Turning the respiratory flexibility of Mycobacterium tu

Nature Communications 7, 12393 DOI: 10.1038/ncomms12393

Citation Report

#	Article	IF	CITATIONS
1	Enhanced respiration prevents drug tolerance and drug resistance in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4495-4500.	7.1	157
2	Targeting Energy Metabolism in <i>Mycobacterium tuberculosis</i> , a New Paradigm in Antimycobacterial Drug Discovery. MBio, 2017, 8, .	4.1	157
3	Efficient measurement and factorization of high-order drug interactions in <i>Mycobacterium tuberculosis</i> . Science Advances, 2017, 3, e1701881.	10.3	107
4	Improved Phenoxyalkylbenzimidazoles with Activity against <i>Mycobacterium tuberculosis</i> Appear to Target QcrB. ACS Infectious Diseases, 2017, 3, 898-916.	3.8	54
5	Antibiotic efficacy — context matters. Current Opinion in Microbiology, 2017, 39, 73-80.	5.1	71
6	A fluorescence-based reporter for monitoring expression of mycobacterial cytochrome bd in response to antibacterials and during infection. Scientific Reports, 2017, 7, 10665.	3.3	18
7	Chemical Modification and Detoxification of the <i>Pseudomonas aeruginosa</i> Toxin 2-Heptyl-4-hydroxyquinoline <i>N</i> -Oxide by Environmental and Pathogenic Bacteria. ACS Chemical Biology, 2017, 12, 2305-2312.	3.4	29
8	Susceptibility of Mycobacterium tuberculosis Cytochrome <i>bd</i> Oxidase Mutants to Compounds Targeting the Terminal Respiratory Oxidase, Cytochrome <i>c</i> . Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	49
9	Allosteric pyruvate kinase-based "logic gate―synergistically senses energy and sugar levels in Mycobacterium tuberculosis. Nature Communications, 2017, 8, 1986.	12.8	49
10	Exploiting the synthetic lethality between terminal respiratory oxidases to kill <i>Mycobacterium tuberculosis</i> and clear host infection. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7426-7431.	7.1	141
11	Enabling faster Go/No-Go decisions through secondary screens in anti-mycobacterial drug discovery. Tuberculosis, 2017, 106, 44-52.	1.9	3
12	Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline. Journal of Antimicrobial Chemotherapy, 2017, 72, 338-353.	3.0	103
13	Efficacy of β-lactam/β-lactamase inhibitor combination is linked to WhiB4-mediated changes in redox physiology of Mycobacterium tuberculosis. ELife, 2017, 6, .	6.0	50
14	2-Mercapto-Quinazolinones as Inhibitors of Type II NADH Dehydrogenase and <i>Mycobacterium tuberculosis</i> : Structure–Activity Relationships, Mechanism of Action and Absorption, Distribution, Metabolism, and Excretion Characterization. ACS Infectious Diseases, 2018, 4, 954-969.	3.8	49
15	The anti-mycobacterial activity of the cytochrome bcc inhibitor Q203 can be enhanced by small-molecule inhibition of cytochrome bd. Scientific Reports, 2018, 8, 2625.	3.3	56
16	Verapamil Increases the Bioavailability and Efficacy of Bedaquiline but Not Clofazimine in a Murine Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	35
17	Mycobacterial Membrane Proteins QcrB and AtpE: Roles in Energetics, Antibiotic Targets, and Associated Mechanisms of Resistance. Journal of Membrane Biology, 2018, 251, 105-117.	2.1	13
18	Combinations of Respiratory Chain Inhibitors Have Enhanced Bactericidal Activity against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	31

		CITATION REPORT		
#	Article		IF	Citations
19	Targeting bacterial energetics to produce new antimicrobials. Drug Resistance Updates,	2018, 36, 1-12.	14.4	72
20	Accessible and distinct decoquinate derivatives active against Mycobacterium tuberculc apicomplexan parasites. Communications Chemistry, 2018, 1, .	osis and	4.5	30
21	Arylvinylpiperazine Amides, a New Class of Potent Inhibitors Targeting QcrB of Mycobac tuberculosis. MBio, 2018, 9, .	terium	4.1	52
