Where, why and how? Explaining the lowâ€temperatur species

Journal of Ecology 104, 1076-1088 DOI: 10.1111/1365-2745.12574

Citation Report

#	Article	IF	CITATIONS
1	Plant adaptation to cold climates. F1000Research, 2016, 5, 2769.	0.8	110
2	Emerging opportunities and challenges in phenology: a review. Ecosphere, 2016, 7, e01436.	1.0	225
3	Drought impacts on tree growth of two pine species along an altitudinal gradient and their use as early-warning signals of potential shifts in tree species distributions. Forest Ecology and Management, 2016, 381, 157-167.	1.4	63
4	Larix decidua δ180 tree-ring cellulose mainly reflects the isotopic signature of winter snow in a high-altitude glacial valley of the European Alps. Science of the Total Environment, 2017, 579, 230-237.	3.9	21
5	Historical factors shaped species diversity and composition of Salix in eastern Asia. Scientific Reports, 2017, 7, 42038.	1.6	18
6	Geographical and climatic gradients of evergreen versus deciduous broadâ€leaved tree species in subtropical China: Implications for the definition of the mixed forest. Ecology and Evolution, 2017, 7, 3636-3644.	0.8	28
7	Frost hardening and dehardening potential in temperate trees from winter to budburst. New Phytologist, 2017, 216, 113-123.	3.5	69
8	Are winter and summer dormancy symmetrical seasonal adaptive strategies? The case of temperate herbaceous perennials. Annals of Botany, 2017, 119, 311-323.	1.4	53
9	Are local plants the best for ecosystem restoration? It depends on how you analyze the data. Ecology and Evolution, 2017, 7, 10683-10689.	0.8	35
10	Insect herbivory on snow gum (Eucalyptus pauciflora, Myrtaceae) saplings near the alpine treeline: the influence of local- and landscape-scale processes. Australian Journal of Botany, 2017, 65, 582.	0.3	3
11	Tree diversity patterns along the latitudinal gradient in the northwestern Russia. Forest Ecosystems, 2017, 4, .	1.3	7
12	Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps. Agricultural and Forest Meteorology, 2018, 252, 220-230.	1.9	87
13	Information Underload: Ecological Complexity, Incomplete Knowledge, and Data Deficits Create Challenges for the Assisted Migration of Forest Trees. BioScience, 2018, 68, 251-263.	2.2	34
14	Extension of the growing season increases vegetation exposure to frost. Nature Communications, 2018, 9, 426.	5.8	190
15	Global sensitivity analysis of a dynamic vegetation model: Model sensitivity depends on successional time, climate and competitive interactions. Ecological Modelling, 2018, 368, 377-390.	1.2	34
16	Tree growth responses to changing temperatures across space and time: a fine-scale analysis at the treeline in the Swiss Alps. Trees - Structure and Function, 2018, 32, 645-660.	0.9	36
17	The 90 ways to describe plant temperature. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 30, 16-21.	1.1	119
18	Lastâ€century forest productivity in a managed dryâ€edge Scots pine population: the two sides of climate warming. Ecological Applications, 2018, 28, 95-105.	1.8	22

