Domain-like Proteins in Plants and Their Role in Innate Immune Signaling. Cell Host and Microbe, 2020, 28, 813-824.e6.	11.0	50
208	Chitinase Gene Positively Regulates Hypersensitive and Defense Responses of Pepper to Colletotrichum acutatum Infection. International Journal of Molecular Sciences, 2020, 21, 6624.	4.1	20
209	Plant Immune Mechanisms: From Reductionistic to Holistic Points of View. Molecular Plant, 2020, 13, 1358-1378.	8.3	82
210	Transcriptome analysis reveals ethylene-mediated defense responses to Fusarium oxysporum f. sp. cucumerinum infection in Cucumis sativus L BMC Plant Biology, 2020, 20, 334.	3.6	22
211	The Role of Toll-Like Receptors in Retroviral Infection. Microorganisms, 2020, 8, 1787.	3.6	38
212	Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme. Science, 2020, 370, .	12.6	291
213	Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Science, 2020, 370, .	12.6	296
214	Enzyme formation by immune receptors. Science, 2020, 370, 1163-1164.	12.6	10
215	Advancement of research on plant NLRs evolution, biochemical activity, structural association, and engineering. Planta, 2020, 252, 101.	3.2	7
216	Update on Cuticular Wax Biosynthesis and Its Roles in Plant Disease Resistance. International Journal of Molecular Sciences, 2020, 21, 5514.	4.1	51
217	Reinventing the wheel with a synthetic plant inflammasome. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20357-20359.	7.1	4

#	Article	IF	CITATIONS
218	Precision Breeding Made Real with CRISPR: Illustration through Genetic Resistance to Pathogens. Plant Communications, 2020, 1, 100102.	7.7	32
219	Induced proximity of a TIR signaling domain on a plant-mammalian NLR chimera activates defense in plants. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18832-18839.	7.1	82
220	Conflict, Competition, and Cooperation Regulate Social Interactions in Filamentous Fungi. Annual Review of Microbiology, 2020, 74, 693-712.	7.3	29
221	Amyloid Signaling in Filamentous Fungi and Bacteria. Annual Review of Microbiology, 2020, 74, 673-691.	7.3	18
222	The pyrin inflammasome and the <i>Yersinia</i> effector interaction. Immunological Reviews, 2020, 297, 96-107.	6.0	20
223	A DNA-Binding Bromodomain-Containing Protein Interacts with and Reduces Rx1-Mediated Immune Response to Potato Virus X. Plant Communications, 2020, 1, 100086.	7.7	10
224	Sustained Incompatibility between MAPK Signaling and Pathogen Effectors. International Journal of Molecular Sciences, 2020, 21, 7954.	4.1	17
225	Detoxifying processes during kanamycin-induced stress to <i>Arabidopsis thaliana</i> seedling growth. Biotechnology and Biotechnological Equipment, 2020, 34, 673-679.	1.3	3
226	Ribosomal protein QM/RPL10 positively regulates defence and protein translation mechanisms during nonhost disease resistance. Molecular Plant Pathology, 2020, 21, 1481-1494.	4.2	23
227	A malectinâ€like receptor kinase regulates cell death and patternâ€triggered immunity in soybean. EMBO Reports, 2020, 21, e50442.	4.5	44
228	The NLRP3 inflammasome: Mechanism of action, role in disease and therapies. Molecular Aspects of Medicine, 2020, 76, 100889.	6.4	195
229	RIN13-mediated disease resistance depends on the SNC1–EDS1/PAD4 signaling pathway in Arabidopsis. Journal of Experimental Botany, 2020, 71, 7393-7404.	4.8	8
230	Deciphering the Impact of a Bacterial Infection on Meiotic Recombination in Arabidopsis with Fluorescence Tagged Lines. Genes, 2020, 11, 832.	2.4	1
231	Wheat Disease Resistance Genes and Their Diversification Through Integrated Domain Fusions. Frontiers in Genetics, 2020, 11, 898.	2.3	36
232	Two unequally redundant "helper" immune receptor families mediate Arabidopsis thaliana intracellular "sensor"Âimmune receptor functions. PLoS Biology, 2020, 18, e3000783.	5.6	125
233	The Arabidopsis PHD-finger protein EDM2 has multiple roles in balancing NLR immune receptor gene expression. PLoS Genetics, 2020, 16, e1008993.	3.5	33
234	A molecular roadmap to the plant immune system. Journal of Biological Chemistry, 2020, 295, 14916-14935.	3.4	86
235	QTL mapping for stripe rust and powdery mildew resistance in Triticum durum–Aegilops speltoides backcross introgression lines. Plant Genetic Resources: Characterisation and Utilisation, 2020, 18, 211-221.	0.8	6

#	Article	IF	CITATIONS
236	Grand Challenges in the Research of Fungal Interactions With Animals. Frontiers in Fungal Biology, 2020, 1, .	2.0	6
237	A fungal effector and a rice NLR protein have antagonistic effects on a Bowman–Birk trypsin inhibitor. Plant Biotechnology Journal, 2020, 18, 2354-2363.	8.3	39
238	Pm21 CC domain activity modulated by intramolecular interactions is implicated in cell death and disease resistance. Molecular Plant Pathology, 2020, 21, 975-984.	4.2	14
239	The Immune Receptor Roq1 Confers Resistance to the Bacterial Pathogens Xanthomonas, Pseudomonas syringae, and Ralstonia in Tomato. Frontiers in Plant Science, 2020, 11, 463.	3.6	32
240	Origins and Immunity Networking Functions of EDS1 Family Proteins. Annual Review of Phytopathology, 2020, 58, 253-276.	7.8	121
241	Convergent Loss of an EDS1/PAD4 Signaling Pathway in Several Plant Lineages Reveals Coevolved Components of Plant Immunity and Drought Response. Plant Cell, 2020, 32, 2158-2177.	6.6	66
242	The human genetic determinism of life-threatening infectious diseases: genetic heterogeneity and physiological homogeneity?. Human Genetics, 2020, 139, 681-694.	3.8	49
243	Engineered biomaterials for cancer immunotherapy. MedComm, 2020, 1, 35-46.	7.2	52
244	Deep Roots and Splendid Boughs of the Global Plant Virome. Annual Review of Phytopathology, 2020, 58, 23-53.	7.8	73
245	SnRK1 Phosphorylates and Destabilizes WRKY3 to Enhance Barley Immunity to Powdery Mildew. Plant Communications, 2020, 1, 100083.	7.7	34
246	Xa1 Allelic R Genes Activate Rice Blight Resistance Suppressed by Interfering TAL Effectors. Plant Communications, 2020, 1, 100087.	7.7	52
247	A rare single nucleotide variant in <i>Pm5e</i> confers powdery mildew resistance in common wheat. New Phytologist, 2020, 228, 1011-1026.	7.3	92
248	Resistosome and inflammasome: platforms mediating innate immunity. Current Opinion in Plant Biology, 2020, 56, 47-55.	7.1	30
249	How Target-Sequence Enrichment and Sequencing (TEnSeq) Pipelines Have Catalyzed Resistance Gene Cloning in the Wheat-Rust Pathosystem. Frontiers in Plant Science, 2020, 11, 678.	3.6	38
250	The Role of Sugars in the Regulation of the Level of Endogenous Signaling Molecules during Defense Response of Yellow Lupine to Fusarium oxysporum. International Journal of Molecular Sciences, 2020, 21, 4133.	4.1	28
251	An ankyrin-repeat and WRKY-domain-containing immune receptor confers stripe rust resistance in wheat. Nature Communications, 2020, 11, 1353.	12.8	89
252	Exploring folds, evolution and host interactions: understanding effector structure/function in disease and immunity. New Phytologist, 2020, 227, 326-333.	7.3	31
253	Bacterial Effectors Induce Oligomerization of Immune Receptor ZAR1 InÂVivo. Molecular Plant, 2020, 13, 793-801.	8.3	65

#	Article	IF	CITATIONS
254	The evolving landscape of cell surface pattern recognition across plant immune networks. Current Opinion in Plant Biology, 2020, 56, 135-146.	7.1	25
255	Molecular actions of NLR immune receptors in plants and animals. Science China Life Sciences, 2020, 63, 1303-1316.	4.9	31
256	Functional evaluation of a homologue of plant rapid alkalinisation factor (RALF) peptides in Fusarium graminearum. Fungal Biology, 2020, 124, 753-765.	2.5	19
257	Inhibition of multiple defense responsive pathways by CaWRKY70 transcription factor promotes susceptibility in chickpea under Fusarium oxysporum stress condition. BMC Plant Biology, 2020, 20, 319.	3.6	17
258	Single residues in the LRR domain of the wheat PM3A immune receptor can control the strength and the spectrum of the immune response. Plant Journal, 2020, 104, 200-214.	5.7	13
259	NLRC3 silencing accelerates the invasion of hepatocellular carcinoma cell via ILâ€6/JAK2/STAT3 pathway activation. Cell Biology International, 2020, 44, 2053-2064.	3.0	10
260	Evolution of Plant NLRs: From Natural History to Precise Modifications. Annual Review of Plant Biology, 2020, 71, 355-378.	18.7	117
261	Pathogen-Associated Molecular Pattern-Triggered Immunity Involves Proteolytic Degradation of Core Nonsense-Mediated mRNA Decay Factors During the Early Defense Response. Plant Cell, 2020, 32, 1081-1101.	6.6	39
262	Atypical Resistance Protein RPW8/HR Triggers Oligomerization of the NLR Immune Receptor RPP7 and Autoimmunity. Cell Host and Microbe, 2020, 27, 405-417.e6.	11.0	58
263	Patterns of partnership: surveillance and mimicry in host-microbiota mutualisms. Current Opinion in Microbiology, 2020, 54, 87-94.	5.1	10
264	The pyrin inflammasome in host–microbe interactions. Current Opinion in Microbiology, 2020, 54, 77-86.	5.1	28
265	Phosphorylation-Regulated Activation of the Arabidopsis RRS1-R/RPS4 Immune Receptor Complex Reveals Two Distinct Effector Recognition Mechanisms. Cell Host and Microbe, 2020, 27, 769-781.e6.	11.0	50
266	Pathogen manipulation of chloroplast function triggers a light-dependent immune recognition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9613-9620.	7.1	39
267	Structural Insights into the Plant Immune Receptors PRRs and NLRs. Plant Physiology, 2020, 182, 1566-1581.	4.8	37
268	Largeâ€scale identification of expression quantitative trait loci in Arabidopsis reveals novel candidate regulators of immune responses and other processes. Journal of Integrative Plant Biology, 2020, 62, 1469-1484.	8.5	7
269	Pseudomonas syringae AlgU Downregulates Flagellin Gene Expression, Helping Evade Plant Immunity. Journal of Bacteriology, 2020, 202, .	2.2	19
270	Histone Deacetylase TaHDT701 Functions in TaHDA6-TaHOS15 Complex to Regulate Wheat Defense Responses to Blumeria graminis f.sp. tritici. International Journal of Molecular Sciences, 2020, 21, 2640.	4.1	28
271	PlantÂNLRÂimmune receptor Tm-22Âactivation requires NB-ARCÂdomain-mediated self-association of CC domain. PLoS Pathogens, 2020, 16, e1008475.	4.7	44

