Explanation of the Brightness and Color of the Sky, Part

Journal of the Optical Society of America 43, 113

DOI: 10.1364/josa.43.000113

Citation Report

#	Article	IF	CITATIONS
2	Brightness and Color of the Twilight Sky. Journal of the Optical Society of America, 1953, 43, 805.	1.2	4
4	Search for Discontinuities in the Brightness of the Twilight Sky. Journal of the Optical Society of America, 1955, 45, 389.	1.2	3
5	Luminance of the Sun. Journal of the Optical Society of America, 1955, 45, 483.	1.2	15
6	The colour of the zenith twilight sky: absorption due to ozone. Journal of Atmospheric and Solar-Terrestrial Physics, 1957, 10, 176-180.	0.9	12
7	Random Reflections on the History of Atmospheric Optics. Journal of the Optical Society of America, 1960, 50, 97.	1.2	6
8	Southern-hemisphere observations of sodium emission throughout twilight. Journal of Geophysical Research, 1960, 65, 137-140.	3.3	7
9	Meteoric Matter and Some Geophysical Problems of the Upper Atmosphere. ARS Journal, 1962, 32, 143-151.	1.0	1
10	Optics of the Lower Atmosphere. Applied Optics, 1964, 3, 157.	2.1	17
11	The effect of stratospheric dust on the color of the twilight sky. Journal of Geophysical Research, 1968, 73, 6897-6913.	3.3	32
12	The Influence of Ozone and Aerosols on the Brightness and Color of the Twilight Sky. Journals of the Atmospheric Sciences, 1974, 31, 1662-1674.	1.7	28
13	Sky twilight brightness and colour during high solar activity. The Moon and the Planets, 1983, 29, 99-105.	0.5	3
14	The coloured edge of noctilucent clouds. Journal of Atmospheric and Solar-Terrestrial Physics, 1988, 50, 591-599.	0.9	6
15	Eye Movements And Coding Of Video Sequences. , 1988, 1001, 398.		22
16	Astronomy and the limits of vision. New Astronomy Reviews, 1993, 36, 311-361.	0.3	65
17	Ground based spectroscopic studies of sunlit airglow and aurora. Journal of Atmospheric and Solar-Terrestrial Physics, 1998, 60, 1403-1423.	1.6	36
18	Occurrence of polar stratospheric clouds at Kiruna. Annales Geophysicae, 1999, 17, 1457-1462.	1.6	18
19	Atmospheric Optics. , 2004, , 453-500.		1
21	Human color vision and the unsaturated blue color of the daytime sky. American Journal of Physics, 2005, 73, 590-597.	0.7	29

#	Article	IF	CITATIONS
22	Crepuscular and nocturnal illumination and its effects on color perception by the nocturnal hawkmoth <i>Deilephila elpenor</i> . Journal of Experimental Biology, 2006, 209, 789-800.	1.7	202
23	Measurements and predictions of the illuminance during a solar eclipse. European Journal of Physics, 2006, 27, 1299-1314.	0.6	31
25	Radiation and Optics in the Atmosphere. , 2007, , 1165-1203.		9
26	Atmospheric ozone and colors of the Antarctic twilight sky. Applied Optics, 2011, 50, F162.	2.1	17
27	Twilight spectral dynamics and the coral reef invertebrate spawning response. Journal of Experimental Biology, 2011, 214, 770-777.	1.7	67
28	Radiation and Optics in the Atmosphere. , 2012, , 1475-1517.		5
29	Optical properties of the undisturbed mesosphere from wide-angle twilight sky polarimetry. Cosmic Research, 2013, 51, 235-240.	0.6	16
30	Physical Explanation of Tropospheric Aerosol Effects on Twilight Sky Color Based on Photographic Observations and Radiative Transfer Simulations. Scientific Online Letters on the Atmosphere, 2013, 9, 15-18.	1.4	3
31	Contributions of artificial lighting sources on light pollution in Hong Kong measured through a night sky brightness monitoring network. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 139, 90-108.	2.3	85
32	A new method of measuring aerosol optical properties from digital twilight photographs. Atmospheric Measurement Techniques, 2015, 8, 4295-4311.	3.1	8
33	Colour As a Signal for Entraining the Mammalian Circadian Clock. PLoS Biology, 2015, 13, e1002127.	5.6	167
35	Measuring and modeling twilight's Belt of Venus. Applied Optics, 2015, 54, B194.	1.8	4
36	Downwelling spectral irradiance during evening twilight as a function of the lunar phase. Applied Optics, 2015, 54, B85.	1.8	23
37	Efficiency Limit of Perovskite/Si Tandem Solar Cells. ACS Energy Letters, 2016, 1, 863-868.	17.4	198
38	Variation of outdoor illumination as a function of solar elevation and light pollution. Scientific Reports, 2016, 6, 26756.	3.3	131
39	Using light to tell the time of day: sensory coding in the mammalian circadian visual network. Journal of Experimental Biology, 2016, 219, 1779-1792.	1.7	48
40	IS THE PALE BLUE DOT UNIQUE? OPTIMIZED PHOTOMETRIC BANDS FOR IDENTIFYING EARTH-LIKE EXOPLANETS. Astrophysical Journal, 2016, 817, 31.	4.5	31
41	Antitwilight I: structure and optics. Applied Optics, 2017, 56, G156.	2.1	1

