

#	Article	IF	CITATIONS
1	CRNN: A Joint Neural Network for Redundancy Detection. SSRN Electronic Journal, 2016, , .	0.4	3
2	Deep Q-learning using redundant outputs in visual doom. , 2016, , .		2
3	End-to-End Driving in a Realistic Racing Game with Deep Reinforcement Learning. , 2017, , .		44
4	Random Projection Based Representations for Learning Policies in Deterministic Atari Games. , 2017, , .		O
5	Target-driven visual navigation in indoor scenes using deep reinforcement learning. , 2017, , .		754
6	UnrealCV., 2017,,.		108
7	Learning the patterns of balance in a multi-player shooter game. , 2017, , .		12
8	Towards Playing a 3D First-Person Shooter Game Using a Classification Deep Neural Network Architecture. , 2017, , .		7
9	Autoencoder-augmented neuroevolution for visual doom playing. , 2017, , .		30
10	Visual Semantic Planning Using Deep Successor Representations. , 2017, , .		77
11	Learning to play visual doom using model-free episodic control. , 2017, , .		5
12	On the Development of an Autonomous Agent for a 3D First-Person Shooter Game Using Deep Reinforcement Learning. , 2017, , .		3
13	DLNE: A hybridization of deep learning and neuroevolution for visual control. , 2017, , .		18
14	Learning to Play <i>Othello</i> With Deep Neural Networks. IEEE Transactions on Games, 2018, 10, 354-364.	1.2	12
15	Scaling Tangled Program Graphs to Visual Reinforcement Learning in ViZDoom. Lecture Notes in Computer Science, 2018, , 135-150.	1.0	7
16	Automated Curriculum Learning by Rewarding Temporally Rare Events. , 2018, , .		5
17	Gibson Env: Real-World Perception for Embodied Agents. , 2018, , .		317
18	Using State Predictions for Value Regularization in Curiosity Driven Deep Reinforcement Learning. , 2018, , .		1

#	Article	IF	CITATIONS
19	Using a Team of General Al Algorithms to Assist Game Design and Testing. , 2018, , .		19
20	Stabilizing Actor Policies by Approximating Advantage Distributions from K Critics., 2018,,.		1
21	IQA: Visual Question Answering in Interactive Environments. , 2018, , .		157
22	Challenges of Autonomous Flight in Indoor Environments. , 2018, , .		20
23	Utilizing Multiple Agents for Decision Making in a Fighting Game. , 2018, , .		2
24	Global Pose Estimation with an Attention-Based Recurrent Network. , 2018, , .		47
25	Deep Reinforcement Learning for Playing 2.5D Fighting Games. , 2018, , .		6
26	Combining deep reinforcement learning with prior knowledge and reasoning. ACM SIGAPP Applied Computing Review: A Publication of the Special Interest Group on Applied Computing, 2018, 18, 33-45.	0.5	10
27	End-to-End Race Driving with Deep Reinforcement Learning. , 2018, , .		109
28	Deep active inference. Biological Cybernetics, 2018, 112, 547-573.	0.6	52
29	VIVID., 2018,,.		12
30	Toward End-to-End Control for UAV Autonomous Landing via Deep Reinforcement Learning. , 2018, , .		49
31	DoShiCo challenge: Domain shift in control prediction. , 2018, , .		1
32	Asynchronous reinforcement learning algorithms for solving discrete space path planning problems. Applied Intelligence, 2018, 48, 4889-4904.	3.3	26
33	Reinforcement Learning for Computer Vision and Robot Navigation. Lecture Notes in Computer Science, 2018, , 258-272.	1.0	17
34	Deep reinforcement learning boosted by external knowledge. , 2018, , .		8
35	The 2017 AIBIRDS Level Generation Competition. IEEE Transactions on Games, 2019, 11, 275-284.	1.2	8
37	Curiosity-driven Reinforcement Learning for Dialogue Management. , 2019, , .		1