#	Article	IF	CITATIONS
272	RPS5-Mediated Disease Resistance: Fundamental Insights and Translational Applications. Annual Review of Phytopathology, 2020, 58, 139-160.	7.8	28
273	A holistic view on plant effector-triggered immunity presented as an iceberg model. Cellular and Molecular Life Sciences, 2020, 77, 3963-3976.	5.4	58
274	Insights to plant immunity: Defense signaling to epigenetics. Physiological and Molecular Plant Pathology, 2021, 113, 101568.	2.5	12
275	SCF ^{SNIPER7} controls protein turnover of unfoldase CDC48A to promote plant immunity. New Phytologist, 2021, 229, 2795-2811.	7.3	13
276	A Truncated Singleton NLR Causes Hybrid Necrosis in <i>Arabidopsis thaliana</i> . Molecular Biology and Evolution, 2021, 38, 557-574.	8.9	26
277	Hypersensitive response: From <scp>NLR</scp> pathogen recognition to cell death response. Annals of Applied Biology, 2021, 178, 268-280.	2.5	28
278	NLRP9 in innate immunity and inflammation. Immunology, 2021, 162, 262-267.	4.4	13
279	Diversity, structure and function of the coiledâ€coil domains of plant NLR immune receptors. Journal of Integrative Plant Biology, 2021, 63, 283-296.	8.5	15
280	NOD-like receptor-mediated plant immunity: from structure to cell death. Nature Reviews Immunology, 2021, 21, 305-318.	22.7	103
281	Molecular and functional analysis of a brown planthopper resistance protein with two nucleotide-binding site domains. Journal of Experimental Botany, 2021, 72, 2657-2671.	4.8	9
282	Control of Plant Growth and Defense by Photoreceptors: From Mechanisms to Opportunities in Agriculture. Molecular Plant, 2021, 14, 61-76.	8.3	61
283	A natural diversity screen in <scp><i>Arabidopsis thaliana</i></scp> reveals determinants for <scp>HopZ1a</scp> recognition in the <scp>ZAR1â€ZED1</scp> immune complex. Plant, Cell and Environment, 2021, 44, 629-644.	5.7	3
284	Shaping the leaf microbiota: plant–microbe–microbe interactions. Journal of Experimental Botany, 2021, 72, 36-56.	4.8	106
285	Suppression of wheat blast resistance by an effector of Pyricularia oryzae is counteracted by a host specificity resistance gene in wheat. New Phytologist, 2021, 229, 488-500.	7.3	13
286	Identification and Characterization of Zebrafish Tlr4 Coreceptor Md-2. Journal of Immunology, 2021, 206, 1046-1057.	0.8	19
288	The Arabidopsis active demethylase ROS1 cis-regulates defence genes by erasing DNA methylation at promoter-regulatory regions. ELife, 2021, 10, .	6.0	62
289	Diverse viral proteases activate the NLRP1 inflammasome. ELife, 2021, 10, .	6.0	100
290	Genome-Wide Characterization of NLRs in Saccharum spontaneum L. and Their Responses to Leaf Blight in Saccharum. Agronomy, 2021, 11, 153.	3.0	2

#	Article	IF	CITATIONS
291	The expanding scope of amyloid signalling. Prion, 2021, 15, 21-28.	1.8	5
292	Revisiting plant response to fungal stress in view of long noncoding RNAs. , 2021, , 293-311.		1
293	Multiple variants of the fungal effector AVR-Pik bind the HMA domain of the rice protein OsHIPP19, providing a foundation to engineer plant defense. Journal of Biological Chemistry, 2021, 296, 100371.	3.4	57
295	Identification of RipAZ1 as an avirulence determinant of <i>Ralstonia solanacearum</i> in <i>Solanum americanum</i> . Molecular Plant Pathology, 2021, 22, 317-333.	4.2	15
298	Cutting the line: manipulation of plant immunity by bacterial type III effector proteases. Journal of Experimental Botany, 2021, 72, 3395-3409.	4.8	6
299	The leucine-rich repeats in allelic barley MLA immune receptors define specificity towards sequence-unrelated powdery mildew avirulence effectors with a predicted common RNase-like fold. PLoS Pathogens, 2021, 17, e1009223.	4.7	50
300	Sensing soluble uric acid by Naip1-Nlrp3 platform. Cell Death and Disease, 2021, 12, 158.	6.3	15
301	A complex resistance locus in Solanum americanum recognizes a conserved Phytophthora effector. Nature Plants, 2021, 7, 198-208.	9.3	62
302	Partial Prion Cross-Seeding between Fungal and Mammalian Amyloid Signaling Motifs. MBio, 2021, 12, .	4.1	5
303	Comparative Transcriptomics and RNA-Seq-Based Bulked Segregant Analysis Reveals Genomic Basis Underlying Cronartium ribicola vcr2 Virulence. Frontiers in Microbiology, 2021, 12, 602812.	3.5	6
305	Genomic rearrangements generate hypervariable mini-chromosomes in host-specific isolates of the blast fungus. PLoS Genetics, 2021, 17, e1009386.	3.5	46
306	Origin of host-specificity resistance genes of common wheat against non-adapted pathotypes of Pyricularia oryzae inferred from D-genome diversity in synthetic hexaploid wheat lines. Journal of General Plant Pathology, 2021, 87, 201-208.	1.0	1
307	Discovery and fine mapping of Rph28: a new gene conferring resistance to Puccinia hordei from wild barley. Theoretical and Applied Genetics, 2021, 134, 2167-2179.	3.6	18
308	A common bean truncated CRINKLY4 kinase controls gene-for-gene resistance to the fungus <i>Colletotrichum lindemuthianum</i> . Journal of Experimental Botany, 2021, 72, 3569-3581.	4.8	21
309	Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature, 2021, 592, 110-115.	27.8	536
310	In-silico structural analysis of Pseudomonas syringae effector HopZ3 reveals ligand binding activity and virulence function. Journal of Plant Research, 2021, 134, 599-611.	2.4	0
312	Cross Kingdom Immunity: The Role of Immune Receptors and Downstream Signaling in Animal and Plant Cell Death. Frontiers in Immunology, 2020, 11, 612452.	4.8	12
313	Maize nicotinate N â€methyltransferase interacts with the NLR protein Rp1â€D21 and modulates the hypersensitive response. Molecular Plant Pathology, 2021, 22, 564-579.	4.2	3

#	ARTICLE	IF	CITATIONS
314	The chromatin-remodeling protein BAF60/SWP73A regulates the plant immune receptor NLRs. Cell Host and Microbe, 2021, 29, 425-434.e4.	11.0	21
315	Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature, 2021, 592, 105-109.	27.8	590
316	The allelic rice immune receptor Pikh confers extended resistance to strains of the blast fungus through a single polymorphism in the effector binding interface. PLoS Pathogens, 2021, 17, e1009368.	4.7	37
317	Direct Phenotyping and Principal Component Analysis of Type Traits Implicate Novel QTL in Bovine Mastitis through Genome-Wide Association. Animals, 2021, 11, 1147.	2.3	7
318	Widespread premature transcription termination of Arabidopsis thaliana NLR genes by the spen protein FPA. ELife, 2021, 10, .	6.0	36
319	Widespread mortality of trembling aspen (Populus tremuloides) throughout interior Alaskan boreal forests resulting from a novel canker disease. PLoS ONE, 2021, 16, e0250078.	2.5	8
320	Hormesis-Inducing Essential Oil Nanodelivery System Protects Plants against Broad Host-Range Necrotrophs. ACS Nano, 2021, 15, 8338-8349.	14.6	10
321	Breeding Wheat for Biotic Stress Resistance: Achievements, Challenges and Prospects. , 0, , .		4
323	Molecular evidence of the avocado defense response to Fusarium kuroshium infection: a deep transcriptome analysis using RNA-Seq. PeerJ, 2021, 9, e11215.	2.0	10
324	Stepwise artificial evolution of an Swâ€5b immune receptor extends its resistance spectrum against resistanceâ€breaking isolates of <i>Tomato spotted wilt virus</i> . Plant Biotechnology Journal, 2021, 19, 2164-2176.	8.3	15
325	Allelic variants of the NLR protein Rpiâ€chc1 differentially recognize members of the <i>Phytophthora infestans</i> PexRD12/31 effector superfamily through the leucineâ€rich repeat domain. Plant Journal, 2021, 107, 182-197.	5.7	19
326	Genome-Wide Characterization of WRKY Transcription Factors Revealed Gene Duplication and Diversification in Populations of Wild to Domesticated Barley. International Journal of Molecular Sciences, 2021, 22, 5354.	4.1	11
329	Role of non-coding RNAs in plant immunity. Plant Communications, 2021, 2, 100180.	7.7	67
331	A phase-separated nuclear GBPL circuit controls immunity in plants. Nature, 2021, 594, 424-429.	27.8	79
333	NOD-Like Receptors: Guards of Cellular Homeostasis Perturbation during Infection. International Journal of Molecular Sciences, 2021, 22, 6714.	4.1	12
334	Calcium channels at the center of nucleotide-binding leucine-rich repeat receptor-mediated plant immunity. Journal of Genetics and Genomics, 2021, 48, 429-432.	3.9	0
335	Plant "helper―immune receptors are Ca ²⁺ -permeable nonselective cation channels. Science, 2021, 373, 420-425.	12.6	217
336	Pathogen effector recognition-dependent association of NRG1 with EDS1 and SAG101 in TNL receptor immunity. Nature Communications, 2021, 12, 3335.	12.8	112

