Perovskite Materials for Lightâ€Emitting Diodes and La

Advanced Materials 28, 6804-6834 DOI: 10.1002/adma.201600669

Citation Report

#	Article	IF	CITATIONS
1	Organometal halide perovskite quantum dots: synthesis, optical properties, and display applications. Chinese Chemical Letters, 2016, 27, 1124-1130.	4.8	65
2	Highly stable solution processed metal-halide perovskite lasers on nanoimprinted distributed feedback structures. Applied Physics Letters, 2016, 109, .	1.5	82
3	Radiative Monomolecular Recombination Boosts Amplified Spontaneous Emission in HC(NH ₂) ₂ SnI ₃ Perovskite Films. Journal of Physical Chemistry Letters, 2016, 7, 4178-4184.	2.1	110
4	NiO <i>_x</i> Electrode Interlayer and CH ₃ NH ₂ /CH ₃ NH ₃ PbBr ₃ Interface Treatment to Markedly Advance Hybrid Perovskiteâ€Based Lightâ€Emitting Diodes. Advanced Materials, 2016. 28. 8687-8694.	11.1	147
5	Efficient photoluminescent thin films consisting of anchored hybrid perovskite nanoparticles. Chemical Communications, 2016, 52, 11351-11354.	2.2	15
7	Perovskite Photodetectors Operating in Both Narrowband and Broadband Regimes. Advanced Materials, 2016, 28, 8144-8149.	11.1	260
8	Ultrastable, Highly Luminescent Organic–Inorganic Perovskite–Polymer Composite Films. Advanced Materials, 2016, 28, 10710-10717.	11.1	400
9	Benignâ€byâ€Design Solventless Mechanochemical Synthesis of Threeâ€, Twoâ€, and Oneâ€Dimensional Hybrid Perovskites. Angewandte Chemie - International Edition, 2016, 55, 14972-14977.	7.2	142
10	Light-Induced Phase Segregation in Halide-Perovskite Absorbers. ACS Energy Letters, 2016, 1, 1199-1205.	8.8	532
11	Inorganic and Hybrid Organoâ€Metal Perovskite Nanostructures: Synthesis, Properties, and Applications. Advanced Functional Materials, 2016, 26, 8576-8593.	7.8	92
12	Long-term stable stacked CsPbBr ₃ quantum dot films for highly efficient white light generation in LEDs. Nanoscale, 2016, 8, 19523-19526.	2.8	65
13	Benignâ€byâ€Design Solventless Mechanochemical Synthesis of Threeâ€, Twoâ€, and Oneâ€Dimensional Hybrid Perovskites. Angewandte Chemie, 2016, 128, 15196-15201.	1.6	18
14	Photon Emission and Reabsorption Processes in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>CH</mml:mi></mml:mrow><mml:mrow><mml Single Crystals Revealed by Time-Resolved Two-Photon-Ex. Physical Review Applied, 2017, 7, .</mml </mml:mrow></mml:msub></mml:mrow></mml:math 	:mn>3 <td>116 1ml:mn></td>	116 1ml:mn>
15	All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical Properties and Optoelectronic Applications. Small, 2017, 13, 1603996.	5.2	537
16	CsPb _{<i>x</i>} Mn _{1–<i>x</i>} Cl ₃ Perovskite Quantum Dots with High Mn Substitution Ratio. ACS Nano, 2017, 11, 2239-2247.	7.3	496
17	Carbonâ€Based Perovskite Solar Cells without Hole Transport Materials: The Front Runner to the Market?. Advanced Materials, 2017, 29, 1603994.	11.1	261
18	Towards high efficiency thin film solar cells. Progress in Materials Science, 2017, 87, 246-291.	16.0	85
19	Dismantling the "Red Wall―of Colloidal Perovskites: Highly Luminescent Formamidinium and Formamidinium–Cesium Lead Iodide Nanocrystals, ACS Nano, 2017, 11, 3119-3134	7.3	414

#	Article	IF	CITATIONS
20	Highâ€ <i>Q</i> , Lowâ€Threshold Monolithic Perovskite Thinâ€Film Verticalâ€Cavity Lasers. Advanced Materials, 2017, 29, 1604781.	11.1	112
21	A New Class of Lasing Materials: Intrinsic Stimulated Emission from Nonlinear Optically Active Metal–Organic Frameworks. Advanced Materials, 2017, 29, 1605637.	11.1	91
22	Water Stability Studies of Hybrid Iodoargentates Containing N-Alkylated or N-Protonated Structure Directing Agents: Exploring Noncentrosymmetric Hybrid Structures. Inorganic Chemistry, 2017, 56, 1906-1918.	1.9	30
23	Twoâ€Dimensional Materials for Halide Perovskiteâ€Based Optoelectronic Devices. Advanced Materials, 2017, 29, 1605448.	11.1	284
24	Rational Design: A High-Throughput Computational Screening and Experimental Validation Methodology for Lead-Free and Emergent Hybrid Perovskites. ACS Energy Letters, 2017, 2, 837-845.	8.8	187
25	Thermoresponsive Emission Switching via Lower Critical Solution Temperature Behavior of Organic–Inorganic Perovskite Nanoparticles. Advanced Materials, 2017, 29, 1700047.	11.1	11
26	Beyond traditional light-emitting electrochemical cells – a review of new device designs and emitters. Journal of Materials Chemistry C, 2017, 5, 5643-5675.	2.7	210
27	Up-Conversion Perovskite Nanolaser with Single Mode and Low Threshold. Journal of Physical Chemistry C, 2017, 121, 10071-10077.	1.5	30
28	Energy and charge transfer cascade in methylammonium lead bromide perovskite nanoparticle aggregates. Chemical Science, 2017, 8, 4371-4380.	3.7	40
29	Lowâ€Voltage Photodetectors with High Responsivity Based on Solutionâ€Processed Micrometerâ€Scale Allâ€Inorganic Perovskite Nanoplatelets. Small, 2017, 13, 1700364.	5.2	119
30	An efficient and thickness insensitive cathode interface material for high performance inverted perovskite solar cells with 17.27% efficiency. Journal of Materials Chemistry C, 2017, 5, 5949-5955.	2.7	24
31	Lead Halide Perovskite Nanocrystals: Stability, Surface Passivation, and Structural Control. ChemNanoMat, 2017, 3, 456-465.	1.5	42
32	Perovskite as a Platform for Active Flexible Metaphotonic Devices. ACS Photonics, 2017, 4, 1595-1601.	3.2	86
33	Preparation of Waterproof Organometal Halide Perovskite Photonic Crystal Beads. Angewandte Chemie, 2017, 129, 6648-6652.	1.6	6
34	Leadâ€free Perovskite Materials (NH ₄) ₃ Sb ₂ I _x Br _{9â^'<i>x</i>} . Angewandte Chemie, 2017, 129, 6628-6632.	1.6	69
35	Preparation of Waterproof Organometal Halide Perovskite Photonic Crystal Beads. Angewandte Chemie - International Edition, 2017, 56, 6548-6552.	7.2	32
36	Leadâ€free Perovskite Materials (NH ₄) ₃ Sb ₂ I _x Br _{9â^'<i>x</i>} . Angewandte Chemie - International Edition, 2017, 56, 6528-6532.	7.2	180
37	Embedding lead halide perovskite quantum dots in carboxybenzene microcrystals improves stability. Nano Research, 2017, 10, 2692-2698.	5.8	32

#	Article	IF	CITATIONS
38	Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renewable and Sustainable Energy Reviews, 2017, 80, 1321-1344.	8.2	240
39	Correlating Photoluminescence Heterogeneity with Local Electronic Properties in Methylammonium Lead Tribromide Perovskite Thin Films. Chemistry of Materials, 2017, 29, 5484-5492.	3.2	42
40	Nonlinear optical properties, upconversion and lasing in metal–organic frameworks. Chemical Society Reviews, 2017, 46, 4976-5004.	18.7	493
41	Rapid Crystallization of All-Inorganic CsPbBr3 Perovskite for High-Brightness Light-Emitting Diodes. ACS Omega, 2017, 2, 2757-2764.	1.6	28
42	High-Performance Red-Light Photodetector Based on Lead-Free Bismuth Halide Perovskite Film. ACS Applied Materials & Interfaces, 2017, 9, 18977-18985.	4.0	128
43	Organic–Inorganic Hybrid Perovskite Nanowire Laser Arrays. ACS Nano, 2017, 11, 5766-5773.	7.3	244
44	Tunable Anisotropic Photon Emission from Self-Organized CsPbBr ₃ Perovskite Nanocrystals. Nano Letters, 2017, 17, 4534-4540.	4.5	66
45	Coherent Light Emitters From Solution Chemistry: Inorganic II–VI Nanocrystals and Organometallic Perovskites. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-14.	1.9	3
46	Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices. Advanced Materials, 2017, 29, 1605881.	11.1	140
47	Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nature Communications, 2017, 8, 15640.	5.8	669
48	Hybrid Perovskites: Effective Crystal Growth for Optoelectronic Applications. Advanced Energy Materials, 2017, 7, 1602596.	10.2	62
49	CsPbBr ₃ QD/AlO _{<i>x</i>} Inorganic Nanocomposites with Exceptional Stability in Water, Light, and Heat. Angewandte Chemie - International Edition, 2017, 56, 10696-10701.	7.2	389
50	CsPbBr ₃ QD/AlO _{<i>x</i>} Inorganic Nanocomposites with Exceptional Stability in Water, Light, and Heat. Angewandte Chemie, 2017, 129, 10836-10841.	1.6	25
51	Broadly tunable metal halide perovskites for solid-state light-emission applications. Materials Today, 2017, 20, 413-424.	8.3	204
52	Perovskite solar cells - An overview of critical issues. Progress in Quantum Electronics, 2017, 53, 1-37.	3.5	132
53	Surface plasmon enhanced luminescence from organic-inorganic hybrid perovskites. Applied Physics Letters, 2017, 110, 233113.	1.5	22
54	Topâ€Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents. Angewandte Chemie - International Edition, 2017, 56, 9571-9576.	7.2	98
55	Topâ€Down Fabrication of Stable Methylammonium Lead Halide Perovskite Nanocrystals by Employing a Mixture of Ligands as Coordinating Solvents. Angewandte Chemie, 2017, 129, 9699-9704.	1.6	31

#	Article	IF	CITATIONS
56	Highly Efficient Perovskite Light-Emitting Diodes Incorporating Full Film Coverage and Bipolar Charge Injection. Journal of Physical Chemistry Letters, 2017, 8, 1810-1818.	2.1	97
57	Highâ€Temperature Photoluminescence of CsPbX ₃ (X = Cl, Br, I) Nanocrystals. Advanced Functional Materials, 2017, 27, 1606750.	7.8	242
58	Transformation of PbI ₂ , PbBr ₂ and PbCl ₂ salts into MAPbBr ₃ perovskite by halide exchange as an effective method for recombination reduction. Physical Chemistry Chemical Physics, 2017, 19, 10913-10921.	1.3	27
59	Cs _{1–<i>x</i>} Rb _{<i>x</i>} PbCl ₃ and Cs _{1–<i>x</i>} Rb _{<i>x</i>} PbBr ₃ Solid Solutions: Understanding Octahedral Tilting in Lead Halide Perovskites. Chemistry of Materials, 2017, 29, 3507-3514.	3.2	138
60	Control of the white-light emission in the mixed two-dimensional hybrid perovskites (C6H11NH3)2[PbBr4â^`xlx]. Journal of Alloys and Compounds, 2017, 699, 1122-1133.	2.8	47
61	Metal halide perovskite nanomaterials: synthesis and applications. Chemical Science, 2017, 8, 2522-2536.	3.7	233
62	CsPbBr ₃ Solar Cells: Controlled Film Growth through Layer-by-Layer Quantum Dot Deposition. Chemistry of Materials, 2017, 29, 9767-9774.	3.2	178
63	A highly efficient and stable green-emitting mesoporous silica (MP)–(Cs0.4Rb0.6)PbBr3 perovskite composite for application in optoelectronic devices. New Journal of Chemistry, 2017, 41, 14076-14079.	1.4	8
64	Vapor-Deposited Perovskites: The Route to High-Performance Solar Cell Production?. Joule, 2017, 1, 431-442.	11.7	274
65	Stable Green Perovskite Vertical-Cavity Surface-Emitting Lasers on Rigid and Flexible Substrates. ACS Photonics, 2017, 4, 2486-2494.	3.2	63
66	Nanorod Suprastructures from a Ternary Graphene Oxide–Polymer–CsPbX ₃ Perovskite Nanocrystal Composite That Display High Environmental Stability. Nano Letters, 2017, 17, 6759-6765.	4.5	118
67	Synthesis, Crystal and Electronic Structures, and Optical Properties of (CH ₃ NH ₃) ₂ CdX ₄ (X = Cl, Br, I). Inorganic Chemistry, 2017, 56, 13878-13888.	1.9	78
68	Role of Dielectric Drag in Polaron Mobility in Lead Halide Perovskites. ACS Energy Letters, 2017, 2, 2555-2562.	8.8	90
69	Wrinkled 2D Materials: A Versatile Platform for Lowâ€Threshold Stretchable Random Lasers. Advanced Materials, 2017, 29, 1703549.	11.1	85
70	Highly efficient Cs-based perovskite light-emitting diodes enabled by energy funnelling. Chemical Communications, 2017, 53, 12004-12007.	2.2	85
71	Single-Mode Lasers Based on Cesium Lead Halide Perovskite Submicron Spheres. ACS Nano, 2017, 11, 10681-10688.	7.3	216
72	Organometal Trihalide Perovskites with Intriguing Ferroelectric and Piezoelectric Properties. Advanced Functional Materials, 2017, 27, 1702207.	7.8	37
73	High Performance Metal Halide Perovskite Lightâ€Emitting Diode: From Material Design to Device Optimization. Small, 2017, 13, 1701770.	5.2	209

#	Article	IF	CITATIONS
74	Lead halide perovskites: Crystal-liquid duality, phonon glass electron crystals, and large polaron formation. Science Advances, 2017, 3, e1701469.	4.7	323
75	Growth mechanism of strongly emitting CH3NH3PbBr3 perovskite nanocrystals with a tunable bandgap. Nature Communications, 2017, 8, 996.	5.8	210
76	Organometal halide perovskite nanocrystals embedded in silicone resins with bright luminescence and ultrastability. Journal of Materials Chemistry C, 2017, 5, 12044-12049.	2.7	36
77	Efficient and High-Color-Purity Light-Emitting Diodes Based on <i>In Situ</i> Grown Films of CsPbX ₃ (X = Br, I) Nanoplates with Controlled Thicknesses. ACS Nano, 2017, 11, 11100-11107.	7.3	190
78	Centrifugal-Coated Quasi-Two-Dimensional Perovskite CsPb ₂ Br ₅ Films for Efficient and Stable Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2017, 8, 5415-5421.	2.1	71
79	Thermally evaporated hybrid perovskite for hetero-structured green light-emitting diodes. Applied Physics Letters, 2017, 111, .	1.5	18
80	Ultrathin 2D GeSe ₂ Rhombic Flakes with High Anisotropy Realized by Van der Waals Epitaxy. Advanced Functional Materials, 2017, 27, 1703858.	7.8	95
81	Van Der Waals Hybrid Perovskite of High Optical Quality by Chemical Vapor Deposition. Advanced Optical Materials, 2017, 5, 1700373.	3.6	27
82	Confining metal-halide perovskites in nanoporous thin films. Science Advances, 2017, 3, e1700738.	4.7	103
83	Recent Advances in Metal Halideâ€Based Perovskite Lightâ€Emitting Diodes. Energy Technology, 2017, 5, 1734-1749.	1.8	79
84	Colloidal Organolead Halide Perovskite with a High Mn Solubility Limit: A Step Toward Pb-Free Luminescent Quantum Dots. Journal of Physical Chemistry Letters, 2017, 8, 4161-4166.	2.1	90
85	Enhanced Endurance Organolead Halide Perovskite Resistive Switching Memories Operable under an Extremely Low Bending Radius. ACS Applied Materials & Interfaces, 2017, 9, 30764-30771.	4.0	135
86	Modulating Excitonic Recombination Effects through Oneâ€Step Synthesis of Perovskite Nanoparticles for Lightâ€Emitting Diodes. ChemSusChem, 2017, 10, 3818-3824.	3.6	12
87	Enhanced Coverage of Allâ€Inorganic Perovskite CsPbBr ₃ through Sequential Deposition for Green Lightâ€Emitting Diodes. Energy Technology, 2017, 5, 1859-1865.	1.8	15
88	Wide range tuning of the size and emission color of CH3NH3PbBr3 quantum dots by surface ligands. AIP Advances, 2017, 7, .	0.6	10
89	Pressure-induced dramatic changes in organic–inorganic halide perovskites. Chemical Science, 2017, 8, 6764-6776.	3.7	74
90	Optical properties of Mn ²⁺ doped cesium lead halide perovskite nanocrystals via a cation–anion co-substitution exchange reaction. Journal of Materials Chemistry C, 2017, 5, 9281-9287.	2.7	76
91	Grapheneâ€Based Electron Transport Layers in Perovskite Solar Cells: A Stepâ€Up for an Efficient Carrier Collection. Advanced Energy Materials, 2017, 7, 1701349.	10.2	85

#	Article	IF	CITATIONS
92	Modified Conducting Polymer Hole Injection Layer for High-Efficiency Perovskite Light-Emitting Devices: Enhanced Hole Injection and Reduced Luminescence Quenching. Journal of Physical Chemistry Letters, 2017, 8, 4691-4697.	2.1	64
93	Photon releasing of Dy3+ doped fluoroborate glasses for laser illumination. Journal of Alloys and Compounds, 2017, 728, 1279-1288.	2.8	24
94	Enhancing the Stability of Perovskite Quantum Dots by Encapsulation in Crosslinked Polystyrene Beads via a Swelling–Shrinking Strategy toward Superior Water Resistance. Advanced Functional Materials, 2017, 27, 1703535.	7.8	306
95	Synthesis and Photoluminescence Properties of 2D Phenethylammonium Lead Bromide Perovskite Nanocrystals. Small Methods, 2017, 1, 1700245.	4.6	27
96	A Review on Organic–Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics. Advanced Materials, 2017, 29, 1605242.	11.1	590
97	Highly stable cesium lead iodide perovskite quantum dot light-emitting diodes. Nanotechnology, 2017, 28, 455201.	1.3	39
98	Effect of Formamidinium/Cesium Substitution and PbI ₂ on the Longâ€Term Stability of Tripleâ€Cation Perovskites. ChemSusChem, 2017, 10, 3804-3809.	3.6	28
99	High Photoluminescence Quantum Yields in Organic Semiconductor–Perovskite Composite Thin Films. ChemSusChem, 2017, 10, 3788-3793.	3.6	15
100	Engineering the Self-Assembly Induced Emission of Cu Nanoclusters by Au(I) Doping. ACS Applied Materials & Interfaces, 2017, 9, 24899-24907.	4.0	69
101	Enhancing perovskite film fluorescence by simultaneous near- and far-field effects of gold nanoparticles. RSC Advances, 2017, 7, 35752-35756.	1.7	18
101 102		1.7 0.8	18 19
	nanoparticles. RSC Advances, 2017, 7, 35752-35756. Investigating the feasibility of symmetric guanidinium based plumbate perovskites in prototype solar		
102	nanoparticles. RSC Advances, 2017, 7, 35752-35756. Investigating the feasibility of symmetric guanidinium based plumbate perovskites in prototype solar cell devices. Japanese Journal of Applied Physics, 2017, 56, 08MC05. Laserâ€Induced Localized Growth of Methylammonium Lead Halide Perovskite Nano―and Microcrystals	0.8	19
102 103	 nanoparticles. RSC Advances, 2017, 7, 35752-35756. Investigating the feasibility of symmetric guanidinium based plumbate perovskites in prototype solar cell devices. Japanese Journal of Applied Physics, 2017, 56, 08MC05. Laserâ€Induced Localized Growth of Methylammonium Lead Halide Perovskite Nano―and Microcrystals on Substrates. Advanced Functional Materials, 2017, 27, 1701613. Recent advances in interfacial engineering of perovskite solar cells. Journal Physics D: Applied Physics, 	0.8 7.8	19 38
102 103 104	 nanoparticles. RSC Advances, 2017, 7, 35752-35756. Investigating the feasibility of symmetric guanidinium based plumbate perovskites in prototype solar cell devices. Japanese Journal of Applied Physics, 2017, 56, 08MC05. Laserâ€Induced Localized Growth of Methylammonium Lead Halide Perovskite Nano―and Microcrystals on Substrates. Advanced Functional Materials, 2017, 27, 1701613. Recent advances in interfacial engineering of perovskite solar cells. Journal Physics D: Applied Physics, 2017, 50, 373002. Facet-controlled preparation of hybrid perovskite microcrystals in the gas phase and the remarkable 	0.8 7.8 1.3	19 38 129
102 103 104 105	 nanoparticles. RSC Advances, 2017, 7, 35752-35756. Investigating the feasibility of symmetric guanidinium based plumbate perovskites in prototype solar cell devices. Japanese Journal of Applied Physics, 2017, 56, 08MC05. Laserâ€Induced Localized Growth of Methylammonium Lead Halide Perovskite Nano†and Microcrystals on Substrates. Advanced Functional Materials, 2017, 27, 1701613. Recent advances in interfacial engineering of perovskite solar cells. Journal Physics D: Applied Physics, 2017, 50, 373002. Facet-controlled preparation of hybrid perovskite microcrystals in the gas phase and the remarkable effect on optoelectronic properties. CrystEngComm, 2017, 19, 4615-4621. Chemically Addressable Perovskite Nanocrystals for Lightâ€Emitting Applications. Advanced Materials, 	0.8 7.8 1.3 1.3	19 38 129 10
 102 103 104 105 106 	nanoparticles. RSC Advances, 2017, 7, 35752-35756. Investigating the feasibility of symmetric guanidinium based plumbate perovskites in prototype solar cell devices. Japanese Journal of Applied Physics, 2017, 56, 08MC05. Laserâ€Induced Localized Growth of Methylammonium Lead Halide Perovskite Nanoâ€-and Microcrystals on Substrates. Advanced Functional Materials, 2017, 27, 1701613. Recent advances in interfacial engineering of perovskite solar cells. Journal Physics D: Applied Physics, 2017, 50, 373002. Facet-controlled preparation of hybrid perovskite microcrystals in the gas phase and the remarkable effect on optoelectronic properties. CrystEngComm, 2017, 19, 4615-4621. Chemically Addressable Perovskite Nanocrystals for Lightâ€Emitting Applications. Advanced Materials, 2017, 29, 1701153. Aluminumâ€Doped Cesium Lead Bromide Perovskite Nanocrystals with Stable Blue Photoluminescence	0.8 7.8 1.3 1.3 11.1	 19 38 129 10 139

#	Article	IF	CITATIONS
110	Controlling crystallization to imprint nanophotonic structures into halide perovskites using soft lithography. Journal of Materials Chemistry C, 2017, 5, 8301-8307.	2.7	54
111	Sodium bromide additive improved film morphology and performance in perovskite light-emitting diodes. Applied Physics Letters, 2017, 111, .	1.5	19
112	CsPbBr ₃ Perovskite Quantum Dot Vertical Cavity Lasers with Low Threshold and High Stability. ACS Photonics, 2017, 4, 2281-2289.	3.2	243
113	Quantum Dot Based Light-Emitting Electrochemical Cells. , 2017, , 351-371.		1
114	Perovskite-based photodetectors: materials and devices. Chemical Society Reviews, 2017, 46, 5204-5236.	18.7	709
115	Peroptronic devices: perovskite-based light-emitting solar cells. Energy and Environmental Science, 2017, 10, 1950-1957.	15.6	41
116	Structural Investigation of Cesium Lead Halide Perovskites for High-Efficiency Quantum Dot Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2017, 8, 4140-4147.	2.1	35
117	Efficient Sky-Blue Perovskite Light-Emitting Devices Based on Ethylammonium Bromide Induced Layered Perovskites. ACS Applied Materials & Interfaces, 2017, 9, 29901-29906.	4.0	141
118	Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing. Nano Energy, 2017, 40, 195-202.	8.2	419
119	Synthetic Manipulation of Hybrid Perovskite Systems in Search of New and Enhanced Functionalities. ChemSusChem, 2017, 10, 3722-3739.	3.6	11
120	Polarized emission effect realized in CH ₃ NH ₃ PbI ₃ perovskite nanocrystals. Journal of Materials Chemistry C, 2017, 5, 8699-8706.	2.7	37
121	Nearly 100% Efficiency Enhancement of CH ₃ NH ₃ PbBr ₃ Perovskite Light-Emitting Diodes by Utilizing Plasmonic Au Nanoparticles. Journal of Physical Chemistry Letters, 2017, 8, 3961-3969.	2.1	75
122	Thermal Conductivity of Methylammonium Lead Halide Perovskite Single Crystals and Thin Films: A Comparative Study. Journal of Physical Chemistry C, 2017, 121, 28306-28311.	1.5	93
123	High-Performance Green Light-Emitting Diodes Based on MAPbBr ₃ –Polymer Composite Films Prepared by Gas-Assisted Crystallization. ACS Applied Materials & Interfaces, 2017, 9, 44106-44113.	4.0	24
124	Hybrid Organic/Inorganic Perovskite–Polymer Nanocomposites: Toward the Enhancement of Structural and Electrical Properties. Journal of Physical Chemistry Letters, 2017, 8, 5981-5986.	2.1	18
125	Temperature and spectral dependence of CH3NH3PbI3 films photoconductivity. Applied Physics Letters, 2017, 110, .	1.5	15
126	Halide Perovskite Heteroepitaxy: Bond Formation and Carrier Confinement at the PbS–CsPbBr ₃ Interface. Journal of Physical Chemistry C, 2017, 121, 27351-27356.	1.5	40
127	Continuous-wave lasing in an organic–inorganic lead halide perovskite semiconductor. Nature Photonics, 2017, 11, 784-788.	15.6	356