TATION REDO

	CITATION	REPORT	
#	Article	IF	CITATIONS
19	Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agricultural and Forest Meteorology, 2018, 248, 60-69.	1.9	142
20	Vapor–pressure deficit and extreme climatic variables limit tree growth. Global Change Biology, 2018, 24, 1108-1122.	4.2	88
21	Stay or go – how topographic complexity influences alpine plant population and community responses to climate change. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 30, 41-50.	1.1	141
22	Breeding Cold-Tolerant Crops. , 2018, , 159-177.		5
23	Concepts in empirical plant ecology. Plant Ecology and Diversity, 2018, 11, 405-428.	1.0	37
24	Land surface greening suggests vigorous woody regrowth throughout European semiâ€natural vegetation. Global Change Biology, 2018, 24, 5789-5801.	4.2	48
25	Winter matters: Sensitivity to winter climate and cold events increases towards the cold distribution margin of European beech (<i>Fagus sylvatica</i> L.). Journal of Biogeography, 2018, 45, 2779-2790.	1.4	37
26	Stem Radius Variation in Response to Hydro-Thermal Factors in Larch. Forests, 2018, 9, 602.	0.9	8
27	Ecological genomics of variation in budâ€break phenology and mechanisms of response to climate warming in <i>Populus trichocarpa</i> . New Phytologist, 2018, 220, 300-316.	3.5	40
28	Local environment, not local adaptation, drives leafâ€out phenology in common gardens along an elevational gradient in Acadia National Park, Maine. American Journal of Botany, 2018, 105, 986-995.	0.8	22
29	Variation in traits related to water transport in Nothofagus dombeyi helps to explain its latitudinal distribution limit in the Chilean Andes. Plant Ecology and Diversity, 2018, 11, 307-317.	1.0	2
30	Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Global Change Biology, 2019, 25, 3781-3792.	4.2	152
31	Divergent Responses of Community Reproductive and Vegetative Phenology to Warming and Cooling: Asymmetry Versus Symmetry. Frontiers in Plant Science, 2019, 10, 1310.	1.7	8
32	Summer drought and spring frost, but not their interaction, constrain European beech and Silver fir growth in their southern distribution limits. Agricultural and Forest Meteorology, 2019, 278, 107695.	1.9	40
33	Assessment of Growing Thermal Conditions of Main Fruit Species in Portugal Based on Hourly Records from a Weather Station Network. Applied Sciences (Switzerland), 2019, 9, 3782.	1.3	6
34	Ongoing seasonally uneven climate warming leads to earlier autumn growth cessation in deciduous trees. Oecologia, 2019, 189, 549-561.	0.9	39
35	Climate Change and Geographic Ranges: The Implications for Russian Forests. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	14
36	Climatic predictors of species distributions neglect biophysiologically meaningful variables. Diversity and Distributions, 2019, 25, 1318-1333.	1.9	63

#	Article	IF	CITATIONS
37	Daily Maximum Temperatures Induce Lagged Effects on Leaf Unfolding in Temperate Woody Species Across Large Elevational Gradients. Frontiers in Plant Science, 2019, 10, 398.	1.7	14
38	The Relationship between Stem Diameter Shrinkage and Tree Bole Moisture Loss Due to Transpiration. Forests, 2019, 10, 290.	0.9	6
39	Frost controls spring phenology of juvenile Smith fir along elevational gradients on the southeastern Tibetan Plateau. International Journal of Biometeorology, 2019, 63, 963-972.	1.3	25
40	Trailsâ€asâ€ŧransects: phenology monitoring across heterogeneous microclimates in Acadia National Park, Maine. Ecosphere, 2019, 10, e02626.	1.0	11
41	Island disharmony revisited using orchids as a model group. New Phytologist, 2019, 223, 597-606.	3.5	44
42	Editorial: Responses to Climate Change in the Cold Biomes. Frontiers in Plant Science, 2019, 10, 347.	1.7	2
43	Daylength helps temperate deciduous trees to leafâ€out at the optimal time. Global Change Biology, 2019, 25, 2410-2418.	4.2	88
44	Four decades of the coexistence of beech and spruce in a Central European old-growth forest. Which succeeds on what soils and why?. Plant and Soil, 2019, 437, 257-272.	1.8	15
45	Phenological scale for the mortiño or agraz (Vaccinium meridionale Swartz) in the high Colombian Andean area. Revista Facultad Nacional De Agronomia Medellin, 2019, 72, 8897-8908.	0.2	5
46	Biomarker analysis of soil archives. Developments in Quaternary Sciences, 2019, 18, 163-222.	0.1	3
47	Disturbance and the elevation ranges of woody plant species in the mountains of Costa Rica. Ecology and Evolution, 2019, 9, 14330-14340.	0.8	7
48	Beech and silver fir's response along the Balkan's latitudinal gradient. Scientific Reports, 2019, 9, 16269.	1.6	23
49	Identifying bias in cold season temperature reconstructions by beetle mutual climatic range methods in the Pliocene Canadian High Arctic. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 514, 672-676.	1.0	10
50	Proximal remote sensing of tree physiology at northern treeline: Do late-season changes in the photochemical reflectance index (PRI) respond to climate or photoperiod?. Remote Sensing of Environment, 2019, 221, 340-350.	4.6	22
51	Thermal niche predictors of alpine plant species. Ecology, 2020, 101, e02891.	1.5	34
52	Soil alters seedling establishment responses to climate. Ecology Letters, 2020, 23, 140-148.	3.0	20
53	Day length regulates seasonal patterns of stomatal conductance in Quercus species. Plant, Cell and Environment, 2020, 43, 28-39.	2.8	10
54	Disparity in elevational shifts of upper species limits in response to recent climate warming in the Qinling Mountains, North-central China. Science of the Total Environment, 2020, 706, 135718.	3.9	19