#	ARTICLE	IF	Citations
38	Reinforcement Learning and Attractor Neural Network Models of Associative Learning. Studies in Computational Intelligence, 2019, , 327-349.	0.7	10
39	Playing First-Person-Shooter Games with A3C-Anticipator Network Based Agents Using Reinforcement Learning. Lecture Notes in Computer Science, 2019, , 463-475.	1.0	3
40	Experience-based Causality Learning for Intelligent Agents. ACM Transactions on Asian and Low-Resource Language Information Processing, 2019, 18, 1-22.	1.3	5
41	Composite Platoon Trajectory Planning Strategy for Intersection Throughput Maximization. IEEE Transactions on Vehicular Technology, 2019, 68, 6305-6319.	3.9	47
42	Identifying gameplay videos that exhibit bugs in computer games. Empirical Software Engineering, 2019, 24, 4006-4033.	3.0	10
43	General Video Game Artificial Intelligence. Synthesis Lectures on Games and Computational Intelligence, 2019, 3, 1-191.	0.2	3
44	Video Game Description Language Environment for Unity Machine Learning Agents. , 2019, , .		9
45	A Hierarchical Approach for MARLÖ Challenge. , 2019, , .		0
46	Transferable Environment Model With Disentangled Dynamics. IEEE Access, 2019, 7, 106848-106860.	2.6	2
47	Learning Action Representations for Self-supervised Visual Exploration. , 2019, , .		5
48	Leveling the playing field., 2019, , .		10
49	Agent-based cooperative animation for box-manipulation using reinforcement learning. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 2019, 2, 1-18.	1.0	7
50	Does computer vision matter for action?. Science Robotics, 2019, 4, .	9.9	48
51	Accelerating Deep Reinforcement Learning Using Human Demonstration Data Based on Dual Replay Buffer Management and Online Frame Skipping. , 2019, , .		3
52	Attention Based Natural Language Grounding by Navigating Virtual Environment., 2019, , .		5
53	Non-local Self-attention Structure for Function Approximation in Deep Reinforcement Learning. , 2019, , .		0
54	A Model of External Memory for Navigation in Partially Observable Visual Reinforcement Learning Tasks. Lecture Notes in Computer Science, 2019, , 162-177.	1.0	11
55	Robot Simulation and Reinforcement Learning Training Platform Based on Distributed Architecture. Communications in Computer and Information Science, 2019, , 542-553.	0.4	O

#	Article	IF	Citations
56	Emergent Policy Discovery for Visual Reinforcement Learning Through Tangled Program Graphs: A Tutorial. Genetic and Evolutionary Computation, 2019, , 37-57.	1.0	10
57	Answering Visual What-If Questions: From Actions to Predicted Scene Descriptions. Lecture Notes in Computer Science, 2019, , 521-537.	1.0	2
58	Scene Memory Transformer for Embodied Agents in Long-Horizon Tasks. , 2019, , .		90
59	Order-Aware Generative Modeling Using the 3D-Craft Dataset. , 2019, , .		3
60	EMPNet: Neural Localisation and Mapping Using Embedded Memory Points. , 2019, , .		8
61	Multi-Target Embodied Question Answering. , 2019, , .		38
62	Embodied Question Answering in Photorealistic Environments With Point Cloud Perception. , 2019, , .		54
63	Two Body Problem: Collaborative Visual Task Completion. , 2019, , .		29
64	ToriLLE: Learning Environment for Hand-to-Hand Combat. , 2019, , .		2
65	Vision-Based Navigation With Language-Based Assistance via Imitation Learning With Indirect Intervention. , 2019, , .		45
66	Optimal Use of Experience in First Person Shooter Environments. , 2019, , .		1
67	Ludii as a Competition Platform. , 2019, , .		9
68	Object-Oriented State Abstraction in Reinforcement Learning for Video Games. , 2019, , .		2
69	ViZDoom Competitions: Playing <i>Doom</i> From Pixels. IEEE Transactions on Games, 2019, 11, 248-259.	1.2	38
70	Deep Learning for Video Game Playing. IEEE Transactions on Games, 2020, 12, 1-20.	1,2	119
71	End-to-End Active Object Tracking and Its Real-World Deployment via Reinforcement Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42, 1317-1332.	9.7	74
72	Crawling in Rogue's Dungeons With Deep Reinforcement Techniques. IEEE Transactions on Games, 2020, 12, 177-186.	1.2	6
73	Discrete Deep Reinforcement Learning for Mapless Navigation. , 2020, , .		26