	CITATION P	LPORT	
# 128	ARTICLE Transparent Perovskite Light-Emitting Touch-Responsive Device. ACS Nano, 2017, 11, 11368-11375.	IF 7.3	Citations 39
128	Progress in organic-inorganic hybrid halide perovskite single crystal: growth techniques and applications. Science China Materials, 2017, 60, 1063-1078.	3.5	60
130	Two-Dimensional Organic Tin Halide Perovskites with Tunable Visible Emission and Their Use in Light-Emitting Devices. ACS Energy Letters, 2017, 2, 1662-1668.	8.8	204
131	The central role of ligands in electron transfer from perovskite nanocrystals. MRS Advances, 2017, 2, 2327-2335.	0.5	5
132	High Stability and Ultralow Threshold Amplified Spontaneous Emission from Formamidinium Lead Halide Perovskite Films. Journal of Physical Chemistry C, 2017, 121, 15318-15325.	1.5	50
133	Dynamic Electronic Junctions in Organic–Inorganic Hybrid Perovskites. Nano Letters, 2017, 17, 4831-4839.	4.5	26
134	Development of a Control Method for Conduction and Magnetism in Molecular Crystals. Bulletin of the Chemical Society of Japan, 2017, 90, 89-136.	2.0	15
135	50â€Fold EQE Improvement up to 6.27% of Solutionâ€Processed Allâ€Inorganic Perovskite CsPbBr ₃ QLEDs via Surface Ligand Density Control. Advanced Materials, 2017, 29, 1603885.	11.1	982
136	Hetero-structure of hybrid perovskite single crystals. , 2017, , .		0
137	Random lasing in solution-processed perovskite thin films. , 2017, , .		0
138	Perovskite laser integrated on a conventional Si <inf>3</inf> N <inf>4</inf> photonic platform. , 2017, , .		0
139	Free excitons and exciton-phonon coupling in CH <inf>3</inf> NH <inf>3</inf> PbI <inf>3</inf> perovskite single crystals at low temperatures. , 2017, , .		0
140	Integrated perovskite lasers on a silicon nitride waveguide platform by cost-effective high throughput fabrication. Optics Express, 2017, 25, 13199.	1.7	55
141	Continuous-wave optically pumped green perovskite vertical-cavity surface-emitter. Optics Letters, 2017, 42, 3618.	1.7	23
142	Triple cation mixed-halide perovskites for tunable lasers. Optical Materials Express, 2017, 7, 4082.	1.6	30
143	Tunable luminescent CsPb_2Br_5 nanoplatelets: applications in light-emitting diodes and photodetectors. Photonics Research, 2017, 5, 473.	3.4	79
144	Continuous-wave Optically Pumped Lasing of Hybrid Perovskite VCSEL at Green Wavelength. , 2017, , .		0
145	Dielectric properties of a CsPbBr_3 quantum dot solution in the terahertz region. Applied Optics, 2017, 56, 2878.	2.1	9

#	Article	IF	CITATIONS
146	Amplified Spontaneous Emission Based on 2D Ruddlesden–Popper Perovskites. Advanced Functional Materials, 2018, 28, 1707006.	7.8	129
147	Composition-Dependent Energy Splitting between Bright and Dark Excitons in Lead Halide Perovskite Nanocrystals. Nano Letters, 2018, 18, 2074-2080.	4.5	79
149	Localized Surface Plasmon Enhanced Allâ€Inorganic Perovskite Quantum Dot Lightâ€Emitting Diodes Based onÂCoaxial Core/Shell Heterojunction Architecture. Advanced Functional Materials, 2018, 28, 1707031.	7.8	125
150	Single-crystal perovskite CH ₃ NH ₃ PbBr ₃ prepared by cast capping method for light-emitting diodes. Japanese Journal of Applied Physics, 2018, 57, 04FL10.	0.8	28
151	Inorganic perovskite light emitting diodes with ZnO as the electron transport layer by direct atomic layer deposition. Organic Electronics, 2018, 57, 60-67.	1.4	16
152	Crystallization of CH ₃ NH ₃ PbI _{3â^`x} Br _x perovskite from micro-droplets of lead acetate precursor solution. CrystEngComm, 2018, 20, 3058-3065.	1.3	5
153	Low-Threshold Lasing from 2D Homologous Organic–Inorganic Hybrid Ruddlesden–Popper Perovskite Single Crystals. Nano Letters, 2018, 18, 3221-3228.	4.5	177
154	Quasiâ€2D Inorganic CsPbBr ₃ Perovskite for Efficient and Stable Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1801193.	7.8	108
155	All-inorganic perovskite CsPbBr ₃ -based self-powered light-emitting photodetectors with ZnO hollow balls as an ultraviolet response center. Journal of Materials Chemistry C, 2018, 6, 5113-5121.	2.7	36
156	Tuning the emission spectrum of highly stable cesium lead halide perovskite nanocrystals through poly(lactic acid)-assisted anion-exchange reactions. Journal of Materials Chemistry C, 2018, 6, 5375-5383.	2.7	62
157	Efficient blue emission from ambient processed all-inorganic CsPbBr2Cl perovskite cubes. AIP Conference Proceedings, 2018, , .	0.3	4
158	High Color Rendering Index White-Light Emission from UV-Driven LEDs Based on Single Luminescent Materials: Two-Dimensional Perovskites (C ₆ H ₅ C ₂ H ₄ NH ₃) ₂ PbBr <i>_{x ACS Applied Materials & amp: Interfaces. 2018. 10. 15980-15987.}</i>	<td>›Ćĺ⁵sub>4â€</td>	›Ćĺ ⁵ sub>4â€
159	Acetone vapour-assisted growth of 2D single-crystalline organic lead halide perovskite microplates and their temperature-enhanced photoluminescence. RSC Advances, 2018, 8, 14527-14531.	1.7	21
160	A new inorganic-organic hybrid halide perovskite thin film based ammonia sensor. Organic Electronics, 2018, 58, 202-206.	1.4	23
161	Formation of Lead Halide Perovskite Based Plasmonic Nanolasers and Nanolaser Arrays by Tailoring the Substrate. ACS Nano, 2018, 12, 3865-3874.	7.3	81
162	Organic–inorganic hybrid perovskite quantum dots for light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 4831-4841.	2.7	62
163	Mn-doped CsPbCl3 perovskite quantum dots (PQDs) incorporated into silica/alumina particles used for WLEDs. Applied Surface Science, 2018, 448, 400-406.	3.1	65
164	Imaging Heterogeneously Distributed Photoâ€Active Traps in Perovskite Single Crystals. Advanced Materials, 2018, 30, e1705494.	11.1	28

ARTICLE IF CITATIONS Hole Transfer Dynamics from Photoexcited Cesium Lead Halide Perovskite Nanocrystals: 1-Aminopyrene 165 1.5 42 as Hole Acceptor. Journal of Physical Chemistry C, 2018, 122, 13617-13623. The role of Cs+ inclusion in formamidinium lead triiodide-based perovskite solar cell. Chemical 1.0 Papers, 2018, 72, 1645-1650. Novel synthesis process of methyl ammonium bromide and effect of particle size on structural, optical and thermodynamic behavior of CH3NH3PbBr3 organometallic perovskite light harvester. 167 2.8 36 Journal of Alloys and Compounds, 2018, 743, 728-736. Innovatively Continuous Mass Production Couette-taylor Flow: Pure Inorganic Green-Emitting 168 Cs4PbBr6 Perovskite Microcrystal for display technology. Scientific Reports, 2018, 8, 2009. Synthesis of highly efficient and stable CH 3 NH 3 PbBr 3 perovskite nanocrystals within mesoporous 169 2.0 7 silica through excess CH 3 NH 3 Br method. Dyes and Pigments, 2018, 155, 23-29. Precursor non-stoichiometry to enable improved CH₃NH₃PbBr₃nanocrystal LED performance. Physical Chemistry Chemical Physics, 2018, 20, 5918-5925. 1.3 Low-dimensional halide perovskites: review and issues. Journal of Materials Chemistry C, 2018, 6, 171 2.7 165 2189-2209. Crown Ethers Enable Room-Temperature Synthesis of CsPbBr₃ Quantum Dots for 8.8 Light-Emitting Diodes. ACS Energy Letters, 2018, 3, 526-531. Perovskite templating <i>via</i> a bathophenanthroline additive for efficient light-emitting devices. 173 2.7 12 Journal of Materials Chemistry C, 2018, 6, 2295-2302. A lead-free semiconducting hybrid with ultra-high color rendering index white-light emission. 174 Journal of Materials Chemistry C, 2018, 6, 2801-2805. Progress and Perspective in Lowâ€Dimensional Metal Halide Perovskites for Optoelectronic 175 3.198 Applications. Solar Rrl, 2018, 2, 1700186. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase 5.8 763 engineered perovskite with surface passivation. Nature Communications, 2018, 9, 570. Competition Between Hot-Electron Cooling and Large Polaron Screening in CsPbBr₃ 177 1.5 59 Perovskite Single Crystals. Journal of Physical Chemistry C, 2018, 122, 13724-13730. Allâ€Inorganic CsPbI₃ Perovskite Phaseâ€Stabilized by Poly(ethylene oxide) for Redâ€Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1706401. 156 Lowâ€Voltage, Optoelectronic CH₃NH₃Pbl_{3a^'}<i>_x</i>Cl<i>_x</i>NH_x</i> 179 190 7.8 with Integrated Sensing and Logic Operations. Advanced Functional Materials, 2018, 28, 1800080. Preferential Orientation of Crystals Induced by Incorporation of Organic Ligands in 28 Mixedâ€Dimensional Hybrid Perovskite Films. Advanced Optical Materials, 2018, 6, 1701311. Halide Perovskites for Applications beyond Photovoltaics. Small Methods, 2018, 2, 1700310. 181 4.6 94 Potassium Ion Assisted Synthesis of Organic–Inorganic Hybrid Perovskite Nanobelts for Stable and Flexible Photodetectors. Advanced Optical Materials, 2018, 6, 1701029.

# 183	ARTICLE Synthesis, crystal and electronic structures and optical properties of (HIm)2Hg3Cl8 and (HIm)HgI3 (HIm = imidazolium). Journal of Solid State Chemistry, 2018, 258, 551-558.	IF 1.4	CITATIONS
184	Novel hybrid light-emitting devices based on MAPbBr ₃ nanoplatelets:PVK nanocomposites and zinc oxide nanorod arrays. Materials Research Express, 2018, 5, 015037.	0.8	7
185	Perovskite Light-Emitting Diodes via Laser Crystallization: Systematic Investigation on Grain Size Effects for Device Performance. ACS Applied Materials & Interfaces, 2018, 10, 2490-2495.	4.0	34
186	Highly Efficient Solutionâ€₽rocessable Nanophosphor with Ambipolar Shell. Chemistry - A European Journal, 2018, 24, 2971-2979.	1.7	5
187	Continuousâ€Wave Lasing in Cesium Lead Bromide Perovskite Nanowires. Advanced Optical Materials, 2018, 6, 1700982.	3.6	161
188	Broadband white-light emission with a high color rendering index in a two-dimensional organic–inorganic hybrid perovskite. Journal of Materials Chemistry C, 2018, 6, 1171-1175.	2.7	86
189	Strong Exciton–Photon Coupling in Hybrid Inorganic–Organic Perovskite Micro/Nanowires. Advanced Optical Materials, 2018, 6, 1701032.	3.6	114
190	Spinel Co ₃ O ₄ nanomaterials for efficient and stable large area carbon-based printed perovskite solar cells. Nanoscale, 2018, 10, 2341-2350.	2.8	106
191	Efficient Optical Amplification in the Nanosecond Regime from Formamidinium Lead Iodide Nanocrystals. ACS Photonics, 2018, 5, 907-917.	3.2	30
192	Highâ€Performance Singleâ€Crystalline Perovskite Thinâ€Film Photodetector. Advanced Materials, 2018, 30, 1704333.	11.1	225
193	Stable Lightâ€Emitting Diodes Using Phaseâ€Pure Ruddlesden–Popper Layered Perovskites. Advanced Materials, 2018, 30, 1704217.	11.1	258
194	Diarylfluorene-based nano-molecules as dopant-free hole-transporting materials without post-treatment process for flexible p-i-n type perovskite solar cells. Nano Energy, 2018, 46, 241-248.	8.2	54
195	Effects of Perovskite Monovalent Cation Composition on the High and Low Frequency Impedance Response of Efficient Solar Cells. Journal of Physical Chemistry C, 2018, 122, 1973-1981.	1.5	33
196	High-luminance perovskite light-emitting diodes with high-polarity alcohol solvent treating PEDOT:PSS as hole transport layer. Nanoscale Research Letters, 2018, 13, 128.	3.1	23
197	Synthesis of Leadâ€free CsGel ₃ Perovskite Colloidal Nanocrystals and Electron Beamâ€induced Transformations. Chemistry - an Asian Journal, 2018, 13, 1654-1659.	1.7	86
198	Study of the Partial Substitution of Pb by Sn in Cs–Pb–Sn–Br Nanocrystals Owing to Obtaining Stable Nanoparticles with Excellent Optical Properties. Journal of Physical Chemistry C, 2018, 122, 14222-14231.	1.5	38
199	Enhanced Exciton and Photon Confinement in Ruddlesden–Popper Perovskite Microplatelets for Highly Stable Lowâ€Threshold Polarized Lasing. Advanced Materials, 2018, 30, e1707235.	11.1	101
200	Uniform Luminous Perovskite Nanofibers with Colorâ€Tunability and Improved Stability Prepared by Oneâ€Step Core/Shell Electrospinning. Small, 2018, 14, e1704379.	5.2	93

#	Article	IF	CITATIONS
201	Perovskite-quantum dots interface: Deciphering its ultrafast charge carrier dynamics. Nano Energy, 2018, 49, 471-480.	8.2	23
202	Highly pure yellow light emission of perovskite CsPb(Br I)3 quantum dots and their application for yellow light-emitting diodes. Optical Materials, 2018, 80, 1-6.	1.7	17
203	Extended Absorption Window and Improved Stability of Cesium-Based Triple-Cation Perovskite Solar Cells Passivated with Perfluorinated Organics. ACS Energy Letters, 2018, 3, 1068-1076.	8.8	44
204	Allâ€Inorganic Heteroâ€Structured Cesium Tin Halide Perovskite Lightâ€Emitting Diodes With Current Density Over 900 A cm ^{â^'2} and Its Amplified Spontaneous Emission Behaviors. Physica Stat Solidi - Rapid Research Letters, 2018, 12, 1800090.	u s. 2	47
205	General Strategy for the Preparation of Stable Luminous Nanocomposite Inks Using Chemically Addressable CsPbX ₃ Peroskite Nanocrystals. Chemistry of Materials, 2018, 30, 2771-2780.	3.2	111
206	Correlation of ETL in perovskite light-emitting diodes and the ultra-long rise time in time-resolved electroluminescence. Materials Science in Semiconductor Processing, 2018, 80, 131-136.	1.9	2
207	Controllable emission bands and morphologies of high-quality CsPbX3 perovskite nanocrystals prepared in octane. Nano Research, 2018, 11, 4654-4663.	5.8	39
208	Reducing Architecture Limitations for Efficient Blue Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, e1706226.	11.1	181
209	Photorefractive Effect in Organic–Inorganic Hybrid Perovskites and Its Application to Optical Phase Shifter. Advanced Optical Materials, 2018, 6, 1701366.	3.6	38
210	Revealing the Formation Mechanism of CsPbBr ₃ Perovskite Nanocrystals Produced via a Slowedâ€Đown Microwaveâ€Assisted Synthesis. Angewandte Chemie, 2018, 130, 5935-5939.	1.6	12
211	Revealing the Formation Mechanism of CsPbBr ₃ Perovskite Nanocrystals Produced via a Slowedâ€Đown Microwaveâ€Assisted Synthesis. Angewandte Chemie - International Edition, 2018, 57, 5833-5837.	7.2	109
212	Hansen theory applied to the identification of nonhazardous solvents for hybrid perovskite thin-films processing. Polyhedron, 2018, 147, 9-14.	1.0	13
213	Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs <i>via</i> an energy cascade. Energy and Environmental Science, 2018, 11, 1770-1778.	15.6	135
214	Enhanced stabilization of inorganic cesium lead triiodide (CsPbI3) perovskite quantum dots with tri-octylphosphine. Nano Research, 2018, 11, 762-768.	5.8	94
215	Recent progress in organometal halide perovskite photodetectors. Organic Electronics, 2018, 52, 172-183.	1.4	83
216	Low temperature synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals in open air and their upconversion luminescence. Journal of Alloys and Compounds, 2018, 730, 62-70.	2.8	35
217	Exploring the Stability of Novel Wide Bandgap Perovskites by a Robot Based High Throughput Approach. Advanced Energy Materials, 2018, 8, 1701543.	10.2	75
218	Recent advancement in metal cathode and hole-conductor-free perovskite solar cells for low-cost and high stability: A route towards commercialization. Renewable and Sustainable Energy Reviews, 2018, 82, 845-857.	8.2	83

#	Article	IF	CITATIONS
219	Controlled synthesis of quantum confined CsPbBr3 perovskite nanocrystals under ambient conditions. Nanotechnology, 2018, 29, 055601.	1.3	20
220	On the performance of polymer:organometal halide perovskite composite light emitting devices: The effects of polymer additives. Organic Electronics, 2018, 52, 350-355.	1.4	27
221	All-inorganic perovskite nanocrystal assisted extraction of hot electrons and biexcitons from photoexcited CdTe quantum dots. Nanoscale, 2018, 10, 639-645.	2.8	24
222	A comparative study of one-step and two-step approaches for MAPbI3 perovskite layer and its influence on the performance of mesoscopic perovskite solar cell. Chemical Physics Letters, 2018, 692, 44-49.	1.2	40
223	The mixing effect of organic cations on the structural, electronic and optical properties of FA _x MA _{1â^'x} PbI ₃ perovskites. Physical Chemistry Chemical Physics, 2018, 20, 941-950.	1.3	24
224	Cation engineering on lead iodide perovskites for stable and high-performance photovoltaic applications. Journal of Energy Chemistry, 2018, 27, 1017-1039.	7.1	37
225	Nanocrystals of halide perovskite: Synthesis, properties, and applications. Journal of Energy Chemistry, 2018, 27, 622-636.	7.1	43
226	Self-Assembly Driven Aggregation-Induced Emission of Copper Nanoclusters: A Novel Technology for Lighting. ACS Applied Materials & Interfaces, 2018, 10, 12071-12080.	4.0	93
227	Influence of Radiation on the Properties and the Stability of Hybrid Perovskites. Advanced Materials, 2018, 30, 1702905.	11.1	162
228	Formation of quasi-2D layered crystallite using long chain halide to form hybrid perovskite film. , 2018, , .		1
229	A new antimony-based organic–inorganic hybrid absorber with photoconductive response. Inorganic Chemistry Frontiers, 2018, 5, 3028-3032.	3.0	11
230	Nanoplatelet modulation in 2D/3D perovskite targeting efficient light-emitting diodes. Nanoscale, 2018, 10, 19322-19329.	2.8	20
231	Improving the Bulk Emission Properties of CH ₃ NH ₃ PbBr ₃ by Modifying the Halide-Related Defect Structure. Journal of Physical Chemistry C, 2018, 122, 27250-27255.	1.5	4
232	Surface Engineering of Room Temperature-Grown Inorganic Perovskite Quantum Dots for Highly Efficient Inverted Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 42647-42656.	4.0	49
233	Hybrid perovskite light emitting diodes under intense electrical excitation. Nature Communications, 2018, 9, 4893.	5.8	146
234	Resonant Silicon Nanoparticles for Enhanced Light Harvesting in Halide Perovskite Solar Cells. Journal of Physics: Conference Series, 2018, 1092, 012038.	0.3	1
235	Theoretical Insights into Perovskite Compounds MAPb _{1â^l±} X _{l±} I _{3â^l²} Y _{l²} (X = Ge, Sn; Y = Cl, Br): An Exploration for Superior Optical Performance. Journal of Physical Chemistry C, 2018, 122, 27205-27213.	on1.5	7
236	Gain anticipation of Ho3+ in ion-exchangeable germanate waveguide glasses. Applied Physics B: Lasers and Optics, 2018, 124, 1.	1.1	2

#	Article	IF	CITATIONS
237	Terahertz modulator a using CsPbBr3 perovskite quantum dots heterostructure. Applied Physics B: Lasers and Optics, 2018, 124, 1.	1.1	13
241	Ultrafast THz photophysics of solvent engineered triple-cation halide perovskites. Journal of Applied Physics, 2018, 124, .	1.1	4
242	Efficient Blue and White Perovskite Light-Emitting Diodes via Manganese Doping. Joule, 2018, 2, 2421-2433.	11.7	308
243	Cystamine-configured lead halide based 2D hybrid molecular crystals: Synthesis and photoluminescence systematics. APL Materials, 2018, 6, 114204.	2.2	13
244	Large and Ultrastable Allâ€Inorganic CsPbBr ₃ Monocrystalline Films: Lowâ€Temperature Growth and Application for Highâ€Performance Photodetectors. Advanced Materials, 2018, 30, e1802110.	11.1	94
245	Halide Perovskite Quantum Dots for Lightâ€Emitting Diodes: Properties, Synthesis, Applications, and Outlooks. Advanced Electronic Materials, 2018, 4, 1800335.	2.6	50
246	A 3D-printed Chamber for Organic Optoelectronic Device Degradation Testing. Journal of Visualized Experiments, 2018, , .	0.2	0
247	Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nature Photonics, 2018, 12, 681-687.	15.6	1,123
248	Carrier cascade: Enabling high performance perovskite light-emitting diodes (PeLEDs). Current Opinion in Electrochemistry, 2018, 11, 91-97.	2.5	8
249	Realization of "warm―white light <i>via</i> halide substitution in polar two-dimensional hybrid perovskites (2meptH ₂)PbCl _x Br _{4â^'x} . Journal of Materials Chemistry C, 2018, 6, 12267-12272.	2.7	60
250	Bandgap Engineering of Singleâ€Crystalline Perovskite Arrays for Highâ€Performance Photodetectors. Advanced Functional Materials, 2018, 28, 1804349.	7.8	66
251	Efficient Photo- and Electroluminescence by Trap States Passivation in Vacuum-Deposited Hybrid Perovskite Thin Films. ACS Applied Materials & Interfaces, 2018, 10, 36187-36193.	4.0	23
252	Highly efficient room-temperature phosphorescence and afterglow luminescence from common organic fluorophores in 2D hybrid perovskites. Chemical Science, 2018, 9, 8975-8981.	3.7	119
253	Simultaneous Strontium Doping and Chlorine Surface Passivation Improve Luminescence Intensity and Stability of CsPbl ₃ Nanocrystals Enabling Efficient Lightâ€Emitting Devices. Advanced Materials, 2018, 30, e1804691.	11.1	210
254	Stable and Efficient 3D-2D Perovskite-Perovskite Planar Heterojunction Solar Cell without Organic Hole Transport Layer. Joule, 2018, 2, 2706-2721.	11.7	124
255	One-Step Co-Evaporation of All-Inorganic Perovskite Thin Films with Room-Temperature Ultralow Amplified Spontaneous Emission Threshold and Air Stability. ACS Applied Materials & Interfaces, 2018, 10, 40661-40671.	4.0	76
256	Fast Room-Temperature Cation Exchange Synthesis of Mn-Doped CsPbCl ₃ Nanocrystals Driven by Dynamic Halogen Exchange. ACS Applied Materials & Interfaces, 2018, 10, 39872-39878.	4.0	57
257	Progress on synthesis and applications of hybrid perovskite semiconductor nanomaterials—A review. Synthetic Metals, 2018, 246, 64-95.	2.1	20