#	Article	IF	CITATIONS
337	Biotechnological Resources to Increase Disease-Resistance by Improving Plant Immunity: A Sustainable Approach to Save Cereal Crop Production. Plants, 2021, 10, 1146.	3.5	14
338	A karyopherin constrains nuclear activity of the NLR protein SNC1 and is essential to prevent autoimmunity in Arabidopsis. Molecular Plant, 2021, 14, 1733-1744.	8.3	18
340	The Sw-5b NLR nucleotide-binding domain plays a role in oligomerization, and its self-association is important for activation of cell death signaling. Journal of Experimental Botany, 2021, 72, 6581-6595.	4.8	5
341	LPMO-oxidized cellulose oligosaccharides evoke immunity in Arabidopsis conferring resistance towards necrotrophic fungus B. cinerea. Communications Biology, 2021, 4, 727.	4.4	33
342	A Comparative Overview of the Intracellular Guardians of Plants and Animals: NLRs in Innate Immunity and Beyond. Annual Review of Plant Biology, 2021, 72, 155-184.	18.7	56
343	Exploiting Epigenetic Variations for Crop Disease Resistance Improvement. Frontiers in Plant Science, 2021, 12, 692328.	3.6	28
344	The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell, 2021, 184, 3528-3541.e12.	28.9	308
345	Antiviral RISC mainly targets viral mRNA but not genomic RNA of tospovirus. PLoS Pathogens, 2021, 17, e1009757.	4.7	2
346	Structures of Pathological and Functional Amyloids and Prions, a Solid-State NMR Perspective. Frontiers in Molecular Neuroscience, 2021, 14, 670513.	2.9	18
348	Understanding and Exploiting Post-Translational Modifications for Plant Disease Resistance. Biomolecules, 2021, 11, 1122.	4.0	14
349	The Capsicum baccatum-Specific Truncated NLR Protein CbCN Enhances the Innate Immunity against Colletotrichum acutatum. International Journal of Molecular Sciences, 2021, 22, 7672.	4.1	9
350	Characterization of the Roles of SGT1/RAR1, EDS1/NDR1, NPR1, and NRC/ADR1/NRG1 in Sw-5b-Mediated Resistance to Tomato Spotted Wilt Virus. Viruses, 2021, 13, 1447.	3.3	11
352	Virus-mediated inactivation of anti-apoptotic Bcl-2 family members promotes Gasdermin-E-dependent pyroptosis in barrier epithelial cells. Immunity, 2021, 54, 1447-1462.e5.	14.3	72
353	Two NLR immune receptors acquired high-affinity binding to a fungal effector through convergent evolution of their integrated domain. ELife, 2021, 10, .	6.0	38
354	Cytoplasmic and nuclear Swâ€5b NLR act both independently and synergistically to confer full host defense against tospovirus infection. New Phytologist, 2021, 231, 2262-2281.	7.3	15
355	A <i>Phytophthora capsici</i> RXLR effector targets and inhibits the central immune kinases to suppress plant immunity. New Phytologist, 2021, 232, 264-278.	7.3	24
356	Role and Evolution of the Extracellular Matrix in the Acquisition of Complex Multicellularity in Eukaryotes: A Macroalgal Perspective. Genes, 2021, 12, 1059.	2.4	34
358	TIR signal promotes interactions between lipase-like proteins and ADR1-L1 receptor and ADR1-L1 oligomerization. Plant Physiology, 2021, 187, 681-686.	4.8	57

#	Article	IF	CITATIONS
359	Overview of implantable and injectable biomaterials in immunotherapy. CSC Biological and Pharmaceutical Sciences, 2021, 16, 195-201.	0.3	0
360	PTI-ETI crosstalk: an integrative view of plant immunity. Current Opinion in Plant Biology, 2021, 62, 102030.	7.1	373
361	Novel Effector RHIFs Identified From Acidovorax avenae Strains N1141 and K1 Play Different Roles in Host and Non-host Plants. Frontiers in Plant Science, 2021, 12, 716738.	3.6	0
362	How to win a tug-of-war: the adaptive evolution of Phytophthora effectors. Current Opinion in Plant Biology, 2021, 62, 102027.	7.1	22
366	Identification of TAL and iTAL effectors in Japanese strain T7133 of Xanthomonas oryzae pv. oryzae. Journal of General Plant Pathology, 2021, 87, 354-360.	1.0	2
367	One Hundred Years of Hybrid Necrosis: Hybrid Autoimmunity as a Window into the Mechanisms and Evolution of Plant–Pathogen Interactions. Annual Review of Phytopathology, 2021, 59, 213-237.	7.8	23
368	Regulation of Cell Death and Signaling by Pore-Forming Resistosomes. Annual Review of Phytopathology, 2021, 59, 239-263.	7.8	26
369	NLR immune receptor RB is differentially targeted by two homologous but functionally distinct effector proteins. Plant Communications, 2021, 2, 100236.	7.7	8
370	Calcium Signaling Mechanisms Across Kingdoms. Annual Review of Cell and Developmental Biology, 2021, 37, 311-340.	9.4	98
372	Dynamic Diversity of NLR Genes in Triticum and Mining of Promising NLR Alleles for Disease Resistance. Current Issues in Molecular Biology, 2021, 43, 965-977.	2.4	0
373	A playbook for developing disease-resistant crops through immune receptor identification and transfer. Current Opinion in Plant Biology, 2021, 62, 102089.	7.1	11
374	Plant pathogens convergently evolved to counteract redundant nodes of an NLR immune receptor network. PLoS Biology, 2021, 19, e3001136.	5.6	69
375	Evolutionarily distinct resistance proteins detect a pathogen effector through its association with different host targets. New Phytologist, 2021, 232, 1368-1381.	7.3	6
376	NADase and now Ca2+ channel, what else to learn about plant NLRs?. Stress Biology, 2021, 1, 1.	3.1	1
377	The Conserved Colletotrichum spp. Effector Candidate CEC3 Induces Nuclear Expansion and Cell Death in Plants. Frontiers in Microbiology, 2021, 12, 682155.	3.5	12
378	Rapid Methodologies for Assessing <i>Pseudomonas syringae</i> pv. <i>actinidiae</i> Colonization and Effector-Mediated Hypersensitive Response in Kiwifruit. Molecular Plant-Microbe Interactions, 2021, 34, 880-890.	2.6	13
379	Gasdermin and Gasdermin-Like Pore-Forming Proteins in Invertebrates, Fungi and Bacteria. Journal of Molecular Biology, 2022, 434, 167273.	4.2	20

#	Article	IF	CITATIONS
382	XAP5 CIRCADIAN TIMEKEEPER Affects Both DNA Damage Responses and Immune Signaling in Arabidopsis. Frontiers in Plant Science, 2021, 12, 707923.	3.6	4
383	Analysis of intraspecies diversity reveals a subset of highly variable plant immune receptors and predicts their binding sites. Plant Cell, 2021, 33, 998-1015.	6.6	45
384	Silent control: microbial plant pathogens evade host immunity without coding sequence changes. FEMS Microbiology Reviews, 2021, 45, .	8.6	12
385	Activation mechanisms of inflammasomes by bacterial toxins. Cellular Microbiology, 2021, 23, e13309.	2.1	16
387	NLR Function in Fungi as Revealed by the Study of Self/Non-self Recognition Systems. , 2020, , 123-141.		8
388	Structural Biology of NOD-Like Receptors. Advances in Experimental Medicine and Biology, 2019, 1172, 119-141.	1.6	26
389	Defense signaling in plants against micro-creatures: do or die. Indian Phytopathology, 2020, 73, 605-613.	1.2	8
390	Plant Immunity: Danger Perception and Signaling. Cell, 2020, 181, 978-989.	28.9	520
391	Molecular Basis of Disease Resistance and Perspectives on Breeding Strategies for Resistance Improvement in Crops. Molecular Plant, 2020, 13, 1402-1419.	8.3	59
392	The intestinal parasite <i>Cryptosporidium</i> is controlled by an enterocyte intrinsic inflammasome that depends on NLRP6. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	39
393	Lessons in Effector and NLR Biology of Plant-Microbe Systems. Molecular Plant-Microbe Interactions, 2018, 31, 34-45.	2.6	109
422	Small RNA trafficking at the forefront of plant–pathogen interactions. F1000Research, 2018, 7, 1633.	1.6	6
423	Protein-protein interactions in the RPS4/RRS1 immune receptor complex. PLoS Pathogens, 2017, 13, e1006376.	4.7	103
424	An overview of genetic rust resistance: From broad to specific mechanisms. PLoS Pathogens, 2017, 13, e1006380.	4.7	81
425	Do fungi have an innate immune response? An NLR-based comparison to plant and animal immune systems. PLoS Pathogens, 2017, 13, e1006578.	4.7	59
426	In vitro Assessment of Pathogen Effector Binding to Host Proteins by Surface Plasmon Resonance. Bio-protocol, 2020, 10, e3676.	0.4	2
427	Antimicrobial peptides as an argument for the involvement of innate immunity in psoriasis (Review). Experimental and Therapeutic Medicine, 2020, 20, 1-1.	1.8	6
428	Multiple pairs of allelic MLA immune receptor-powdery mildew AVRA effectors argue for a direct recognition mechanism. ELife, 2019, 8, .	6.0	96