#	Article	IF	Citations
74	Scaled Autonomy: Enabling Human Operators to Control Robot Fleets. , 2020, , .		12
75	Implementation on benchmark of SC2LE environment with advantage actor – critic method*. , 2020, , .		0
76	When Autonomous Systems Meet Accuracy and Transferability through Al: A Survey. Patterns, 2020, 1, 100050.	3.1	15
77	A Survey of Planning and Learning in Games. Applied Sciences (Switzerland), 2020, 10, 4529.	1.3	14
78	Continual Reinforcement Learning in 3D Non-stationary Environments. , 2020, , .		12
79	Learning to Simulate Dynamic Environments With GameGAN. , 2020, , .		27
80	Vision-Language Navigation With Self-Supervised Auxiliary Reasoning Tasks. , 2020, , .		92
81	Monoceros: A New Approach for Training an Agent to Play FPS Games. , 2020, , .		O
82	Benchmarking End-to-End Behavioural Cloning on Video Games. , 2020, , .		5
83	Deep Reinforcement Learning with Transformers for Text Adventure Games. , 2020, , .		9
84	An Assortment of Evolutionary Computation Techniques (AECT) in gaming. Neural Computing and Applications, 2020, , 1.	3.2	0
85	A Survey on Visual Navigation for Artificial Agents With Deep Reinforcement Learning. IEEE Access, 2020, 8, 135426-135442.	2.6	52
86	Outdoor Robot Navigation System using Game-Based DQN and Augmented Reality., 2020,,.		3
87	On Improving the Learning of Long-Term historical Information for Tasks with Partial Observability. , 2020, , .		O
88	LiDARsim: Realistic LiDAR Simulation by Leveraging the Real World., 2020,,.		105
89	A Gentle Introduction to Reinforcement Learning and its Application in Different Fields. IEEE Access, 2020, 8, 209320-209344.	2.6	73
90	Action Space Shaping in Deep Reinforcement Learning. , 2020, , .		41
91	MASK-RL: Multiagent Video Object Segmentation Framework Through Reinforcement Learning. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 5103-5115.	7.2	20

#	Article	IF	CITATIONS
92	Reinforcement learning with convolutional reservoir computing. Applied Intelligence, 2020, 50, 2400-2410.	3.3	10
93	Capsule Network Performance with Autonomous Navigation. International Journal of Artificial Intelligence & Applications, 2020, 11, 1-15.	0.3	2
94	From Video Game to Real Robot: The Transfer Between Action Spaces. , 2020, , .		2
95	From Chess and Atari to StarCraft and Beyond: How Game AI is Driving the World of AI. KI - Kunstliche Intelligenz, 2020, 34, 7-17.	2.2	33
96	Deep Reinforcement Learning for Instruction Following Visual Navigation in 3D Maze-Like Environments. IEEE Robotics and Automation Letters, 2020, 5, 1175-1182.	3.3	22
97	Development of a Pedagogical Graphical Interface for the Reinforcement Learning. IEEE Latin America Transactions, 2020, 18, 92-101.	1.2	3
98	View-Action Representation Learning for Active First-Person Vision. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31, 480-491.	5.6	2
99	Pixel-Wise Crowd Understanding via Synthetic Data. International Journal of Computer Vision, 2021, 129, 225-245.	10.9	73
100	Explore and Explain: Self-supervised Navigation and Recounting. , 2021, , .		6
101	Vision-Based Topological Mapping and Navigation With Self-Organizing Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 7101-7113.	7.2	4
102	Deep Reinforcement Learning in VizDoom via DQN and Actor-Critic Agents. Lecture Notes in Computer Science, 2021, , 138-150.	1.0	8
103	EgoMap: Projective Mapping and Structured Egocentric Memory for Deep RL. Lecture Notes in Computer Science, 2021, , 525-540.	1.0	6
104	State-Temporal Compression in Reinforcement Learning With the Reward-Restricted Geodesic Metric. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 5572-5589.	9.7	4
105	Towards Ontology-Guided Learning for Shepherding. Unmanned System Technologies, 2021, , 115-130.	0.9	0
106	Deep Reinforcement Learning Techniques in Diversified Domains: A Survey. Archives of Computational Methods in Engineering, 2021, 28, 4715-4754.	6.0	22
107	Playing Atari with few neurons. Autonomous Agents and Multi-Agent Systems, 2021, 35, 17.	1.3	6
108	Learning Human Search Behavior from Egocentric Visual Inputs. Computer Graphics Forum, 2021, 40, 389-398.	1.8	2
109	A Deep Reinforcement Learning Approach To Audio-Based Navigation In A Multi-Speaker Environment. , 2021, , .		4