#	Article	IF	CITATIONS
258	Ionotronic Halide Perovskite Driftâ€Diffusive Synapses for Lowâ€Power Neuromorphic Computation. Advanced Materials, 2018, 30, e1805454.	11.1	146
259	High Brightness and Enhanced Stability of CsPbBr ₃ â€Based Perovskite Lightâ€Emitting Diodes by Morphology and Interface Engineering. Advanced Optical Materials, 2018, 6, 1801245.	3.6	57
260	Room-Temperature Continuous-Wave Operation of Organometal Halide Perovskite Lasers. ACS Nano, 2018, 12, 10968-10976.	7.3	140
261	The Effects of Doping Density and Temperature on the Optoelectronic Properties of Formamidinium Tin Triiodide Thin Films. Advanced Materials, 2018, 30, e1804506.	11.1	156
262	Highly Stable Perovskite Photodetector Based on Vapor-Processed Micrometer-Scale CsPbBr ₃ Microplatelets. Chemistry of Materials, 2018, 30, 6744-6755.	3.2	89
263	Charge Injection and Electrical Response in Low-Temperature SnO ₂ -Based Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 35118-35128.	4.0	33
264	Improved performance of CsPbBr ₃ perovskite light-emitting devices by both boundary and interface defects passivation. Nanoscale, 2018, 10, 18315-18322.	2.8	29
265	Temperature Difference Triggering Controlled Growth of Allâ€Inorganic Perovskite Nanowire Arrays in Air. Small, 2018, 14, e1803010.	5.2	29
266	Leadâ€Free Highly Efficient Blueâ€Emitting Cs ₃ Cu ₂ I ₅ with 0D Electronic Structure. Advanced Materials, 2018, 30, e1804547.	11.1	477
267	Investigation of Inverted Perovskite Solar Cells for Viscosity of PEDOT:PSS Solution. Crystals, 2018, 8, 358.	1.0	7
268	Micro Lasers by Scalable Lithography of Metalâ€Halide Perovskites. Advanced Materials Technologies, 2018, 3, 1800212.	3.0	38
269	Metal halide perovskites: stability and sensing-ability. Journal of Materials Chemistry C, 2018, 6, 10121-10137.	2.7	131
270	Identifying and controlling phase purity in 2D hybrid perovskite thin films. Journal of Materials Chemistry A, 2018, 6, 22215-22225.	5.2	59
271	Lowâ€Temperature Absorption, Photoluminescence, and Lifetime of CsPbX ₃ (X = Cl, Br, I) Nanocrystals. Advanced Functional Materials, 2018, 28, 1800945.	7.8	186
272	Structural and Electronic Properties of Inorganic Mixed Halide Perovskites. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800193.	1.2	19
273	Development of Mixed ation Cs <i>_x</i> Rb _{1–} <i>_x</i> PbX ₃ Perovskite Quantum Dots and Their Fullâ€Color Film with High Stability and Wide Color Gamut. Advanced Optical Materials, 2018. 6, 1800295.	3.6	43
274	Amplified spontaneous emission in phenylethylammonium methylammonium lead iodide quasi-2D perovskites. Physical Chemistry Chemical Physics, 2018, 20, 15030-15036.	1.3	42
275	Recovery of Shallow Charge-Trapping Defects in CsPbX ₃ Nanocrystals through Specific Binding and Encapsulation with Amino-Functionalized Silanes. ACS Energy Letters, 2018, 3, 1409-1414.	8.8	60

#	ARTICLE Three-dimensional organic–inorganic hybrid sodium halide perovskite:	IF	CITATIONS
276	C ₄ H ₁₂ N ₂ ·Nal ₃ and a hydrogen-bonded supramolecular three-dimensional network in 3C ₄ H ₁₂ N ₂ ·Nal ₄ ·3l·H ₂ O. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 728-733.	0.2	6
277	A Perovskite Lightâ€Emitting Device Driven by Lowâ€Frequency Alternating Current Voltage. Advanced Optical Materials, 2018, 6, 1800206.	3.6	29
278	Efficient and stable green-emitting CsPbBr3 perovskite nanocrystals in a microcapsule for light emitting diodes. Chemical Engineering Journal, 2018, 352, 957-963.	6.6	36
279	Impact of Organic Hole Transporting Material and Doping on the Electrical Response of Perovskite Solar Cells. Journal of Physical Chemistry C, 2018, 122, 11651-11658.	1.5	20
280	Unraveling luminescence mechanisms in zero-dimensional halide perovskites. Journal of Materials Chemistry C, 2018, 6, 6398-6405.	2.7	168
281	Efficient Photon Recycling and Radiation Trapping in Cesium Lead Halide Perovskite Waveguides. ACS Energy Letters, 2018, 3, 1492-1498.	8.8	70
282	Optical Energy Losses in Organic–Inorganic Hybrid Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1800667.	3.6	91
283	Photonics and Optoelectronics of 2D Metalâ€Halide Perovskites. Small, 2018, 14, e1800682.	5.2	168
284	High-efficiency and air-stable photodetectors based on lead-free double perovskite Cs ₂ AgBiBr ₆ thin films. Journal of Materials Chemistry C, 2018, 6, 7982-7988.	2.7	150
285	Room temperature colloidal synthesis of CsPbBr ₃ nanowires with tunable length, width and composition. Journal of Materials Chemistry C, 2018, 6, 7797-7802.	2.7	41
286	Theoretical perspective to light outcoupling and management in perovskite light-emitting diodes. Organic Electronics, 2018, 61, 351-358.	1.4	40
287	Morphologyâ€Tailored Halide Perovskite Platelets and Wires: From Synthesis, Properties to Optoelectronic Devices. Advanced Optical Materials, 2018, 6, 1800413.	3.6	34
288	Purification of Perovskite Quantum Dots Using Low-Dielectric-Constant Washing Solvent "Diglyme― for Highly Efficient Light-Emitting Devices. ACS Applied Materials & Interfaces, 2018, 10, 24607-24612.	4.0	102
289	All-Inorganic Bismuth Halide Perovskite-Like Materials A ₃ Bi ₂ I ₉ and A ₃ Bi _{1.8} Na _{0.2} I _{8.6} (A = Rb and Cs) for Low-Voltage Switching Resistive Memory. ACS Applied Materials & Interfaces, 2018, 10, 29741-29749.	4.0	88
290	Low toxicity antisolvent synthesis of composition-tunable luminescent all-inorganic perovskite nanocrystals. Ceramics International, 2018, 44, 18123-18128.	2.3	14
291	Towards efficient perovskite light-emitting diodes: A multi-step spin-coating method for a dense and uniform perovskite film. Organic Electronics, 2018, 61, 18-24.	1.4	13
292	Less-Lead Control toward Highly Efficient Formamidinium-Based Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 24242-24248.	4.0	21
293	Continuous-wave operation in directly patterned perovskite distributed feedback light source at room temperature. Optics Letters, 2018, 43, 611.	1.7	27

#	Article		IF	CITATIONS
294	Random lasing in uniform perovskite thin films. Optics Express, 2018, 26, A75.		1.7	52
295	A simple method to improve the performance of perovskite light-emitting diodes <i>via- layer-by-layer spin-coating CsPbBr₃ quantum dots. RSC Advances, 2018, 8,</i>	 , 27201-27206.	1.7	5
296	Photonic crystals for optimal color conversion in light-emitting diodes: a semi-analytical Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1105.	approach.	0.9	4
297	In situ synthesis and macroscale alignment of CsPbBr3 perovskite nanorods in a polyme Nanoscale, 2018, 10, 15436-15441.	er matrix.	2.8	69
298	Nanostructured Mechanochemically Prepared Hybrid Perovskites Based on PbI2 and Alk Halides for Optoelectronic Applications. ACS Applied Nano Materials, 2018, 1, 4145-41	ylammonium 55.	2.4	12
299	Efficient charge separation at multiple quantum well perovskite/PCBM interface. Applied Letters, 2018, 113, .	d Physics	1.5	7
300	Molecular and Selfâ€Trapped Excitonic Contributions to the Broadband Luminescence in Lowâ€Dimensional Hybrid Perovskite Systems. Advanced Optical Materials, 2018, 6, 18		3.6	43
301	Enhancing Optically Pumped Organic-Inorganic Hybrid Perovskite Amplified Spontaneou Compound Surface Plasmon Resonance. Crystals, 2018, 8, 124.	us Emission via	1.0	7
302	Crystallization, Properties, and Challenges of Lowâ€Bandgap Sn–Pb Binary Perovskite 2, 1800146.	es. Solar Rrl, 2018,	3.1	43
303	Whispering gallery mode lasing in lead halide perovskite crystals grown in microcapillary Physics Letters, 2018, 113, .	y. Applied	1.5	20
304	Correlating nano black spots and optical stability in mixed halide perovskite quantum do Materials Chemistry C, 2018, 6, 7803-7813.	ots. Journal of	2.7	25
305	One-Pot Synthesis of Highly Stable CsPbBr ₃ @SiO ₂ Core–S ACS Nano, 2018, 12, 8579-8587.	hell Nanoparticles.	7.3	447
306	Luminescence behaviour of room temperature chemical processed all-inorganic CsPbCl3 cubes. AIP Conference Proceedings, 2018, , .	3 perovskite	0.3	4
307	1D Organic–Inorganic Hybrid Perovskite Micro/Nanocrystals: Fabrication, Assembly, a Optoelectronic Applications. Small Methods, 2018, 2, 1700340.	nd	4.6	27
308	A Strategy for Architecture Design of Crystalline Perovskite Lightâ€Emitting Diodes with Performance. Advanced Materials, 2018, 30, e1800251.	n High	11.1	148
309	Chemical regulation of metal halide perovskite nanomaterials for efficient light-emitting Science China Chemistry, 2018, 61, 1047-1061.	diodes.	4.2	29
310	Lead halide perovskite quantum dots for light-emitting devices. Journal of Materials Che 6, 11868-11877.	mistry C, 2018,	2.7	47
311	Nonlinear optical properties of lead halide perovskites. , 2018, , .			0

#	Article	IF	CITATIONS
312	Chiral Lead Halide Perovskite Nanowires for Second-Order Nonlinear Optics. Nano Letters, 2018, 18, 5411-5417.	4.5	212
313	Phase Control in Mixed Halide Methylammonium Lead Perovskites Using Silicon Nanotube Templates. Journal of Physical Chemistry C, 2018, 122, 20040-20045.	1.5	7
314	Experimental and theoretical study of the energetic, morphological, and photoluminescence properties of CaZrO ₃ :Eu ³⁺ . CrystEngComm, 2018, 20, 5519-5530.	1.3	22
315	Enhancing Luminescence and Photostability of CsPbBr ₃ Nanocrystals via Surface Passivation with Silver Complex. Journal of Physical Chemistry C, 2018, 122, 12994-13000.	1.5	72
316	Efficient perovskite light-emitting diodes based on a solution-processed tin dioxide electron transport layer. Journal of Materials Chemistry C, 2018, 6, 6996-7002.	2.7	25
317	Charge-transfer versus energy-transfer in quasi-2D perovskite light-emitting diodes. Nano Energy, 2018, 50, 615-622.	8.2	103
318	Highly Efficient 2D/3D Hybrid Perovskite Solar Cells via Lowâ€Pressure Vaporâ€Assisted Solution Process. Advanced Materials, 2018, 30, e1801401.	11.1	154
319	Molecular <i>versus</i> polymeric hole transporting materials for perovskite solar cell application. Journal of Materials Chemistry A, 2018, 6, 13350-13358.	5.2	53
320	Highâ€Efficiency Pureâ€Color Inorganic Halide Perovskite Emitters for Ultrahighâ€Definition Displays: Progress for Backlighting Displays and Electrically Driven Devices. Small Methods, 2018, 2, 1700382.	4.6	47
321	White perovskite based lighting devices. Chemical Communications, 2018, 54, 8150-8169.	2.2	70
322	Electrodeposition of Hole-Transport Layer on Methylammonium Lead Iodide Film: A Strategy To Assemble Perovskite Solar Cells. Chemistry of Materials, 2018, 30, 4202-4206.	3.2	16
323	Photophysical Properties and Improved Stability of Organic–Inorganic Perovskite by Surface Passivation. Journal of Physical Chemistry C, 2018, 122, 15799-15818.	1.5	70
324	Progress in Scalable Coating and Rollâ€ŧoâ€Roll Compatible Printing Processes of Perovskite Solar Cells toward Realization of Commercialization. Advanced Optical Materials, 2018, 6, 1701182.	3.6	52
325	Doping manganese into CsPb(Cl/Br) ₃ quantum dots glasses: Dualâ€color emission and super thermal stability. Journal of the American Ceramic Society, 2019, 102, 1090-1100.	1.9	27
326	Probing the Spatial Heterogeneity of Carrier Relaxation Dynamics in CH ₃ NH ₃ PbI ₃ Perovskite Thin Films with Femtosecond Timeâ€Resolved Nonlinear Optical Microscopy. Advanced Optical Materials, 2019, 7, 1901185.	3.6	12
327	Luminescent perovskites: recent advances in theory and experiments. Inorganic Chemistry Frontiers, 2019, 6, 2969-3011.	3.0	185
328	Internal quantum efficiency of radiation in a bulk CH3NH3PbBr3 perovskite crystal quantified by using the omnidirectional photoluminescence spectroscopy. APL Materials, 2019, 7, .	2.2	24
329	Perovskite-based lasers. , 2019, , 41-74.		5

ARTICLE IF CITATIONS Polarization effects of transition dipoles on photoluminescence and photocurrent in 330 8.2 7 organic-inorganic hybrid perovskites. Nano Energy, 2019, 65, 104004. Roomâ€Temperature Stimulated Emission and Lasing in Recrystallized Cesium Lead Bromide Perovskite 11.1 148 Thin Films. Advanced Materials, 2019, 31, e1903717 Single-Step Synthesis of Dual Phase Bright Blue-Green Emitting Lead Halide Perovskite Nanocrystal 332 3.2 26 Thin Films. Chemistry of Materials, 2019, 31, 6824-6832. Surface engineering towards highly efficient perovskite light-emitting diodes. Nano Energy, 2019, 65, 104029. Single-phase alkylammonium cesium lead iodide quasi-2D perovskites for color-tunable and 334 2.8 24 spectrum-stable red LEDs. Nanoscale, 2019, 11, 16907-16918. Highâ€Order Shift Current Induced Terahertz Emission from Inorganic Cesium Bromine Lead Perovskite Engendered by Twoâ€Photon Absorption. Advanced Functional Materials, 2019, 29, 1904694. 7.8 Giant Electric Biasâ€Induced Tunability of Photoluminescence and Photoresistance in Hybrid Perovskite 336 3.6 8 Films on Ferroelectric Substrates. Advanced Optical Materials, 2019, 7, 1901092. Stable, Strongly Emitting Cesium Lead Bromide Perovskite Nanorods with High Optical Gain Enabled by 4.5 101 an Intermediate Monomer Reservoir Synthetic Strategy. Nano Letters, 2019, 19, 6315-6322. Using Silver Nanoparticles-Embedded Silica Metafilms as Substrates to Enhance the Performance of 338 4.0 37 Perovskite Photodetectors. ACS Applied Materials & amp; Interfaces, 2019, 11, 32301-32309. Perturbation-Induced Seeding and Crystallization of Hybrid Perovskites over Surface-Modified Substrates for Optoelectronic Devices. ACS Applied Materials & amp; Interfaces, 2019, 11, 27727-27734. Effect of interlayer spacing in layered perovskites on resistive switching memory. Nanoscale, 2019, 11, 340 2.8 39 14330-14338. In Situ Inkjet Printing Strategy for Fabricating Perovskite Quantum Dot Patterns. Advanced Functional Materials, 2019, 29, 1903648. 154 Ultrastable, Deformable, and Stretchable Luminescent Organic–Inorganic Perovskite Nanocrystal–Polymer Composites for 3D Printing and White Light-Emitting Diodes. ACS Applied 342 4.0 34 Materials & amp; Interfaces, 2019, 11, 30176-30184. Semiconductor Quantum Dots: An Emerging Candidate for CO₂ Photoreduction. Advanced Materials, 2019, 31, e1900709. 343 11.1 Stable 6H Organic–Inorganic Hybrid Lead Perovskite and Competitive Formation of 6H and 3C 344 2.515 Perovskite Structure with Mixed A Cations. ACS Applied Energy Materials, 2019, 2, 5427-5437. Defect Engineering in 2D Perovskite by Mn(II) Doping for Light-Emitting Applications. CheM, 2019, 5, 345 5.8 2146-2158. Light-Enhanced Ion Migration in Two-Dimensional Perovskite Single Crystals Revealed in Carbon 346 Nanotubes/Two-Dimensional Perovskite Heterostructure and Its Photomemory Application. ACS 5.345 Central Science, 2019, 5, 1857-1865. A Review of Perovskite Photovoltaic Materials' Synthesis and Applications via Chemical Vapor 347 1.3 Deposition Method. Materials, 2019, 12, 3304.

#	Article	IF	CITATIONS
348	Ruddlesden–Popper Perovskites: Synthesis and Optical Properties for Optoelectronic Applications. Advanced Science, 2019, 6, 1900941.	5.6	112
349	Size and temperature dependence of photoluminescence of hybrid perovskite nanocrystals. Journal of Chemical Physics, 2019, 151, 154705.	1.2	24
350	Improved Charge Injection and Transport of Light-Emitting Diodes Based on Two-Dimensional Materials. Applied Sciences (Switzerland), 2019, 9, 4140.	1.3	5
351	Disentangling the Luminescent Mechanism of Cs ₄ PbBr ₆ Single Crystals from an Ultrafast Dynamics Perspective. Journal of Physical Chemistry Letters, 2019, 10, 6572-6577.	2.1	29
352	In praise and in search of highly-polarizable semiconductors: Technological promise and discovery strategies. APL Materials, 2019, 7, .	2.2	21
353	Musselâ€Inspired Polymer Grafting on CsPbBr 3 Perovskite Quantum Dots Enhancing the Environmental Stability. Particle and Particle Systems Characterization, 2019, 36, 1900332.	1.2	8
354	CH3NH3PbBr3 Nanocrystals Formed in situ in Polystyrene Used for Increasing the Color Rendering Index of White Leds. Theoretical and Experimental Chemistry, 2019, 55, 223-231.	0.2	6
355	Halide Perovskite High- <i>k</i> Field Effect Transistors with Dynamically Reconfigurable Ambipolarity. , 2019, 1, 633-640.		29
356	Luminescence of perovskite light-emitting diodes with quasi-core/shell structure enhanced by Al–TiO2–Ag Bimetallic Nanoparticle. Superlattices and Microstructures, 2019, 136, 106323.	1.4	7
357	Inkjetâ€Printed Micrometerâ€Thick Patterned Perovskite Quantum Dot Films for Efficient Blueâ€toâ€Green Photoconversion. Advanced Materials Technologies, 2019, 4, 1900779.	3.0	47
358	The Role of Thickness Control and Interface Modification in Assembling Efficient Planar Perovskite Solar Cells. Molecules, 2019, 24, 3466.	1.7	14
359	Stable Perovskite Quantum Dots Coated with Superhydrophobic Organosilica Shells for White Lightâ€Emitting Diodes. Chemistry - an Asian Journal, 2019, 14, 3830-3834.	1.7	9
360	Probing Fabry–Perot Interference in Self-Assembled Excitonic Microcrystals with Subgap Light Emission. Journal of Physical Chemistry C, 2019, 123, 23103-23112.	1.5	9
361	High-Performance Planar-Type Ultraviolet Photodetector Based on High-Quality CH ₃ NH ₃ PbCl ₃ Perovskite Single Crystals. ACS Applied Materials & Interfaces, 2019, 11, 34144-34150.	4.0	71
362	Cesium tin halide perovskite quantum dots as an organic photoluminescence probe for lead ion. Journal of Luminescence, 2019, 216, 116711.	1.5	21
363	Engineering of perovskite light-emitting diodes based on quasi-2D perovskites formed by diamine cations. Organic Electronics, 2019, 75, 105400.	1.4	27
364	White light emitting diode based on purely organic fluorescent to modern thermally activated delayed fluorescence (TADF) and perovskite materials. Nano Convergence, 2019, 6, 31.	6.3	31
365	Charge Accumulation, Recombination, and Their Associated Time Scale in Efficient (GUA) <i>_x</i> (MA) _{1–<i>x</i>} PbI ₃ -Based Perovskite Solar Cells. ACS Omega, 2019, 4, 16840-16846.	1.6	25

		CITATION RE	PORT	
#	Article		IF	CITATIONS
366	Active meta-optics and nanophotonics with halide perovskites. Applied Physics Reviews, 2019, 6, 02	31307.	5.5	68
367	Light–Matter Interaction and Lasing in Lead Halide Perovskites. Accounts of Chemical Research, 2 52, 2950-2959.	2019,	7.6	43
368	Highly efficient perovskite light-emitting devices containing a cuprous thiocyanate hole injection layer. Organic Electronics, 2019, 75, 105420.		1.4	6
369	Highly enhanced performance of integrated piezo photo-transistor with dual inverted OLED gate ar nanowire array channel. Nano Energy, 2019, 66, 104101.	d	8.2	55
370	Single-Exciton Amplified Spontaneous Emission in Thin Films of CsPbX ₃ (X = Br, I) Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 6389-6398.		2.1	46
371	Highly stable enhanced near-infrared amplified spontaneous emission in solution-processed perovskite films by employing polymer and gold nanorods. Nanoscale, 2019, 11, 1959-1967.		2.8	28
372	High-performance room-temperature NO2 sensors based on CH3NH3PbBr3 semiconducting films: of surface capping by alkyl chain on sensor performance. Journal of Physics and Chemistry of Solids 2019, 129, 270-276.		1.9	24
373	Stable luminous nanocomposites of CsPbX ₃ perovskite nanocrystals anchored on silic for multicolor anti-counterfeit ink and white-LEDs. Materials Chemistry Frontiers, 2019, 3, 414-419.		3.2	48
374	Engineering Perovskite Nanocrystal Surface Termination for Lightâ€Emitting Diodes with External Quantum Efficiency Exceeding 15%. Advanced Functional Materials, 2019, 29, 1807284.		7.8	80
375	Efficient and Tunable Electroluminescence from In Situ Synthesized Perovskite Quantum Dots. Sma 2019, 15, e1804947.	II,	5.2	23
376	Emerging Perovskite Nanocrystals-Enhanced Solid-State Lighting and Liquid-Crystal Displays. Crysta 2019, 9, 59.	ls,	1.0	51
377	Bismuth Halide Perovskiteâ€Like Materials: Current Opportunities and Challenges. ChemSusChem, 12, 1612-1630.	2019,	3.6	98
378	Pseudohalides in Leadâ€Based Perovskite Semiconductors. Advanced Materials, 2019, 31, e180702	29.	11.1	39
379	Utilizing MVAD method to optimize crystallization and nanostructured surface of the perovskite film Toward electroluminescent and ultraviolet photodetective bifunctional optoelectronics. Applied Surface Science, 2019, 478, 1009-1016.	n:	3.1	4
380	Enhanced brightness of methylammonium lead tribromide perovskite microcrystal-based green light-emitting diodes by adding hydrophilic polyvinylpyrrolidone with oleic acid-modified ZnO quantum dot electron transporting layer. Journal of Alloys and Compounds, 2019, 786, 11-17.		2.8	18
381	Dynamic Screening and Slow Cooling of Hot Carriers in Lead Halide Perovskites. Advanced Material 2019, 31, e1803054.	5,	11.1	86
382	Improved thermal stability of CsPbBr ₃ quantum dots by ligand exchange and their application to light-emitting diodes. Applied Physics Express, 2019, 12, 035004.		1,1	17
383	Functional polymers for growth and stabilization of CsPbBr ₃ perovskite nanoparticles. Chemical Communications, 2019, 55, 1833-1836.		2.2	32

#	Article	IF	CITATIONS
384	Carbon quantum dot-sensitized and tunable luminescence of Ca ₁₉ Mg ₂ (PO ₄) ₁₄ :Ln ³⁺	=) Tj ETQq0	0 QjgBT /Ov
	<i>via</i> a sol–gel process. Journal of Materials Chemistry C, 2019, 7, 2361-2375.		
385	Size Dependence of Charge Carrier Dynamics in Organometal Halide Perovskite Nanocrystals: Deciphering Radiative Versus Nonradiative Components. Journal of Physical Chemistry C, 2019, 123, 4610-4619.	1.5	29
386	Halide perovskites for resistive random-access memories. Journal of Materials Chemistry C, 2019, 7, 5226-5234.	2.7	90
387	Underestimated Effect of a Polymer Matrix on the Light Emission of Single CsPbBr ₃ Nanocrystals. Nano Letters, 2019, 19, 3648-3653.	4.5	88
388	Electrospun Fibers Containing Emissive Hybrid Perovskite Quantum Dots. ACS Applied Materials & Interfaces, 2019, 11, 24468-24477.	4.0	13
389	Realizing 22.5% External Quantum Efficiency for Solutionâ€Processed Thermally Activated Delayedâ€Fluorescence OLEDs with Red Emission at 622 nm via a Synergistic Strategy of Molecular Engineering and Host Selection. Advanced Materials, 2019, 31, e1901404.	11.1	175
390	Low-dimensional perovskite nanoplatelet synthesis using <i>in situ</i> photophysical monitoring to establish controlled growth. Nanoscale, 2019, 11, 17262-17269.	2.8	18
391	Groove-assisted solution growth of lead bromide perovskite aligned nanowires: a simple method towards photoluminescent materials with guiding light properties. Materials Chemistry Frontiers, 2019, 3, 1754-1760.	3.2	6
392	Efficient perovskite nanocrystal light-emitting diodes using a benzimidazole-substituted anthracene derivative as the electron transport material. Journal of Materials Chemistry C, 2019, 7, 8938-8945.	2.7	12
393	On understanding bandgap bowing and optoelectronic quality in Pb–Sn alloy hybrid perovskites. Journal of Materials Chemistry A, 2019, 7, 16285-16293.	5.2	64
394	Solutionâ€Processed Lead Iodide for Ultrafast Allâ€Optical Switching of Terahertz Photonic Devices. Advanced Materials, 2019, 31, e1901455.	11.1	81
395	Surfaceâ€Plasmonâ€Assisted Metal Halide Perovskite Small Lasers. Advanced Optical Materials, 2019, 7, 1900279.	3.6	35
396	Stable and Efficient Green Perovskite Nanocrystal–Polysilazane Films for White LEDs Using an Electrospray Deposition Process. ACS Applied Materials & Interfaces, 2019, 11, 22510-22520.	4.0	11
397	Synthesis of CsPbBr ₃ perovskite nanocrystals with the sole ligand of protonated (3-aminopropyl)triethoxysilane. Journal of Materials Chemistry C, 2019, 7, 7201-7206.	2.7	27
398	Intermediate Phase Halide Exchange Strategy toward a High-Quality, Thick CsPbBr ₃ Film for Optoelectronic Applications. ACS Applied Materials & Interfaces, 2019, 11, 22543-22549.	4.0	34
399	Metal halide perovskites for resistive switching memory devices and artificial synapses. Journal of Materials Chemistry C, 2019, 7, 7476-7493.	2.7	72
400	Optical Characterization of Cesium Lead Bromide Perovskites. Crystals, 2019, 9, 280.	1.0	21
401	High-throughput computational design of organic–inorganic hybrid halide semiconductors beyond perovskites for optoelectronics. Energy and Environmental Science, 2019, 12, 2233-2243.	15.6	82

ARTICLE IF CITATIONS # Efficient Quantum Dot Light-Emitting Diodes Based on Trioctylphosphine Oxide-Passivated 402 26 1.6 Organometallic Halide Perovskites. ACS Omega, 2019, 4, 9150-9159. Disappeared deep charge-states transition levels in the p-type intrinsic CsSnCl3 perovskite. Applied 1.5 Physics Letters, 2019, 114, . Properties of Excitons and Photogenerated Charge Carriers in Metal Halide Perovskites. Advanced 404 11.1 134 Materials, 2019, 31, e1806671. Antimony doped Cs2SnCl6 with bright and stable emission. Frontiers of Optoelectronics, 2019, 12, 103 352-364. Compositional, Processing, and Interfacial Engineering of Nanocrystal- and Quantum-Dot-Based 406 3.2 82 Perovskite Solar Cells. Chemistry of Materials, 2019, 31, 6387-6411. Gram-scale synthesis of all-inorganic perovskite quantum dots with high Mn substitution ratio and enhanced dual-color emission. Nano Research, 2019, 12, 1733-1738. 5.8 Highâ€Quality Singleâ€Mode Lasers Based on Zeroâ€Dimensional Cesium Lead Halide Perovskites. Solar Rrl, 408 3.1 20 2019, 3, 1900127. Solventâ€Free Aerosol Deposition for Highly Luminescent and Thermally Stable Perovskiteâ€Ceramic 409 1.9 29 Nanocomposite Film. Advanced Materials Interfaces, 2019, 6, 1900359. Role of Quantum Confinement in 10 nm Scale Perovskite Optoelectronics. Journal of Physical 410 2.1 8 Chemistry Letters, 2019, 10, 2745-2752. Enhancing the performance of mixed-halide perovskite-based light-emitting devices by organic additive 2.1 inclusion. Synthetic Metals, 2019, 253, 88-93. Long-living nonlinear behavior in CsPbBr₃ carrier recombination dynamics. 412 2.9 15 Nanophotonics, 2019, 8, 1447-1455. Flash-induced ultrafast recrystallization of perovskite for flexible light-emitting diodes. Nano 8.2 34 Energy, 2019, 61, 236-244. Flexible Organometalâ€"Halide Perovskite Lasers for Speckle Reduction in Imaging Projection. ACS Nano, 414 7.3 84 2019, 13, 5421-5429. Flat Is Boring in Perovskite Light Detectors. CheM, 2019, 5, 748-749. 5.8 Low-voltage protonic/photonic synergic coupled oxide phototransistor. Organic Electronics, 2019, 71, 416 1.4 21 31-35. Solutionâ€Phase Epitaxial Growth of Perovskite Films on 2D Material Flakes for Highâ€Performance Solar 11.1 185 Cells. Advanced Materials, 2019, 31, e1807689. Amplified Spontaneous Emission Realized by Cogrowing Large/Small Grains with Selfâ€Passivating 418 3.6 19 Defects and Aligning Transition Dipoles. Advanced Optical Materials, 2019, 7, 1900345. A Novel Phototransistor Device with Dual Active Layers Composited of CsPbBr3 and ZnO Quantum 419 1.3 Dots. Materials, 2019, 12, 1215.