#	Article	IF	CITATIONS
55	Nâ€P utilization of <i>Acer mono</i> leaves at different life history stages across altitudinal gradients. Ecology and Evolution, 2020, 10, 851-862.	0.8	6
56	What causes variable response in tree growth to climate change at a single site? A case study of Picea crassifolia at the upper treeline, Qilian Mountains, China. Trees - Structure and Function, 2020, 34, 615-622.	0.9	2
57	Investigating the urban-induced microclimate effects on winter wheat spring phenology using Sentinel-2 time series. Agricultural and Forest Meteorology, 2020, 294, 108153.	1.9	20
58	Moisture-driven changes in the sensitivity of the radial growth of Picea crassifolia to temperature, northeastern Tibetan Plateau. Dendrochronologia, 2020, 64, 125761.	1.0	16
59	Probability of Spring Frosts, Not Growing Degree-Days, Drives Onset of Spruce Bud Burst in Plantations at the Boreal-Temperate Forest Ecotone. Frontiers in Plant Science, 2020, 11, 1031.	1.7	22
60	Growingâ€season frost is a better predictor of tree growth than mean annual temperature in boreal mixedwood forest plantations. Global Change Biology, 2020, 26, 6537-6554.	4.2	20
61	From treeline to species line: Thermal patterns and growth relationships across the krummholz zone of whitebark pine, Sierra Nevada, California, USA. Arctic, Antarctic, and Alpine Research, 2020, 52, 390-407.	0.4	13
62	The Subhabitat Dependence of Biogeographic Pattern. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	5
63	Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12192-12200.	3.3	140
64	Lowest drought sensitivity and decreasing growth synchrony towards the dry distribution margin of European beech. Journal of Biogeography, 2020, 47, 1910-1921.	1.4	40
65	Regional variability in the response of alpine treelines to climate change. Climatic Change, 2020, 162, 1365-1384.	1.7	17
66	Explaining the exceptional 4270Âm high elevation limit of an evergreen oak in the south-eastern Himalayas. Tree Physiology, 2020, 40, 1327-1342.	1.4	13
67	Competition and demography rather than dispersal limitation slow down upward shifts of trees' upper elevation limits in the Alps. Journal of Ecology, 2020, 108, 2416-2430.	1.9	31
68	Leafâ€out in northern ecotypes of wideâ€ranging trees requires less spring warming, enhancing the risk of spring frost damage at cold range limits. Global Ecology and Biogeography, 2020, 29, 1065-1072.	2.7	33
69	Plant performance and survival across transplant experiments depend upon temperature and precipitation change along elevation. Journal of Ecology, 2020, 108, 2107-2120.	1.9	29
70	Leaf Morphological Traits and Leaf Nutrient Concentrations of European Beech Across a Water Availability Gradient in Switzerland. Frontiers in Forests and Global Change, 2020, 3, .	1.0	12
71	Variation in Stem Xylem Traits is Related to Differentiation of Upper Limits of Tree Species along an Elevational Gradient. Forests, 2020, 11, 349.	0.9	10
72	Phylogenetic conservatism and biogeographic affinity influence woody plant species richness–climate relationships in eastern Eurasia. Ecography, 2020, 43, 1027-1040.	2.1	13