#	Article	IF	CITATIONS
110	Deep Reinforcement Learning for a Humanoid Robot Soccer Player. Journal of Intelligent and Robotic Systems: Theory and Applications, 2021, 102, 1.	2.0	10
111	Vision-and-Dialog Navigation by Fusing Cross-modal features. , 2021, , .		0
112	Explainable robotic systems: understanding goal-driven actions in a reinforcement learning scenario. Neural Computing and Applications, 2023, 35, 18113-18130.	3.2	15
113	Terra: A Smart and Sensible Digital Twin Framework for Robust Robot Deployment in Challenging Environments. IEEE Internet of Things Journal, 2021, 8, 14039-14050.	5.5	16
114	Evaluating the impact of curriculum learning on the training process for an intelligent agent in a video game. Inteligencia Artificial, 2021, 24, 1-20.	0.5	2
115	SegVisRL: development of a robot's neural visuomotor and planning system for lunar exploration. Advanced Robotics, 2021, 35, 1359-1373.	1.1	2
116	Deep reinforcement learning in computer vision: a comprehensive survey. Artificial Intelligence Review, 2022, 55, 2733-2819.	9.7	63
117	Playing First-Person Perspective Games with Deep Reinforcement Learning Using the State-of-the-Art Game-Al Research Platforms. Studies in Computational Intelligence, 2021, , 635-667.	0.7	3
118	Orientation-Preserving Rewards' Balancing in Reinforcement Learning. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 6458-6472.	7.2	2
119	Subgoal-Based Reward Shaping to Improve Efficiency in Reinforcement Learning. IEEE Access, 2021, 9, 97557-97568.	2.6	9
120	Visual Analytics for RNN-Based Deep Reinforcement Learning. IEEE Transactions on Visualization and Computer Graphics, 2022, 28, 4141-4155.	2.9	11
121	Robot Navigation Based on Situational Awareness. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14, 869-881.	2.6	1
122	A Functional Clipping Approach for Policy Optimization Algorithms. IEEE Access, 2021, 9, 96056-96063.	2.6	4
123	Reinforcement Learning Algorithm and FDTD-Based Simulation Applied to Schroeder Diffuser Design Optimization. IEEE Access, 2021, 9, 136004-136017.	2.6	0
124	Playing Doom with Anticipator-A3C Based Agents Using Deep Reinforcement Learning and the ViZDoom Game-Al Research Platform. Studies in Computational Intelligence, 2021, , 503-562.	0.7	1
125	ViZDoom: DRQN with Prioritized Experience Replay, Double-Q Learning and Snapshot Ensembling. Advances in Intelligent Systems and Computing, 2019, , 1-17.	0.5	12
126	Look Before You Leap: Bridging Model-Free and Model-Based Reinforcement Learning for Planned-Ahead Vision-and-Language Navigation. Lecture Notes in Computer Science, 2018, , 38-55.	1.0	77
127	TextWorld: A Learning Environment for Text-Based Games. Communications in Computer and Information Science, 2019, , 41-75.	0.4	20