#	Article	IF	CITATIONS
420	Plasmonic Nanolasers: Pursuing Extreme Lasing Conditions on Nanoscale. Advanced Optical Materials, 2019, 7, 1900334.	3.6	36
421	Crystal structure, optical and electronic properties studies on an hybrid multifunctional MnCl4-based material. Advanced Composites and Hybrid Materials, 2019, 2, 373-380.	9.9	8
422	Nanomaterials for Polymer and Perovskite Light-Emitting Diodes. , 2019, , 371-421.		0
423	Metal Halide Perovskite Lightâ€Emitting Devices: Promising Technology for Nextâ€Generation Displays. Advanced Functional Materials, 2019, 29, 1902008.	7.8	296
424	Synthesis, Hirshfeld surface analysis, optical and electronic properties of the functional hybrid perovskite [NH ₃ –(CH ₂) ₂ –NH ₃] CdCl ₄ : a combined experimental and theoretical study. Materials Research Express, 2019, 6, 076301.	0.8	4
425	Controllable Growth of Aligned Monocrystalline CsPbBr ₃ Microwire Arrays for Piezoelectricâ€Induced Dynamic Modulation of Singleâ€Mode Lasing. Advanced Materials, 2019, 31, e1900647.	11.1	76
426	A photosensor based on lead-free perovskite-like methyl-ammonium bismuth iodide. Sensors and Actuators A: Physical, 2019, 291, 75-79.	2.0	13
427	Room-Temperature Broadband Light Emission from Hybrid Lead Iodide Perovskite-Like Quantum Wells: Terahertz Spectroscopic Investigation of Metastable Defects. Journal of Physical Chemistry Letters, 2019, 10, 1653-1662.	2.1	14
428	Light-Emitting Electrochemical Cells of Single Crystal Hybrid Halide Perovskite with Vertically Aligned Carbon Nanotubes Contacts. ACS Photonics, 2019, 6, 967-975.	3.2	49
429	The First 2D Homochiral Lead Iodide Perovskite Ferroelectrics: [<i>R</i> ―and <i>S</i> â€1â€(4â€Chlorophenyl)ethylammonium] ₂ PbI ₄ . Advanced Materials, 2019, 31 e1808088.	, 11.1	268
430	Lattice Disorder-Engineered Energy Splitting between Bright and Dark Excitons in CsPbBr ₃ Quantum Wires. Journal of Physical Chemistry Letters, 2019, 10, 1355-1360.	2.1	6
431	Acoustic phonon–exciton interaction by extremely strong exciton confinement and large phonon energy in CsPbBr ₃ perovskite. Applied Physics Express, 2019, 12, 052003.	1.1	9
432	Electronic and optical properties of perovskite compounds MA _{1â~î±} FA _{î±} Pbl _{3â~î²} X _{î²} (X = Cl, Br) explored for photovoltai applications. RSC Advances, 2019, 9, 7015-7024.	C1.7	20
433	Stable Luminous Nanocomposites of Confined Mn ²⁺ -Doped Lead Halide Perovskite Nanocrystals in Mesoporous Silica Nanospheres as Orange Fluorophores. Inorganic Chemistry, 2019, 58, 3950-3958.	1.9	34
434	Tunable Halide Perovskites for Miniaturized Solid‣tate Laser Applications. Advanced Optical Materials, 2019, 7, 1900099.	3.6	47
435	Tetradic phosphor white light with variable CCT and superlative CRI through organolead halide perovskite nanocrystals. Nanoscale Advances, 2019, 1, 1791-1798.	2.2	33
436	In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers: Shape tuning and polarized emission. Nano Research, 2019, 12, 1411-1416.	5.8	54
437	Construction of ZnxCd1â [~] 'xS/Bi2S3 composite nanospheres with photothermal effect for enhanced photocatalytic activities. Journal of Colloid and Interface Science, 2019, 546, 303-311.	5.0	56

#	Article	IF	CITATIONS
438	Consequences of lead incorporation in fluorite structured thoria. Ceramics International, 2019, 45, 11709-11716.	2.3	5
439	Temperature-dependent photoluminescence and lasing properties of CsPbBr3 nanowires. Applied Physics Letters, 2019, 114, .	1.5	59
440	Red shift of absorption edge and band gap shrinkage in perovskite Pb(Zr0.35Ti0.65)O3 thin film from heat generation for solar cells application. Applied Physics Express, 2019, 12, 022009.	1.1	1
441	Stable Sn ²⁺ doped FAPbI ₃ nanocrystals for near-infrared LEDs. Chemical Communications, 2019, 55, 5451-5454.	2.2	21
442	Ultrafast carrier dynamics of metal halide perovskite nanocrystals and perovskite-composites. Nanoscale, 2019, 11, 9796-9818.	2.8	76
443	Light Emission Enhancement by Tuning the Structural Phase of APbBr ₃ (A =) Tj ETQq1 1 0.784314 r 2135-2142.	gBT /Overl 2.1	ock 10 Tf 50 12
444	Ligand-Induced Tunable Dual-Color Emission Based on Lead Halide Perovskites for White Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 15898-15904.	4.0	19
445	Shortâ€Chain Ligandâ€Passivated Stable αâ€CsPbI ₃ Quantum Dot for Allâ€Inorganic Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900991.	7.8	216
446	Giant reduction of the random lasing threshold in CH ₃ NH ₃ PbBr ₃ perovskite thin films by using a patterned sapphire substrate. Nanoscale, 2019, 11, 10636-10645.	2.8	28
447	Increasing Photoluminescence Quantum Yield by Nanophotonic Design of Quantum-Confined Halide Perovskite Nanowire Arrays. Nano Letters, 2019, 19, 2850-2857.	4.5	67
448	A review of stability-enhanced luminescent materials: fabrication and optoelectronic applications. Journal of Materials Chemistry C, 2019, 7, 4934-4955.	2.7	37
449	White light emission in low-dimensional perovskites. Journal of Materials Chemistry C, 2019, 7, 4956-4969.	2.7	163
450	High-Performance Photoresistors Based on Perovskite Thin Film with a High PbI2 Doping Level. Nanomaterials, 2019, 9, 505.	1.9	12
451	Highly Luminescent Cesium Lead Halide Perovskite Nanocrystals Stabilized in Glasses for Lightâ€Emitting Applications. Advanced Optical Materials, 2019, 7, 1801663.	3.6	206
452	Causes and Solutions of Recombination in Perovskite Solar Cells. Advanced Materials, 2019, 31, e1803019.	11.1	422
453	Composite Structures with Emissive Quantum Dots for Light Enhancement. Advanced Optical Materials, 2019, 7, 1801072.	3.6	30
454	Dry-pressed anodized titania nanotube/CH3NH3PbI3 single crystal heterojunctions: The beneficial role of N doping. Ceramics International, 2019, 45, 10013-10020.	2.3	5
455	Molecular engineering of enamine-based small organic compounds as hole-transporting materials for perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 2717-2724.	2.7	19

#	Article	IF	CITATIONS
456	Fluorescent Microarrays of <i>in Situ</i> Crystallized Perovskite Nanocomposites Fabricated for Patterned Applications by Using Inkjet Printing. ACS Nano, 2019, 13, 2042-2049.	7.3	120
457	Enhancing air-stability of CH3NH3PbBr3 perovskite quantum dots by in-situ growth in metal-organic frameworks and their applications in light emitting diodes. Journal of Solid State Chemistry, 2019, 272, 221-226.	1.4	31
458	Water-stable and ion exchange-free inorganic perovskite quantum dots encapsulated in solid paraffin and their application in light emitting diodes. Nanoscale, 2019, 11, 5557-5563.	2.8	46
459	Temperature dependent geometry in perovskite microcrystals for whispering gallery and Fabry–Pérot mode lasing. Journal of Materials Chemistry C, 2019, 7, 4102-4108.	2.7	18
460	High Electron Affinity Molecular Dopant CN6-CP for Efficient Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 11660-11666.	4.0	29
461	Halide Perovskites: Is It All about the Interfaces?. Chemical Reviews, 2019, 119, 3349-3417.	23.0	404
462	Continuous wave amplified spontaneous emission in phase-stable lead halide perovskites. Nature Communications, 2019, 10, 988.	5.8	107
463	One-pot synthesis of color-tunable copper doped zinc sulfide quantum dots for solid-state lighting devices. Journal of Alloys and Compounds, 2019, 787, 537-542.	2.8	16
464	Interfacial Synthesis of Monodisperse CsPbBr ₃ Nanorods with Tunable Aspect Ratio and Clean Surface for Efficient Light-Emitting Diode Applications. Chemistry of Materials, 2019, 31, 1575-1583.	3.2	78
465	Self-Assembled Copper Nanoclusters-Based White Light Emitting Diodes With High Performance. , 2019, , .		0
466	Computational Screening of New Perovskite Materials Using Transfer Learning and Deep Learning. Applied Sciences (Switzerland), 2019, 9, 5510.	1.3	37
467	Exciton–phonon interaction in quasi-two dimensional layered (PEA) ₂ (CsPbBr ₃) _{nâ^'1} PbBr ₄ perovskite. Nanoscale, 2019, 11, 21867-21871.	2.8	34
468	Coffee ring elimination and crystalline control of electrohydrodynamically printed high-viscosity perovskites. Journal of Materials Chemistry C, 2019, 7, 14867-14873.	2.7	38
469	Exploring Energy Transfer in a Metal/Perovskite Nanocrystal Antenna to Drive Photocatalysis. Journal of Physical Chemistry Letters, 2019, 10, 7797-7803.	2.1	17
470	Solvent-Free Synthesis and Thin-Film Deposition of Cesium Copper Halides with Bright Blue Photoluminescence. Chemistry of Materials, 2019, 31, 10205-10210.	3.2	94
471	Lead-Free Perovskites for Lighting and Lasing Applications: A Minireview. Materials, 2019, 12, 3845.	1.3	28
472	Amplified Spontaneous Emission Threshold Reduction and Operational Stability Improvement in CsPbBr3 Nanocrystals Films by Hydrophobic Functionalization of the Substrate. Scientific Reports, 2019, 9, 17964.	1.6	46
473	Spectral Characteristics of Mechanochemically Prepared Perovskite CH3NH3PbBr3 Nanoparticles Passivated by Amines with Different Alkyl Chain Length. Theoretical and Experimental Chemistry, 2019, 55, 316-323.	0.2	2

#	ARTICLE	IF	CITATIONS
474	Coherent charge-phonon correlations and exciton dynamics in orthorhombic CH3NH3PbI3 measured by ultrafast multi-THz spectroscopy. Journal of Chemical Physics, 2019, 151, 214201.	1.2	6
475	Coherent exciton-phonon coupling in perovskite semiconductor nanocrystals studied by two-dimensional electronic spectroscopy. Applied Physics Letters, 2019, 115, .	1.5	18
476	Enhancing the performance of perovskite light-emitting devices through 1,3,5-tris(2- <i>N</i> -phenylbenzimidazolyl)benzene interlayer incorporation. RSC Advances, 2019, 9, 29037-29043.	1.7	2
477	Widely applicable phosphomolybdic acid doped poly(9-vinylcarbazole) hole transport layer for perovskite light-emitting devices. RSC Advances, 2019, 9, 30398-30405.	1.7	2
478	Engineering a CsPbBr ₃ -based nanocomposite for efficient photocatalytic CO ₂ reduction: improved charge separation concomitant with increased activity sites. RSC Advances, 2019, 9, 34342-34348.	1.7	49
479	An efficient route to assemble novel organometal halide perovskites and emission evolution performance. Journal of Alloys and Compounds, 2019, 771, 418-423.	2.8	12
480	The Physics of Light Emission in Halide Perovskite Devices. Advanced Materials, 2019, 31, e1803336.	11.1	189
481	Precursor solution volume-dependent ligand-assisted synthesis of CH3NH3PbBr3 perovskite nanocrystals. Journal of Alloys and Compounds, 2019, 773, 227-233.	2.8	24
482	Enhancing violet photoluminescence of 2D perovskite thin films via swift cation doping and grain size reduction. Applied Physics Express, 2019, 12, 015506.	1.1	8
483	Long-Lived Dark Exciton Emission in Mn-Doped CsPbCl ₃ Perovskite Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 979-984.	1.5	56
484	Rational chemical doping of metal halide perovskites. Chemical Society Reviews, 2019, 48, 517-539.	18.7	196
485	Lead-free, stable, and effective double FA4GeIISbIIICl12 perovskite for photovoltaic applications. Solar Energy Materials and Solar Cells, 2019, 192, 140-146.	3.0	31
486	Bismuth Enhances the Stability of CH ₃ NH ₃ PbI ₃ (MAPI) Perovskite under High Humidity. Journal of Physical Chemistry C, 2019, 123, 963-970.	1.5	20
487	Highâ€Quality Cuboid CH ₃ NH ₃ PbI ₃ Single Crystals for High Performance Xâ€Ray and Photon Detectors. Advanced Functional Materials, 2019, 29, 1806984.	7.8	115
488	Enhanced Photovoltaic Performance and Thermal Stability of CH ₃ NH ₃ PbI ₃ Perovskite through Lattice Symmetrization. ACS Applied Materials & Interfaces, 2019, 11, 740-746.	4.0	20
489	Highly Stable Luminous "Snakes―from CsPbX ₃ Perovskite Nanocrystals Anchored on Amine-Coated Silica Nanowires. ACS Applied Nano Materials, 2019, 2, 258-266.	2.4	14
490	Ethanol–water-assisted room temperature synthesis of CsPbBr3/SiO2 nanocomposites with high stability in ethanol. Journal of Materials Science, 2019, 54, 3786-3794.	1.7	16
491	Improved Hole Injection into Perovskite Lightâ€Emitting Diodes Using A Black Phosphorus Interlayer. Advanced Electronic Materials, 2019, 5, 1800687.	2.6	20

	Сітаті	ION REPORT	
#	ARTICLE Room-temperature synthesis of Mn2+-doped cesium lead halide perovskite nanocrystals via a	IF	CITATIONS
492	transformation doping method. Journal of Materials Science: Materials in Electronics, 2019, 30, 180-188.	1.1	3
493	Conducting Bridge Resistive Switching Behaviors in Cubic MAPbl ₃ , Orthorhombic RbPbl ₃ , and Their Mixtures. Advanced Electronic Materials, 2019, 5, 1800586.	2.6	33
494	Ultrastable and Lowâ€Threshold Random Lasing from Narrowâ€Bandwidthâ€Emission Triangular Carbon Quantum Dots. Advanced Optical Materials, 2019, 7, 1801202.	3.6	67
495	Achieving Near-Unity Photoluminescence Efficiency for Blue-Violet-Emitting Perovskite Nanocrystals. ACS Energy Letters, 2019, 4, 32-39.	8.8	330
496	How lasing happens in CsPbBr3 perovskite nanowires. Nature Communications, 2019, 10, 265.	5.8	168
497	Mechanism of Photoluminescence Intermittency in Organic–Inorganic Perovskite Nanocrystals. ACS Applied Materials & Interfaces, 2019, 11, 6344-6349.	4.0	17
498	Growth of perovskite nanocrystals in poly-tetra fluoroethylene based microsystem: on-line and off-line measurements. Nanotechnology, 2019, 30, 145602.	1.3	9
499	Photoexcited Dynamics in Metal Halide Perovskites: From Relaxation Mechanisms to Applications. Journal of Physical Chemistry C, 2019, 123, 3255-3269.	1.5	9
500	Stable, color-tunable 2D SCN-based perovskites: revealing the critical influence of an asymmetric pseudo-halide on constituent ions. Nanoscale, 2019, 11, 2608-2616.	2.8	22
501	Few-layer formamidinium lead bromide nanoplatelets for ultrapure-green and high-efficiency light-emitting diodes. Nano Research, 2019, 12, 171-176.	5.8	34
502	Perovskite Nanoparticles: Synthesis, Properties, and Novel Applications in Photovoltaics and LEDs. Small Methods, 2019, 3, 1800231.	4.6	77
503	Stabilizing RbPbBr ₃ Perovskite Nanocrystals through Cs ⁺ Substitution. Chemistry - A European Journal, 2019, 25, 2597-2603.	1.7	25
504	An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chemical Society Reviews, 2019, 48, 310-350.	18.7	845
505	Effects of n-butyl amine incorporation on the performance of perovskite light emitting diodes. Nanotechnology, 2019, 30, 105703.	1.3	10
506	High Optical Energy Storage and Two-Photon Luminescence from Solution-Processed Perovskite-Polystyrene Composite Microresonators. ACS Applied Energy Materials, 2019, 2, 428-435.	2.5	15
507	Dy3+ doped tellurium-borate glass phosphors for laser-driven white illumination. Journal of Luminescence, 2019, 206, 70-78.	1.5	27
508	Halide Perovskites for Nonlinear Optics. Advanced Materials, 2020, 32, e1806736.	11.1	210
509	Gram-scale and solvent-free synthesis of Mn-doped lead halide perovskite nanocrystals. Journal of Alloys and Compounds, 2020, 815, 152393.	2.8	11

	CITATION RE	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
510	Emerging Selfâ€Emissive Technologies for Flexible Displays. Advanced Materials, 2020, 32, e1902391.	11.1	131
511	2D and Quasiâ€2D Halide Perovskites: Applications and Progress. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900435.	1.2	37
512	All-inorganic perovskite quantum dots CsPbX3 (Br/I) for highly sensitive and selective detection of explosive picric acid. Chemical Engineering Journal, 2020, 379, 122360.	6.6	61
513	Advances in metal halide perovskite nanocrystals: Synthetic strategies, growth mechanisms, and optoelectronic applications. Materials Today, 2020, 32, 204-221.	8.3	114
514	Efficient light-emitting devices based on mixed-cation lead halide perovskites. Organic Electronics, 2020, 77, 105546.	1.4	8
515	Distributed feedback organic lasing in photonic crystals. Frontiers of Optoelectronics, 2020, 13, 18-34.	1.9	34
516	Inch-sized aligned polymer nanofiber films with embedded CH ₃ NH ₃ PbBr ₃ nanocrystals: electrospinning fabrication using a folded aluminum foil as the collector. Nanotechnology, 2020, 31, 075708.	1.3	11
517	Versatile Homoleptic Naphthylâ€Acetylide Heteronuclear [Pt 2 M 4 (CCâ€Np) 8] (M = Ag, Cu) Phosphors fo Highly Efficient White and NIR Hybrid Lightâ€Emitting Diodes. Advanced Optical Materials, 2020, 8, 1901126.	r 3.6	6
518	Perovskite nanostructures: Leveraging quantum effects to challenge optoelectronic limits. Materials Today, 2020, 33, 122-140.	8.3	26
519	<i>In situ</i> tetrafluoroborate-modified MAPbBr ₃ nanocrystals showing high photoluminescence, stability and self-assembly behavior. Journal of Materials Chemistry C, 2020, 8, 1989-1997.	2.7	8
520	Room Temperature Synthesis of All Inorganic Lead-Free Zero-Dimensional Cs ₄ SnBr ₆ and Cs ₃ KSnBr ₆ Perovskites. Inorganic Chemistry, 2020, 59, 533-538.	1.9	21
521	Operational stability of perovskite light emitting diodes. JPhys Materials, 2020, 3, 012002.	1.8	95
522	Improvement of CsPbBr3 photodetector performance by tuning the morphology with PMMA additive. Journal of Alloys and Compounds, 2020, 821, 153344.	2.8	31
523	3D printed nanomaterial-based electronic, biomedical, and bioelectronic devices. Nanotechnology, 2020, 31, 172001.	1.3	52
524	Interfacial Engineering through Chloride-Functionalized Self-Assembled Monolayers for High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 744-752.	4.0	47
525	Encapsulation of colloid perovskite nanocrystals into solid polymer matrices: Impact on electronic transition and photoluminescence. Journal of Luminescence, 2020, 219, 116938.	1.5	24
526	Rapid and room temperature synthesis of MAPb1â^'xSnxBr3â^'2xCl2x perovskite quantum dots with enhanced lifetime in warm WLEDs: A step towards environmental friendly perovskite light harvester. Chemical Engineering Journal, 2020, 391, 123629.	6.6	16
527	Spinâ€Onâ€Patterning of Sn–Pb Perovskite Photodiodes on IGZO Transistor Arrays for Fast Activeâ€Matrix Nearâ€Infrared Imaging. Advanced Materials Technologies, 2020, 5, 1900752.	3.0	21

#	Article	IF	CITATIONS
528	Strontium Ion B‣ite Substitution for Spectral‣table Blue Emitting Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2020, 8, 2001073.	3.6	28
529	Holographic Image Denoising using Random Laser Illumination. Annalen Der Physik, 2020, 532, 2000323.	0.9	8
530	Understanding the Role of Ion Migration in the Operation of Perovskite Light-Emitting Diodes by Transient Measurements. ACS Applied Materials & Interfaces, 2020, 12, 48845-48853.	4.0	37
531	Recent Progress in Emerging Near-Infrared Emitting Materials for Light-Emitting Diode Applications. Organic Materials, 2020, 02, 253-281.	1.0	25
532	Photoluminescence enhancement of perovskites nanocomposites using ion implanted silver nanoparticles. Chemical Physics Letters, 2020, 760, 137995.	1.2	5
533	Strategy for the Complete Conversion of Thermally Grown PbI2 Layers in Inverted Perovskite Solar Cells. Electronic Materials Letters, 2020, 16, 588-594.	1.0	6
534	Recent advances of lead-free metal halide perovskite single crystals and nanocrystals: synthesis, crystal structure, optical properties, and their diverse applications. Materials Today Chemistry, 2020, 18, 100363.	1.7	38
535	Co-axial silicon/perovskite heterojunction arrays for high-performance direct-conversion pixelated X-ray detectors. Nano Energy, 2020, 78, 105335.	8.2	22
536	Core–Shell CsPbBr ₃ @CdS Quantum Dots with Enhanced Stability and Photoluminescence Quantum Yields for Optoelectronic Devices. ACS Applied Nano Materials, 2020, 3, 7563-7571.	2.4	45
537	Simultaneous Low-Order Phase Suppression and Defect Passivation for Efficient and Stable Blue Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 2569-2579.	8.8	89
538	Organic solid-state lasers: a materials view and future development. Chemical Society Reviews, 2020, 49, 5885-5944.	18.7	250
539	A carrier density dependent diffusion coefficient, recombination rate and diffusion length in MAPbl ₃ and MAPbBr ₃ crystals measured under one- and two-photon excitations. Journal of Materials Chemistry C, 2020, 8, 10290-10301.	2.7	25
540	Improved performance of flexible perovskite light-emitting diodes with modified PEDOT:PSS hole transport layer. Journal of Industrial and Engineering Chemistry, 2020, 90, 117-121.	2.9	17
541	Optimizing Performance and Operational Stability of CsPbI ₃ Quantum-Dot-Based Light-Emitting Diodes by Interface Engineering. ACS Applied Electronic Materials, 2020, 2, 2525-2534.	2.0	24
542	Hole injection in perovskite light-emitting device with PEDOT:PSS/perovskite interface via MS contact. Applied Physics Letters, 2020, 117, 012107.	1.5	3
543	Solution-Processed Fabrication of Light-Emitting Diodes Using CsPbBr ₃ Perovskite Nanocrystals. ACS Applied Nano Materials, 2020, 3, 11801-11810.	2.4	8
544	Dynamics of anion exchange in cesium lead halide (CsPbX ₃) perovskite nanocrystals. New Journal of Chemistry, 2020, 44, 20592-20599.	1.4	11
545	Polymer encapsulation as an effective method for enhanced stability in perovskite quantum dots. AIP Conference Proceedings, 2020, , .	0.3	5