22	Reactive nitrogen and oxygen species: Friend or foe in the tuberculosis fight. Tuberculos 175-176.	iis, 2018, 113,	1.9	2
23	Can modulating redox status help to enhance antituberculosis drug efficacy?. Tuberculo 177-178.	sis, 2018, 113,	1.9	1
24	Ionophoric effects of the antitubercular drug bedaquiline. Proceedings of the National A Sciences of the United States of America, 2018, 115, 7326-7331.	cademy of	7.1	85
25	Challenging the Drug-Likeness Dogma for New Drug Discovery in Tuberculosis. Frontiers Microbiology, 2018, 9, 1367.	; in	3.5	79
26	Challenges and recent progress in drug discovery for tropical diseases. Nature, 2018, 55	9, 498-506.	27.8	164
27	The F1Fo-ATP Synthase β Subunit Is Required for Candida albicans Pathogenicity Due to Carbon Flexibility. Frontiers in Microbiology, 2018, 9, 1025.) Its Role in	3.5	26
28	Therapeutic potential of promiscuous targets in Mycobacterium tuberculosis. Current C Pharmacology, 2018, 42, 22-26.	pinion in	3.5	25
29	Bioenergetics of Mycobacterium: An Emerging Landscape for Drug Discovery. Pathogen	s, 2018, 7, 24.	2.8	57
30	Antibiotic Lethality and Membrane Bioenergetics. Advances in Microbial Physiology, 201	.8, 73, 77-122.	2.4	9
31	Impact of Clofazimine Dosing on Treatment Shortening of the First-Line Regimen in a M Tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	ouse Model of	3.2	37
32	Effect of bedaquiline on the functions of rat liver mitochondria. Biochimica Et Biophysica Biomembranes, 2019, 1861, 288-297.	a Acta -	2.6	19
33	The TetR Family Transcription Factor MAB_2299c Regulates the Expression of Two Disti Efflux Pumps Involved in Cross-Resistance to Clofazimine and Bedaquiline in Mycobacte abscessus. Antimicrobial Agents and Chemotherapy, 2019, 63, .	nct MmpS-MmpL rium	3.2	29
34	<i>Mycobacterium tuberculosis</i> Metabolism. Microbiology Spectrum, 2019, 7, .		3.0	19
35	Insights into the Physiology and Metabolism of a Mycobacterial Cell in an Energy-Comp Journal of Bacteriology, 2019, 201, .	omised State.	2.2	16
36	Inhaled Antibiotics for Mycobacterial Lung Disease. Pharmaceutics, 2019, 11, 352.		4.5	22

#	Article	IF	CITATIONS
38	Antituberculosis agents: Beyond medicinal chemistry rules. Annual Reports in Medicinal Chemistry, 2019, 52, 27-69.	0.9	4
39	Plasticity of the Mycobacterium tuberculosis respiratory chain and its impact on tuberculosis drug development. Nature Communications, 2019, 10, 4970.	12.8	82
40	Targeting redox heterogeneity to counteract drug tolerance in replicating <i>Mycobacterium tuberculosis</i> . Science Translational Medicine, 2019, 11, .	12.4	76
41	Disrupting coupling within mycobacterial F-ATP synthases subunit ε causes dysregulated energy production and cell wall biosynthesis. Scientific Reports, 2019, 9, 16759.	3.3	29
42	Mode-of-action profiling reveals glutamine synthetase as a collateral metabolic vulnerability of <i>M. tuberculosis</i> to bedaquiline. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19646-19651.	7.1	38
43	Carbon metabolism modulates the efficacy of drugs targeting the cytochrome bc1:aa3 in Mycobacterium tuberculosis. Scientific Reports, 2019, 9, 8608.	3.3	26
44	Inhibitors of enzymes in the electron transport chain of Mycobacterium tuberculosis. Annual Reports in Medicinal Chemistry, 2019, 52, 97-130.	0.9	4
45	Mycofactocin Is Associated with Ethanol Metabolism in Mycobacteria. MBio, 2019, 10, .	4.1	21
46	Chemical disarming of isoniazid resistance in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10510-10517.	7.1	48
47	Shortening Buruli Ulcer Treatment with Combination Therapy Targeting the Respiratory Chain and Exploiting Mycobacterium ulcerans Gene Decay. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	25