#	Article	IF	CITATIONS
128	Self-adapting Goals Allow Transfer of Predictive Models to New Tasks. Communications in Computer and Information Science, 2019, , 28-39.	0.4	1
129	SoundSpaces: Audio-Visual Navigation inÂ3DÂEnvironments. Lecture Notes in Computer Science, 2020, , 17-36.	1.0	67
130	DeepLogger., 2018,,.		2
131	Neuroevolution of self-interpretable agents. , 2020, , .		42
132	Knowledge Transfer in Vision Recognition. ACM Computing Surveys, 2021, 53, 1-35.	16.1	10
133	Deep Reinforcement Learning: A State-of-the-Art Walkthrough. Journal of Artificial Intelligence Research, 0, 69, 1421-1471.	7.0	27
134	Feature-wise transformations. Distill, 2018, 3, .	5.3	81
135	MaAST: Map Attention with Semantic Transformers for Efficient Visual Navigation., 2021,,.		10
136	IKEA Furniture Assembly Environment for Long-Horizon Complex Manipulation Tasks., 2021,,.		23
137	Instance-Aware Predictive Navigation in Multi-Agent Environments. , 2021, , .		2
138	Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation., 2021,,.		24
139	Towards Visual Training Set Generation Framework. Lecture Notes in Computer Science, 2017, , 747-758.	1.0	1
141	Induced Exploration on Policy Gradients by Increasing Actor Entropy Using Advantage Target Regions. Lecture Notes in Computer Science, 2018, , 655-667.	1.0	1
142	Deep Reinforcement Learning Methods for Navigational Aids. Lecture Notes in Computer Science, 2018, , 66-75.	1.0	0
143	Help, Anna! Visual Navigation with Natural Multimodal Assistance via Retrospective Curiosity-Encouraging Imitation Learning. , 2019, , .		51
144	Reinforcement Learning for Extended Reality: Designing Self-Play Scenarios. , 2019, , .		2
145	Boosting Reinforcement Learning with Unsupervised Feature Extraction. Lecture Notes in Computer Science, 2019, , 555-566.	1.0	1
146	Augmented Curiosity: Depth and Optical Flow Prediction for Efficient Exploration. Lecture Notes in Computer Science, 2019, , 260-271.	1.0	1

#	Article	IF	CITATIONS
147	Navigation and collision avoidance with human augmented supervisory training and fine tuning via reinforcement learning. , 2019, , .		0
148	Training an Agent for Third-person Shooter Game Using Unity ML-Agents. DEStech Transactions on Computer Science and Engineering, 2019, , .	0.1	1
149	A Comparison of Visual Navigation Approaches based on Localization and Reinforcement Learning in Virtual and Real Environments. , 2020, , .		3
150	Extending the Capabilities of Reinforcement Learning Through Curriculum: A Review of Methods and Applications. SN Computer Science, 2022, 3, 1.	2.3	3
151	Learning to Plan with Uncertain Topological Maps. Lecture Notes in Computer Science, 2020, , 473-490.	1.0	12
152	Adaptive Data Replication Optimization Based on Reinforcement Learning. , 2020, , .		2
153	Application and Perspectives of Convolutional Neural Networks in Digital Intelligence. Advances in Intelligent Systems and Computing, 2021, , 33-58.	0.5	0
154	Tutor-guided Interior Navigation with Deep Reinforcement Learning. IEEE Transactions on Cognitive and Developmental Systems, 2020, , 1-1.	2.6	1
155	Hierarchical Reinforcement Learning. , 2020, , 317-333.		1
156	Domain Adaptation Through Task Distillation. Lecture Notes in Computer Science, 2020, , 664-680.	1.0	5
157	ArraMon: A Joint Navigation-Assembly Instruction Interpretation Task in Dynamic Environments. , 2020, , .		5
158	Foveated Haptic Gaze. Lecture Notes in Computer Science, 2020, , 132-144.	1.0	0
159	Testing the Safety of Self-driving Vehicles by Simulating Perception and Prediction. Lecture Notes in Computer Science, 2020, , 312-329.	1.0	8
160	A Cordial Sync: Going Beyond Marginal Policies for Multi-agent Embodied Tasks. Lecture Notes in Computer Science, 2020, , 471-490.	1.0	16
161	FIXAR: A Fixed-Point Deep Reinforcement Learning Platform with Quantization-Aware Training and Adaptive Parallelism. , $2021, , .$		10
163	Game Al Competitions: Motivation for the Imitation Game-Playing Competition. , 0, , .		5
164	URNAI: A Multi-Game Toolkit for Experimenting Deep Reinforcement Learning Algorithms. , 2020, , .		0
165	Al4U: A Tool for Game Reinforcement Learning Experiments. , 2020, , .		1