#	Article	IF	CITATIONS
546	Enhanced hole injection assisted by electric dipoles for efficient perovskite light-emitting diodes. Communications Materials, 2020, 1, .	2.9	33
547	Structural, Electronic, and Optical Properties of CsPb(Br1â^xClx)3 Perovskite: First-Principles Study with PBE–GGA and mBJ–GGA Methods. Materials, 2020, 13, 4944.	1.3	22
548	Fabrication of Thin Films from Powdered Cesium Lead Bromide (CsPbBr ₃) Perovskite Quantum Dots for Coherent Green Light Emission. ACS Omega, 2020, 5, 30111-30122.	1.6	26
549	Ultra-Stable Polycrystalline CsPbBr3 Perovskite–Polymer Composite Thin Disk for Light-Emitting Applications. Nanomaterials, 2020, 10, 2382.	1.9	18
550	Recent Advances in Luminescent Zeroâ€Đimensional Organic Metal Halide Hybrids. Advanced Optical Materials, 2021, 9, 2001766.	3.6	118
551	Vacuum Dual-Source Thermal-Deposited Lead-Free Cs ₃ Cu ₂ I ₅ Films with High Photoluminescence Quantum Yield for Deep-Blue Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 52967-52975.	4.0	50
552	Elucidating and Mitigating Degradation Processes in Perovskite Lightâ€Emitting Diodes. Advanced Energy Materials, 2020, 10, 2002676.	10.2	28
553	Highly-efficient and stable warm white emission from perovskite/silica composites with photoactivated luminescence enhancement. Journal of Materials Chemistry C, 2020, 8, 12623-12631.	2.7	10
554	Dynamic Response of Alternating-Current-Driven Light-Emitting Diodes Based on Hybrid Halide Perovskites. Physical Review Applied, 2020, 14, .	1.5	11
555	Suppressing Ion Migration Enables Stable Perovskite Lightâ€Emitting Diodes with Allâ€Inorganic Strategy. Advanced Functional Materials, 2020, 30, 2001834.	7.8	76
556	Electroplated Silver–Nickel Core–Shell Nanowire Network Electrodes for Highly Efficient Perovskite Nanoparticle Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 39479-39486.	4.0	21
557	Unprecedented random lasing in 2D organolead halide single-crystalline perovskite microrods. Nanoscale, 2020, 12, 18269-18277.	2.8	19
558	Perovskite Nanoâ€Heterojunctions: Synthesis, Structures, Properties, Challenges, and Prospects. Small Structures, 2020, 1, 2000009.	6.9	52
559	PEAI-Based Interfacial Layer for High-Efficiency and Stable Solar Cells Based on a MACI-Mediated Grown FA _{0.94} MA _{0.06} PbI ₃ Perovskite. ACS Applied Materials & Interfaces, 2020, 12, 37197-37207.	4.0	62
560	Lead Halide Perovskite Nanocrystals: Room Temperature Syntheses toward Commercial Viability. Advanced Energy Materials, 2020, 10, 2001349.	10.2	63
561	Mechanical Properties of a 2D Lead-Halide Perovskite, (C ₆ H ₅ CH ₂ NH ₃) ₂ PbCl ₄ , by Nanoindentation and First-Principles Calculations. Journal of Physical Chemistry C, 2020, 124, 19204-19211.	1.5	25
562	Ultrasmall Blueshift of Near-Infrared Fluorescence in Phase-Stable Cs2SnI6 Thin Films. Physical Review Applied, 2020, 14, .	1.5	10
563	Giant isotope effect on phonon dispersion and thermal conductivity in methylammonium lead iodide. Science Advances, 2020, 6, eaaz1842.	4.7	17

#	Article	IF	CITATIONS
564	Growth of centimeter-scale perovskite single-crystalline thin film via surface engineering. Nano Convergence, 2020, 7, 25.	6.3	33
565	Surface Ligand Engineering for CsPbBr ₃ Quantum Dots Aiming at Aggregation Suppression and Amplified Spontaneous Emission Improvement. Advanced Optical Materials, 2020, 8, 2000977.	3.6	32
566	New photoluminescence hybrid perovskites with ultrahigh photoluminescence quantum yield and ultrahigh thermostability temperature up to 600ÂK. Nano Energy, 2020, 77, 105170.	8.2	39
567	Enhancing electrochemiluminescence of FAPbBr3 nanocrystals by using carbon nanotubes and TiO2 nanoparticles as conductivity and co-reaction accelerator for dopamine determination. Electrochimica Acta, 2020, 360, 136992.	2.6	19
568	Improving Efficiency and Stability in Quasi-2D Perovskite Light-Emitting Diodes by a Multifunctional LiF Interlayer. ACS Applied Materials & Interfaces, 2020, 12, 43018-43023.	4.0	53
569	Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature, 2020, 585, 53-57.	13.7	384
570	Design of 2D Templating Molecules for Mixed-Dimensional Perovskite Light-Emitting Diodes. Chemistry of Materials, 2020, 32, 8097-8105.	3.2	24
571	Multi-functionalized polysilsesquioxanes assisted synthesis of methylammonium tin bromide perovskite: A novel approach. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 261, 114761.	1.7	0
572	Realizing CsPbBr ₃ Light-Emitting Diode Arrays Based on PDMS Template Confined Solution Growth of Single-Crystalline Perovskite. Journal of Physical Chemistry Letters, 2020, 11, 8275-8282.	2.1	21
573	Synthesis of halide perovskite microwires via methylammonium cations reaction. Frontiers of Materials Science, 2020, 14, 332-340.	1.1	1
574	Impact of Mesoporous Silicon Template Pore Dimension and Surface Chemistry on Methylammonium Lead Trihalide Perovskite Photophysics. Advanced Materials Interfaces, 2020, 7, 2001138.	1.9	1
575	Structural Dynamics of Two-Dimensional Ruddlesden–Popper Perovskites: A Computational Study. Journal of Physical Chemistry C, 2020, 124, 22096-22104.	1.5	13
576	A corona modulation device structure and mechanism based on perovskite quantum dots random laser pumped using an electron beam. Frontiers of Optoelectronics, 2020, 13, 291-302.	1.9	4
577	UVâ€&elective Optically Transparent Zn(O,S)â€Based Solar Cells. Solar Rrl, 2020, 4, 2000470.	3.1	12
578	Reducing Amplified Spontaneous Emission Threshold in CsPbBr3 Quantum Dot Films by Controlling TiO2 Compact Layer. Nanomaterials, 2020, 10, 1605.	1.9	15
579	Ion-mediated hopping electrode polarization model for impedance spectra of CH3NH3PbI3. Journal of Applied Physics, 2020, 128, .	1.1	9
580	Effects of 5-Ammonium Valeric Acid Iodide as Additive on Methyl Ammonium Lead Iodide Perovskite Solar Cells. Nanomaterials, 2020, 10, 2512.	1.9	15
581	Effectiveness of Solvent Vapor Annealing on Optoelectronic Properties for Quasi-2D Organic–Inorganic Hybrid Perovskite Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 28417-28423.	1.5	21

	CITATION REI	CITATION REPORT	
#	Article	IF	CITATIONS
582	Luminescent Metal–Organic Frameworks for White LEDs. Advanced Optical Materials, 2021, 9, 2001817.	3.6	71
583	Regulating the morphology and luminescence properties of CsPbBr ₃ perovskite quantum dots through the rigidity of glass network structure. Journal of Materials Chemistry C, 2020, 8, 17374-17382.	2.7	41
584	Three-Dimensional Lead Bromide Hybrid Ferroelectric Realized by Lattice Expansion. Journal of the American Chemical Society, 2020, 142, 19698-19704.	6.6	31
585	Generation of Circularly Polarized Luminescence by Symmetry Breaking. Symmetry, 2020, 12, 1786.	1.1	22
586	Inkjet Printing Matrix Perovskite Quantum Dot Lightâ€Emitting Devices. Advanced Materials Technologies, 2020, 5, 2000099.	3.0	49
587	Robust and Transient Writeâ€Onceâ€Readâ€Manyâ€Times Memory Device Based on Hybrid Perovskite Film with Novel Room Temperature Molten Salt Solvent. Advanced Electronic Materials, 2020, 6, 2000109.	2.6	22
588	Ferroelastic Domains in a CsPbBr ₃ Single Crystal and Their Phase Transition Characteristics: An <i>in Situ</i> TEM Study. Crystal Growth and Design, 2020, 20, 4585-4592.	1.4	19
589	Efficient Blue Perovskite Lightâ€Emitting Diodes Boosted by 2D/3D Energy Cascade Channels. Advanced Functional Materials, 2020, 30, 2001732.	7.8	118
590	Optical nonlinearity of zeolitic imidazolate framework-67 in the near-infrared region. Materials Chemistry Frontiers, 2020, 4, 2081-2088.	3.2	31
591	Identifying, understanding and controlling defects and traps in halide perovskites for optoelectronic devices: a review. Journal Physics D: Applied Physics, 2020, 53, 373001.	1.3	20
592	Progress in semiconductor quantum dots-based continuous-wave laser. Science China Materials, 2020, 63, 1382-1397.	3.5	10
593	Perovskite nanomaterials as optical and electrochemical sensors. Inorganic Chemistry Frontiers, 2020, 7, 2702-2725.	3.0	91
594	Tunable excitonic properties in two-dimensional heterostructures based on solution-processed PbI2 flakes. Journal of Materials Science, 2020, 55, 10656-10667.	1.7	3
595	Stable Hexylphosphonate-Capped Blue-Emitting Quantum-Confined CsPbBr ₃ Nanoplatelets. ACS Energy Letters, 2020, 5, 1900-1907.	8.8	82
596	Efficient Flexible Inorganic Perovskite Light-Emitting Diodes Fabricated with CsPbBr ₃ Emitters Prepared via Low-Temperature in Situ Dynamic Thermal Crystallization. Nano Letters, 2020, 20, 4673-4680.	4.5	55
597	Highly Thermotolerant Metal Halide Perovskite Solids. Advanced Materials, 2020, 32, e2002495.	11.1	29
598	Research progress on hybrid organic–inorganic perovskites for photo-applications. Chinese Chemical Letters, 2020, 31, 3055-3064.	4.8	52
599	Surface modification of all-inorganic halide perovskite nanorods by a microscale hydrophobic zeolite for stable and sensitive laser humidity sensing. Nanoscale, 2020, 12, 13360-13367.	2.8	21

#	Article	IF	CITATIONS
600	Humidity Sensing Properties of Organometallic Perovskite CH ₃ NH ₃ PbI ₃ . ChemistrySelect, 2020, 5, 6705-6708.	0.7	14
601	Strongly luminescent and highly stable core-shell suprastructures from in-situ growth of CsPbBr3 perovskite nanocrystals in multidentate copolymer micelles. Journal of Alloys and Compounds, 2020, 844, 156102.	2.8	16
602	Lead-Free Metal Halide Perovskites and Perovskite Derivatives as an Environmentally Friendly Emitter for Light-Emitting Device Applications. Journal of Physical Chemistry Letters, 2020, 11, 5517-5530.	2.1	59
603	Selfâ€Assembly of Perovskite CsPbBr 3 Quantum Dots Driven by a Photoâ€Induced Alkynyl Homocoupling Reaction. Angewandte Chemie, 2020, 132, 17360-17366.	1.6	11
604	Selfâ€Assembly of Perovskite CsPbBr ₃ Quantum Dots Driven by a Photoâ€Induced Alkynyl Homocoupling Reaction. Angewandte Chemie - International Edition, 2020, 59, 17207-17213.	7.2	19
605	Robot-Accelerated Perovskite Investigation and Discovery. Chemistry of Materials, 2020, 32, 5650-5663.	3.2	113
606	X-ray detection based on crushed perovskite crystal/polymer composites. Sensors and Actuators A: Physical, 2020, 312, 112132.	2.0	21
607	Enhanced stability and performance of light-emitting diodes based on <i>in situ</i> fabricated FAPbBr ₃ nanocrystals <i>via</i> ligand compensation with <i>n</i> -octylphosphonic acid. Journal of Materials Chemistry C, 2020, 8, 9936-9944.	2.7	11
608	Quantum yield enhancement of Mn-doped CsPbCl3 perovskite nanocrystals as luminescent down-shifting layer for CIGS solar cells. Solar Energy, 2020, 206, 473-478.	2.9	21
609	Understanding the Essential Role of PbI ₂ Films in a High-Performance Lead Halide Perovskite Photodetector. Journal of Physical Chemistry C, 2020, 124, 15107-15114.	1.5	17
610	Wettabilityâ€Guided Screen Printing of Perovskite Microlaser Arrays for Currentâ€Driven Displays. Advanced Materials, 2020, 32, e2001999.	11.1	66
611	Dynamical Imaging of Surface Photopotentials in Hybrid Lead Iodide Perovskite Films under High Optical Irradiance and the Role of Selective Contacts. Advanced Materials Interfaces, 2020, 7, 2000297.	1.9	6
612	Micro―and Nanopatterning of Halide Perovskites Where Crystal Engineering for Emerging Photoelectronics Meets Integrated Device Array Technology. Advanced Materials, 2020, 32, e2000597.	11.1	62
613	Advances in inorganic and hybrid perovskites for miniaturized lasers. Nanophotonics, 2020, 9, 2251-2272.	2.9	40
614	Green and sky blue perovskite light-emitting devices with a diamine additive. Journal of Materials Science, 2020, 55, 7691-7701.	1.7	16
615	A Leadâ€Free Allâ€Inorganic Metal Halide with Nearâ€Unity Green Luminescence. Laser and Photonics Reviews, 2020, 14, 2000027.	4.4	66
616	Stabilizing Perovskite Lightâ€Emitting Diodes by Incorporation of Binary Alkali Cations. Advanced Materials, 2020, 32, e1907786.	11.1	64
617	Superhydrophobic luminous nanocomposites from CsPbX3 perovskite nanocrystals encapsulated in organosilica. Applied Surface Science, 2020, 515, 146004.	3.1	18

#		IF	CITATIONS
618	Broadband Photoluminescence in 2D Organic–Inorganic Hybrid Perovskites: (C ₇ H ₁₈ N ₂)PbBr ₄ and (C ₉ H ₂₂ N ₂)PbBr ₄ . Journal of Physical Chemistry Letters, 2020, 11, 2934-2940.	2.1	61
619	Insulator-metal transition in CaTiO ₃ quantum dots induced by ultrafast laser pulses*. Chinese Physics B, 2020, 29, 058101.	0.7	3
620	Halogen–NH ₂ ⁺ Interaction, Temperature-Induced Phase Transition, and Ordering in (NH ₂ CHNH ₂)PbX ₃ (X = Cl, Br, I) Hybrid Perovskites. Journal of Physical Chemistry C, 2020, 124, 8479-8487.	1.5	32
621	Homochiral Nickel Nitrite ABX ₃ (X = NO ₂ [–]) Perovskite Ferroelectrics. Journal of the American Chemical Society, 2020, 142, 6946-6950.	6.6	45
622	Strongly Enhanced Photoluminescence and Photoconductivity in Erbium-Doped MAPbBr ₃ Single Crystals. Journal of Physical Chemistry C, 2020, 124, 8992-8998.	1.5	26
623	Stable Yellow Light-Emitting Devices Based on Ternary Copper Halides with Broadband Emissive Self-Trapped Excitons. ACS Nano, 2020, 14, 4475-4486.	7.3	199
624	Perovskite random lasers on fiber facet. Nanophotonics, 2020, 9, 935-941.	2.9	24
625	Low Rollâ€Off Perovskite Quantum Dot Lightâ€Emitting Diodes Achieved by Augmenting Hole Mobility. Advanced Functional Materials, 2020, 30, 1910140.	7.8	42
626	Allâ€Photonic Miniature Perovskite Encoder with a Terahertz Bandwidth. Laser and Photonics Reviews, 2020, 14, 1900398.	4.4	10
627	First principle-based calculations of the optoelectronic features of 2 x 2 x 2 CsPb(I1-xBrx)3 perovskite. Superlattices and Microstructures, 2020, 140, 106474.	1.4	15
628	Water-resistant perovskite nanodots enable robust two-photon lasing in aqueous environment. Nature Communications, 2020, 11, 1192.	5.8	123
629	Tailoring the Surface Morphology and Phase Distribution for Efficient Perovskite Electroluminescence. Journal of Physical Chemistry Letters, 2020, 11, 5877-5882.	2.1	17
630	Light Out oupling Management in Perovskite LEDs—What Can We Learn from the Past?. Advanced Functional Materials, 2020, 30, 2002570.	7.8	52
631	Recent progress in hybrid perovskite solar cells through scanning tunneling microscopy and spectroscopy. Nanoscale, 2020, 12, 15970-15992.	2.8	19
632	Recent advances and comprehensive insights on nickel oxide in emerging optoelectronic devices. Sustainable Energy and Fuels, 2020, 4, 4415-4458.	2.5	33
633	Improved stability and performance of all inorganic perovskite quantum dots synthesized directly with N-alkylmonoamine ligands for light-erasable transistor memory. Organic Electronics, 2020, 86, 105869.	1.4	12
634	Challenges, myths, and opportunities of electron microscopy on halide perovskites. Journal of Applied Physics, 2020, 128, .	1.1	35
635	Sensory Adaptation and Neuromorphic Phototransistors Based on CsPb(Br _{1–<i>x</i>} 1 _{<i>x</i>}) ₃ Perovskite and MoS ₂ Hybrid Structure. ACS Nano, 2020, 14, 9796-9806.	7.3	88

#	Article	IF	CITATIONS
636	Light-induced charge transfer at the CH ₃ NH ₃ PbI ₃ /TiO ₂ interface—a low-temperature photo-electron paramagnetic resonance assay. JPhys Photonics, 2020, 2, 014007.	2.2	2
637	Structural Distortion in Perovskite Type KCaH 3– x F x (0.54 ≤ ≤). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 175-179.	0.6	1
638	Magnetic-brightening and control of dark exciton in CsPbBr3 perovskite. Science China Materials, 2020, 63, 1503-1509.	3.5	8
639	Progress on Lightâ€Emitting Electrochemical Cells toward Blue Emission, High Efficiency, and Long Lifetime. Advanced Functional Materials, 2020, 30, 1907156.	7.8	49
640	Stabilizing CsPbBr3 quantum dots with conjugated aromatic ligands and their regulated optical behaviors. Chemical Engineering Journal, 2020, 389, 124453.	6.6	39
641	Lightâ€Emitting Electrochemical Cells Based on Colorâ€Tunable Inorganic Colloidal Quantum Dots. Advanced Functional Materials, 2020, 30, 1907349.	7.8	40
642	Stability of Perovskite Light Sources: Status and Challenges. Advanced Optical Materials, 2020, 8, 1902012.	3.6	54
643	Energy transfer and wavelength tunable lasing of single perovskite alloy nanowire. Nano Energy, 2020, 71, 104641.	8.2	29
644	A Three-Dimensional Lead Halide Perovskite-Related Ferroelectric. Journal of the American Chemical Society, 2020, 142, 4604-4608.	6.6	97
645	Chiral 2D Organic Inorganic Hybrid Perovskite with Circular Dichroism Tunable Over Wide Wavelength Range. Journal of the American Chemical Society, 2020, 142, 4206-4212.	6.6	151
646	Progress on the controllable synthesis of all-inorganic halide perovskite nanocrystals and their optoelectronic applications. Journal of Semiconductors, 2020, 41, 011201.	2.0	16
647	Materials chemistry and engineering in metal halide perovskite lasers. Chemical Society Reviews, 2020, 49, 951-982.	18.7	263
648	Structural and spectral dynamics of single-crystalline Ruddlesden-Popper phase halide perovskite blue light-emitting diodes. Science Advances, 2020, 6, eaay4045.	4.7	88
649	Whispering Gallery Mode Lasing from CH ₃ NH ₃ PbBr ₃ /PEO Composites Grown in a Microcapillary. Journal of Physical Chemistry C, 2020, 124, 3242-3249.	1.5	3
650	Circular photogalvanic spectroscopy of Rashba splitting in 2D hybrid organic–inorganic perovskite multiple quantum wells. Nature Communications, 2020, 11, 323.	5.8	88
651	Ni and K ion doped CsPbX3 NCs for the improvement of luminescence properties by a facile synthesis method in ambient air. Journal of Luminescence, 2020, 221, 117044.	1.5	20
652	Amplified spontaneous emission and random lasing using CsPbBr ₃ quantum dot glass through controlling crystallization. Chemical Communications, 2020, 56, 2853-2856.	2.2	33
653	High-Brightness Perovskite Light-Emitting Diodes Using a Printable Silver Microflake Contact. ACS Applied Materials & Interfaces, 2020, 12, 11428-11437.	4.0	11

#	Article	IF	CITATIONS
654	Structural and spectroscopic studies of a nanostructured silicon–perovskite interface. Nanoscale, 2020, 12, 4498-4505.	2.8	4
655	Cesium Lead Halide Perovskite Nanocrystals Prepared by Anion Exchange for Light-Emitting Diodes. ACS Applied Nano Materials, 2020, 3, 1766-1774.	2.4	30
656	Lowâ€dimensional metal halide perovskites and related optoelectronic applications. InformaÄnÃ- Materiály, 2020, 2, 341-378.	8.5	72
657	A two-dimensional bilayered Dion–Jacobson-type perovskite hybrid with a narrow bandgap for broadband photodetection. Inorganic Chemistry Frontiers, 2020, 7, 1394-1399.	3.0	25
658	Atomicâ€Resolution Imaging of Halide Perovskites Using Electron Microscopy. Advanced Energy Materials, 2020, 10, 1904006.	10.2	57
659	Epitaxial growth of CH3NH3PbI3 on rubrene single crystal. APL Materials, 2020, 8, .	2.2	11
660	Rigid indolocarbazole donor moiety for highly efficient thermally activated delayed fluorescent device. Dyes and Pigments, 2020, 180, 108485.	2.0	12
661	Insulator as Efficient Hole Injection Layer in Perovskite Lightâ€Emitting Device via MIS Contact. Advanced Optical Materials, 2020, 8, 1902177.	3.6	12
662	Large-Area Cesium Lead Bromide Perovskite Light-Emitting Diodes Realized by Incorporating a Hybrid Additive. ACS Applied Electronic Materials, 2020, 2, 1113-1121.	2.0	13
663	Development of Halide Perovskite Single Crystal for Radiation Detection Applications. Frontiers in Chemistry, 2020, 8, 268.	1.8	25
664	Exciton diffusion in two-dimensional metal-halide perovskites. Nature Communications, 2020, 11, 2035.	5.8	113
665	Origin of Amplified Spontaneous Emission Degradation in MAPbBr ₃ Thin Films under Nanosecond-UV Laser Irradiation. Journal of Physical Chemistry C, 2020, 124, 10696-10704.	1.5	14
666	Review on recent advances of core-shell structured lead halide perovskites quantum dots. Journal of Alloys and Compounds, 2020, 834, 155246.	2.8	28
667	Noncontact Tunneling in Methylammonium Lead Iodide (CH ₃ NH ₃ Pbl ₃): Evidence of Bipolar Resistive Switching through Defect Migration. ACS Applied Electronic Materials, 2020, 2, 1395-1401.	2.0	4
668	Optical properties and applications of twoâ€dimensional CdSe nanoplatelets. InformaÄnÃ-Materiály, 2020, 2, 905-927.	8.5	65
669	Moleculeâ€Induced pâ€Doping in Perovskite Nanocrystals Enables Efficient Colorâ€Saturated Red Lightâ€Emitting Diodes. Small, 2020, 16, e2001062.	5.2	53
670	Charge Transfer Boosting Moisture Resistance of Seminude Perovskite Nanocrystals via Hierarchical Alumina Modulation. Journal of Physical Chemistry Letters, 2020, 11, 3159-3165.	2.1	16
671	Visible light perovskite-coated photonic crystal surface-emitter on SOI. Semiconductor Science and Technology, 2020, 35, 075019.	1.0	2