48	Novel MenA Inhibitors Are Bactericidal against <i>Mycobacterium tuberculosis</i> and Synergize with Electron Transport Chain Inhibitors. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	29
49	Treatment-Shortening Effect of a Novel Regimen Combining Clofazimine and High-Dose Rifapentine in Pathologically Distinct Mouse Models of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	23
50	A Cinchona Alkaloid Antibiotic That Appears To Target ATP Synthase in <i>Streptococcus pneumoniae</i> . Journal of Medicinal Chemistry, 2019, 62, 2305-2332.	6.4	24
51	<i>In Vitro</i> and <i>In Vivo</i> Activities of the Riminophenazine TBI-166 against <i>Mycobacterium tuberculosis</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	38
52	2-aminoimidazoles collapse mycobacterial proton motive force and block the electron transport chain. Scientific Reports, 2019, 9, 1513.	3.3	23
53	Identification of 4-Amino-Thieno[2,3- <i>d</i>]Pyrimidines as QcrB Inhibitors in Mycobacterium tuberculosis. MSphere, 2019, 4, .	2.9	19
54	Mycobacterium tuberculosisMetabolism. , 2019, , 1107-1128.		0
55	New drugs to treat difficult tuberculous and nontuberculous mycobacterial pulmonary disease. Current Opinion in Pulmonary Medicine, 2019, 25, 271-280.	2.6	21

#	Article	IF	CITATIONS
56	Compromised Metabolic Reprogramming Is an Early Indicator of CD8+ T Cell Dysfunction during Chronic Mycobacterium tuberculosis Infection. Cell Reports, 2019, 29, 3564-3579.e5.	6.4	58
57	The global regulator Crc orchestrates the metabolic robustness underlying oxidative stress resistance in <i>Pseudomonas aeruginosa</i> . Environmental Microbiology, 2019, 21, 898-912.	3.8	27
58	Isoniazid Bactericidal Activity Involves Electron Transport Chain Perturbation. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	32
59	Interpretation of the mechanism of action of antituberculosis drug bedaquiline based on a novel twoâ€ion theory of energy coupling in ATP synthesis. Bioengineering and Translational Medicine, 2019, 4, 164-170.	7.1	17
60	Assessment of Clofazimine and TB47 Combination Activity against Mycobacterium abscessus Using a Bioluminescent Approach. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	14
61	Cytochrome bd in Mycobacterium tuberculosis: A respiratory chain protein involved in the defense against antibacterials. Progress in Biophysics and Molecular Biology, 2020, 152, 55-63.	2.9	39
62	Emerging opportunities of exploiting mycobacterial electron transport chain pathway for drug-resistant tuberculosis drug discovery. Expert Opinion on Drug Discovery, 2020, 15, 231-241.	5.0	14
63	Bedaquiline reprograms central metabolism to reveal glycolytic vulnerability in Mycobacterium tuberculosis. Nature Communications, 2020, 11, 6092.	12.8	34
64	Bedaquiline inhibits the yeast and human mitochondrial ATP synthases. Communications Biology, 2020, 3, 452.	4.4	32
65	SAR Analysis of Small Molecules Interfering with Energy-Metabolism in Mycobacterium tuberculosis. Pharmaceuticals, 2020, 13, 227.	3.8	12
66	TB47 and clofazimine form a highly synergistic sterilizing block in a second-line regimen for tuberculosis in mice. Biomedicine and Pharmacotherapy, 2020, 131, 110782.	5.6	14
67	Systematic review of mutations associated with resistance to the new and repurposed <i>Mycobacterium tuberculosis</i> drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. Journal of Antimicrobial Chemotherapy, 2020, 75, 2031-2043.	3.0	124
68	N-Acetyl Cysteine as an Adjunct in the Treatment of Tuberculosis. Tuberculosis Research and Treatment, 2020, 2020, 1-11.	0.6	9
69	Transcriptional Inhibition of the F ₁ F ₀ -Type ATP Synthase Has Bactericidal Consequences on the Viability of Mycobacteria. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	17