#	Article	IF	CITATIONS
73	Climate change reshapes the drivers of false spring risk across European trees. New Phytologist, 2021, 229, 323-334.	3.5	12
74	The alpine life zone. , 2021, , 23-51.		2
75	Alpine treelines. , 2021, , 141-173.		5
76	Global change at high elevation. , 2021, , 451-483.		1
77	Populations-und Vegetationsökologie. , 2021, , 1013-1054.		0
78	Elevation-specific responses of phenology in evergreen oaks from their low-dry to their extreme high-cold range limits in the SE Himalaya. Alpine Botany, 2021, 131, 89-102.	1.1	4
79	Unexpected Vulnerability to High Temperature in the Mediterranean Alpine Shrub Erysimum scoparium (Brouss. ex Willd.) Wettst. Plants, 2021, 10, 379.	1.6	3
80	Consistent Poplar Clone Ranking Based on Leaf Phenology and Temperature Along a Latitudinal and Climatic Gradient in Northern Europe. Bioenergy Research, 2021, 14, 445-459.	2.2	6
81	Ring widths of Rhododendron shrubs reveal a persistent winter warming in the central Himalaya. Dendrochronologia, 2021, 65, 125799.	1.0	19
82	Plant hormesis and Shelford's tolerance law curve. Journal of Forestry Research, 2021, 32, 1789-1802.	1.7	55
83	What drives species' distributions along elevational gradients? Macroecological and â€evolutionary insights from Brassicaceae of the central Alps. Global Ecology and Biogeography, 2021, 30, 1030-1042.	2.7	7
84	Disentangling the effect of topography and microtopography on near-ground growing-season frosts at the boreal-temperate forest ecotone (Québec, Canada). New Forests, 2021, 52, 1079.	0.7	4
85	Reduced frost hardiness in temperate woody species due to climate warming: a model-based analysis. Climatic Change, 2021, 165, 1.	1.7	3
86	Topography modulates near-ground microclimate in the Mediterranean Fagus sylvatica treeline. Scientific Reports, 2021, 11, 8122.	1.6	20
87	High light-induced photoinhibition is not limiting seedling establishment at abrupt treeline ecotones in New Zealand. Tree Physiology, 2021, 41, 2034-2045.	1.4	5
88	Impact of successive spring frosts on leaf phenology and radial growth in three deciduous tree species with contrasting climate requirements in central Spain. Tree Physiology, 2021, 41, 2279-2292.	1.4	13
89	Does Phenological Plasticity Help or Hinder Range Shifts Under Climate Change?. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	24
90	The different impacts of the daytime and nighttime land surface temperatures on the alpine grassland phenology. Ecosphere, 2021, 12, e03578.	1.0	12