#	Article	IF	CITATIONS
672	Carrier lifetime exceeding 81 ns in single crystalline perovskite nanowires enable large on-off ratio photodetectors. Organic Electronics, 2020, 83, 105744.	1.4	7
673	Micro―and Nanostructured Lead Halide Perovskites: From Materials to Integrations and Devices. Advanced Materials, 2021, 33, e2000306.	11.1	75
674	Scope for Spherical Bi2WO6 Quazi-Perovskites in the Artificial Photosynthesis Reaction—The Effects of Surface Modification with Amine Groups. Catalysis Letters, 2021, 151, 293-305.	1.4	4
675	Advanced variants of LEDs. , 2021, , 127-152.		1
676	Challenges, recent advances and improvements for enhancing the efficiencies of ABX3-based PeLEDs (perovskites light emitting diodes): A review. Journal of Alloys and Compounds, 2021, 850, 156827.	2.8	20
677	Lead-free perovskite Cs2AgBiBr6@g-C3N4 Z-scheme system for improving CH4 production in photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2021, 282, 119570.	10.8	195
678	Emerging perovskite quantum dot solar cells: feasible approaches to boost performance. Energy and Environmental Science, 2021, 14, 224-261.	15.6	94
679	Mn ²⁺ â€Doped Metal Halide Perovskites: Structure, Photoluminescence, and Application. Laser and Photonics Reviews, 2021, 15, .	4.4	167
680	Efficient interlayer exciton transport in two-dimensional metal-halide perovskites. Materials Horizons, 2021, 8, 639-644.	6.4	15
681	Sensing studies and applications based on metal halide perovskite materials: Current advances and future perspectives. TrAC - Trends in Analytical Chemistry, 2021, 134, 116127.	5.8	48
682	Highâ€Performance Blue Perovskite Lightâ€Emitting Diodes Enabled by Efficient Energy Transfer between Coupled Quasiâ€2D Perovskite Layers. Advanced Materials, 2021, 33, e2005570.	11.1	171
683	Kinetic Molecular Cationic Control of Defect-Induced Broadband Light Emission in 2D Hybrid Lead Iodide Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 101-110.	2.1	11
684	Chiral Switchable Low-Dimensional Perovskite Ferroelectrics. ACS Applied Materials & Interfaces, 2021, 13, 2044-2051.	4.0	66
685	Recent Advance in Carbon Dots: From Properties to Applications. Chinese Journal of Chemistry, 2021, 39, 1364-1388.	2.6	24
686	Tunneling-assisted highly sensitive and stable lead-free Cs ₃ Bi ₂ I ₉ perovskite photodetectors for diffuse reflection imaging. Journal of Materials Chemistry C, 2021, 9, 1008-1013.	2.7	25
687	Boosting the performance of CsPbBr ₃ -based perovskite light-emitting diodes <i>via</i> constructing nanocomposite emissive layers. Journal of Materials Chemistry C, 2021, 9, 916-924.	2.7	9
688	Highâ€Performance Perovskiteâ€Based Blue Lightâ€Emitting Diodes with Operational Stability by Using Organic Ammonium Cations as Passivating Agents. Advanced Functional Materials, 2021, 31, 2005553.	7.8	43
689	Highâ€ŧhroughput computational design of halide perovskites and beyond for optoelectronics. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1500.	6.2	16

#	Article	IF	CITATIONS
690	Amplified spontaneous emission in thin films of quasi-2D BA ₃ MA ₃ Pb ₅ Br ₁₆ lead halide perovskites. Nanoscale, 2021, 13, 8893-8900.	2.8	8
691	Research progress of metal halide perovskite nanometer optoelectronic materials. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 087303.	0.2	2
692	Stability of the CsPbl ₃ perovskite: from fundamentals to improvements. Journal of Materials Chemistry A, 2021, 9, 11124-11144.	5.2	78
693	The solution-processed fabrication of perovskite light-emitting diodes for low-cost and commercial applications. Journal of Materials Chemistry C, 2021, 9, 12037-12045.	2.7	7
694	Review of blue perovskite light emitting diodes with optimization strategies for perovskite film and device structure. Opto-Electronic Advances, 2021, 4, 20001901-20001915.	6.4	27
695	Perovskite Nanoparticles. , 0, , .		1
696	Organic–inorganic hybrid and inorganic halide perovskites: structural and chemical engineering, interfaces and optoelectronic properties. Journal Physics D: Applied Physics, 2021, 54, 133002.	1.3	27
697	Temperature-driven phase transition and transition dipole moment of two-dimensional (BA) ₂ CsPb ₂ Br ₇ perovskite. Physical Chemistry Chemical Physics, 2021, 23, 16341-16348.	1.3	5
698	(γ-Methoxy propyl amine) ₂ PbBr ₄ : a novel two-dimensional halide hybrid perovskite with efficient bluish white-light emission. Inorganic Chemistry Frontiers, 2021, 8, 2119-2124.	3.0	28
699	The precursor-compensation strategy boosts the photoresponse performance of air-stable, self-powered Cs ₂ Snl ₆ photodetectors. Journal of Materials Chemistry C, 2021, 9, 14217-14225.	2.7	13
700	A multiaxial electrical switching in a one-dimensional organic–inorganic (pyrrolidinium) ₂ Cd ₂ I ₆ ferroelectric and photoluminescent crystal. Journal of Materials Chemistry C, 2021, 9, 7665-7676.	2.7	16
701	Revealing long–range orbit–orbit interaction between coherent light-emitting excitons occurring in amplified spontaneous emission in CsPbBr3 microstructures. Journal of Materials Chemistry C, 2021, 9, 6034-6039.	2.7	3
702	Micropump Fluidic Strategy for Fabricating Perovskite Microwire Array-Based Devices Embedded in Semiconductor Platform. Cell Reports Physical Science, 2021, 2, 100304.	2.8	11
703	Physical properties of liquid crystals doped with CsPbBr ₃ quantum dots. Liquid Crystals, 2021, 48, 1357-1364.	0.9	7
704	Multicolor Output from 2D Hybrid Perovskites with Wide Band Gap: Highly Efficient White Emission, Dual-Color Afterglow, and Switch between Fluorescence and Phosphorescence. Journal of Physical Chemistry Letters, 2021, 12, 1040-1045.	2.1	31
705	Radiation hardness and abnormal photoresponse dynamics of the CH ₃ NH ₃ PbI ₃ perovskite photodetector. Journal of Materials Chemistry C, 2021, 9, 2095-2105.	2.7	11
706	Highly sensitive and selective ammonia gas sensor based on FAPbCl ₃ lead halide perovskites. Journal of Materials Chemistry C, 2021, 9, 2561-2568.	2.7	24
707	Dion–Jacobson halide perovskites for photovoltaic and photodetection applications. Journal of Materials Chemistry C, 2021, 9, 6378-6394.	2.7	26

#	Article	IF	CITATIONS
708	Wafer-scale single crystals: crystal growth mechanisms, fabrication methods, and functional applications. Journal of Materials Chemistry C, 2021, 9, 7829-7851.	2.7	11
709	Optically ontrolled Quantum Size Effect in a Hybrid Nanocavity Composed of a Perovskite Nanoparticle and a Thin Gold Film. Laser and Photonics Reviews, 2021, 15, 2000480.	4.4	20
710	All-inorganic encapsulation for remarkably stable cesium lead halide perovskite nanocrystals: toward full-color display applications. Journal of Materials Chemistry C, 2021, 9, 12303-12313.	2.7	25
711	Room temperature synthesis of Sn ²⁺ doped highly luminescent CsPbBr ₃ quantum dots for high CRI white light-emitting diodes. Nanoscale, 2021, 13, 9740-9746.	2.8	42
712	Anion Substitution Effects on the Structural, Electronic, and Optical Properties of Inorganic CsPb(l _{1–<i>x</i>} Br <i>_x</i>) ₃ and CsPb(Br _{1–<i>x</i>} Cl <i>_x</i>) ₃ Perovskites: Theoretical and Experimental Approaches. Journal of Physical Chemistry C, 2021, 125, 886-897.	1.5	25
713	Recent Advances and Opportunities of Lead-Free Perovskite Nanocrystal for Optoelectronic Application. Energy Material Advances, 2021, 2021, .	4.7	43
714	Composition Optimization of Multifunctional CsPb(Br/I) ₃ Perovskite Nanocrystals Glasses with High Photoluminescence Quantum Yield. Advanced Optical Materials, 2021, 9, 2002075.	3.6	13
715	Electroluminescence Principle and Performance Improvement of Metal Halide Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2002167.	3.6	49
716	Mapping the Trapâ€State Landscape in 2D Metalâ€Halide Perovskites Using Transient Photoluminescence Microscopy. Advanced Optical Materials, 2021, 9, 2001875.	3.6	15
717	van der Waals Interaction-Induced Tunable Schottky Barriers in Metal–2D Perovskite Contacts. Journal of Physical Chemistry Letters, 2021, 12, 1718-1725.	2.1	11
718	Advances in Metal Halide Perovskite Film Preparation: The Role of Antiâ€Solvent Treatment. Small Methods, 2021, 5, e2100046.	4.6	39
719	Metal Halide Perovskites for Laser Applications. Advanced Functional Materials, 2021, 31, 2010144.	7.8	180
720	Distributed feedback laser with methylammonium lead bromide embedded in channel-type waveguides. Japanese Journal of Applied Physics, 2021, 60, SBBH11.	0.8	2
721	Precise Control of CsPbBr ₃ Perovskite Nanocrystal Growth at Room Temperature: Size Tunability and Synthetic Insights. Chemistry of Materials, 2021, 33, 2387-2397.	3.2	40
722	Structural and Optical Properties of Pristine and Doped CsPbBr3 Perovskite. IOP Conference Series: Earth and Environmental Science, 2021, 706, 012044.	0.2	0
723	Signatures of Coherent Phonon Transport in Ultralow Thermal Conductivity Two-Dimensional Ruddlesden–Popper Phase Perovskites. ACS Nano, 2021, 15, 4165-4172.	7.3	21
724	Photo-Diodes Based on CH3NH3PbCl3 Perovskite Single Crystals by Epitaxial Growth for Ultraviolet Photo-Detection. Frontiers in Physics, 2021, 9, .	1.0	7
725	The photophysics of Ruddlesden-Popper perovskites: A tale of energy, charges, and spins. Applied Physics Reviews, 2021, 8, .	5.5	34

#	Article	IF	CITATIONS
726	Energy Barrier Alignment for Efficient Perovskite Photodetectors Consisting of PEIE Combined With PCBM Electron Transport Layer. IEEE Journal of Photovoltaics, 2021, 11, 362-367.	1.5	2
727	Highly Efficient Halide Perovskite Lightâ€Emitting Diodes via Molecular Passivation. Angewandte Chemie, 2021, 133, 8418-8424.	1.6	9
728	Highly Efficient Halide Perovskite Lightâ€Emitting Diodes via Molecular Passivation. Angewandte Chemie - International Edition, 2021, 60, 8337-8343.	7.2	47
729	Aqueous Sol-Gel Synthesis of Different Iron Ferrites: From 3D to 2D. Materials, 2021, 14, 1554.	1.3	4
730	Recent advances and perspective on the synthesis and photocatalytic application of metal halide perovskite nanocrystals. Nano Research, 2021, 14, 3773-3794.	5.8	27
731	Subwavelength-Polarized Quasi-Two-Dimensional Perovskite Single-Mode Nanolaser. ACS Nano, 2021, 15, 6900-6908.	7.3	47
732	Single-Mode Lasing in Polymer Circular Gratings. Materials, 2021, 14, 2318.	1.3	1
733	Poling effect on the electrostrictive and piezoelectric response in CH3NH3PbI3 single crystals. Applied Physics Letters, 2021, 118, .	1.5	4
734	Vacuumâ€Processed Metal Halide Perovskite Lightâ€Emitting Diodes: Prospects and Challenges. ChemPlusChem, 2021, 86, 558-573.	1.3	12
735	Tunable Dual-Color Emission Perovskites via Post-Synthetic Modification Strategy for Near-Unity Photoluminescence Quantum Yield. ACS Applied Materials & Interfaces, 2021, 13, 21645-21652.	4.0	4
736	Light-Emitting Diodes with Manganese Halide Tetrahedron Embedded in Anti-Perovskites. ACS Energy Letters, 2021, 6, 1901-1911.	8.8	17
737	High Optical Gain of Solutionâ€Processed Mixedâ€Cation CsPbBr ₃ Thin Films towards Enhanced Amplified Spontaneous Emission. Advanced Functional Materials, 2021, 31, 2102210.	7.8	35
738	Perovskite random lasers: a tunable coherent light source for emerging applications. Nanotechnology, 2021, 32, 282001.	1.3	26
739	Enhanced Photoluminescence and Photoresponsiveness of Eu ³⁺ lonsâ€Doped CsPbCl ₃ Perovskite Quantum Dots under High Pressure. Advanced Functional Materials, 2021, 31, 2100930.	7.8	71
740	Insights into Microscopic Crystal Growth Dynamics of CH ₃ NH ₃ Pbl ₃ under a Laser Deposition Process Revealed by <i>In Situ</i> X-ray Diffraction. ACS Applied Materials & Interfaces, 2021, 13, 22559-22566.	4.0	3
741	Double Free: A Promising Route toward Moisture-Stable Hypotoxic Hybrid Perovskites. CCS Chemistry, 2022, 4, 1273-1283.	4.6	6
742	Fabrication and optical properties of high-quality blue-emitting CsPbBr3 QDs-PMMA films. Optical Materials, 2021, 115, 111069.	1.7	6
743	Layered Perovskite Oxyiodide with Narrow Band Gap and Long Lifetime Carriers for Water Splitting Photocatalysis. Journal of the American Chemical Society, 2021, 143, 8446-8453.	6.6	46

#	Article	IF	CITATIONS
744	The structural phase transition of a metal-free perovskite (C4N2H12)(NH4I3)â^™H2O. Inorganic Chemistry Communication, 2021, 127, 108526.	1.8	0
745	Halide Perovskites: A New Era of Solutionâ€Processed Electronics. Advanced Materials, 2021, 33, e2005000.	11.1	138
746	Highly Bright, Narrow Emissivity of InP Quantum Dots Synthesized by Aminophosphine: Effects of Double Shelling Scheme and Ga Treatment. Advanced Optical Materials, 2021, 9, 2100427.	3.6	23
747	Merging Biology and Photovoltaics: How Nature Helps Sun atching. Advanced Energy Materials, 2021, 11, 2100520.	10.2	15
748	Refractive index of different perovskite materials. Journal of Materials Research, 2021, 36, 1773-1793.	1.2	12
749	An Overview for Zeroâ€Dimensional Broadband Emissive Metalâ€Halide Single Crystals. Advanced Optical Materials, 2021, 9, 2100544.	3.6	114
750	Case Studies on Structure–Property Relations in Perovskite Light-Emitting Diodes via Interfacial Engineering with Self-Assembled Monolayers. ACS Applied Materials & Interfaces, 2021, 13, 31236-31247.	4.0	23
751	State of the art and prospects of metal halide perovskite core@shell nanocrystals and nanocomposites. Materials Today Chemistry, 2021, 20, 100424.	1.7	27
752	Perovskite single crystals: Synthesis, properties, and applications. Journal of Electronic Science and Technology, 2021, 19, 100081.	2.0	41
753	Revealing Explicit Microsecond Carrier Diffusion from One Emission Center to Another in an All-Inorganic Perovskite Nanocrystal. Journal of Physical Chemistry Letters, 2021, 12, 5413-5422.	2.1	10
754	Recent Advances in Synthesis, Properties, and Applications of Metal Halide Perovskite Nanocrystals/Polymer Nanocomposites. Advanced Materials, 2021, 33, e2005888.	11.1	108
755	Variational hysteresis and photoresponse behavior of MAPbX ₃ (X = I, Br, Cl) perovskite single crystals. Journal of Physics Condensed Matter, 2021, 33, 285703.	0.7	7
756	Liquid crystal lasers: the last decade and the future. Nanophotonics, 2021, 10, 2309-2346.	2.9	29
757	In Situ Embedding Synthesis of Highly Stable CsPbBr ₃ /CsPb ₂ Br ₅ @PbBr(OH) Nano/Microspheres through Water Assisted Strategy. Advanced Functional Materials, 2021, 31, 2103275.	7.8	42
758	Three-Dimensional Perovskite Nanopixels for Ultrahigh-Resolution Color Displays and Multilevel Anticounterfeiting. Nano Letters, 2021, 21, 5186-5194.	4.5	33
759	Near Unity PLQY and High Stability of Barium Thiocyanate Based All-Inorganic Perovskites and Their Applications in White Light-Emitting Diodes. Photonics, 2021, 8, 209.	0.9	10
760	Preparation and Properties of Polystyrene Nanospheres Incorporated Cs 3 Bi 2 Br 9 Halide Perovskite Disks. European Journal of Inorganic Chemistry, 2021, 2021, 2712-2717.	1.0	2
761	Highly stable CsPbl3:Sr2+ nanocrystals with near-unity quantum yield enabling perovskite light-emitting diodes with an external quantum efficiency of 17.1%. Nano Energy, 2021, 85, 106033.	8.2	78

#	Article	IF	CITATIONS
762	A high performance CsPbBr3 microwire based photodetector boosted by coupling plasmonic and piezo-phototronic effects. Nano Energy, 2021, 85, 105951.	8.2	38
763	CsPb(Br/I)3 Perovskite Nanocrystals for Hybrid GaN-Based High-Bandwidth White Light-Emitting Diodes. ACS Applied Nano Materials, 2021, 4, 8383-8389.	2.4	10
764	Circularly Polarized Emission from Organic–Inorganic Hybrid Perovskites <i>via</i> Chiral Fano Resonances. ACS Nano, 2021, 15, 13781-13793.	7.3	28
765	Effect of heterovalent doping on photostimulated defect formation in CsPbBr3. Mendeleev Communications, 2021, 31, 465-468.	0.6	3
766	Air-Resistant Lead Halide Perovskite Nanocrystals Embedded into Polyimide of Intrinsic Microporosity. Energy Material Advances, 2021, 2021, .	4.7	21
767	Lasing-enhanced surface plasmon resonance spectroscopy and sensing. Photonics Research, 2021, 9, 1699.	3.4	3
768	Enhancement of morphological and emission stability of deep-blue small molecular emitter via a universal side-chain coupling strategy for optoelectronic device. Chinese Chemical Letters, 2022, 33, 835-841.	4.8	7
769	Highly Sensitive Ultraviolet and Visible Wavelength Sensor Composed of Two Identical Perovskite Nanofilm Photodetectors. Small, 2021, 17, e2102987.	5.2	10
770	Achieving high-performance in situ fabricated FAPbBr ₃ and electroluminescence. Optics Letters, 2021, 46, 4378.	1.7	5
771	Resonantly Pumped Bright-Triplet Exciton Lasing in Cesium Lead Bromide Perovskites. ACS Photonics, 2021, 8, 2699-2704.	3.2	2
772	Predictive Design Model for Low-Dimensional Organic–Inorganic Halide Perovskites Assisted by Machine Learning. Journal of the American Chemical Society, 2021, 143, 12766-12776.	6.6	68
773	Charge Trapping Dynamics Revealed in CH ₃ NH ₃ PbI ₃ by Ultrafast Multipulse Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 18834-18840.	1.5	2
774	Spinâ€Dependent Charge Transport in 1D Chiral Hybrid Leadâ€Bromide Perovskite with High Stability. Advanced Functional Materials, 2021, 31, 2104605.	7.8	44
775	Multiwalled Carbon Nanotubes/CsPbX ₃ @Polyacrylonitrile Core/Shell Nanofibers with Ultrahigh Water, Thermal, and Ultraviolet Stability. Macromolecular Materials and Engineering, 2021, 306, 2100200.	1.7	6
776	Hybrid halide perovskite neutron detectors. Scientific Reports, 2021, 11, 17159.	1.6	10
777	Synthesis of perovskite nanocrystal films with a high luminous efficiency and an enhanced stability. Ceramics International, 2021, , .	2.3	5
778	Solvent Recrystallizationâ€Enabled Green Amplified Spontaneous Emissions with an Ultraâ€Low Threshold from Pinholeâ€Free Perovskite Films. Advanced Functional Materials, 2021, 31, 2106108.	7.8	31
779	Enhancement of Light Amplification of CsPbBr3 Perovskite Quantum Dot Films via Surface Encapsulation by PMMA Polymer. Polymers, 2021, 13, 2574.	2.0	15

#	Article	IF	CITATIONS
780	Emerging and perspectives in microlasers based on rare-earth ions activated micro-/nanomaterials. Progress in Materials Science, 2021, 121, 100814.	16.0	18
781	Fabrications of Halide Perovskite Single-Crystal Slices and Their Applications in Solar Cells, Photodetectors, and LEDs. Crystal Growth and Design, 2021, 21, 5983-5997.	1.4	9
782	Ceriumâ€Doped Perovskite Nanocrystals for Extremely Highâ€Performance Deepâ€Ultraviolet Photoelectric Detection. Advanced Optical Materials, 2021, 9, 2100423.	3.6	12
783	Surfactant-Free Synthesis of the Full Inorganic Perovskite CsPbBr ₃ : Evolution and Phase Stability of CsPbBr ₃ vs CsPb ₂ Br ₅ and Their Photocatalytic Properties. ACS Applied Energy Materials, 2021, 4, 9431-9439.	2.5	13
784	Micro-ring laser with CH3NH3PbBr3/PEO composite coated inside microcapillary. AIP Advances, 2021, 11, 095301.	0.6	1
785	Perovskite Quantum Dots with Ultrahigh Solid-State Photoluminescence Quantum Efficiency, Superior Stability, and Uncompromised Electrical Conductivity. Journal of Physical Chemistry Letters, 2021, 12, 9115-9123.	2.1	6
786	Enhanced performance of spectra stable blue perovskite light-emitting diodes through Poly(9-vinylcarbazole) interlayer incorporation. Organic Electronics, 2021, 96, 106259.	1.4	5
787	Aqueous phase synthesis of trimethylsulfoxonium lead triiodide for moisture-stable perovskite solar cells. Materials Today Energy, 2021, 21, 100803.	2.5	7
788	Nanomaterials: Applications in Electronics. International Journal of Advanced Engineering and Nano Technology, 2021, 4, 7-19.	0.4	2
789	Experimental study on terahertz optical modulation characteristics of quartz-based MAPbI3 thin films. , 2021, , .		0
790	CsPbBr ₃ perovskite quantum-dot paper exhibiting a highest 3  dB bandwidth and realizing a flexible white-light system for visible-light communication. Photonics Research, 2021, 9, 2341.	³ 3.4	30
791	Halide Perovskite Nanocrystals with Enhanced Water Stability for Upconversion Imaging in a Living Cell. Journal of Physical Chemistry Letters, 2021, 12, 8991-8998.	2.1	20
792	Flexible Perovskite CsPbBr ₃ Light Emitting Devices Integrated with GaP Nanowire Arrays in Highly Transparent and Durable Functionalized Silicones. Journal of Physical Chemistry Letters, 2021, 12, 9672-9676.	2.1	6
793	Efficiency enhancement in orange red thermally activated delayed fluorescence OLEDs by using a rigid di-indolocarbazole donor moiety. Dyes and Pigments, 2021, 194, 109580.	2.0	11
794	Synergistic effects of CdS QDs – Neutral red dye hybrid system on its nonlinear optical properties. Optics and Laser Technology, 2021, 142, 107261.	2.2	4
795	High efficiency reduction of CO2 to CO and CH4 via photothermal synergistic catalysis of lead-free perovskite Cs3Sb2I9. Applied Catalysis B: Environmental, 2021, 294, 120236.	10.8	48
796	Confining CsPbX3 perovskites in a hierarchically porous MOF as efficient and stable phosphors for white LED. Chemical Engineering Journal, 2021, 425, 131556.	6.6	30
797	The chloride anion doped hybrid perovskite quantum dots exchanged by short surfactant ligand enable color-tunable blue fluorescent emitting for QLEDs application. Materials Chemistry and Physics, 2022, 275, 125281.	2.0	11

#	Article	IF	CITATIONS
798	Doped all-inorganic cesium zirconium halide perovskites with high-efficiency and tunable emission. Journal of Energy Chemistry, 2022, 65, 600-604.	7.1	37
799	In situ preparation of Mn-doped perovskite nanocrystalline films and application to white light emitting devices. Journal of Colloid and Interface Science, 2022, 606, 1163-1169.	5.0	16
800	Performance enhancement of CsPbBr3 thin film-based light-emitting diodes by CsF-induced surface modification. Journal of Alloys and Compounds, 2022, 891, 161996.	2.8	5
801	The promotion of TiO2 induction for finely tunable self-crystallized CsPbX3 (XÂ=ÂCl, Br and I) nanocrystal glasses for LED backlighting display. Chemical Engineering Journal, 2022, 429, 132391.	6.6	19
802	All inorganic lead free solar cell material Cs2PdI6: a first-principles study. Applied Physics Express, 2021, 14, 021005.	1.1	3
803	Optical Gain of Lead Halide Perovskites Measured via the Variable Stripe Length Method: What We Can Learn and How to Avoid Pitfalls. Advanced Optical Materials, 2021, 9, 2001773.	3.6	20
804	Catenated compounds in Group 17â \in "Polyhalides. , 2021, , .		0
805	Recent progress of zero-dimensional luminescent metal halides. Chemical Society Reviews, 2021, 50, 2626-2662.	18.7	405
806	22.8%-Efficient single-crystal mixed-cation inverted perovskite solar cells with a near-optimal bandgap. Energy and Environmental Science, 2021, 14, 2263-2268.	15.6	149
807	Large-area and efficient perovskite light-emitting diodes via low-temperature blade-coating. Nature Communications, 2021, 12, 147.	5.8	100
808	Luminescence enhancement of lead halide perovskite light-emitting diodes with plasmonic metal nanostructures. Nanoscale, 2021, 13, 16427-16447.	2.8	6
809	Leadâ€Free Halide Perovskites for Light Emission: Recent Advances and Perspectives. Advanced Science, 2021, 8, 2003334.	5.6	155
810	Organic–inorganic hybrid thin film light-emitting devices: interfacial engineering and device physics. Journal of Materials Chemistry C, 2021, 9, 1484-1519.	2.7	25
811	Machine learning for perovskite materials design and discovery. Npj Computational Materials, 2021, 7, .	3.5	189
812	Ultrastable and high colour rendering index WLEDs based on CsPbBrl ₂ nanocrystals prepared by a two-step facile encapsulation method. Journal of Materials Chemistry C, 2021, 9, 2530-2538.	2.7	20
813	Metal Halide Perovskite Arrays: From Construction to Optoelectronic Applications. Advanced Functional Materials, 2021, 31, 2005230.	7.8	40
814	Progress of Leadâ€Free Halide Perovskites: From Material Synthesis to Photodetector Application. Advanced Functional Materials, 2021, 31, 2008275.	7.8	52
815	Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering. Advanced Materials, 2018, 30, e1800455.	11.1	332