#	Article	IF	Citations
43	Tropospheric haze and colors of the clear twilight sky. Applied Optics, 2017, 56, G179.	2.1	3
44	Responses to Intermittent Light Stimulation Late in the Night Phase Before Dawn. Clocks & Sleep, 2018, 1, 26-41.	2.0	5
45	The circadian activity rhythm is reset by nanowatt pulses of ultraviolet light. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181288.	2.6	16
46	AtmosphÃ ¤ sche Optik für Einsteiger. , 2019, , .		3
47	The influence of spectral composition on spring and autumn phenology in trees. Tree Physiology, 2019, 39, 925-950.	3.1	32
48	Liminal Light and Primate Evolution. Annual Review of Anthropology, 2020, 49, 257-276.	1.5	6
49	Patterns in the spectral composition of sunlight and biologically meaningful spectral photon ratios as affected by atmospheric factors. Agricultural and Forest Meteorology, 2020, 291, 108041.	4.8	42
50	A fitted radiance and attenuation model for realistic atmospheres. ACM Transactions on Graphics, 2021, 40, 1-14.	7.2	О
51	A fitted radiance and attenuation model for realistic atmospheres. ACM Transactions on Graphics, 2021, 40, 1-14.	7.2	7
53	The Color of the Sky. Atmospheric and Climate Sciences, 2012, 02, 510-517.	0.3	5
55	Farbenpracht am Himmel: Von Pastellfarben und glutrotem Himmel., 2005,, 259-311.		0
56	Physics of the Upper Atmosphere. , 1957, , 160-181.		0
57	Licht und Farbe des Himmels., 1992,, 317-381.		0
58	Farbenpracht am Himmel: Von Pastellfarben und glutrotem Himmel. , 2019, , 275-327.		0
59	On the colour of noctilucent clouds. Annales Geophysicae, 2022, 40, 407-419.	1.6	4
60	Reindeer eyes seasonally adapt to ozone-blue Arctic twilight by tuning a photonic tapetum lucidum. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	2.6	9
61	State-dependent pupil dilation rapidly shifts visual feature selectivity. Nature, 2022, 610, 128-134.	27.8	22
62	On the twilight phenomenon of the green band. Applied Optics, 2023, 62, 162.	1.8	3

CITATION REPORT

#	Article	IF	CITATIONS
64	Physical and biological fundamentals of color. , 2024, , 75-126.		0
65	Revisiting the question "Why is the sky blue?― Atmospheric Chemistry and Physics, 2023, 23, 14829-14839.	4.9	1
66	Migratory birds are able to choose the appropriate migratory direction under dim yellow narrowband light. Proceedings of the Royal Society B: Biological Sciences, 2023, 290, .	2.6	0
67	Programmable directional color dynamics using plasmonics. Microsystems and Nanoengineering, 2024, 10, .	7.0	1