#	Article	IF	CITATIONS
166	Multi-Agent Feature Learning and Integration for Mixed Cooperative and Competitive Environment. , 2020, , .		1
167	Distilling Reinforcement Learning Tricks for Video Games. , 2021, , .		1
168	Experience-Driven PCG via Reinforcement Learning: A Super Mario Bros Study. , 2021, , .		21
169	Towards an Al playing Touhou from pixels: a dataset for real-time semantic segmentation. , 2021, , .		0
170	Contrastive Learning of Generalized Game Representations. , 2021, , .		4
171	Agents that Listen: High-Throughput Reinforcement Learning with Multiple Sensory Systems., 2021,,.		5
172	Communicative Learning with Natural Gestures for Embodied Navigation Agents with Human-in-the-Scene. , 2021, , .		7
173	Assessing the Robustness of Deep Q-Network Agents to Changes on Game Object Textures. , 2021, , .		0
174	Gym Hero: A Research Environment for Reinforcement Learning Agents in Rhythm Games., 2021,,.		0
175	Task Independent Capsule-Based Agents for Deep Q-Learning. Communications in Computer and Information Science, 2022, , 69-85.	0.4	0
176	Learning Camera Control in Dynamic Scenes from Limited Demonstrations. Computer Graphics Forum, 2022, 41, 427-437.	1.8	0
178	Finding Simple Solutions to Multi-Task Visual Reinforcement Learning Problems with Tangled Program Graphs. Genetic and Evolutionary Computation, 2022, , 1-19.	1.0	1
179	Design of Reinforcement Learning Environment for Multiple UAV Area Coverage Search. Lecture Notes in Electrical Engineering, 2022, , 2700-2711.	0.3	2
180	Reinforcement Learning With Dual-Observation for General Video Game Playing. IEEE Transactions on Games, 2023, 15, 202-216.	1.2	0
181	Improving Target-driven Visual Navigation with Attention on 3D Spatial Relationships. Neural Processing Letters, 2022, 54, 3979-3998.	2.0	9
182	Unconstrained Scene Generation with Locally Conditioned Radiance Fields., 2021,,.		60
183	Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents., 2021,,.		7
184	Omnidata: A Scalable Pipeline for Making Multi-Task Mid-Level Vision Datasets from 3D Scans. , 2021, , .		42

#	Article	IF	CITATIONS
185	Exploring Reflective Limitation of Behavior Cloning in Autonomous Vehicles. , 2021, , .		3
186	Playtesting: What is Beyond Personas. IEEE Transactions on Games, 2022, , 1-1.	1.2	0
187	Partial Consistency for Stabilizing Undiscounted Reinforcement Learning. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 10359-10373.	7.2	0
188	Fast Proximal Policy Optimization. Lecture Notes in Computer Science, 2022, , 73-86.	1.0	1
189	GAN-Aimbots: Using Machine Learning for Cheating in First Person Shooters. IEEE Transactions on Games, 2023, 15, 566-579.	1.2	1
190	An Agile New Research Framework for Hybrid Human-Al Teaming: Trust, Transparency, and Transferability. ACM Transactions on Interactive Intelligent Systems, 2022, 12, 1-36.	2.6	10
191	Developing and Testing a New Reinforcement Learning Toolkit with Unreal Engine. Lecture Notes in Computer Science, 2022, , 317-334.	1.0	1
192	Prospects for multi-agent collaboration and gaming: challenge, technology, and application. Frontiers of Information Technology and Electronic Engineering, 2022, 23, 1002-1009.	1.5	6
194	Deep Reinforcement Learning based Video Games: A Review. , 2022, , .		7
197	Efficiency-reinforced Learning with Auxiliary Depth Reconstruction for Autonomous Navigation of Mobile Devices. , 2022, , .		3
198	A modeling environment for reinforcement learning in games. Entertainment Computing, 2022, 43, 100516.	1.8	4
199	Deep Innovation Protection: Confronting the Credit Assignment Problem in Training Heterogeneous Neural Architectures. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 12391-12399.	3.6	1
200	Transformer-Based Deep Reinforcement Learning inÂVizDoom. Communications in Computer and Information Science, 2022, , 96-110.	0.4	3
201	Few-Shot Image-to-Semantics Translation for Policy Transfer in Reinforcement Learning. , 2022, , .		0
202	Meta Proximal Policy Optimization for Cooperative Multi-Agent Continuous Control., 2022,,.		0
203	LevDoom: A Benchmark for Generalization on Level Difficulty in Reinforcement Learning. , 2022, , .		1
204	CaiRL: A High-Performance Reinforcement Learning Environment Toolkit. , 2022, , .		0
205	Counter-Strike Deathmatch with Large-Scale Behavioural Cloning. , 2022, , .		3