#	Article	IF	CITATIONS
429	An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. ELife, 2019, 8, .	6.0	162
430	Highly regulated, diversifying NTP-dependent biological conflict systems with implications for the emergence of multicellularity. ELife, 2020, 9, .	6.0	30
431	Identification of MOS9 as an interaction partner for chalcone synthase in the nucleus. PeerJ, 2018, 6, e5598.	2.0	6
432	Natural Resources Resistance to Tomato Spotted Wilt Virus (TSWV) in Tomato (Solanum) Tj ETQq1 1 0.784314	rgBT /Ove 4 . 1	rlock 10 Tf 5
433	How activated NLRs induce anti-microbial defenses in plants. Biochemical Society Transactions, 2021, 49, 2177-2188.	3.4	14
435	Functional Verification of Two Genes Related to Stripe Rust Resistance in the Wheat-Leymus mollis Introgression Line M8664-3. Frontiers in Plant Science, 2021, 12, 754823.	3.6	2
436	Expression of putative effectors of different <i>Xylella fastidiosa</i> strains triggers cell deathâ€like responses in various <i>Nicotiana</i> model plants. Molecular Plant Pathology, 2022, 23, 148-156.	4.2	7
437	Epithelial Pyroptosis in Host Defense. Journal of Molecular Biology, 2022, 434, 167278.	4.2	17
438	A Friend in Common: A Small GTPase in Independent PTI and ETI Immune Receptor Complexes. Plant and Cell Physiology, 2021, 62, 1645-1647.	3.1	0
439	Plasma membraneâ€localized plant immune receptor targets H ⁺ â€ATPase for membrane depolarization to regulate cell death. New Phytologist, 2022, 233, 934-947.	7.3	12
440	RefPlantNLR is a comprehensive collection of experimentally validated plant disease resistance proteins from the NLR family. PLoS Biology, 2021, 19, e3001124.	5.6	81
441	A Xanthomonas transcription activator-like effector is trapped in nonhost plants for immunity. Plant Communications, 2022, 3, 100249.	7.7	4
444	An Ancient Integration in a Plant NLR is Maintained as a Trans-species Polymorphism. SSRN Electronic Journal, O, , .	0.4	7
450	Estudio de la expresión de genes que codifican para putativas proteÃnas PR en yuca (<i>Manihot) Tj ETQq1 1 0</i>	.784314 r 0.4	gBT /Overloc
461	Extracellular vesicles in plant host-microbe interaction. Trillium Extracellular Vesicles, 2019, 1, 46-50.	0.3	0
465	Role of the Yersinia pseudotuberculosis Virulence Plasmid in Pathogen-Phagocyte Interactions in Mesenteric Lymph Nodes. EcoSal Plus, 2021, 9, eESP00142021.	5.4	6
466	Identification and Characterization of NBS Resistance Genes in Akebia trifoliata. Frontiers in Plant Science, 2021, 12, 758559.	3.6	17
467	Running With Scissors: Evolutionary Conflicts Between Viral Proteases and the Host Immune System. Frontiers in Immunology, 2021, 12, 769543.	4.8	28

#	Article	IF	CITATIONS
468	Molecular Mechanisms for Resistance to Biotic Stresses. Compendium of Plant Genomes, 2020, , 281-294.	0.5	0
469	Uncovering the NLR Family of Disease Resistance Genes in Cultivated Sweetpotato and Wild Relatives. Plant Pathology in the 21st Century, 2021, , 41-61.	0.9	1
470	Effects of Nitroxin and arbuscular mycorrhizal fungi on the agro-physiological traits and grain yield of sorghum (Sorghum bicolor L.) under drought stress conditions. PLoS ONE, 2020, 15, e0243824.	2.5	16
473	Bitki İmmün Reseptörleri. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi - C Yaşam Bilimleri Ve Biyoteknoloji, 0, , .	0.3	0
474	Human NLRP1 Is a Sensor of 3CL Proteases from Pathogenic Coronaviruses in Lung Epithelial Cells. SSRN Electronic Journal, 0, , .	0.4	0
475	Recognition of Microbe- and Damage-Associated Molecular Patterns by Leucine-Rich Repeat Pattern Recognition Receptor Kinases Confers Salt Tolerance in Plants. Molecular Plant-Microbe Interactions, 2022, 35, 554-566.	2.6	9
476	A giant NLR gene confers broad-spectrum resistance to Phytophthora sojae in soybean. Nature Communications, 2021, 12, 6263.	12.8	35
478	Frontier Of Plant Immune Research: Activation of Plant Immunity and Inhibitory Mechanism of Plant Immunity by Pathogens. Kagaku To Seibutsu, 2020, 58, 396-403.	0.0	0
482	Evolution of views on plant immunity: from Flor's "gene-for-gene―theory to the "zig-zag model― developed by Jones and Dangl. Izvestiâ Vuzov: Prikladnaâ Himiâ I Biotehnologiâ, 2020, 10, 424-438.	0.3	0
484	Exploiting Structural Modelling Tools to Explore Host-Translocated Effector Proteins. International Journal of Molecular Sciences, 2021, 22, 12962.	4.1	7
485	The Mechanosensitive Ion Channel MSL10 Modulates Susceptibility to <i>Pseudomonas syringae</i> in <i>Arabidopsis thaliana</i> . Molecular Plant-Microbe Interactions, 2022, 35, 567-582.	2.6	7
487	Wheat genetic loci conferring resistance to stripe rust in the face of genetically diverse races of the fungus Puccinia striiformis f. sp. tritici. Theoretical and Applied Genetics, 2022, 135, 301-319.	3.6	16
489	Functional diversification gave rise to allelic specialization in a rice NLR immune receptor pair. ELife, 2021, 10, .	6.0	28
490	Genomic prediction of strawberry resistance to postharvest fruit decay caused by the fungal pathogen <i>Botrytis cinerea</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	19
491	Identification of the Capsicum baccatum NLR Protein CbAR9 Conferring Disease Resistance to Anthracnose. International Journal of Molecular Sciences, 2021, 22, 12612.	4.1	4
492	The evolving battle between yellow rust and wheat: implications for global food security. Theoretical and Applied Genetics, 2022, 135, 741-753.	3.6	22
494	Dissecting the membrane-microtubule sensor in grapevine defence. Horticulture Research, 2021, 8, 260.	6.3	7
495	Recurrent expansions of B30.2-associated immune receptor families in fish. Immunogenetics, 2022, 74, 129-147.	2.4	6

#	Article	IF	CITATIONS
497	A NAC Transcription Factor TuNAC69 Contributes to ANK-NLR-WRKY NLR-Mediated Stripe Rust Resistance in the Diploid Wheat Triticum urartu. International Journal of Molecular Sciences, 2022, 23, 564.	4.1	9
498	Coordinated Epigenetic Regulation in Plants: A Potent Managerial Tool to Conquer Biotic Stress. Frontiers in Plant Science, 2021, 12, 795274.	3.6	14
499	<i>Synchytrium endobioticum</i> , the potato wart disease pathogen. Molecular Plant Pathology, 2022, 23, 461-474.	4.2	10
500	Predication of the Effector Proteins Secreted by Fusarium sacchari Using Genomic Analysis and Heterogenous Expression. Journal of Fungi (Basel, Switzerland), 2022, 8, 59.	3.5	18
501	Role of the Sw5 Gene Cluster in the Fight against Plant Viruses. Journal of Virology, 2022, 96, jvi0208421.	3.4	4
502	Structural basis of NLR activation and innate immune signalling in plants. Immunogenetics, 2022, 74, 5-26.	2.4	51
503	Chemoproteomic Analysis of Microbiota Metabolite–Protein Targets and Mechanisms. Biochemistry, 2022, 61, 2822-2834.	2.5	7
504	Transcriptional Coactivators: Driving Force of Plant Immunity. Frontiers in Plant Science, 2022, 13, 823937.	3.6	7
505	Human NLRP1 Is a Sensor of Pathogenic Coronavirus 3CL Proteases in Lung Epithelial Cells. SSRN Electronic Journal, 0, , .	0.4	2
506	Cucurbitaceae genome evolution, gene function, and molecular breeding. Horticulture Research, 2022, 9, .	6.3	34
507	Interference of Climate Change on Plant-Microbe Interaction: Present and Future Prospects. Frontiers in Agronomy, 2022, 3, .	3.3	15
509	Plant SYP12 syntaxins mediate an evolutionarily conserved general immunity to filamentous pathogens. ELife, 2022, 11, .	6.0	18
510	The stem rust effector protein AvrSr50 escapes Sr50 recognition by a substitution in a single surfaceâ€exposed residue. New Phytologist, 2022, 234, 592-606.	7.3	32
511	A SA-regulated lincRNA promotes Arabidopsis disease resistance by modulating pre-rRNA processing. Plant Science, 2022, 316, 111178.	3.6	3
513	Innate Sensors Trigger Regulated Cell Death to Combat Intracellular Infection. Annual Review of Immunology, 2022, 40, 469-498.	21.8	51
515	Fungal cell death: The beginning of the end. Fungal Genetics and Biology, 2022, 159, 103671.	2.1	10
516	The genome of the rice variety LTH provides insight into its universal susceptibility mechanism to worldwide rice blast fungal strains. Computational and Structural Biotechnology Journal, 2022, 20, 1012-1026.	4.1	16
517	A Glimpse of Programmed Cell Death Among Bacteria, Animals, and Plants. Frontiers in Cell and Developmental Biology, 2021, 9, 790117.	3.7	3

