A nonâ€sense <i><scp>MCM9</scp></i> mutation in a finsufficiency

Clinical Genetics

89, 603-607

DOI: 10.1111/cge.12736

Citation Report

#	Article	IF	CITATIONS
1	Premature Ovarian Insufficiency: New Perspectives on Genetic Cause and Phenotypic Spectrum. Endocrine Reviews, 2016, 37, 609-635.	20.1	170
2	Pathogenic germline MCM9 variants are rare in Australian Lynch-like syndrome patients. Cancer Genetics, 2016, 209, 497-500.	0.4	8
3	<i>MCM8</i> and <i>MCM9</i> Nucleotide Variants in Women with Primary Ovarian Insufficiency. Journal of Clinical Endocrinology and Metabolism, 2017, 102, jc.2016-2565.	3.6	68
4	New mutations in non-syndromic primary ovarian insufficiency patients identified via whole-exome sequencing. Human Reproduction, 2017, 32, 1512-1520.	0.9	65
5	A homozygous mutation of GNRHR in a familial case diagnosed with polycystic ovary syndrome. European Journal of Endocrinology, 2017, 176, K9-K14.	3.7	20
6	New MCM8 mutation associated with premature ovarian insufficiency and chromosomal instability in a highly consanguineous Tunisian family. Fertility and Sterility, 2017, 108, 694-702.	1.0	48
7	A novel variant of <i><scp>DHH</scp></i> in a familial case of 46, <scp>XY</scp> disorder of sex development: Insights from molecular dynamics simulations. Clinical Endocrinology, 2017, 87, 539-544.	2.4	19
8	Ovary as a Biomarker of Health and Longevity: Insights from Genetics. Seminars in Reproductive Medicine, 2017, 35, 231-240.	1.1	11
9	A homozygous FANCM mutation underlies a familial case of non-syndromic primary ovarian insufficiency. ELife, 2017, 6, .	6.0	56
10	Chromosomal instability in women with primary ovarian insufficiency. Human Reproduction, 2018, 33, 531-538.	0.9	29
11	Amenorrea. EMC - GinecologÃa-Obstetricia, 2018, 54, 1-15.	0.0	0
12	Advances in the Molecular Pathophysiology, Genetics, and Treatment of Primary Ovarian Insufficiency. Trends in Endocrinology and Metabolism, 2018, 29, 400-419.	7.1	118
13	Mutations in the mitochondrial ribosomal protein MRPS22 lead to primary ovarian insufficiency. Human Molecular Genetics, 2018, 27, 1913-1926.	2.9	39
14	The molecular complexity of primary ovarian insufficiency aetiology and the use of massively parallel sequencing. Molecular and Cellular Endocrinology, 2018, 460, 170-180.	3.2	27
15	Molecular Genetics of Premature Ovarian Insufficiency. Trends in Endocrinology and Metabolism, 2018, 29, 795-807.	7.1	163
16	Rare variants in FANCA induce premature ovarian insufficiency. Human Genetics, 2019, 138, 1227-1236.	3.8	56
17	Contribution to colonic polyposis of recently proposed predisposing genes and assessment of the prevalence of <i>NTHL1</i> ―and <i>MSH3</i> ―associated polyposes. Human Mutation, 2019, 40, 1910-1923	3. ^{2.5}	24
18	Post-Translational Modifications of the Mini-Chromosome Maintenance Proteins in DNA Replication. Genes, 2019, 10, 331.	2.4	34

#	ARTICLE	IF	CITATIONS
19	The MCM8/9 complex: A recent recruit to the roster of helicases involved in genome maintenance. DNA Repair, 2019, 76, 1-10.	2.8	40
20	Association study of the three functional polymorphisms (TAS2R46G>A, OR4C16G>A, and) Tj ETQq1 1 0.7	843]4 rgE	3T <u>/</u> Overlock
21	Gene variants identified by whole-exome sequencing in 33 French women with premature ovarian insufficiency. Journal of Assisted Reproduction and Genetics, 2019, 36, 39-45.	2.5	35
22	Genetics and Genomics of Primary Ovarian Insufficiency. , 2019, , 427-445.		3
23	Minichromosome maintenance complex component 8 and 9 gene expression in the menstrual cycle and unexplained primary ovarian insufficiency. Journal of Assisted Reproduction and Genetics, 2019, 36, 57-64.	2.5	9
24	<i>BMPR1A</i> and <i>BMPR1B</i> Missense Mutations Cause Primary Ovarian Insufficiency. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e1449-e1457.	3.6	26
25	Two novel mutations in the <i>MCM8</i> gene shared by two Chinese siblings with primary ovarian insufficiency and short stature. Molecular Genetics & Enomic Medicine, 2020, 8, e1396.	1,2	10
26	Whole-exome sequencing in patients with premature ovarian insufficiency: early detection and early intervention. Journal of Ovarian Research, 2020, 13, 114.	3.0	31
27	Primary ovarian insufficiency, meiosis and DNA repair. Biomedical Journal, 2020, 43, 115-123.	3.1	30
28	Novel pathogenic mutations in minichromosome maintenance complex component 9 (MCM9) responsible for premature ovarian insufficiency. Fertility and Sterility, 2020, 113, 845-852.	1.0	24
29	An exomeâ€wide exploration of cases of primary ovarian insufficiency uncovers novel sequence variants and candidate genes. Clinical Genetics, 2020, 98, 293-298.	2.0	11
30	STAG3 homozygous missense variant causes primary ovarian insufficiency and male non-obstructive azoospermia. Molecular Human Reproduction, 2020, 26, 665-677.	2.8	26
31	Mutation in ALOX12B likely cause of POI and also ichthyosis in a large Iranian pedigree. Molecular Genetics and Genomics, 2020, 295, 1039-1053.	2.1	1
32	A Novel Phenotype Combining Primary Ovarian Insufficiency Growth Retardation and Pilomatricomas With MCM8 Mutation. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 1973-1982.	3.6	23
33	Molecular genetics of infertility: loss-of-function mutations in humans and corresponding knockout/mutated mice. Human Reproduction Update, 2021, 27, 154-189.	10.8	122
34	Predictable increase in female reproductive window: A simple model connecting age of reproduction, menopause, and longevity. BioEssays, 2021, 43, 2000233.	2.5	1
35	Genetic etiologic analysis in 74 Chinese Han women with idiopathic premature ovarian insufficiency by combined molecular genetic testing. Journal of Assisted Reproduction and Genetics, 2021, 38, 965-978.	2.5	9
36	Meiosis interrupted: the genetics of female infertility via meiotic failure. Reproduction, 2021, 161, R13-R35.	2.6	44