#	Article	IF	CITATIONS
91	Warmer springs have increased the frequency and extension of late-frost defoliations in southern European beech forests. Science of the Total Environment, 2021, 775, 145860.	3.9	37
92	Mind the gaps: Comparison of representative vs opportunistic assessment of tree regeneration in Central European beech forests. Forest Ecology and Management, 2021, 491, 119179.	1.4	8
93	Sensitivity of recruitment and growth of alpine treeline birch to elevated temperature. Agricultural and Forest Meteorology, 2021, 304-305, 108403.	1.9	10
94	The cold range limit of trees. Trends in Ecology and Evolution, 2021, 36, 979-989.	4.2	61
95	Assessing climate change tolerance and the niche breadth-range size hypothesis in rare and widespread alpine plants. Oecologia, 2021, 196, 1233-1245.	0.9	3
96	Impact of microclimatic conditions and resource availability on spring and autumn phenology of temperate tree seedlings. New Phytologist, 2021, 232, 537-550.	3.5	49
97	Productivity does not decrease at the climate extremes of tree ranges in the Japanese archipelago. Oecologia, 2021, 197, 259-269.	0.9	4
98	Tree Growth Conditions Are Demanded When Optimal, Are Unwanted When Limited, but When Are They Suboptimal?. Plants, 2021, 10, 1943.	1.6	2
99	The Spatial Pattern of the Upper Limit of Montane Deciduous Broad-Leaved Forests and Its Geographical Interpretation in the East Monsoon Realm of China. Forests, 2021, 12, 1225.	0.9	1
100	Drought in the forest breaks plant–fungi interactions. European Journal of Forest Research, 2021, 140, 1301-1321.	1.1	8
101	Pflanzen im Lebensraum. , 2021, , 947-1012.		0
102	Tools Shape Paradigms of Plant-Environment Interactions. Progress in Botany Fortschritte Der Botanik, 2020, , 1-41.	0.1	3
104	Mapping current and potential future distributions of the oak tree (Quercus aegilops) in the Kurdistan Region, Iraq. Ecological Processes, 2020, 9, .	1.6	28
106	COMMON GARDEN EXPERIMENTS AS A DYNAMIC TOOL FOR ECOLOGICAL STUDIES OF ALPINE PLANTS AND COMMUNITIES IN NORTHEASTERN NORTH AMERICA. Rhodora, 2019, 121, 174.	0.0	24
107	A classification system for predicting invasiveness using climatic niche traits and global distribution models: application to alien plant species in Chile. NeoBiota, 0, 63, 127-146.	1.0	2
108	Half-hourly changes in intertidal temperature at nine wave-exposed locations along the Atlantic Canadian coast: a 5.5-year study. Earth System Science Data, 2020, 12, 2695-2703.	3.7	6
109	Present and Future Climate-Related Distribution of Narrow- versus Wide-Ranged Ostrya Species in China. Forests, 2021, 12, 1366.	0.9	1
112	Spatial distribution modeling of the wild boar (Sus scrofa) under current and future climate conditions in Iraq. Biologia (Poland), 2022, 77, 369-383.	0.8	7

#	Article	IF	CITATIONS
113	A perennial invader's seed and rhizome differ in cold tolerance and apparent local adaptation. NeoBiota, 0, 70, 1-21.	1.0	1
114	Altitudinal trends in climate change result in radial growth variation of Pinus yunnanensis at an arid-hot valley of southwest China. Dendrochronologia, 2022, 71, 125914.	1.0	4
115	A tradeâ€off between growth and hydraulic resilience against freezing leads to divergent adaptations among temperate tree species. Functional Ecology, 2022, 36, 739-750.	1.7	8
117	Global estimates of stress-reflecting indices reveal key climatic drivers of climate-induced forest range shifts. Science of the Total Environment, 2022, 824, 153697.	3.9	1
118	Number of growth days and not length of the growth period determines radial stem growth of temperate trees. Ecology Letters, 2022, 25, 427-439.	3.0	58
119	Variability in leaf morphological traits of an endemic Mexican oak (Quercus) Tj ETQq1 1 0.784314 rgBT	lOyerlock	10 Tf 50 54
120	Induction and potential role of summer dormancy to enhance persistence of perennial grasses under warmer climates. Journal of Ecology, 2022, 110, 1283-1295.	1.9	5
121	The current and future potential geographical distribution of Nepeta crispa Willd., an endemic, rare and threatened aromatic plant of Iran: Implications for ecological conservation and restoration. Ecological Indicators, 2022, 137, 108752.	2.6	27
122	Nitrogen restricts future sub-arctic treeline advance in an individual-based dynamic vegetation model. Biogeosciences, 2021, 18, 6329-6347.	1.3	6
123	Localized stem heating from the rest to growth phase induces latewood-like cell formation and slower stem radial growth in Norway spruce saplings. Tree Physiology, 2021, , .	1.4	4
129	Variability in frost occurrence under climate change and consequent risk of damage to trees of western Quebec, Canada. Scientific Reports, 2022, 12, 7220.	1.6	6
130	Influence of anthropogenic activities on elevationâ€dependent weakening of annual temperature cycle amplitude over the Tibetan Plateau. Geophysical Research Letters, 0, , .	1.5	0
131	Reproductive phenology of Vaccinium floribundum Kunth (Ericaceae) and codification according to the BBCH scale based on evidence from the volcano Chimborazo paramo (Ecuador). Scientia Horticulturae, 2022, 303, 111207.	1.7	4
132	A montane species treeline is defined by both temperature and drought effects on growth season length. Tree Physiology, 0, , .	1.4	1
133	The warm winter paradox in the Pliocene northern high latitudes. Climate of the Past, 2022, 18, 1385-1405.	1.3	6
134	Late frost as a driver of ecotypic differentiation in sugar maple: Implications for assisted migration. Agricultural and Forest Meteorology, 2022, 323, 109041.	1.9	2
135	Using Multi-decadal Satellite Records to Identify Environmental Drivers of Fire Severity Across Vegetation Types. Remote Sensing in Earth Systems Sciences, 0, , .	1.1	0
136	Trait divergence and tradeâ€offs among Brassicaceae species differing in elevational distribution. Evolution; International Journal of Organic Evolution, 2022, 76, 1986-2003.	1.1	1