CITATION REPORT	
-----------------	--

#	Article	IF	CITATIONS
518	Genome-wide identification of the NLR gene family in Haynaldia villosa by SMRT-RenSeq. BMC Genomics, 2022, 23, 118.	2.8	11
519	Regulation of antiviral innate immunity by chemical modification of viral <scp>RNA</scp> . Wiley Interdisciplinary Reviews RNA, 2022, 13, e1720.	6.4	24
520	Rice functional genomics: decades' efforts and roads ahead. Science China Life Sciences, 2022, 65, 33-92.	4.9	107
521	Allelic variation of a clubroot resistance gene (<i>Crr1a</i>) in Japanese cultivars of Chinese cabbage (<i>Brassica rapa</i> L.). Breeding Science, 2022, 72, 115-123.	1.9	2
523	Calcium/Calmodulin-Mediated Defense Signaling: What Is Looming on the Horizon for AtSR1/CAMTA3-Mediated Signaling in Plant Immunity. Frontiers in Plant Science, 2021, 12, 795353.	3.6	18
524	A new NLR gene for resistance to Tomato spotted wilt virus in tomato (Solanum lycopersicum). Theoretical and Applied Genetics, 2022, 135, 1493-1509.	3.6	12
525	GLYCINE-RICH RNA-BINDING PROTEIN 7 potentiates effector-triggered immunity through an RNA recognition motif. Plant Physiology, 2022, 189, 972-987.	4.8	6
526	Plant Peroxisome-Targeting Effector MoPtep1 Is Required for the Virulence of Magnaporthe oryzae. International Journal of Molecular Sciences, 2022, 23, 2515.	4.1	8
527	Cold Exposure Memory Reduces Pathogen Susceptibility in <i>Arabidopsis</i> Based on a Functional Plastid Peroxidase System. Molecular Plant-Microbe Interactions, 2022, 35, 627-637.	2.6	4
528	Molecular insights into the biochemical functions and signalling mechanisms of plant NLRs. Molecular Plant Pathology, 2022, 23, 772-780.	4.2	12
529	An MKP-MAPK protein phosphorylation cascade controls vascular immunity in plants. Science Advances, 2022, 8, eabg8723.	10.3	35
530	Conâ€Ca ²⁺ â€ŧenating plant immune responses via calciumâ€permeable cation channels. New Phytologist, 2022, 234, 813-818.	7.3	39
532	Biogenesis, Functions, Interactions, and Resources of Non-Coding RNAs in Plants. International Journal of Molecular Sciences, 2022, 23, 3695.	4.1	15
534	Redox Activation of Mitochondrial DAMPs and the Metabolic Consequences for Development of Autoimmunity. Antioxidants and Redox Signaling, 2022, 36, 441-461.	5.4	18
535	Arabidopsis Plasma Membrane ATPase AHA5 Is Negatively Involved in PAMP-Triggered Immunity. International Journal of Molecular Sciences, 2022, 23, 3857.	4.1	6
536	Methoxyacrylate Fungicide Candidate CL-15C Also Functions as a Plant Elicitor in <i>Arabidopsis thaliana</i> and <i>Oryza sativa</i> L. Journal of Agricultural and Food Chemistry, 2022, 70, 3142-3150.	5.2	10
537	Involvement of <i>Arabidopsis</i> Acyl Carrier Protein 1 in PAMP-Triggered Immunity. Molecular Plant-Microbe Interactions, 2022, 35, 681-693.	2.6	11
538	Rooting Out the Mechanisms of Root-Knot Nematode–Plant Interactions. Annual Review of Phytopathology, 2022, 60, 43-76.	7.8	15

		CITATION RE	PORT	
#	Article		IF	Citations
539	Three highly conserved hydrophobic residues in the predicted α2â€helix of rice NLR pro contribute to its localization and immune induction. Plant, Cell and Environment, 2022	tein Pit	5.7	2
540	The necrotroph Botrytis cinerea promotes disease development in Panax ginseng by ma defense signals and antifungal metabolites degradation. Journal of Ginseng Research, 2		5.7	7
542	PHI-base in 2022: a multi-species phenotype database for Pathogen–Host Interaction Research, 2022, 50, D837-D847.	s. Nucleic Acids	14.5	53
543	The N-terminally truncated helper NLR <i>NRG1C</i> antagonizes immunity mediated b neighbors <i>NRG1A</i> and <i>NRG1B</i> . Plant Cell, 2022, 34, 1621-1640.	y its full-length	6.6	22
544	Comparative Genomics and Gene Pool Analysis Reveal the Decrease of Genome Diversit Number in Rice Blast Fungi by Stable Adaption with Rice. Journal of Fungi (Basel, Switze 5.	y and Gene rland), 2022, 8,	3.5	4
545	Mechanisms underlying legume–rhizobium symbioses. Journal of Integrative Plant Bio 244-267.	ology, 2022, 64,	8.5	92
546	Perception of structurally distinct effectors by the integrated WRKY domain of a plant i receptor. Proceedings of the National Academy of Sciences of the United States of Ame		7.1	32
549	Regulation of Plant Immunity by Nuclear Membrane-Associated Mechanisms. Frontiers 2021, 12, 771065.	n Immunology,	4.8	5
550	Evolution of NLR Resistance Genes in Magnoliids: Dramatic Expansions of CNLs and Mu TNLs. Frontiers in Plant Science, 2021, 12, 777157.	ltiple Losses of	3.6	11
551	Recognition and Response in Plant–Nematode Interactions. Annual Review of Phytop 60, 143-162.	athology, 2022,	7.8	23
552	Evolutionary footprint of plant immunity. Current Opinion in Plant Biology, 2022, 67, 1	02209.	7.1	5
572	From Functional Characterization to the Application of SWEET Sugar Transporters in Pl. Resistance Breeding. Journal of Agricultural and Food Chemistry, 2022, 70, 5273-5283.	ant	5.2	6
573	Comparative transcriptome analysis of Ts (Resistant genotype) and Ma (Susceptible ge (Tagetes erecta L.) leaves in response to Alternaria tagetica. Horticultural Plant Journal, 321-334.		5.0	1
575	The Ry _{sto} immune receptor recognises a broadly conserved feature of pot proteins. New Phytologist, 2022, 235, 1179-1195.	yviral coat	7.3	10
577	Genome-Wide Identification and Characterization of the CC-NBS-LRR Gene Family in Cu	cumber (Cucumis) Tj ETQ	q040 o rgB	T / Overlock

579	Indirect recognition of pathogen effectors by NLRs. Essays in Biochemistry, 2022, 66, 485-500.	4.7	4
581	Genome-Wide Analysis of NBS-LRR Genes From an Early-Diverging Angiosperm Euryale ferox. Frontiers in Genetics, 2022, 13, .	2.3	3
582	Allorecognition genes drive reproductive isolation in Podospora anserina. Nature Ecology and Evolution, 2022, 6, 910-923.	7.8	15

#	ARTICLE	IF	CITATIONS
583	Ca ²⁺ signals in plant immunity. EMBO Journal, 2022, 41, e110741.	7.8	82
584	Cooperative regulation of PBI1 and MAPKs controls WRKY45 transcription factor in rice immunity. Nature Communications, 2022, 13, 2397.	12.8	20
585	Novel Fusarium wilt resistance genes uncovered in natural and cultivated strawberry populations are found on three non-homoeologous chromosomes. Theoretical and Applied Genetics, 2022, 135, 2121-2145.	3.6	8
586	NLR receptor networks in plants. Essays in Biochemistry, 2022, 66, 541-549.	4.7	10
587	Innate immunity in fungi: Is regulated cell death involved?. PLoS Pathogens, 2022, 18, e1010460.	4.7	5
590	Genome-Wide Association Study Identifies a Rice Panicle Blast Resistance Gene, Pb2, Encoding NLR Protein. International Journal of Molecular Sciences, 2022, 23, 5668.	4.1	6
591	An effector CSEP087 from Erysiphe necator targets arginine decarboxylase VviADC to regulate host immunity in grapevine. Scientia Horticulturae, 2022, 303, 111205.	3.6	2
592	Investigating the <scp>NLRP3</scp> inflammasome and its regulator <scp>miR</scp> â€223â€3p in multiple sclerosis and experimental demyelination. Journal of Neurochemistry, 2022, 163, 94-112.	3.9	4
594	Resveratrol Oligomers, Plant-Produced Natural Products With Anti-virulence and Plant Immune-Priming Roles. Frontiers in Plant Science, 2022, 13, .	3.6	6
596	2000-2019: Twenty Years of Highly Influential Publications in Molecular Plant Immunity. Molecular Plant-Microbe Interactions, 2022, 35, 748-754.	2.6	3
598	Functional Diversification Analysis of Soybean Malectin/Malectin-Like Domain-Containing Receptor-Like Kinases in Immunity by Transient Expression Assays. Frontiers in Plant Science, 0, 13, .	3.6	2
599	Two plant NLR proteins confer strain-specific resistance conditioned by an effector from Pseudomonas syringae pv. actinidiae. Journal of Genetics and Genomics, 2022, 49, 823-832.	3.9	9
602	From plant immunity to crop disease resistance. Journal of Genetics and Genomics, 2022, 49, 693-703.	3.9	24
603	Identification of Haplotypes Associated With Resistance to Bacterial Cold Water Disease in Rainbow Trout Using Whole-Genome Resequencing. Frontiers in Genetics, 0, 13, .	2.3	4
604	IL-1 family cytokines serve as 'activity recognition receptors' for aberrant protease activity indicative of danger. Cytokine, 2022, 157, 155935.	3.2	10
606	Regulation of plant responses to biotic and abiotic stress by receptor-like cytoplasmic kinases. Stress Biology, 2022, 2, .	3.1	6
607	IL-1α and IL-36 Family Cytokines Can Undergo Processing and Activation by Diverse Allergen-Associated Proteases. Frontiers in Immunology, 0, 13, .	4.8	3
608	Understanding R Gene Evolution in Brassica. Agronomy, 2022, 12, 1591.	3.0	0

#	Article	IF	CITATIONS
609	Increasing the resilience of plant immunity to a warming climate. Nature, 2022, 607, 339-344.	27.8	72
610	PROTEIN <i>S</i> â€ACYL TRANSFERASE 13/16 modulate disease resistance by <i>S</i> â€acylation of the nucleotide binding, leucineâ€rich repeat protein R5L1 in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2022, 64, 1789-1802.	8.5	7
611	Genome-Wide Identification, Characterization, and Comparative Analysis of NLR Resistance Genes in Coffea spp Frontiers in Plant Science, 0, 13, .	3.6	1
612	Identification and receptor mechanism of TIR-catalyzed small molecules in plant immunity. Science, 2022, 377, .	12.6	101
613	Shared TIR enzymatic functions regulate cell death and immunity across the tree of life. Science, 2022, 377, .	12.6	59
614	TIR-catalyzed ADP-ribosylation reactions produce signaling molecules for plant immunity. Science, 2022, 377, .	12.6	91
615	MicroRNA-mediated host defense mechanisms against pathogens and herbivores in rice: balancing gains from genetic resistance with trade-offs to productivity potential. BMC Plant Biology, 2022, 22, .	3.6	15
616	The Integrated LIM-Peptidase Domain of the CSA1/CHS3 Paired Immune Receptor Detects Changes in DA1 Family Peptidase Inhibitors in Arabidopsis. SSRN Electronic Journal, 0, , .	0.4	0
617	Resistance genes on the verge of plant–virus interaction. Trends in Plant Science, 2022, 27, 1242-1252.	8.8	23
618	Activation and Regulation of NLR Immune Receptor Networks. Plant and Cell Physiology, 2022, 63, 1366-1377.	3.1	16
619	Chloroplasts play a central role in facilitating MAMPâ€ŧriggered immunity, pathogen suppression of immunity and crosstalk with abiotic stress. Plant, Cell and Environment, 2022, 45, 3001-3017.	5.7	6
621	Prokaryotic innate immunity through pattern recognition of conserved viral proteins. Science, 2022, 377, .	12.6	90
622	A Single Amino Acid Substitution in MIL1 Leads to Activation of Programmed Cell Death and Defense Responses in Rice. International Journal of Molecular Sciences, 2022, 23, 8853.	4.1	3
623	From rare disorders of immunity to common determinants of infection: Following the mechanistic thread. Cell, 2022, 185, 3086-3103.	28.9	57
624	A stimulator of interferon gene (CgSTING) involved in antimicrobial immune response of oyster Crassostrea gigas. Fish and Shellfish Immunology, 2022, 128, 82-90.	3.6	6
625	NLRexpress—A bundle of machine learning motif predictors—Reveals motif stability underlying plant Nod-like receptors diversity. Frontiers in Plant Science, 0, 13, .	3.6	5
626	The rice <scp>OsERF101</scp> transcription factor regulates the <scp>NLR</scp> Xa1â€mediated immunity induced by perception of <scp>TAL</scp> effectors. New Phytologist, 2022, 236, 1441-1454.	7.3	3
627	Antiinflammatory therapy as a game-changer toward antiaging. , 2022, , 325-351.		0