#	ARTICLE	IF	CITATIONS
37	A recurrent <i>ZSWIM7</i> mutation causes male infertility resulting from decreased meiotic recombination. Human Reproduction, 2021, 36, 1436-1445.	0.9	18
38	Meiotic Recombination Defects and Premature Ovarian Insufficiency. Frontiers in Cell and Developmental Biology, 2021, 9, 652407.	3.7	25
40	Structural study of the N-terminal domain of human MCM8/9 complex. Structure, 2021, 29, 1171-1181.e4.	3.3	8
41	A kaleidoscopic view of ovarian genes associated with premature ovarian insufficiency and senescence. FASEB Journal, 2021, 35, e21753.	0.5	23
42	Premature ovarian insufficiency: Genetic causes and treatment options. A literature review. Journal of Obstetrics and Women's Diseases, 2021, 70, 75-91.	0.2	0
43	MCM9 is associated with germline predisposition to early-onset cancer—clinical evidence. Npj Genomic Medicine, 2021, 6, 78.	3.8	9
44	Targeted whole exome sequencing and Drosophila modelling to unveil the molecular basis of primary ovarian insufficiency. Human Reproduction, 2021, 36, 2975-2991.	0.9	9
45	Genetics of ovarian insufficiency and defects of folliculogenesis. Best Practice and Research in Clinical Endocrinology and Metabolism, 2022, 36, 101594.	4.7	36
47	A novel variant of NPPC causes abnormal post-translational cleavage: A candidate gene for premature ovarian insufficiency. Maturitas, 2021, 157, 40-48.	2.4	0
48	Targeted Next-Generation Sequencing Indicates a Frequent Oligogenic Involvement in Primary Ovarian Insufficiency Onset. Frontiers in Endocrinology, 2021, 12, 664645.	3.5	5
49	Rare coding variants in DNA damage repair genes associated with timing of natural menopause. Human Genetics and Genomics Advances, 2022, 3, 100079.	1.7	4
50	Oocyte maturation abnormalities - A systematic review of the evidence and mechanisms in a rare but difficult to manage fertility pheneomina. Tâ^šÂºrk Jinekoloji Ve Obstetrik Dernei Dergisi, 2022, 19, 60-80.	0.8	5
51	Impacts of endometrioma on ovarian aging from basic science to clinical management. Frontiers in Endocrinology, $0,13,.$	3. 5	5
52	The Role of MCM9 in the Etiology of Sertoli Cell-Only Syndrome and Premature Ovarian Insufficiency. Journal of Clinical Medicine, 2023, 12, 990.	2.4	2
53	Selected Genetic Factors Associated with Primary Ovarian Insufficiency. International Journal of Molecular Sciences, 2023, 24, 4423.	4.1	11
54	Update on the genetics and genomics of premature ovarian insufficiency., 2023,, 439-461.		0
55	Activity, substrate preferenceÂand structure of the <i>Hs</i> MCM8/9 helicase. Nucleic Acids Research, 0, , .	14.5	0
56	Molecular functions of MCM8 and MCM9 and their associated pathologies. IScience, 2023, 26, 106737.	4.1	0

CITATION REPORT

#	Article	IF	CITATIONS
57	Mutational analysis of minichromosome maintenance complex component (<i>MCM</i>) family genes in Chinese Han women with polycystic ovarian syndrome. Gynecological Endocrinology, 2023, 39, .	1.7	0
58	DNA double-strand break genetic variants in patients with premature ovarian insufficiency. Journal of Ovarian Research, 2023, 16 , .	3.0	1
59	A novel missense variant in LAMC1 identified in a POI family by whole exome sequencing. Gynecological Endocrinology, 2023, 39, .	1.7	0
60	A Human Homozygous HELQ Missense Variant Does Not Cause Premature Ovarian Insufficiency in a Mouse Model. Genes, 2024, 15, 333.	2.4	0