#	Article	IF	CITATIONS
137	Modeling the effect of adaptation to future climate change on spring phenological trend of European beech (Fagus sylvatica L.). Science of the Total Environment, 2022, 846, 157540.	3.9	10
138	A review of climate change effects on the regeneration dynamics of balsam fir. Forestry Chronicle, 2022, 98, 54-65.	0.5	4
139	Assisted migration is plausible for a boreal tree species under climate change: A quantitative and population genetics study of trembling aspen (<i>Populus tremuloides</i> Michx.) in western Canada. Ecology and Evolution, 2022, 12, .	0.8	5
140	Canopy openness modifies tree seedling distributions along a tropical forest elevation gradient. Oikos, 2022, 2022, .	1.2	5
141	Predicting the changes in suitable habitats for six common woody species in Central Asia. International Journal of Biometeorology, 2023, 67, 107-119.	1.3	3
142	An Integrated Approach to Map the Impact of Climate Change on the Distributions of Crataegus azarolus and Crataegus monogyna in Kurdistan Region, Iraq. Sustainability, 2022, 14, 14621.	1.6	12
143	Global warming is increasing the discrepancy between green (actual) and thermal (potential) seasons of temperate trees. Global Change Biology, 2023, 29, 1377-1389.	4.2	3
145	Time Lag of Stem Water Deficit in Response to Increased Vapor Pressure Deficit. Forest Science, 0, , .	0.5	0
146	A review of factors controlling Southern Hemisphere treelines and the implications of climate change on future treeline dynamics. Agricultural and Forest Meteorology, 2023, 332, 109375.	1.9	3
147	Provenance trials in the service of forestry assisted migration: A review of North American field trials and experiments. Forest Ecology and Management, 2023, 537, 120854.	1.4	7
148	Global patterns of mobile carbon partitioning in mountain trees in response to elevation. Environmental and Experimental Botany, 2023, 208, 105248.	2.0	1
149	Is There a Response Pattern between Radial Growth of Trees and Elevation Gradient?. Tree-Ring Research, 2023, 79, .	0.4	0
150	Planning Ginkgo biloba future fruit production areas under climate change: Application of a combinatorial modeling approach. Forest Ecology and Management, 2023, 533, 120861.	1.4	2
151	Not every highâ€latitude or highâ€elevation forest edge is a treeline. Journal of Biogeography, 2023, 50, 838-845.	1.4	11
152	Carbon Sink Limitation Determines the Formation of the Altitudinal Upper Limit of an Evergreen Oak in Eastern China. Forests, 2023, 14, 597.	0.9	0