#	Article	IF	CITATIONS
629	Plant NLRs: Evolving with pathogen effectors and engineerable to improve resistance. Frontiers in Microbiology, 0, 13, .	3.5	4
630	Differential requirement of TIR enzymatic activities in TIR-type immune receptor SNC1-mediated immunity. Plant Physiology, 2022, 190, 2094-2098.	4.8	13
632	Versatile Roles of Microbes and Small RNAs in Rice and Planthopper Interactions. Plant Pathology Journal, 2022, 38, 432-448.	1.7	0
633	Molecular mechanisms of resistance to Myzus persicae conferred by the peach Rm2 gene: A multi-omics view. Frontiers in Plant Science, 0, 13, .	3.6	0
634	Soybean Breeding for Rust Resistance. , 2022, , 137-151.		1
635	Barley endosomal MONENSIN SENSITIVITY1 is a target of the powdery mildew effector CSEP0162 and plays a role in plant immunity. Journal of Experimental Botany, 2023, 74, 118-129.	4.8	9
636	Coordinated regulation of plant defense and autoimmunity by paired trihelix transcription factors <scp>ASR3</scp> / <scp>AITF1</scp> in <i>Arabidopsis</i> . New Phytologist, 2023, 237, 914-929.	7.3	9
637	Advances in Fungal Elicitor-Triggered Plant Immunity. International Journal of Molecular Sciences, 2022, 23, 12003.	4.1	18
638	Genome-wide association study for resistance to Pseudomonas syringae pv. garcae in Coffea arabica. Frontiers in Plant Science, 0, 13, .	3.6	1
640	Concerted expansion and contraction of immune receptor gene repertoires in plant genomes. Nature Plants, 2022, 8, 1146-1152.	9.3	37
642	Harnessing genetic resistance to rusts in wheat and integrated rust management methods to develop more durable resistant cultivars. Frontiers in Plant Science, 0, 13, .	3.6	12
643	The molecular dialog between oomycete effectors and their plant and animal hosts. Fungal Biology Reviews, 2023, 43, 100289.	4.7	4
644	A single transcription factor facilitates an insect host combating Bacillus thuringiensis infection while maintaining fitness. Nature Communications, 2022, 13, .	12.8	15
645	A conserved protein disulfide isomerase enhances plant resistance against herbivores. Plant Physiology, 2023, 191, 660-678.	4.8	4
646	Allelic variation in the Arabidopsis TNL CHS3/CSA1 immune receptor pair reveals two functional cell-death regulatory modes. Cell Host and Microbe, 2022, 30, 1701-1716.e5.	11.0	18
647	PM2b, a CC-NBS-LRR protein, interacts with TaWRKY76-D to regulate powdery mildew resistance in common wheat. Frontiers in Plant Science, 0, 13, .	3.6	10
648	Host and Environmental Sensing by Entomopathogenic Fungi to Infect Hosts. Current Clinical Microbiology Reports, 2022, 9, 69-74.	3.4	8
649	Variation in plant Toll/Interleukin-1 receptor domain protein dependence on <i>ENHANCED DISEASE SUSCEPTIBILITY 1</i> . Plant Physiology, 2023, 191, 626-642.	4.8	19

#	Article	IF	CITATIONS
650	Identification and expression profile of novel STAND gene Nwd2 in the mouse central nervous system. Gene Expression Patterns, 2022, 46, 119284.	0.8	2
651	Genome Editing in Plants for Resistance Against Bacterial Pathogens. , 2022, , 217-235.		1
652	DPP9 as a Potential Novel Mediator in Gastrointestinal Virus Infection. Antioxidants, 2022, 11, 2177.	5.1	0
653	Glutathione and neodiosmin feedback sustain plant immunity. Journal of Experimental Botany, 2023, 74, 976-990.	4.8	6
654	Emerging principles in the design of bioengineered made-to-order plant immune receptors. Current Opinion in Plant Biology, 2022, 70, 102311.	7.1	14
655	Effector-triggered immunity in mammalian antiviral defense. Trends in Immunology, 2022, 43, 1006-1017.	6.8	6
656	A high-quality, haplotype-phased genome reconstruction reveals unexpected haplotype diversity in a pearl oyster. DNA Research, 2022, 29, .	3.4	10
657	SWATH-MS based quantitative proteomics analysis reveals novel proteins involved in PAMP triggered immunity against potato late blight pathogen Phytophthora infestans. Frontiers in Plant Science, 0, 13, .	3.6	0
658	The NLRP1 and CARD8 inflammasomes. , 2023, , 33-50.		0
659	Genome-wide identification, characterization, and expression profile of NBS-LRRgene family in sweet orange (Citrussinensis). Gene, 2023, 854, 147117.	2.2	10
660	Genetic requirements for infection-specific responses in conferring disease resistance in Arabidopsis. Frontiers in Plant Science, 0, 13, .	3.6	2
661	Insight into aphid mediated Potato Virus Y transmission: A molecular to bioinformatics prospective. Frontiers in Microbiology, 0, 13, .	3.5	8
662	Structure, biochemical function, and signaling mechanism of plant NLRs. Molecular Plant, 2023, 16, 75-95.	8.3	19
663	cGAS in nucleus: The link between immune response and DNA damage repair. Frontiers in Immunology, 0, 13, .	4.8	7
664	Exploring a diverse world of effector domains and amyloid signaling motifs in fungal NLR proteins. PLoS Computational Biology, 2022, 18, e1010787.	3.2	5
666	NLR surveillance of pathogen interference with hormone receptors induces immunity. Nature, 2023, 613, 145-152.	27.8	16
667	An arms race between a plant and a virus. Nature, 0, , .	27.8	0
668	Insights into the expression of DNA (de)methylation genes responsive to nitric oxide signaling in potato resistance to late blight disease. Frontiers in Plant Science, 0, 13, .	3.6	1

#	Article	IF	CITATIONS
670	Combating powdery mildew: Advances in molecular interactions between Blumeria graminis f. sp. tritici and wheat. Frontiers in Plant Science, 0, 13, .	3.6	15
672	Advances in Biological Control and Resistance Genes of Brassicaceae Clubroot Disease-The Study Case of China. International Journal of Molecular Sciences, 2023, 24, 785.	4.1	3
674	Wheat leaf rust fungus effector Pt13024 is avirulent to TcLr30. Frontiers in Plant Science, 0, 13, .	3.6	3
675	Effectorâ€dependent activation and oligomerization of plant <scp>NRC</scp> class helper <scp>NLRs</scp> by sensor <scp>NLR</scp> immune receptors Rpiâ€amr3 and Rpiâ€amr1. EMBO Journal, 2023, 42, .	7.8	37
676	Caspaseâ€8â€driven apoptotic and pyroptotic crosstalk causes cell death and <scp>IL</scp> â€1β release in Xâ€linked inhibitor of apoptosis (<scp>XIAP</scp>) deficiency. EMBO Journal, 2023, 42, .	7.8	12
677	Paired <i>Medicago</i> receptors mediate broad-spectrum resistance to nodulation by <i>Sinorhizobium meliloti</i> carrying a species-specific gene. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	2
678	Sensor <scp>NLR</scp> immune proteins activate oligomerization of their <scp>NRC</scp> helpers in response to plant pathogens. EMBO Journal, 2023, 42, .	7.8	34
679	An atypical NLR protein modulates the NRC immune receptor network in Nicotiana benthamiana. PLoS Genetics, 2023, 19, e1010500.	3.5	19
682	Dual function of the CHS3-CSA1 immune receptor pair. Trends in Plant Science, 2023, 28, 375-378.	8.8	0
683	Plant immune signaling network mediated by helper NLRs. Current Opinion in Plant Biology, 2023, 73, 102354.	7.1	8
684	Phage defense origin of animal immunity. Current Opinion in Microbiology, 2023, 73, 102295.	5.1	1
686	Transcriptome analysis reveals key genes involved in the resistance to Cryphonectria parasitica during early disease development in Chinese chestnut. BMC Plant Biology, 2023, 23, .	3.6	1
687	Effector-Triggered Immunity. Annual Review of Immunology, 2023, 41, 453-481.	21.8	26
688	Identification of a new type of resistance breaking strain of tomato spotted wilt virus on tomato bearing the Sw-5b resistance gene. European Journal of Plant Pathology, 2023, 166, 219-225.	1.7	3
689	Bacterial effector kinases and strategies to identify their target host substrates. Frontiers in Microbiology, 0, 14, .	3.5	2
690	The woody plant-degrading pathogen <i>Lasiodiplodia theobromae</i> effector LtCre1 targets the grapevine sugar-signaling protein VvRHIP1 to suppress host immunity. Journal of Experimental Botany, 2023, 74, 2768-2785.	4.8	1
691	Pathogen-triggered changes in plant development: Virulence strategies or host defense mechanism?. Frontiers in Microbiology, 0, 14, .	3.5	0
692	Punctaâ€localized <scp>TRAF</scp> domain protein <scp>TC1b</scp> contributes to the autoimmunity of <i>snc1</i> . Plant Journal, 2023, 114, 591-612.	5.7	0