70	Recent Developments in the Application of Flow Cytometry to Advance our Understanding of Mycobacterium tuberculosis Physiology and Pathogenesis. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 683-693.	1.5	11
71	Features and Functional Importance of Key Residues of the <i>Mycobacterium tuberculosis</i> Cytochrome <i>bd</i> Oxidase. ACS Infectious Diseases, 2020, 6, 1697-1707.	3.8	11
72	Nitrite modulates aminoglycoside tolerance by inhibiting cytochrome heme-copper oxidase in bacteria. Communications Biology, 2020, 3, 269.	4.4	12
73	Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with protein engineering. PLoS Pathogens, 2020, 16, e1008287.	4.7	51

#	Article	IF	CITATIONS
74	Introduction: Novel insights into TB research and drug discovery. Progress in Biophysics and Molecular Biology, 2020, 152, 2-5.	2.9	14
75	Formate dehydrogenase, ubiquinone, and cytochrome bd-I are required for peptidoglycan recognition protein-induced oxidative stress and killing in Escherichia coli. Scientific Reports, 2020, 10, 1993.	3.3	5
76	New 2-Ethylthio-4-methylaminoquinazoline derivatives inhibiting two subunits of cytochrome bc1 in Mycobacterium tuberculosis. PLoS Pathogens, 2020, 16, e1008270.	4.7	38
77	Hydrogen sulfide stimulates Mycobacterium tuberculosis respiration, growth and pathogenesis. Nature Communications, 2020, 11, 557.	12.8	70
78	New tuberculosis drug targets, their inhibitors, and potential therapeutic impact. Translational Research, 2020, 220, 68-97.	5.0	97
79	Oxidative Phosphorylation—an Update on a New, Essential Target Space for Drug Discovery in Mycobacterium tuberculosis. Applied Sciences (Switzerland), 2020, 10, 2339.	2.5	29
80	FX11 limits <i>Mycobacterium tuberculosis</i> growth and potentiates bactericidal activity of isoniazid through host-directed activity. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	15
81	New antituberculosis drugs targeting the respiratory chain. Chinese Chemical Letters, 2020, 31, 1357-1365.	9.0	12
82	Heterogeneous Host–Pathogen Encounters Coordinate Antibiotic Resilience in Mycobacterium tuberculosis. Trends in Microbiology, 2021, 29, 606-620.	7.7	10
83	Ultra-short-course and intermittent TB47-containing oral regimens produce stable cure against Buruli ulcer in a murine model and prevent the emergence of resistance for Mycobacterium ulcerans. Acta Pharmaceutica Sinica B, 2021, 11, 738-749.	12.0	6
84	Trehalose Recycling Promotes Energy-Efficient Biosynthesis of the Mycobacterial Cell Envelope. MBio, 2021, 12, .	4.1	17
85	Flow Cytometry Analysis of Mycobacteria and Mycobacteria-Infected Immune Cells. Methods in Molecular Biology, 2021, 2314, 261-271.	0.9	1
86	Collocating Novel Targets for Tuberculosis (TB) Drug Discovery. Current Drug Discovery Technologies, 2021, 18, 307-316.	1.2	1
87	Glycolysis is integral to histamineâ€induced endothelial hyperpermeability. FASEB Journal, 2021, 35, e21425.	0.5	10
88	Effect of metabolic uncouplers on the performance of toluene-degrading biotrickling filter. Environmental Science and Pollution Research, 2021, 28, 41881-41895.	5.3	1
90	Understanding the Reciprocal Interplay Between Antibiotics and Host Immune System: How Can We Improve the Anti-Mycobacterial Activity of Current Drugs to Better Control Tuberculosis?. Frontiers in Immunology, 2021, 12, 703060.	4.8	8
91	The coming-of-age of bedaquiline: a tale with an open ending. European Respiratory Journal, 2021, 57, 2100066.	6.7	2
94	Host immunity increases Mycobacterium tuberculosis reliance on cytochrome bd oxidase. PLoS Pathogens, 2021, 17, e1008911.	4.7	8

#	Article	IF	CITATIONS
95	Resistance of Mycobacterium tuberculosis to indole 4-carboxamides occurs through alterations in drug metabolism and tryptophan biosynthesis. Cell Chemical Biology, 2021, 28, 1180-1191.e20.	5.2	5