#	Article	IF	CITATIONS
816	Cesium Lead Halide Perovskite Quantum Dots in the Limelight: Dynamics and Applications. Lecture Notes in Nanoscale Science and Technology, 2020, , 175-205.	0.4	5
817	Quantum confinement and strain effects on the low-dimensional all-inorganic halide Cs2XI2Cl2 (X=) Tj ETQq1 1 E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114226.	0.784314 1.3	rgBT /Over o 12
818	Light Propagation and Radiative Exciton Transport in Two-Dimensional Layered Perovskite Microwires. ACS Photonics, 2021, 8, 276-282.	3.2	7
819	Tailoring interfacial carrier dynamics <i>via</i> rationally designed uniform CsPbBr _x I _{3â^*x} quantum dots for high-efficiency perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 26098-26108.	5.2	15
820	Polymer–perovskite blend light-emitting diodes using a self-compensated heavily doped polymeric anode. APL Materials, 2020, 8, 021101.	2.2	9
821	Two-dimensional transition metal dichalcogenides for lead halide perovskites-based photodetectors: band alignment investigation for the case of CsPbBr ₃ /MoSe ₂ . Journal of Semiconductors, 2020, 41, 052206.	2.0	11
822	Phase diagram and stability of mixed-cation lead iodide perovskites: A theory and experiment combined study. Physical Review Materials, 2020, 4, .	0.9	17
823	Oxide hole blocking selective contacts in perovskite solar cells. , 2018, , .		2
824	Blue-red color-tunable all-inorganic bromide–iodide mixed-halide perovskite nanocrystals using the saponification technique for white-light-emitting diodes. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1616.	0.9	11
825	Photon-induced carrier recombination in the nonlayered-structured hybrid organic-inorganic perovskite nano-sheets. Optics Express, 2018, 26, 27504.	1.7	17
826	Lasing properties of cesium lead halide perovskite nanowires fabricated by one-drop self-assembly and ion-exchange methods. Optics Express, 2018, 26, 33856.	1.7	10
827	Factors influencing the working temperature of quantum dot light-emitting diodes. Optics Express, 2020, 28, 34167.	1.7	9
828	Layer-by-layer spray coating of a stacked perovskite absorber for perovskite solar cells with better performance and stability under a humid environment. Optical Materials Express, 2020, 10, 1497.	1.6	23
829	Encapsulated room-temperature synthesized CsPbX ₃ perovskite quantum dots with high stability and wide color gamut for display. Optical Materials Express, 2018, 8, 3494.	1.6	25
830	Stimulated emission from CsPbBr ₃ quantum dot nanoglass. Optical Materials Express, 2019, 9, 3390.	1.6	14
831	Ultrapure and highly efficient green light emitting devices based on ligand-modified CsPbBr ₃ quantum dots. Photonics Research, 2020, 8, 1086.	3.4	51
832	High detectivity photodetectors based on perovskite nanowires with suppressed surface defects. Photonics Research, 2020, 8, 1862.	3.4	23
833	Recent advancements and perspectives on light management and high performance in perovskite light-emitting diodes. Nanophotonics, 2021, 10, 2103-2143.	2.9	35

#	Article	IF	CITATIONS
834	Energy Transfer in Triple Semiconductor-Organic Hybrid Structures. Soft Nanoscience Letters, 2017, 07, 1-15.	0.8	1
835	Resolving buried optoelectronic features in metal halide perovskites <i>via</i> modulation spectroscopy studies. Journal of Materials Chemistry A, 2021, 9, 23746-23764.	5.2	6
836	Electrochemical synthesis of colloidal lead- and bismuth-based perovskite nanocrystals. Chemical Communications, 2021, 57, 11553-11556.	2.2	3
837	Photoinduced Halide Segregation in Ruddlesden–Popper 2D Mixed Halide Perovskite Films. Advanced Materials, 2021, 33, e2105585.	11.1	49
838	CH3NH3PbBr3 Thin Film Served as Guided-Wave Layer for Enhancing the Angular Sensitivity of Plasmon Biosensor. Biosensors, 2021, 11, 415.	2.3	5
839	Plantâ€Based Structures as an Opportunity to Engineer Optical Functions in Nextâ€Generation Light Management. Advanced Materials, 2022, 34, e2104473.	11.1	48
840	It is an Allâ€Rounder! On the Development of Metal Halide Perovskiteâ€Based Fluorescent Sensors and Radiation Detectors. Advanced Optical Materials, 2021, 9, 2101276.	3.6	18
841	Mitigating Ion Migration by Polyethylene Glycol-Modified Fullerene for Perovskite Solar Cells with Enhanced Stability. ACS Energy Letters, 2021, 6, 3864-3872.	8.8	36
842	Vacuumâ€Assisted Preparation of Highâ€Quality Quasiâ€2D Perovskite Thin Films for Largeâ€Area Lightâ€Emittin Diodes. Advanced Functional Materials, 2022, 32, 2107644.	g _{7.8}	19
843	Enabling Quasiâ€2D Perovskite ompatible Growth Environment for Efficient Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	3.6	7
844	Remarkable Blackâ€Phase Robustness of CsPbl ₃ Nanocrystals Sealed in Solid SiO ₂ /AlO _x Subâ€Micron Particles. Small, 2021, 17, e2103510.	5.2	20
845	Highly Stable Thin Films Based on Novel Hybrid 1D (PRSH)PbX3 Pseudo-Perovskites. Nanomaterials, 2021, 11, 2765.	1.9	0
846	Molecular design of two-dimensional perovskite cations for efficient energy cascade in perovskite light-emitting diodes. Applied Physics Letters, 2021, 119, 154101.	1.5	3
847	Optically Pumped Lasing in Cesium Lead Bromide Perovskite Square-shaped Microplatelets. , 2018, , .		0
848	Research progress of efficient green perovskite light emitting diodes. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158504.	0.2	8
849	Optical Properties of Intrinsic Excitons in Bulk Semiconductors. Graduate Texts in Physics, 2019, , 329-385.	0.1	0
850	Investigation of Structural, Electronic, Optic and Elastic Properties of Perovskite RbGeCl3 Crystal: A First Principles Study. Gazi University Journal of Science, 2019, 32, 1008-1019.	0.6	4
851	Tailoring the electron and hole dimensionality to achieve efficient and stable metal halide perovskite scintillators. Nanophotonics, 2021, 10, 2249-2256.	2.9	16

		CITATION REPORT		
#	Article		IF	CITATIONS
852	Green VCSELs based on nitride semiconductors. Japanese Journal of Applied Physics, 20	020, 59, SO0803.	0.8	6
853	Combined Precursor Engineering and Grain Anchoring Leading to MAâ€Free, Phaseâ€F αâ€Formamidinium Lead Iodide Perovskites for Efficient Solar Cells. Angewandte Cher Edition, 2021, 60, 27299-27306.	ure, and Stable nie - International	7.2	46
854	Perovskite polariton parametric oscillator. Advanced Photonics, 2021, 3, .		6.2	13
855	Combined precursor engineering and grain anchoring leading to MAâ€free, phaseâ€pu αâ€formamidinium lead iodide perovskites for efficient solar cells. Angewandte Chemi	re and stable ie, 0, , .	1.6	11
856	A thin and flexible scanner for fingerprints and documents based on metal halide perov Electronics, 2021, 4, 818-826.	/skites. Nature	13.1	61
857	Probing the emissive behaviour of the lead-free Cs ₂ AgBiCl ₆ with Cu(<scp>ii</scp>) doping. New Journal of Chemistry, 2021, 45, 22691-22696.	double perovskite	1.4	20
858	Enhancing the stability of perovskite quantum dots CsPbX3 (X=Cl, Br, I) by encapsulat Y2O3 nanoparticles for WLED applications. Materials Research Bulletin, 2022, 146, 11		2.7	12
859	Research progress of enhancing perovskite light emitting diodes with light extraction. Xuebao/Acta Physica Sinica, 2020, 69, 218501.	Wuli	0.2	1
860	Application of heterostructures in halide perovskite photovoltaic devices. Wuli Xuebac Sinica, 2020, 69, 167804.	/Acta Physica	0.2	2
861	Ligand with strong electronegativity induced blue emitting of CsPbBr _{3<!--<br-->nanocrystals. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 158102.}	sub>	0.2	0
862	Density Functional Theory Analysis of Structural, Electronic, and Optical Properties of I Orthorhombic Inorganic Perovskites. ACS Omega, 2021, 6, 30752-30761.	Vixed-Halide	1.6	28
863	Targeted Distribution of Passivator for Polycrystalline Perovskite Light-Emitting Diodes Efficiency. ACS Energy Letters, 2021, 6, 4187-4194.	with High	8.8	41
864	Metal halide perovskite quantum dots for amphiprotic bio-imaging. Coordination Cher 2022, 452, 214313.	nistry Reviews,	9.5	37
865	Stable and multicolor solid-state luminescence of Mn doped CsPb(Cl/Br)3 perovskite q and its application in light-emitting diodes. Journal of Luminescence, 2022, 243, 1186		1.5	14
866	Top Thermal Annealing of 2D/3D Lead Halide Perovskites: Anisotropic Photoconductivi Gradient of Dimensionality. Journal of Photopolymer Science and Technology = [Fotop Shi], 2021, 34, 263-269.		0.1	3
867	Effect of the Large-Size A-Site Cation on the Crystal Growth and Phase Distribution of Perovskite Films via a Low-Pressure Vapor-Assisted Solution Process. Journal of Physica 0, , .	2D/3D Mixed I Chemistry C,	1.5	4
868	Color-Stable and High-Efficiency Blue Perovskite Nanocrystal Light-Emitting Diodes via Copper Ion Lowering Lead Defects. ACS Applied Materials & amp; Interfaces, 2021, 13,	55380-55390.	4.0	10
869	Effects of Halogen Substitution on the Optoelectronic Properties of Two-Dimensional Double Perovskite <mml:math d<br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:msub><mml:mi>Cs</mml:mi><mml:mn>4</mml:mn><td>lisplay="inline"</td><td>ni>Ag<td>ml:mi><mm< td=""></mm<></td></td></mml:msub></mml:math>	lisplay="inline"	ni>Ag <td>ml:mi><mm< td=""></mm<></td>	ml:mi> <mm< td=""></mm<>

#	Article	IF	CITATIONS
870	Hybrid Perovskite/Polymer Materials: Preparation and Physicochemical Properties. Journal of Composites Science, 2021, 5, 304.	1.4	3
871	Multicolor Random Lasers Based on Perovskite Quantum Dots Embedded in Intrinsic Pb–MOFs. Journal of Physical Chemistry C, 2021, 125, 25757-25764.	1.5	13
872	Water-stable halide perovskite nanocrystals in biological environment. Journal of Physics: Conference Series, 2021, 2015, 012150.	0.3	1
873	Quantum Dot Interface-Mediated CsPbIBr ₂ Film Growth and Passivation for Efficient Carbon-Based Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 55349-55357.	4.0	17
874	Double perovskite microcrystals-based white light-emitting diodes without reabsorption of multiphase phosphors. Optics Letters, 2021, 46, 6043.	1.7	7
875	Perovskite White Light Emitting Diodes: Progress, Challenges, and Opportunities. ACS Nano, 2021, 15, 17150-17174.	7.3	101
876	Metal Halide Perovskite Nano/Microwires. Small Structures, 2022, 3, 2100165.	6.9	14
877	Ultralow-cost portable device for cesium detection via perovskite fluorescence. Journal of Hazardous Materials, 2022, 425, 127981.	6.5	14
878	High Triplet Energy Level Molecule Enables Highly Efficient Sky-Blue Perovskite Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2021, 12, 11723-11729.	2.1	11
879	Amplified Spontaneous Emission in low dimensional lead halide perovskites: An overview. Optical Materials: X, 2021, 12, 100115.	0.3	1
880	Mechanism for the Pumping-Dependent Red Shift in the Amplified Spontaneous Emission Spectra of Colloidal Quantum Dots. Journal of Physical Chemistry C, 2021, 125, 27298-27304.	1.5	1
881	Generation of Amplified Spontaneous Emission in Lead Halide Perovskite Semiconductors. , 2021, , 1-40.		Ο
882	Gateway towards recent developments in quantum dot-based light-emitting diodes. Nanoscale, 2022, 14, 4042-4064.	2.8	14
883	Charge Transport Layers in Halide Perovskite Photonic Devices. , 2021, , 1-32.		0
884	Layer number-dependent optoelectronic characteristics of quasi-2D PBA ₂ (MAPbBr ₃ (sub> <i>n</i> â^1PbBr ₄ perovskite films. Journal of Materials Chemistry C, 2021, 9, 17033-17041.	2.7	5
885	Enhanced field emission properties of CsPbBr3 films by thermal annealing and surface functionalization with boron nitride. Applied Surface Science, 2022, 578, 152116.	3.1	6
886	Crystal structure and thermochromic behavior of the quasi-OD lead-free organic-inorganic hybrid compounds (C7H9NF)8M4I16 (M = Bi, Sb). Journal of Alloys and Compounds, 2022, 899, 163278.	2.8	13
887	Homologous Bromides Passivation of CH ₃ NH ₃ PbBr ₃ Single Crystals for Photodetectors with Improved Properties. SSRN Electronic Journal, 0, , .	0.4	Ο

#	Article	IF	CITATIONS
888	A copper-based 2D hybrid perovskite solar absorber as a potential eco-friendly alternative to lead halide perovskites. Journal of Materials Chemistry C, 2022, 10, 3738-3745.	2.7	8
889	Perovskite Quantum Dots in Solar Cells. Advanced Science, 2022, 9, e2104577.	5.6	49
890	Dimensional Control over Metal Halide Perovskite Crystallization Guided by Active Learning. Chemistry of Materials, 2022, 34, 756-767.	3.2	13
891	Solvent strategies toward high-performance perovskite light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 3276-3286.	2.7	9
892	Perylene-Based Chromophore as a Versatile Dye for Light Amplification. Materials, 2022, 15, 980.	1.3	1
893	High-resolution <i>in situ</i> patterning of perovskite quantum dots <i>via</i> femtosecond laser direct writing. Nanoscale, 2022, 14, 1174-1178.	2.8	11
894	Characterization of a CH ₃ NH ₃ Pbl ₃ perovskite microwire by Raman spectroscopy, 2022, 53, 288-296.	1.2	8
895	Plasmonic–perovskite solar cells, light emitters, and sensors. Microsystems and Nanoengineering, 2022, 8, 5.	3.4	41
896	Metal–Organic Frameworkâ€Assisted Metalâ€Ion Doping in Allâ€Inorganic Perovskite for Dualâ€Mode Image Sensing Display. Advanced Functional Materials, 2022, 32, .	7.8	12
897	Efficient Pure Blue Light-Emitting Diodes Based on CsPbBr ₃ Quantum-Confined Nanoplates. ACS Applied Materials & Interfaces, 2022, 14, 5682-5691.	4.0	33
898	(C ₇ H ₁₁ N ₂) ₂ MBr ₄ (M=Cu, Zn): Xâ€Ray Sensitive OD Hybrid Metal Halides with Tunable Broadband Emission. European Journal of Inorganic Chemistry, 2022, 2022, e202100954.	1.0	11
899	Highly luminescent broadband phosphors based on acid solvent coordinated two-dimensional layered tin-based perovskites. Journal of Materials Chemistry C, 2022, 10, 3856-3862.	2.7	12
900	Photothermal synergy for efficient dry reforming of CH ₄ by an Ag/AgBr/CsPbBr ₃ composite. Catalysis Science and Technology, 2022, 12, 1628-1636.	2.1	9
901	Emerging doping strategies in two-dimensional hybrid perovskite semiconductors for cutting edge optoelectronics applications. Nanoscale Advances, 2022, 4, 995-1025.	2.2	14
902	Active terahertz modulator based on optically controlled organometal halide perovskite MAPbI ₂ Br. Applied Optics, 2022, 61, 1171.	0.9	2
903	Impact of Zn-doping on the composition, stability, luminescence properties of silica coated all-inorganic cesium lead bromide nanocrystals and their biocompatibility. Materials Today Chemistry, 2022, 23, 100753.	1.7	12
904	12-Crown-4 ether assisted in-situ grown perovskite crystals for ambient stable light emitting diodes. Nano Energy, 2022, 95, 107000.	8.2	11
905	Mn-derived Cs ₄ PbX ₆ nanocrystals with stable and tunable wide luminescence for white light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 3886-3893.	2.7	13

#	Article	IF	CITATIONS
906	Lewis Base Plays a Double-Edged-Sword Role in Trap State Engineering of Perovskite Polycrystals. Journal of Physical Chemistry Letters, 2022, 13, 1571-1577.	2.1	11
907	Enhancing the Performance of Quasi-2D Perovskite Light-Emitting Diodes Using Natural Cyclic Molecules with Distinct Phase Regulation Behaviors. ACS Applied Materials & Interfaces, 2022, 14, 9587-9596.	4.0	6
908	Improved device efficiency and lifetime of perovskite light-emitting diodes by size-controlled polyvinylpyrrolidone-capped gold nanoparticles with dipole formation. Scientific Reports, 2022, 12, 2300.	1.6	3
909	Carbon-based materials for future photonics devices. A parallel between electronics and photonics. Optical Materials, 2022, 125, 112068.	1.7	0
910	Giant magneto field effect in up-conversion amplified spontaneous emission via spatially extended states in organic-inorganic hybrid perovskites. Opto-Electronic Advances, 2022, 5, 200051-200051.	6.4	7
911	Cspbbr3 Nanocrystals Embedded Glass Enables Highly Stable and Efficient Light-Emitting Diodes. SSRN Electronic Journal, 0, , .	0.4	0
912	Polyacrylic acid- <i>b</i> -polystyrene-passivated CsPbBr ₃ perovskite quantum dots with high photoluminescence quantum yield for light-emitting diodes. Chemical Communications, 2022, 58, 4235-4238.	2.2	10
913	Efficient charge transfer from organometal lead halide perovskite nanocrystals to free base <i>meso</i> -tetraphenylporphyrins. Nanoscale Advances, 2022, 4, 1779-1785.	2.2	7
914	Active Terahertz Modulator Based on Plasma-Induced Transparency in Mapbi3-Metal Hybrid Metamaterial. SSRN Electronic Journal, 0, , .	0.4	0
915	Encapsulation of perovskite quantum dots into a Ln ^{III} -incorporating polymer matrix to achieve white light emission. New Journal of Chemistry, 2022, 46, 6307-6313.	1.4	2
916	Synthesis and optical properties of ultra-small Tin doped CsPbBr ₃ blue luminescence quantum dots. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 047401.	0.2	0
917	Photoinduced Transformation of Cs ₂ Au ₂ Br ₆ into CsPbBr ₃ Nanocrystals. Journal of Physical Chemistry Letters, 2022, 13, 2921-2927.	2.1	4
918	Van der Waals Epitaxial Deposition of CsPbBr ₃ Films for Flexible Optoelectronic Applications. ACS Applied Electronic Materials, 2022, 4, 1351-1358.	2.0	4
919	Stability and luminescence properties of CsPbBr ₃ /CdSe/Al core-shell quantum dots. Chinese Physics B, 2022, 31, 046106.	0.7	2
920	How Machine Learning Predicts and Explains the Performance of Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	26
921	High-Brightness Perovskite Microcrystalline Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2022, 13, 2963-2968.	2.1	5
922	Bidentate Ligand-Induced Oriented Transformation of CsPbBr ₃ Perovskite Nanocrystals into Nanowires for X-ray Photodetectors. ACS Applied Nano Materials, 2022, 5, 13737-13744.	2.4	10
923	Autonomous Reconstitution of Fractured Hybrid Perovskite Single Crystals. Advanced Materials, 2022, 34, e2109374.	11.1	11

#	Article	IF	CITATIONS
924	Spontaneous symmetry breaking and the dynamics of three interacting nonlinear optical resonators with gain and loss. Physical Review E, 2022, 105, 034203.	0.8	0
925	Ligandâ€Free CsPbBr ₃ Perovskite Quantum Dots in Silicaâ€Aerogel Composites with Enhanced Stability for wâ€LED and Display by Substituting Pb ²⁺ with Pr ³⁺ or Gd ³⁺ Ions. Advanced Optical Materials, 2022, 10, .	3.6	11
926	A Simple Fusedâ€Ring Acceptor toward Highâ€Sensitivity Binary Nearâ€Infrared Photodetector. Advanced Optical Materials, 2022, 10, .	3.6	11
927	Environmental-friendly lead-free chiral Mn-based metal halides with efficient circularly polarized photoluminescence at room temperature. Journal of Alloys and Compounds, 2022, 910, 164892.	2.8	24
928	Research Progress of High-Sensitivity Perovskite Photodetectors: A Review of Photodetectors: Noise, Structure, and Materials. ACS Applied Electronic Materials, 2022, 4, 1485-1505.	2.0	56
929	Structural, electronic and optoelectronic properties of asymmetric organic ligands in Dion-Jacobson phase perovskites. Solid State Communications, 2022, 350, 114761.	0.9	4
930	Highly luminescent lead bromine perovskite via fast and eco-friendly water-assisted mechanochemical method. Optical Materials, 2022, 127, 112289.	1.7	2
931	A terahertz wave all-optical modulator based on quartz-based MAPbI3 thin film. Optical Materials, 2022, 127, 112235.	1.7	6
932	Recent progress of perovskite devices fabricated using thermal evaporation method: Perspective and outlook. Materials Today Advances, 2022, 14, 100232.	2.5	28
933	Engineering the crystallization behavior of CsPbBr3 quantum dots in borosilicate glass through modulating the glass network modifiers for wide-color-gamut displays. Journal of the European Ceramic Society, 2022, 42, 3586-3594.	2.8	11
934	Aqueous-phase assembly of ultra-stable perovskite nanocrystals in chiral cellulose nanocrystal films for circularly polarized luminescence. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 645, 128921.	2.3	8
935	Packing-Shape Effects of Optical Properties in Amplified Spontaneous Emission through Dynamics of Orbit–Orbit Polarization Interaction in Hybrid Perovskite Quantum Dots Based on Self-Assembly. Journal of Physical Chemistry Letters, 2021, 12, 11894-11901.	2.1	3
936	Surface passivation of active layer by introducing sodium alginate for high-performance perovskite photodetectors. , 2021, , .		0
937	Halide Mixing Inhibits Exciton Transport in Two-dimensional Perovskites Despite Phase Purity. ACS Energy Letters, 2022, 7, 358-365.	8.8	12
938	Toward ecoâ€friendly and stable halide perovskiteâ€inspired materials for lightâ€emitting devices applications by dimension classification: Recent advances and opportunities. EcoMat, 2022, 4, .	6.8	6
939	Light extraction efficiency enhancement of CH ₃ NH ₃ PbBr ₃ light-emitting diodes using nanopatterned PEDOT:PSS layers. Applied Physics Letters, 2021, 119, 233302.	1.5	0
940	Passivation of degradation path enables high performance perovskite nanoplatelet lasers with high operational stability. Photonics Research, 2022, 10, 1440.	3.4	4
941	In situ synthesis of MAPbX3 perovskite quantum dot-polycaprolactone composites for fluorescent 3D printing filament. Journal of Alloys and Compounds, 2022, 916, 164961.	2.8	2