#	Article	IF	Citations
693	Tea plant (<i>Camellia sinensis</i>) lipid metabolism pathway modulated by tea field microbe (<i>Colletotrichum camelliae</i>) to promote disease. Horticulture Research, 2023, 10, .	6.3	2
694	Manipulation of plant metabolism by pathogen effectors: more than just food. FEMS Microbiology Reviews, 2023, 47, .	8.6	8
695	CPR5 positively regulates patternâ€ŧriggered immunity via a mediator protein. Journal of Integrative Plant Biology, 2023, 65, 1613-1619.	8.5	0
697	<i>GbCYP72A1</i> Improves Resistance to Verticillium Wilt via Multiple Signaling Pathways. Plant Disease, 2023, 107, 3198-3210.	1.4	1
698	The CARD8 inflammasome in HIV infection. Advances in Immunology, 2023, , 59-100.	2.2	1
699	Plant and prokaryotic TIR domains generate distinct cyclic ADPR NADase products. Science Advances, 2023, 9, .	10.3	24
700	14-3-3 proteins facilitate the activation of MAP kinase cascades by upstream immunity-related kinases. Plant Cell, 2023, 35, 2413-2428.	6.6	8
701	Distinct function of SPL genes in age-related resistance in Arabidopsis. PLoS Pathogens, 2023, 19, e1011218.	4.7	8
702	Membrane Dynamics Regulated by Cytoskeleton in Plant Immunity. International Journal of Molecular Sciences, 2023, 24, 6059.	4.1	1
703	ETI signaling nodes are involved in resistance of Hawaii 7996 to <i>Ralstonia solanacearum-induced</i> bacterial wilt disease in tomato. Plant Signaling and Behavior, 2023, 18, .	2.4	1
704	Advances in the Research on Plant WRKY Transcription Factors Responsive to External Stresses. Current Issues in Molecular Biology, 2023, 45, 2861-2880.	2.4	9
705	A necessary considering factor for breeding: growth-defense tradeoff in plants. Stress Biology, 2023, 3, .	3.1	3
706	Cell death as a defense strategy against pathogens in plants and animals. PLoS Pathogens, 2023, 19, e1011253.	4.7	4
707	Phase separation of the nuclear pore complex facilitates selective nuclear transport to regulate plant defense against pathogen and pest invasion. Molecular Plant, 2023, 16, 1016-1030.	8.3	4
708	Mechanistic basis of the symbiotic signaling pathway between the host and the pathogen. , 2023, , 375-387.		0
709	Immune signaling networks in plant-pathogen interactions. , 2023, , 137-147.		1
710	Utilising natural diversity of kinases to rationally engineer interactions with the angiosperm immune receptor ZAR1. Plant, Cell and Environment, 2023, 46, 2238-2254.	5.7	0
711	The Phytophthora nucleolar effector Pi23226 targets host ribosome biogenesis to induce necrotrophic cell death. Plant Communications, 2023, 4, 100606.	7.7	5

		CITATION RE	EPORT	
#	ARTICLE		IF	CITATIONS
712	Research Progress of Immune System in Plants. Hans Journal of Agricultural Sciences, 2	2023, 13, 326-336.	0.1	0
713	The Arabidopsis chromatin regulator MOM1 is a negative component of the defense p AZA, BABA and PIP. Frontiers in Plant Science, 0, 14, .	iming induced by	3.6	1
715	Plant-Microbe Interaction and Their Role in Mitigation of Heat Stress. Rhizosphere Biolo 127-147.	ogy, 2023, ,	0.6	0
716	Emergence of the fungal immune system. IScience, 2023, 26, 106793.		4.1	8
717	Stigma type and transcriptome analyses of mulberry revealed the key factors associate shiraiana resistance. Plant Physiology and Biochemistry, 2023, 200, 107743.	d with Ciboria	5.8	0
718	A novel effector <scp>RipBT</scp> contributes to <i>Ralstonia solanacearum</i> virule Molecular Plant Pathology, 2023, 24, 947-960.	ence on potato.	4.2	3
720	In silico analysis and molecular docking studies of natural compounds of Withania som bovine NLRP9. Journal of Molecular Modeling, 2023, 29, .	ınifera against	1.8	7
721	<i>N</i> -Arylpyrazole NOD2 Agonists Promote Immune Checkpoint Inhibitor Therapy. Biology, 2023, 18, 1368-1377.	ACS Chemical	3.4	3
722	Immune gene variation associated with chromosome-scale differences among individua genomes. Scientific Reports, 2023, 13, .	al zebrafish	3.3	1
724	Molecular mechanisms of gasdermin D pore-forming activity. Nature Immunology, 202	3, 24, 1064-1075.	14.5	26
725	Human SAMD9 is a poxvirus-activatable anticodon nuclease inhibiting codon-specific p synthesis. Science Advances, 2023, 9, .	rotein	10.3	6
726	Host-specific sensing of coronaviruses and picornaviruses by the CARD8 inflammasome 2023, 21, e3002144.	e. PLoS Biology,	5.6	5
727	Tripping the wire: sensing of viral protease activity by CARD8 and NLRP1 inflammasom Opinion in Immunology, 2023, 83, 102354.	es. Current	5.5	4
728	Arabidopsis Toplessâ€related 1 mitigates physiological damage and growth penalties c immunity. New Phytologist, 2023, 239, 1404-1419.	of induced	7.3	3
729	Plant immunity in soybean: progress, strategies, and perspectives. Molecular Breeding,	2023, 43, .	2.1	1
730	Wheat Susceptibility Genes TaCAMTA2 and TaCAMTA3 Negatively Regulate Post-Peneragainst Blumeria graminis forma specialis tritici. International Journal of Molecular Scie 24, 10224.		4.1	2
731	Ptr1 and <scp>ZAR1</scp> immune receptors confer overlapping and distinct bacteria effector specificities. New Phytologist, 2023, 239, 1935-1953.	l pathogen	7.3	7
732	Why did glutamate, GABA, and melatonin become intercellular signalling molecules in 12, .	plants?. ELife, 0,	6.0	2

#	Article	IF	CITATIONS
733	A plasma membrane nucleotide-binding leucine-rich repeat receptor mediates the recognition of the Ralstonia pseudosolanacearum effector RipY in Nicotiana benthamiana. Plant Communications, 2023, 4, 100640.	7.7	3
734	A host of armor: Prokaryotic immune strategies against mobile genetic elements. Cell Reports, 2023, 42, 112672.	6.4	20
735	Resurrection of plant disease resistance proteins via helper NLR bioengineering. Science Advances, 2023, 9, .	10.3	13
736	Soil Microflora and Their Interaction with Plants Under Changing Climatic Scenarios. Rhizosphere Biology, 2023, , 19-40.	0.6	0
737	TIR-domain enzymatic activities at the heart of plant immunity. Current Opinion in Plant Biology, 2023, 74, 102373.	7.1	11
738	Major viral diseases in grain legumes: designing disease resistant legumes from plant breeding and OMICS integration. Frontiers in Plant Science, 0, 14, .	3.6	4
739	Genome-wide association analysis reveals a novel pathway mediated by a dual-TIR domain protein for pathogen resistance in cotton. Genome Biology, 2023, 24, .	8.8	7
740	The integrated LIM-peptidase domain of the CSA1-CHS3/DAR4 paired immune receptor detects changes in DA1 peptidase inhibitors in Arabidopsis. Cell Host and Microbe, 2023, 31, 949-961.e5.	11.0	3
741	The E3 ubiquitin ligase OsRGLG5 targeted by the Magnaporthe oryzae effector AvrPi9 confers basal resistance against rice blast. Plant Communications, 2023, 4, 100626.	7.7	6
742	Effector target-guided engineering of an integrated domain expands the disease resistance profile of a rice NLR immune receptor. ELife, 0, 12, .	6.0	13
743	Bacillus thuringiensis exopolysaccharides induced systemic resistance against Sclerotinia sclerotiorum in Brassica campestris L Biological Control, 2023, 183, 105267.	3.0	3
744	HvMPK4 phosphorylates HvWRKY1 to enhance its suppression of barley immunity to powdery mildew fungus. Journal of Genetics and Genomics, 2024, 51, 313-325.	3.9	2
745	Ubiquitin E3 ligase activity of Ralstonia solanacearum effector RipAW is not essential for induction of plant defense in Nicotiana benthamiana. Frontiers in Microbiology, 0, 14, .	3.5	3
746	A 360° view of the inflammasome: Mechanisms of activation, cell death, and diseases. Cell, 2023, 186, 2288-2312.	28.9	48
747	Immune receptor mimicking hormone receptors: a new guarding strategy. Stress Biology, 2023, 3, .	3.1	0
748	Unraveling the diversity and functions of sugar transporters for sustainable management of wheat rust. Functional and Integrative Genomics, 2023, 23, .	3.5	0
749	NLR signaling in plants: from resistosomes to second messengers. Trends in Biochemical Sciences, 2023, 48, 776-787.	7.5	7
750	NLRs derepress MED10b- and MED7-mediated repression of jasmonate-dependent transcription to activate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	2