96	Mycobacterium tuberculosis H2S Functions as a Sink to Modulate Central Metabolism, Bioenergetics, and Drug Susceptibility. Antioxidants, 2021, 10, 1285.	5.1	9
97	Nitric Oxide-Dependent Electron Transport Chain Inhibition by the Cytochrome <i>bc</i> ₁ Inhibitor and Pretomanid Combination Kills <i>Mycobacterium tuberculosis</i> . Antimicrobial Agents and Chemotherapy, 2021, 65, e0095621.	3.2	9
98	Understanding Metabolic Remodeling in Mycobacterium smegmatis to Overcome Energy Exigency and Reductive Stress Under Energy-Compromised State. Frontiers in Microbiology, 2021, 12, 722229.	3.5	2
99	Safety, efficacy, and serum concentration monitoring of bedaquiline in Chinese patients with multidrug-resistant tuberculosis. International Journal of Infectious Diseases, 2021, 110, 179-186.	3.3	12
100	Sterilizing Effects of Novel Regimens Containing TB47, Clofazimine, and Linezolid in a Murine Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, e0070621.	3.2	10
101	Host Bioenergetic Parameters Reveal Cytotoxicity of Antituberculosis Drugs Undetected Using Conventional Viability Assays. Antimicrobial Agents and Chemotherapy, 2021, 65, e0093221.	3.2	2
103	The Transcription Factor Rv1453 Regulates the Expression of qor and Confers Resistant to Clofazimine in Mycobacterium tuberculosis. Infection and Drug Resistance, 2021, Volume 14, 3937-3948.	2.7	4
104	Study of the bioenergetics to identify the novel pathways as a drug target against Mycobacterium tuberculosis using Petri net. BioSystems, 2021, 209, 104509.	2.0	7
105	Discovery of novel nitrogenous heterocyclic-containing quinoxaline-1,4-di-N-oxides as potent activator of autophagy in M.tb-infected macrophages. European Journal of Medicinal Chemistry, 2021, 223, 113657.	5.5	9
106	Bioenergetic Inhibitors: Antibiotic Efficacy and Mechanisms of Action in Mycobacterium tuberculosis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 611683.	3.9	21
109	Fully weekly antituberculosis regimen: a proof-of-concept study. European Respiratory Journal, 2020, 56, 1902502.	6.7	3
110	Terminal Respiratory Oxidases: A Targetables Vulnerability of Mycobacterial Bioenergetics?. Frontiers in Cellular and Infection Microbiology, 2020, 10, 589318.	3.9	14
111	Mycobacterium tuberculosis induces decelerated bioenergetic metabolism in human macrophages. ELife, 2018, 7, .	6.0	150
112	Cytochrome bc1-aa3 oxidase supercomplex as emerging and potential drug target against tuberculosis. Current Molecular Pharmacology, 2021, 14, .	1.5	4
113	The δ subunit of F1Fo-ATP synthase is required for pathogenicity of Candida albicans. Nature Communications, 2021, 12, 6041.	12.8	8
117	Targeting the cytochrome bc1 complex for drug development in M. tuberculosis: review. Molecular Diversity, 2022, 26, 2949-2965.	3.9	5
118	Multiplexed transcriptional repression identifies a network of bactericidal interactions between mycobacterial respiratory complexes. IScience, 2022, 25, 103573.	4.1	10

#	Article	IF	CITATIONS
119	Telacebec: an investigational antibacterial for the treatment of tuberculosis (TB). Expert Opinion on Investigational Drugs, 2022, 31, 139-144.	4.1	11
120	Ursolic acid as a potential inhibitor of Mycobacterium tuberculosis cytochrome bc1 oxidase—a molecular modelling perspective. Journal of Molecular Modeling, 2022, 28, 35.	1.8	4
121	Targeting the ATP synthase in bacterial and fungal pathogens: beyond Mycobacterium tuberculosis. Journal of Global Antimicrobial Resistance, 2022, 29, 29-41.	2.2	21
122	Implications of <i>Mycobacterium tuberculosis</i> Metabolic Adaptability on Drug Discovery and Development. ACS Infectious Diseases, 2022, 8, 414-421.	3.8	2
123	An amiloride derivative is active against the F1Fo-ATP synthase and cytochrome bd oxidase of Mycobacterium tuberculosis. Communications Biology, 2022, 5, 166.	4.4	21