#	Article	IF	CITATIONS
206	A Deep Reinforcement Learning Blind AI in DareFightingICE., 2022,,.		4
207	A review of platforms for simulating embodied agents in 3D virtual environments. Artificial Intelligence Review, 2023, 56, 3711-3753.	9.7	4
209	Sequential Generative Exploration Model for Partially Observable Reinforcement Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 10700-10708.	3 . 6	1
210	Learning Combat in NetHack. Proceedings, 2017, 13, 16-22.	0.7	0
211	OptimizingMARL: Developing Cooperative Game Environments Based onÂMulti-agent Reinforcement Learning. Lecture Notes in Computer Science, 2022, , 89-102.	1.0	0
212	Flowsheet generation through hierarchical reinforcement learning and graph neural networks. AICHE Journal, 2023, 69, .	1.8	5
213	A review of cooperative multi-agent deep reinforcement learning. Applied Intelligence, 2023, 53, 13677-13722.	3.3	59
216	Transfer Meta Learning. , 2022, , .		0
217	DRLeague: a Novel 3D Environment for Training Reinforcement Learning Agents. , 2022, , .		0
218	Graph Attention Memory for Visual Navigation. , 2022, , .		1
219	Novel Reinforcement Learning Research Platform for Role-Playing Games. Mathematics, 2022, 10, 4363.	1.1	3
220	Towards Continual Reinforcement Learning: A Review and Perspectives. Journal of Artificial Intelligence Research, 0, 75, 1401-1476.	7.0	29
221	Curiosity-driven Exploration in VizDoom. , 2022, , .		0
222	MINERVAS: Massive INterior EnviRonments VirtuAl Synthesis. Computer Graphics Forum, 2022, 41, 63-74.	1.8	0
223	Co-training by Experience Replay for Reinforcement Learning. , 0, 39, 545-549.		0
224	High-accuracy model-based reinforcement learning, a survey. Artificial Intelligence Review, 2023, 56, 9541-9573.	9.7	6
225	BulletArm: An Open-Source Robotic Manipulation Benchmark andÂLearning Framework. Springer Proceedings in Advanced Robotics, 2023, , 335-350.	0.9	0
226	Deep reinforcement learning and imitation learning based on VizDoom. , 2022, , .		0

#	Article	IF	CITATIONS
227	Mastering First-person Shooter Game with Imitation Learning. , 2022, , .		0
229	Domain Adaptation of Reinforcement Learning Agents based on Network Service Proximity., 2023,,.		1
230	Deep Determinantal Q-Learning withÂRole Aware. Lecture Notes in Computer Science, 2023, , 286-297.	1.0	0
235	NeuralField-LDM: Scene Generation with Hierarchical Latent Diffusion Models. , 2023, , .		0
236	Galactic: Scaling End-to-End Reinforcement Learning for Rearrangement at 100k Steps-Per-Second., 2023,,.		0
237	Assessment of Various Deep Reinforcement Learning Techniques in Complex Virtual Search-and-Retrieve Environments Compared to Human Performance. , 2023, , 139-155.		0
238	Explaining theÂBehavior ofÂReinforcement Learning Agents Using Association Rules. Lecture Notes in Computer Science, 2023, , 107-120.	1.0	0
240	Evolutionary Machine Learning and Games. Genetic and Evolutionary Computation, 2024, , 715-737.	1.0	0
241	Leaving theÂNavMesh: An Ablative Analysis ofÂDeep Reinforcement Learning forÂComplex Navigation inÂ3D Virtual Environments. Lecture Notes in Computer Science, 2024, , 286-297.	1.0	0
244	SWiMM DEEPeR: A Simulated Underwater Environment for Tracking Marine Mammals Using Deep Reinforcement Learning and BlueROV2., 2023,,.		0
245	Implementing First-Person Shooter Game AI in WILD-SCAV with Rule-Enhanced Deep Reinforcement Learning. , 2023, , .		0
250	Stabilizing Visual Reinforcement Learning via Asymmetric Interactive Cooperation. , 2023, , .		0
251	Deep Reinforced Navigation ofÂAgents inÂ2D Platform Video Games. Lecture Notes in Computer Science, 2024, , 288-308.	1.0	0
252	Predictive World Models forÂSocial Navigation. Advances in Intelligent Systems and Computing, 2024, , 53-64.	0.5	O