~		<u> </u>	
		REP	NDT
\sim	IIAI	IVE FV	

#	Article	IF	CITATIONS
751	Transcriptome and metabolite analyses indicated the underlying molecular responses of Asian ginseng (Panax ginseng) toward Colletotrichum panacicola infection. Frontiers in Plant Science, 0, 14, .	3.6	0
752	Identification and characteristics of wheat Lr orthologs in three rye inbred lines. PLoS ONE, 2023, 18, e0288520.	2.5	6
753	A dominant-negative avirulence effector of the barley powdery mildew fungus provides mechanistic insight to barley MLA immune receptor activation. Journal of Experimental Botany, 0, , .	4.8	1
754	Allelic compatibility in plant immune receptors facilitates engineering of new effector recognition specificities. Plant Cell, 2023, 35, 3809-3827.	6.6	9
755	Inflammasomes as regulators of non-infectious disease. Seminars in Immunology, 2023, 69, 101815.	5.6	4
756	Jurassic NLR: Conserved and dynamic evolutionary features of the atypically ancient immune receptor ZAR1. Plant Cell, 2023, 35, 3662-3685.	6.6	8
757	Structural polymorphisms within a common powdery mildew effector scaffold as a driver of coevolution with cereal immune receptors. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	6
758	Plasma membrane association and resistosome formation of plant helper immune receptors. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	5
759	RNA-Based Control of Fungal Pathogens in Plants. International Journal of Molecular Sciences, 2023, 24, 12391.	4.1	2
760	Is localized acquired resistance the mechanism for effector-triggered disease resistance in plants?. Nature Plants, 2023, 9, 1184-1190.	9.3	8
761	Structural basis for negative regulation of the Escherichia coli maltose system. Nature Communications, 2023, 14, .	12.8	2
762	The CAP superfamily protein PsCAP1 secreted by <i>Phytophthora</i> triggers immune responses in <i>Nicotiana benthamiana</i> through a leucineâ€rich repeat receptorâ€like protein. New Phytologist, 2023, 240, 784-801.	7.3	0
763	Plant immune system: Mechanisms and resilience. , 2024, , 9-21.		0
764	Cell specialization and coordination in Arabidopsis leaves upon pathogenic attack revealed by scRNA-seq. Plant Communications, 2023, 4, 100676.	7.7	3
765	RNA-Seq and Comparative Transcriptomic Analyses of Asian Soybean Rust Resistant and Susceptible Soybean Genotypes Provide Insights into Identifying Disease Resistance Genes. International Journal of Molecular Sciences, 2023, 24, 13450.	4.1	1
766	The structured coalescent in the context of gene copy number variation. Theoretical Population Biology, 2023, , .	1.1	0
768	NLR receptors in plant immunity: making sense of the alphabet soup. EMBO Reports, 2023, 24, .	4.5	11
769	Taking the lead: <scp>NLR</scp> immune receptor Nâ€terminal domains execute plant immune responses. New Phytologist, 2023, 240, 496-501.	7.3	2

#	Article	IF	CITATIONS
770	DNA-Binding Activity of CAMTA3 Is Essential for Its Function: Identification of Critical Amino Acids for Its Transcriptional Activity. Cells, 2023, 12, 1986.	4.1	3
771	Plant immune receptors interact with hemibiotrophic pathogens to activate plant immunity. Frontiers in Microbiology, 0, 14, .	3.5	Ο
772	NLRP6 potentiates PI3K/AKT signalling by promoting autophagic degradation of p851 \pm to drive tumorigenesis. Nature Communications, 2023, 14, .	12.8	0
773	Integrative transcriptomic analysis unveils IncRNA-miRNA-mRNA interplay in tomato plants responding to Ralstonia solanacearum. International Journal of Biological Macromolecules, 2023, 253, 126891.	7.5	2
774	Signaling and Resistosome Formation in Plant Innate Immunity to Viruses: Is There a Common Mechanism of Antiviral Resistance Conserved across Kingdoms?. International Journal of Molecular Sciences, 2023, 24, 13625.	4.1	1
775	Systemic screening of Fusarium oxysporum candidate effectors reveals FoSSP17 that suppresses plant immunity and contributes to virulence. Phytopathology Research, 2023, 5, .	2.4	Ο
776	NLR immune receptors: structure and function in plant disease resistance. Biochemical Society Transactions, 2023, 51, 1473-1483.	3.4	4
777	Botrytis cinerea hypovirulent strain â–³BcSpd1 induced Panax ginseng defense. Journal of Ginseng Research, 2023, , .	5.7	1
778	<scp>NLRP2</scp> in health and disease. Immunology, 2024, 171, 170-180.	4.4	0
780	Arabidopsis Tubby domainâ€containing Fâ€box proteins positively regulate immunity by modulating Pl4Kβ protein levels. New Phytologist, 2023, 240, 354-371.	7.3	2
781	æ ę ‰©ç—…åŽŸèŒæ•^åº"å• Chinese Science Bulletin, 2023, , .	0.7	0
782	New Biochemical Principles for NLR Immunity in Plants. Molecular Plant-Microbe Interactions, 2023, 36, 468-475.	2.6	9
783	ZmMPK6-1 positively regulates maize resistance to <i>E. turcicum</i> through enhancing ZmERF061 activity. Journal of Plant Interactions, 2023, 18, .	2.1	0
784	Fungal infection of insects: molecular insights and prospects. Trends in Microbiology, 2024, 32, 302-316.	7.7	4
785	Defense against phytopathogens relies on efficient antimicrobial protein secretion mediated by the microtubule-binding protein TGNap1. Nature Communications, 2023, 14, .	12.8	0
787	Why Do We Need Alternative Methods for Fungal Disease Management in Plants?. Plants, 2023, 12, 3822.	3.5	0
788	Genome editing for healthy crops: traits, tools and impacts. Frontiers in Plant Science, 0, 14, .	3.6	2
789	Leaf abaxial immunity to powdery mildew in Arabidopsis is conferred by multiple defense mechanisms. Journal of Experimental Botany, 2024, 75, 1465-1478.	4.8	2

#	Article	IF	CITATIONS
790	Functionally comparable but evolutionarily distinct nucleotide-targetingÂeffectors help identify conserved paradigms across diverse immune systems. Nucleic Acids Research, 2023, 51, 11479-11503.	14.5	3
791	R gene-mediated resistance in the management of plant diseases. Journal of Plant Biochemistry and Biotechnology, 2024, 33, 5-23.	1.7	0
792	Overview of Microbial Associations and Their Role Under Aquatic Ecosystems. , 2023, , 77-115.		0
793	Arabidopsis PHYTOALEXIN DEFICIENT 4 promotes the maturation and nuclear accumulation of immune-related cysteine protease RD19. Journal of Experimental Botany, 2024, 75, 1530-1546.	4.8	1
796	The Underexplored Mechanisms of Wheat Resistance to Leaf Rust. Plants, 2023, 12, 3996.	3.5	0
801	Immunobiodiversity: conserved and specific immunity across land plants and beyond. Molecular Plant, 2023, , .	8.3	0
806	NLR- and mlo-Based Resistance Mechanisms against Powdery Mildew in Cannabis sativa. Plants, 2024, 13, 105.	3.5	1
807	<i>WRR4B</i> contributes to a broadâ€spectrum disease resistance against powdery mildew in <i>Arabidopsis</i> . Molecular Plant Pathology, 2024, 25, .	4.2	0
808	Genome Editing and Plant-Pathogen Interaction. , 2023, , 311-340.		0
809	Emerging roles of plant microRNAs during Colletotrichum spp. infection. Planta, 2024, 259, .	3.2	0
810	Mechanisms of Plant Epigenetic Regulation in Response to Plant Stress: Recent Discoveries and Implications. Plants, 2024, 13, 163.	3.5	0
811	Plant disease resistance outputs regulated by AP2/ERF transcription factor family. Stress Biology, 2024, 4, .	3.1	0
812	Salicylic acid in plant immunity and beyond. Plant Cell, 2024, 36, 1451-1464.	6.6	1
813	Suppression of Drosophila antifungal immunity by a parasite effector via blocking GNBP3 and GNBP-like 3, the dual receptors for β-glucans. Cell Reports, 2024, 43, 113642.	6.4	0
814	Cross-talks about hemibiotrophic-necrotrophic pathogens by endophytic Bacillus-based EMOs. , 2024, , 235-253.		0
815	Two adjacent NLR genes conferring quantitative resistance to clubroot disease in Arabidopsis are regulated by a stably inherited epiallelic variation. Plant Communications, 2024, , 100824.	7.7	0
816	Plant NLR immunity activation and execution: a biochemical perspective. Open Biology, 2024, 14, .	3.6	0
817	Fine mapping of a new common bean anthracnose resistance gene (Co-18) to the proximal end of Pv10 in Indian landrace KRC-5. Theoretical and Applied Genetics, 2024, 137, .	3.6	Ο

		n Report		
#	Article	IF	CITATIONS	
818	Genetics and Infection Biology of the Entomopathogenic Fungi. , 2024, , 309-331.		0	
819	Inferring co-expression networks of Arabidopsis thaliana genes during their interaction with Trichoderma spp Scientific Reports, 2024, 14, .	3.3	0	
820	Wheat Transcriptional Corepressor TaTPR1 Suppresses Susceptibility Genes TaDND1/2 and Potentiates Post-Penetration Resistance against Blumeria graminis forma specialis tritici. International Journal of Molecular Sciences, 2024, 25, 1695.	4.1	0	
822	The synthetic NLR RGA5HMA5 requires multiple interfaces within and outside the integrated domain for effector recognition. Nature Communications, 2024, 15, .	12.8	0	
823	Advances in understanding the plant-Ralstonia solanacearum interactions: Unraveling the dynamics, mechanisms, and implications for crop disease resistance. , 2024, 1, 100014.		0	
825	Ectopic expression of the Arabidopsis mutant L3 NB-LRR receptor gene in Nicotiana benthamiana cells leads to cell death. Gene, 2024, 906, 148256.	2.2	0	
826	het-B allorecognition in Podospora anserina is determined by pseudo-allelic interaction of genes encoding a HET and lectin fold domain protein and a PII-like protein. PLoS Genetics, 2024, 20, e1011114.	3.5	0	
827	<i>Pseudomonas</i> effector AvrB is a glycosyltransferase that rhamnosylates plant guardee protein RIN4. Science Advances, 2024, 10, .	10.3	0	
828	Paired plant immune CHS3-CSA1 receptor alleles form distinct hetero-oligomeric complexes. Science, 2024, 383, .	12.6	0	
829	From molecule to cell: the expanding frontiers of plant immunity. Journal of Genetics and Genomics, 2024, , .	3.9	0	
831	Native architecture of a human GBP1 defense complex for cell-autonomous immunity to infection. Science, 2024, 383, .	12.6	0	
832	Complete genome assembly provides a highâ€quality skeleton for <scp>panâ€NLRome</scp> construction in melon. Plant Journal, 0, , .	5.7	0	
833	Substrate-induced condensation activates plant TIR domain proteins. Nature, 2024, 627, 847-853.	27.8	0	
834	High allelic diversity in Arabidopsis NLRs is associated with distinct genomic features. EMBO Reports, 0, , .	4.5	Ο	