124	Deciphering functional redundancy and energetics of malate oxidation in mycobacteria. Journal of Biological Chemistry, 2022, 298, 101859.	3.4	10
125	The mycobacterial <i>guaB1</i> gene encodes a guanosine 5â€2â€monophosphate reductase with a cystathionineâ€î2â€synthase domain. FEBS Journal, 2022, 289, 5571-5598.	4.7	2
127	Mycobacterium tuberculosis requires SufT for Fe-S cluster maturation, metabolism, and survival in vivo. PLoS Pathogens, 2022, 18, e1010475.	4.7	7
128	Effects of Bedaquiline on Antimicrobial Activity and Cytokine Secretion of Macrophages Infected with Multidrug-Resistant Mycobacterium tuberculosis Strains. Canadian Journal of Infectious Diseases and Medical Microbiology, 2022, 2022, 1-9.	1.9	3
129	Antituberculosis Drug Repurposing: A New Hope for Tackling Multi-Challenging TB in Timely Manner. , 0, , .		1
131	Apoptosis like symptoms associated with abortive infection of Mycobacterium smegmatis by mycobacteriophage D29. PLoS ONE, 2022, 17, e0259480.	2.5	4
132	The respiratory lipoquinone, menaquinone, functions as an inducer of genes regulated by the Mycobacterium smegmatis repressor MSMEG_2295. Microbiology (United Kingdom), 2022, 168, .	1.8	2
133	Single-Fluorescence ATP Sensor Based on Fluorescence Resonance Energy Transfer Reveals Role of Antibiotic-Induced ATP Perturbation in Mycobacterial Killing. MSystems, 2022, 7, .	3.8	1
134	A review on enzyme complexes of electron transport chain from Mycobacterium tuberculosis as promising drug targets. International Journal of Biological Macromolecules, 2022, 212, 474-494.	7.5	8
135	Tuberculosis Drug Discovery: Challenges and New Horizons. Journal of Medicinal Chemistry, 2022, 65, 7489-7531.	6.4	59
136	Expression of a novel mycobacterial phosphodiesterase successfully lowers cAMP levels resulting in reduced tolerance to cell wall–targeting antimicrobials. Journal of Biological Chemistry, 2022, 298, 102151.	3.4	12
137	Impaired Succinate Oxidation Prevents Growth and Influences Drug Susceptibility in Mycobacterium tuberculosis. MBio, 2022, 13, .	4.1	8
138	Uncovering interactions between mycobacterial respiratory complexes to target drug-resistant Mycobacterium tuberculosis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	3

#	Article	IF	CITATIONS
139	Moxifloxacin-Mediated Killing of Mycobacterium tuberculosis Involves Respiratory Downshift, Reductive Stress, and Accumulation of Reactive Oxygen Species. Antimicrobial Agents and Chemotherapy, 2022, 66, .	3.2	14
140	Design, synthesis and biological evaluation of (Quinazoline 4-yloxy)acetamide and (4-oxoquinazoline-3(4H)-yl)acetamide derivatives as inhibitors of Mycobacterium tuberculosis bd oxidase. European Journal of Medicinal Chemistry, 2022, 242, 114639.	5.5	6
141	Recent Developments in Medicinal and In Silico Applications of Imidazopyridine Derivatives: Special Emphasis on Malaria, Trypanosomiasis, and Tuberculosis. Chemistry Africa, 2022, 5, 1215-1236.	2.4	5
142	Response of Mycobacterium smegmatis to the Cytochrome bcc Inhibitor Q203. International Journal of Molecular Sciences, 2022, 23, 10331.	4.1	2
143	Synthesis and Biological Evaluation of Aurachin D Analogues as Inhibitors of <i>Mycobacterium tuberculosis</i> Cytochrome <i>bd</i> Oxidase. ACS Medicinal Chemistry Letters, 2022, 13, 1663-1669.	2.8	6
144	Medications for Short-Course Chemotherapy of Drug Resistant Tuberculosis and Their Effect on the Host. Tuberculosis and Lung Diseases, 2022, 100, 54-64.	0.7	5
145	Fluoroquinolone heteroresistance, antimicrobial tolerance, and lethality enhancement. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	7
146	Synergistic Effect of Q203 Combined with PBTZ169 against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 0, , .	3.2	Ο