#	Article	IF	CITATIONS
942	A Quasiâ€Twoâ€Dimensional Trilayered CsPbBr ₃ â€based Dionâ€Jacobson Hybrid Perovskite toward Highâ€Performance Photodetection. Chemistry - A European Journal, 2022, 28, .	1.7	11
943	Influence of the Halide Ion on the A-Site Dynamics in FAPb <i>X</i> ₃ (<i>X</i> = Br and Cl). Journal of Physical Chemistry C, 2022, 126, 7158-7168.	1.5	6
944	Highly Resolved Xâ€Ray Imaging Enabled by In(I) Doped Perovskiteâ€Like Cs ₃ Cu ₂ I ₅ Single Crystal Scintillator. Advanced Optical Materials, 2022, 10, .	3.6	54
947	0D chiral hybrid indium(<scp>iii</scp>) halides for second harmonic generation. Dalton Transactions, 2022, 51, 8593-8599.	1.6	14
948	Modulating the local structure of glass to promote <i>in situ</i> precipitation of perovskite CsPbBr ₃ quantum dots by introducing a network modifier. Journal of Materials Chemistry C, 2022, 10, 8634-8641.	2.7	7
949	Opportunities for machine learning to accelerate halide-perovskite commercialization and scale-up. Matter, 2022, 5, 1353-1366.	5.0	8
950	Recent Progress and Prospects on Metal Halide Perovskite Nanocrystals as Color Converters in the Fabrication of White Light-Emitting Diodes. Frontiers in Electronic Materials, 2022, 2, .	1.6	5
951	Colorimetric paper test strips based on cesium lead bromide perovskite nanocrystals for rapid detection of ciprofloxacin hydrochloride. Journal of Physics Condensed Matter, 2022, 34, 304002.	0.7	1
952	CsPbBr3 nanocrystals embedded glass enables highly stable and efficient light-emitting diodes. Chemical Engineering Journal, 2022, 445, 136867.	6.6	24
953	Boosted Chargeâ€Carrier Transport in Tripleâ€Cation Perovskites by Ultrasonic Vibration Post Treatment. Advanced Electronic Materials, 2022, 8, .	2.6	1
954	Solvent polishing engineering for quasi-two-dimensional perovskite blue light-emitting diodes. Chemical Communications, 2022, 58, 7132-7135.	2.2	6
955	Formation Mechanism of CsPbBr3/Cs4PbBr6 Microscale Composites Assisted by Imidazolium Cations and Their Device Application. Dalton Transactions, 0, , .	1.6	2
956	Precipitation of cesium lead halide perovskite nanocrystals in glasses based on liquid phase separation. Journal of the American Ceramic Society, 2022, 105, 6105-6115.	1.9	5
957	Low-Dimensional Organic Lead Halides with Organic–Inorganic Collaborative Luminescence Regulated by Anion in Dimension. Chemistry of Materials, 2022, 34, 5224-5231.	3.2	4
958	Stable Multiâ€Wavelength Lasing in Single Perovskite Quantum Dot Superlattice. Advanced Optical Materials, 0, , 2200494.	3.6	3
959	Fabrication of Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes via Inkjet Printing. Micromachines, 2022, 13, 983.	1.4	5
960	Enhanced lasing properties of BUBD-1 film with multifunctional buffer layers doped with silver nanoparticles. Optics Express, 2022, 30, 25865.	1.7	1
962	Trade-off between the Performance and Stability of Perovskite Light-Emitting Diodes with Excess Halides. Journal of Physical Chemistry Letters, 2022, 13, 5179-5185.	2.1	2

#	Article	IF	CITATIONS
963	Accurately Quantifying Stress during Metal Halide Perovskite Thin Film Formation. ACS Applied Materials & amp; Interfaces, 2022, 14, 27791-27798.	4.0	3
964	Double Perovskite Ba2LaTaO6 for Ultrafast Fiber Lasers in Anomalous and Normal Net Dispersion Regime. Nanomaterials, 2022, 12, 2112.	1.9	3
965	Red-emitting micro PeLEDs for UHD displays by using capillary force lithography. Chemical Engineering Journal, 2022, 448, 137727.	6.6	2
966	Temperature-induced structural transition in an organic–inorganic hybrid layered perovskite (MA) ₂ PbI _{2â^'<i>x</i>} Br _{<i>x</i>} (SCN) ₂ . CrystEngComm, 2022, 24, 5428-5434.	1.3	1
967	Precise design and preparation of two 3D organic–inorganic perovskite ferroelectrics (1,5-diazabicyclo[3.2.2]nonane)RbX ₃ (X = Br, I). Chemical Communications, 2022, 58, 9254-9257.	2.2	8
968	Effective Passivation of Perovkiste Grain Boundaries by a Carboxylated Polythoiphene for Bright and Stable Pure-Red Perovskite Light Emitting Diodes. SSRN Electronic Journal, 0, , .	0.4	1
969	Fabrication and amplified spontaneous emission behavior of FAPbBr ₃ perovskite quantum dots in solid polymer rods. Materials Science-Poland, 2022, 40, 84-100.	0.4	1
970	Graded multilayer triple cation perovskites for high speed and detectivity self-powered photodetector via scalable spray coating process. Scientific Reports, 2022, 12, .	1.6	7
971	Electron transport mechanism in colloidal SnO ₂ nanoparticle films and its implications for quantum-dot light-emitting diodes. Journal Physics D: Applied Physics, 2022, 55, 374004.	1.3	8
972	Long-Persistent Luminescence from Double Self-Defect States in Undoped Cs3In2Cl9 Nanocrystals for Bioimaging and Display Technologies. ACS Applied Nano Materials, 2022, 5, 9469-9477.	2.4	9
973	Amplified Spontaneous Emission from Thermally Evaporated High-Quality Thin Films of CsPb(Br _{1–<i>x</i>} Y _{<i>x</i>}) ₃ (Y = I, Cl) Perovskites. Langmuir, 2022, 38, 8607-8613.	1.6	10
974	Decoupling engineering of formamidinium–cesium perovskites for efficient photovoltaics. National Science Review, 2022, 9, .	4.6	22
975	18â€Crownâ€6 Additive to Enhance Performance and Durability in Solutionâ€Processed Halide Perovskite Electronics. Small, 2022, 18, .	5.2	4
976	Boosting the stability of lead halide perovskite nanocrystals by metal–organic frameworks and their applications. Journal of Materials Chemistry C, 2022, 10, 11532-11554.	2.7	9
977	Highly efficient broadband white-light emission in two-dimensional semi-conductive hybrid lead chlorides. Dalton Transactions, 2022, 51, 14930-14936.	1.6	2
978	Mass Transfer Printing of Metalâ€Halide Perovskite Films and Nanostructures. Advanced Materials, 2022, 34, .	11.1	10
979	Perovskite nanocrystal-embedded glasses for photonic applications. Journal of the Korean Ceramic Society, 2022, 59, 749-762.	1.1	7
980	Optical Property and Stability of Leadâ€Free Cs ₃ Sb ₂ Br ₉ Perovskite Microplatelets Prepared by a Solution Method. Physica Status Solidi (B): Basic Research, 0, , 2200156.	0.7	Ο

#	Article	IF	CITATIONS
981	Metal Halide Perovskite Nanowires: Synthesis, Integration, Properties, and Applications in Optoelectronics. Advanced Energy Materials, 2023, 13, .	10.2	18
982	Unveiling the Role of the Metal Oxide/Sn Perovskite Interface Leading to Low Efficiency of Sn-Perovskite Solar Cells but Providing High Thermoelectric Properties. ACS Applied Energy Materials, 2022, 5, 9750-9758.	2.5	10
983	Negative Differential Resistance in the Au-Coated CH ₃ NH ₃ PbBr ₃ Perovskite Photodetectors with Fast Response. Journal of Physical Chemistry C, 2022, 126, 13748-13754.	1.5	1
984	Monolithic Integration of Perovskite Photoabsorbers with IGZO Thinâ€Film Transistor Backplane for Phototransistorâ€Based Image Sensor. Advanced Materials Technologies, 2023, 8, .	3.0	10
985	Highly Orientated Perovskite Quantum Dot Solids for Efficient Solar Cells. Advanced Materials, 2022, 34, .	11.1	28
986	Stability strategies of perovskite quantum dots and their extended applications in extreme environment: A review. Materials Research Bulletin, 2022, 156, 111987.	2.7	13
987	Effective passivation of perovkiste grain boundaries by a carboxylated polythoiphene for bright and stable Pure-Red perovskite light emitting diodes. Chemical Engineering Journal, 2023, 451, 138892.	6.6	5
988	Highly stable and water dispersible polymer-coated CsPbBr3 nanocrystals for Cu-ion detection in water. Materials Advances, 0, , .	2.6	5
989	Recyclability of CsPbBr ₃ quantum dot glass nanocomposites for their long-standing use in white LEDs. Journal of Materials Chemistry C, 2022, 10, 16088-16099.	2.7	4
990	In-Situ Reacted Multiple-Anchoring Ligands to Produce Highly Photo-Thermal Resistant Cspbi3 Quantum Dots for Display Backlights. SSRN Electronic Journal, 0, , .	0.4	0
991	Broadband-tunable spectral response of perovskite-on-paper photodetectors using halide mixing. Nanoscale, 2022, 14, 14057-14063.	2.8	1
992	White light phosphorescence from ZnO nanoparticles for white LED applications. New Journal of Chemistry, 2022, 46, 17585-17595.	1.4	2
993	A mechanistic study of the dopant-induced breakdown in halide perovskites using solid state energy storage devices. Energy and Environmental Science, 2022, 15, 4323-4337.	15.6	3
994	Stable and large-scale organic–inorganic halide perovskite nanocrystal/polymer nanofiber films prepared <i>via</i> a green <i>in situ</i> fiber spinning chemistry method. Nanoscale, 2022, 14, 11998-12006.	2.8	5
995	Two-Dimensional Lead-Free Double Perovskite with Superior Stability and Optoelectronic Properties for Solar Cell Application. Journal of Physical Chemistry C, 2022, 126, 14824-14831.	1.5	2
996	Design of Organic–Inorganic Hybrid Heterostructured Semiconductors via High-Throughput Materials Screening for Optoelectronic Applications. Journal of the American Chemical Society, 2022, 144, 16656-16666.	6.6	13
997	Laserâ€Induced Secondary Crystallization of CsPbBr ₃ Perovskite Film for Robust and Low Threshold Amplified Spontaneous Emission. Advanced Functional Materials, 2022, 32, .	7.8	7
998	Activity Enhancement of Photo-generated Carrier in CsPbBr3 Nanocrystals Improved by Cd Element. Optics Express, 0, , .	1.7	0

#	Article	IF	CITATIONS
999	Surface Adsorption-Assisted Visible and Near-Infrared Photodetection in SrTiO ₃ Nanostructures. ACS Applied Electronic Materials, 2022, 4, 4521-4529.	2.0	4
1000	Degradation mechanisms of perovskite nanocrystals in color-converted InGaN micro-light-emitting diodes. Optics Express, 2022, 30, 36921.	1.7	0
1001	Single-crystal organometallic perovskite optical fibers. Science Advances, 2022, 8, .	4.7	7
1002	White Light-Emitting Diodes Based on One-Dimensional Organic–Inorganic Hybrid Metal Chloride with Dual Emission. Inorganic Chemistry, 2022, 61, 15475-15483.	1.9	8
1003	Investigation on the stability improvement of hybrid halide all-inorganic perovskite quantum dots. Nanotechnology, 0, , .	1.3	0
1004	Interfaced Structures between Halide Perovskites: From Basics to Construction to Optoelectronic Applications. Advanced Energy Materials, 2023, 13, .	10.2	6
1005	A novel material Cs ₂ Rb _{<i>x</i>} Ag _{1â^'<i>x</i>} In _{0.875} Bi _{0.125} Cl- with a special blue shift and application for white light LED devices. Physical Chemistry Chemical Physics, 2022, 24, 25434-25439.	_{61.3}	ub> 2
1006	Tailoring the thermal conductivity of two-dimensional metal halide perovskites. Materials Horizons, 2022, 9, 3087-3094.	6.4	2
1007	Synthesis and optical properties of CsCu ₂ Br ₃ –Cu ⁰ nanoheterojunctions. Journal of Materials Chemistry C, 0, , .	2.7	0
1008	Application of perovskites in bioimaging: the state-of-the-art and future developments. Expert Review of Molecular Diagnostics, 2022, 22, 867-880.	1.5	6
1010	Waterâ€īriggered Chemical Transformation of Perovskite Nanocrystals. Chemistry - A European Journal, 2023, 29, .	1.7	3
1011	Flexible perovskite light-emitting diodes: Progress, challenges and perspective. Science China Materials, 2023, 66, 1-21.	3.5	15
1012	Novel broad spectral response perovskite solar cells: A review of the current status and advanced strategies for breaking the theoretical limit efficiency. Journal of Materials Science and Technology, 2023, 140, 33-57.	5.6	5
1013	Active Manipulation of Luminescent Dynamics via Au NPs sPbBr ₃ Interfacial Engineering. Laser and Photonics Reviews, 2023, 17, .	4.4	6
1014	Tunable Luminescence and Enhanced Polar Solvent Resistance of Perovskite Nanocrystals Achieved by Surface-Initiated Photopolymerization. Journal of the American Chemical Society, 2022, 144, 20411-20420.	6.6	22
1015	Lead-free Cs3Cu2I5 perovskite vertical cavity surface emitting lasers with low threshold. Journal of Luminescence, 2023, 253, 119434.	1.5	3
1016	Room-temperature lasing from cesium lead halide perovskite heterostructures induced by phase segregation. Journal of Luminescence, 2022, 252, 119442.	1.5	1
1017	In-situ reacted multiple-anchoring ligands to produce highly photo-thermal resistant CsPbI3 quantum dots for display backlights. Chemical Engineering Journal, 2023, 454, 140038.	6.6	6

#	Article	IF	CITATIONS
1018	Research progress of ABX ₃ -type lead-free perovskites for optoelectronic applications: materials and devices. Physical Chemistry Chemical Physics, 2022, 24, 27585-27605.	1.3	6
1019	Brightening thiocyanate-anion layered perovskite through internal stress modulated nano phase segregation. Nano Research, 2023, 16, 5533-5540.	5.8	0
1020	Degradation mechanisms of perovskite light-emitting diodes under electrical bias. Nanophotonics, 2023, 12, 451-476.	2.9	3
1021	Advanced Stretchable Photodetectors: Strategies, Materials and Devices. Chemistry - A European Journal, 2023, 29, .	1.7	4
1022	Mapping structure heterogeneities and visualizing moisture degradation of perovskite films with nano-focus WAXS. Nature Communications, 2022, 13, .	5.8	10
1023	Photoluminescence Polarization of MAPbBr ₃ Perovskite Nanostructures. Can the Dielectric Contrast Effect Explain It?. ACS Photonics, 0, , .	3.2	0
1024	Recent Advancements in Tin Halide Perovskite-Based Solar Cells and Thermoelectric Devices. Nanomaterials, 2022, 12, 4055.	1.9	5
1025	Homologous bromides passivation of CH3NH3PbBr3 single crystals for photodetectors with improved properties. Journal of Alloys and Compounds, 2023, 935, 168132.	2.8	2
1026	Angle-resolved polarimetry of hybrid perovskite emission for photonic technologies. Nanoscale, 2022, 14, 17519-17527.	2.8	3
1027	Perovskite light-emitting diodes with solution-processed MoO3 films as the hole-transport layers. Journal of Luminescence, 2023, 256, 119621.	1.5	3
1028	Optoelectronic Properties of MAPbBr3 Perovskite Light-Emitting Diodes Using Anti-Solvent and PEDOT:PSS/PVK Double-Layer Hole Transport Layers. Micromachines, 2022, 13, 2122.	1.4	1
1029	Perovskite Random Lasers, Process and Prospects. Micromachines, 2022, 13, 2040.	1.4	4
1030	Targeted Design of Surface Configuration on CsPbI ₃ Perovskite Nanocrystals for High-Efficiency Photovoltaics. ACS Energy Letters, 2023, 8, 241-249.	8.8	4
1031	Synthesis, Structure, and Characterization of 4,4′-(Anthracene-9,10-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) Bismuth Iodide (C ₃₀ H ₂₂ N ₂) ₃ Bi ₄ 18, an Air, Water, and Thermally Stable OD Hybrid Perovskite with High Photoluminescence Efficiency. Crystal	1.4	5
1032	Growth and Design, 2022, 22, 7426-7499. Synergy of Block Copolymers and Perovskites: Template Growth through Self-Assembly. Journal of Physical Chemistry Letters, 2022, 13, 11610-11621.	2.1	6
1033	Maximally Chiral Emission via Chiral Quasibound States in the Continuum. Laser and Photonics Reviews, 2023, 17, .	4.4	10
1034	Octahedral Distortion Co-Regulation via Dual Strategies toward Luminescence Enhancement for the MA ₄ InBr ₇ Perovskite Single Crystal. ACS Applied Materials & Interfaces, 2022, 14, 55795-55802.	4.0	1
1035	Leadâ€Free Cesium Manganese Halide Nanocrystals Embedded Glasses for Xâ€Ray Imaging. Advanced Science, 2023, 10, .	5.6	20

#	Article	IF	CITATIONS
1036	Perovskite photonic crystal photoelectric devices. Applied Physics Reviews, 2022, 9, .	5.5	6
1037	Reduced <i>E</i> _{loss} of Planar-Structured Carbon Counter Electrode-Based CsPbl ₃ Solar Cells with Tetrabutylammonium Halide-Modified SnO ₂ . ACS Applied Energy Materials, 0, , .	2.5	0
1038	The current state of the art in internal additive materials and quantum dots for improving efficiency and stability against humidity in perovskite solar cells. Heliyon, 2022, 8, e11878.	1.4	2
1039	Structural and optical investigation of novel Sr1-xNa2xZrO3 perovskite nanoparticles. Physica B: Condensed Matter, 2023, 653, 414655.	1.3	2
1040	Evidence of defect-induced broadband light emission from 2D Ag–Bi double perovskites grown at liquid–liquid interfaces. Journal of Chemical Physics, 2023, 158, 011101.	1.2	0
1041	Two metal-free perovskite molecules with different 3D frameworks show reversible phase transition, dielectric anomaly and SHG effect. Dalton Transactions, 2023, 52, 1753-1760.	1.6	6
1042	Influence of Mn2+ doping on the optical properties of Cs2AgBiCl6 double perovskite luminescent phosphors. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	4
1043	Ultraviolet photodetector based on RbCu ₂ 1 ₃ microwire. Nanotechnology, 2023, 34, 145402.	1.3	2
1044	Spinel ferrites/metal oxide nanocomposites for waste water treatment. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	13
1045	Advances in Polymethine Dyes for <scp>Nearâ€Infrared</scp> Organic Photodiodes ^{â€} . Chinese Journal of Chemistry, 2023, 41, 1399-1416.	2.6	2
1046	Water-induced construction of Cs4PbBr6/CsPbBr3 heterojunction for efficient perovskite light-emitting diode. Applied Materials Today, 2023, 30, 101733.	2.3	1
1047	Effect of Intrinsic Defects on the Photoluminescence of Pristine and Doped CsPbBr ₃ Perovskite. Journal of Physical Chemistry C, 2023, 127, 842-848.	1.5	1
1048	Perovskite quantum dots. , 2023, , 189-214.		0
1049	Directional Amplified Photoluminescence through Large-Area Perovskite-Based Metasurfaces. ACS Nano, 2023, 17, 2399-2410.	7.3	8
1050	Two-dimensional semiconducting Cu(<scp>i</scp>)/Sb(<scp>iii</scp>) bimetallic hybrid iodides with a double perovskite structure and photocurrent response. Nanoscale, 2023, 15, 5265-5273.	2.8	1
1051	Exsolution on perovskite oxides: morphology and anchorage of nanoparticles. Chemical Communications, 2023, 59, 3948-3956.	2.2	9
1052	Quantum element method for multi-dimensional nanostructures enabled by a projection-based learning algorithm. Solid-State Electronics, 2023, 202, 108610.	0.8	0
1053	Metal halide perovskites for photocatalytic CO2 reduction: An overview and prospects. Coordination Chemistry Reviews, 2023, 482, 215076.	9.5	18

#	Article	IF	CITATIONS
1054	Enhancement performance of vapor-deposition processed perovskite photodetectors enabled by manipulation of interface engineering. Organic Electronics, 2023, 116, 106773.	1.4	1
1055	Assimilation of electronic, elastic, mechanical, optical, and thermal profiles in metal halide perovskite CsPbCl3, for optoelectronic applications. Computational Condensed Matter, 2023, 35, e00804.	0.9	1
1056	An innovative strategic route to the green synthesis of CsPbBr3 films on rigid and flexible substrates. Applied Surface Science, 2023, 622, 156916.	3.1	1
1057	Physics-informed reduced-order learning from the first principles for simulation of quantum nanostructures. Scientific Reports, 2023, 13, .	1.6	1
1058	Unveiling the Intrinsic Structure and Intragrain Defects of Organic–Inorganic Hybrid Perovskites by Ultralow Dose Transmission Electron Microscopy. Advanced Materials, 2023, 35, .	11.1	1
1059	Efficient and Stable Perovskite White Lightâ€Emitting Diodes for Backlit Display. Advanced Functional Materials, 2023, 33, .	7.8	45
1060	Additive engineering for highly efficient and stable perovskite solar cells. Applied Physics Reviews, 2023, 10, .	5.5	13
1061	4,4′-(Anthracene-9,10-diylbis(ethyne-2,1-diyl))bis(1-methyl-1-pyridinium) Lead Iodide C ₃₀ H ₂₂ N ₂ Pb ₂ I ₆ : A Highly Luminescent, Chemically and Thermally Stable One-Dimensional Hybrid Iodoplumbate. Chemistry of Materials, 2023, 35, 1818-1826.	3.2	2
1062	Imaging the Terahertz Nanoscale Conductivity of Polycrystalline CsPbBr ₃ Perovskite Thin Films. Nano Letters, 2023, 23, 2074-2080.	4.5	1
1063	Lead free perovskite based heterojunction photodetectors: A mini review. Applied Surface Science Advances, 2023, 14, 100393.	2.9	2
1064	Lightâ€Emitting Device Based on Amplified Spontaneous Emission. Laser and Photonics Reviews, 2023, 17, .	4.4	3
1065	Influence of Ionic Additives in the PEDOT:PSS Hole Transport Layers for Efficient Blue Perovskite Light Emitting Diodes. ACS Applied Materials & Interfaces, 0, , .	4.0	3
1066	Roomâ€Temperature Exceptionalâ€Pointâ€Driven Polariton Lasing from Perovskite Metasurface. Advanced Functional Materials, 2023, 33, .	7.8	6
1067	Efficient Charge-Transfer Studies for Selective Detection of Bilirubin Biomolecules Using CsPbBr ₃ as the Fluorescent Probe. Journal of Physical Chemistry B, 2023, 127, 2138-2145.	1.2	3
1068	Modification of Twoâ€Dimensional Tinâ€Based Perovskites by Pentanoic Acid for Improved Performance of Fieldâ€Effect Transistors. Small, 2023, 19, .	5.2	6
1069	Microscopic theory of Raman scattering for the rotational organic cation in metal halide perovskites. Physical Review B, 2023, 107, .	1.1	4
1070	Manipulating Ionic Behavior with Bifunctional Additives for Efficient Skyâ€Blue Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2023, 33, .	7.8	32
1071	Recent Progress on Synthesis, Intrinsic Properties and Optoelectronic Applications of Perovskite Single Crystals. Advanced Functional Materials, 2023, 33, .	7.8	12

<u> </u>			-		
(†17	ΓΑΤΙ	ION	I K	FP	ORT

#	Article	IF	CITATIONS
1072	Energyâ€Level Regulation and Lowâ€Dimensional Phase Rearrangement via a Multifunctional Spacer Group toward Efficient Skyâ€Blue Quasiâ€2D Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2023, 11, .	3.6	2
1073	Role of a corrugated Dion–Jacobson 2D perovskite as an additive in 3D MAPbBr ₃ perovskite-based light emitting diodes. Nanoscale Advances, 2023, 5, 2508-2516.	2.2	1
1074	Multi-dynamics and emission tailored fluoroperovskite-based down-conversion phosphors for enhancing the current density and stability of the perovskite solar cells. Sustainable Energy and Fuels, 0, , .	2.5	0
1075	Perovskite nanocrystal superlattices: self-assembly, collective behavior, and applications. Chemical Communications, 2023, 59, 5365-5374.	2.2	1
1076	Metal halide perovskite nanomaterials for battery applications. , 2023, , 537-568.		0
1077	Preparation and performance of CsPbBr3 nanocrystals in a fluorophosphate glass matrix. Journal of Nanoparticle Research, 2023, 25, .	0.8	1
1078	Zero-dimensional cadmium-based metal halide with near-unity photoluminescence quantum efficiency. Materials Chemistry Frontiers, 0, , .	3.2	1
1083	Directional Emission from Electrically Injected Exciton–Polaritons in Perovskite Metasurfaces. Nano Letters, 2023, 23, 4431-4438.	4.5	6
1086	Advances in Synthesis and Defect Properties of Halide Perovskite Nanocrystals: Experimental and Theoretical Perspectives. Composites Science and Technology, 2023, , 3-37.	0.4	0
1088	Toward Nonepitaxial Laser Diodes. Chemical Reviews, 2023, 123, 7548-7584.	23.0	4
1091	White lasing $\hat{a} \in$ " materials, design and applications. Journal of Materials Chemistry C, 0, , .	2.7	1
1094	Perovskite-based LEDs and lasers. , 2023, , 519-548.		0
1101	Triple Ligand Engineered Gold Nanoclusters with Enhanced Fluorescence and Device Compatibility for Efficient Electroluminescence Light-Emitting Diodes. Nano Letters, 2023, 23, 4423-4430.	4.5	1
1102	Halide perovskites: Properties, synthesis, and applications. , 2024, , 659-678.		0
1109	Recent Progress of Amorphous Nanomaterials. Chemical Reviews, 2023, 123, 8859-8941.	23.0	29
1116	Organic-inorganic hybrid perovskite material and its application for transistor. Materials Chemistry Frontiers, 0, , .	3.2	0
1121	Stimulated emission mechanisms in perovskite semiconductors. , 2023, , 145-182.		1
1122	Surface-plasmon-assisted lasing and strong exciton-photon coupling in perovskite crystals. , 2023, , 431-461.		0

		CITATION REPORT		
#	Article		IF	CITATIONS
1123	From LEDs to lasing by electrical injection, this is possible for lead halide perovskites?.	, 2023, , 183-199.		0
1124	Lead halide perovskite-based whispering gallery mode (WGM) lasers. , 2023, , 257-289).		0
1125	Study on performance improvement of pure bromide sky blue perovskite light-emitting modifying PEDOT:PSS. , 2023, , .	g diodes by		0
1167	Consolidation of Temperature Coefficients of Perovskite-Based Absorbers. , 2023, , .			0
1168	Metal halide perovskites for CO ₂ photoreduction: recent advances and fu perspectives. , 2024, 2, 448-474.	ıture		0
1181	First Principles Study of Optical and Electrical Properties for Mixed-halide 2D BA2PbBr4	1-xClx (x=0, 2,) Tj ETQ@	q1 1 0.784314	rgBT /Overlo