147	Mycobacterium tuberculosis senses host Interferon-Î ³ via the membrane protein MmpL10. Communications Biology, 2022, 5, .	4.4	4
148	The Mycobacterium bovis BCG GroEL1 Contributes to Isoniazid Tolerance in a Dormant-Like State Model. Microorganisms, 2023, 11, 286.	3.6	Ο
150	Emergence of Canonical and Noncanonical Genomic Variants following <i>In Vitro</i> Exposure of Clinical Mycobacterium tuberculosis Strains to Bedaquiline or Clofazimine. Antimicrobial Agents and Chemotherapy, 2023, 67, .	3.2	2
151	F1·Fo ATP Synthase/ATPase: Contemporary View on Unidirectional Catalysis. International Journal of Molecular Sciences, 2023, 24, 5417.	4.1	5
152	An Insight on the Prospect of Quinazoline and Quinazolinone Derivatives as Anti-tubercular Agents. Current Organic Synthesis, 2023, 20, 838-869.	1.3	2
154	Multiomics Integration of Tuberculosis Pathogenesis. Integrated Science, 2023, , 937-967.	0.2	Ο
155	M.Âtuberculosis relies on trace oxygen to maintain energy homeostasis and survive in hypoxic environments. Cell Reports, 2023, 42, 112444.	6.4	4
156	An update on ATP synthase inhibitors: A unique target for drug development in M. tuberculosis. Progress in Biophysics and Molecular Biology, 2023, 180-181, 87-104.	2.9	2
157	Bedaquiline resistance pattern in clofazimine-resistant clinical isolates of tuberculosis patients. Journal of Global Antimicrobial Resistance, 2023, 33, 294-300.	2.2	1
158	Inhibiting respiration as a novel antibiotic strategy. Current Opinion in Microbiology, 2023, 74, 102327.	5.1	Ο

#	Article	IF	CITATIONS
159	Unravelling the flexibility of Mycobacterium tuberculosis: an escape way for the bacilli. Journal of Medical Microbiology, 2023, 72, .	1.8	2
160	Biosensor-integrated transposon mutagenesis reveals rv0158 as a coordinator of redox homeostasis in Mycobacterium tuberculosis. ELife, 0, 12, .	6.0	0
161	Integrating multi-modal deep learning on knowledge graph for the discovery of synergistic drug combinations against infectious diseases. Cell Reports Physical Science, 2023, 4, 101520.	5.6	0
162	Benzene Amide Ether Scaffold is Active against Non-replicating and Intracellular <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2023, 9, 1981-1992.	3.8	0
163	Selection of Multi-Drug Targets against Drug-Resistant Mycobacterium tuberculosis XDR1219 Using the Hyperbolic Mapping of the Protein Interaction Network. International Journal of Molecular Sciences, 2023, 24, 14050.	4.1	2
164	Telacebec Interferes with Virulence Lipid Biosynthesis Protein Expression and Sensitizes to Other Antibiotics. Microorganisms, 2023, 11, 2469.	3.6	0
167	GaMF1.39's antibiotic efficacy and its enhanced antitubercular activity in combination with clofazimine, Telacebec, ND-011992, or TBAJ-876. Microbiology Spectrum, 2023, 11, .	3.0	0
168	Cysteine desulfurase (IscS)–mediated fine-tuning of bioenergetics and SUF expression prevents <i>Mycobacterium tuberculosis</i> hypervirulence. Science Advances, 2023, 9, .	10.3	1
169	Bedaquiline for treatment of non-tuberculous mycobacteria (NTM): a systematic review and meta-analysis. Journal of Antimicrobial Chemotherapy, 2024, 79, 211-240.	3.0	0
170	A dual-targeting succinate dehydrogenase and F1Fo-ATP synthase inhibitor rapidly sterilizes replicating and non-replicating Mycobacterium tuberculosis. Cell Chemical Biology, 2023, , .	5.2	0
172	Cytochrome <i>bd</i> oxidase: an emerging anti-tubercular drug target. RSC Medicinal Chemistry, 2024, 15, 769-787.	3.9	1
173	Inducing vulnerability to InhA inhibition restores isoniazid susceptibility in drug-resistant <i>Mycobacterium tuberculosis</i> . MBio, 2024, 15, .	4.1	0
174	A high-throughput target-based screening approach for the identification and assessment of <i>Mycobacterium tuberculosis</i> mycothione reductase inhibitors. Microbiology Spectrum, 2024, 12, .	3.0	0