Biodegradable Polysaccharides for Controlled Drug Del

ChemPlusChem 81, 504-514

DOI: 10.1002/cplu.201600112

Citation Report

#	Article	IF	CITATIONS
2	Small molecule therapeutic-loaded liposomes as therapeutic carriers: from development to clinical applications. RSC Advances, 2016, 6, 70592-70615.	1.7	65
3	Colloidal aspects of Janus-like hairy cellulose nanocrystalloids. Current Opinion in Colloid and Interface Science, 2017, 29, 21-31.	3.4	45
4	Stability and release of an encapsulated solvent-free lycopene extract in alginate-based beads. LWT - Food Science and Technology, 2017, 77, 406-412.	2.5	32
5	Dispersion of the Photosensitizer 5,10,15,20-Tetrakis(4-Sulfonatophenyl)-porphyrin by the Amphiphilic Polymer Poly(vinylpirrolidone) in Highly Porous Solid Materials Designed for Photodynamic Therapy. Journal of Physical Chemistry B, 2017, 121, 7373-7381.	1.2	4
6	The one-step acetalization reaction for construction of hyperbranched and biodegradable luminescent polymeric nanoparticles with aggregation-induced emission feature. Materials Science and Engineering C, 2017, 80, 543-548.	3.8	26
7	Recent advances of using polyhydroxyalkanoateâ€based nanovehicles as therapeutic delivery carriers. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1429.	3.3	77
8	A Review on the Modification of Polysaccharide Through Graft Copolymerization for Various Potential Applications. Open Medicinal Chemistry Journal, 2017, 11, 109-126.	0.9	87
9	Antimicrobial Electrospun Fibers of Polyester Loaded with Engineered Cyclic Gramicidin Analogues. Fibers, 2017, 5, 34.	1.8	3
10	Cyclodextrin- and dendrimer-conjugated graphene oxide as a nanocarrier for the delivery of selected chemotherapeutic and photosensitizing agents. Materials Science and Engineering C, 2018, 89, 307-315.	3.8	32
11	Delivery of anticancer drug using pH-sensitive micelles from triblock copolymer MPEG-b-PBAE-b-PLA. Materials Science and Engineering C, 2018, 84, 254-262.	3.8	49
12	Biopolymerâ€Aerogele und â€Schäme: Chemie, Eigenschaften und Anwendungen. Angewandte Chemie, 2018, 130, 7704-7733.	1.6	21
13	Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. Angewandte Chemie - International Edition, 2018, 57, 7580-7608.	7.2	470
14	Methotrexate loaded alginate microparticles and effect of Ca2+ post-crosslinking: An in vitro physicochemical and biological evaluation. International Journal of Biological Macromolecules, 2018, 110, 294-307.	3.6	12
15	Nanographene oxide as a switch for CW/pulsed NIR laser triggered drug release from liposomes. Materials Science and Engineering C, 2018, 82, 19-24.	3.8	23
16	The role of hydrophobic modification on hyaluronic acid dynamics and self-assembly. Carbohydrate Polymers, 2018, 182, 132-141.	5.1	60
17	Regulation of cellular gene expression by nanomaterials. Nano Convergence, 2018, 5, 34.	6.3	15
18	Protein Corona Mediated Stealth Properties of Biocompatible Carbohydrateâ€based Nanocarriers. Israel Journal of Chemistry, 2018, 58, 1363-1372.	1.0	15
20	Design and Development of Polysaccharide-Doxorubicin-Peptide Bioconjugates for Dual Synergistic Effects of Integrin-Targeted and Cell-Penetrating Peptides for Cancer Chemotherapy. Bioconjugate Chemistry, 2018, 29, 1973-2000.	1.8	54

#	ARTICLE Doxorubicin delivery via magnetic nanomicelles comprising from reduction-responsive poly(ethylene) Tj ETQq0 0	IF 0 rgBT /O	CITATIONS verlock 10 Tf
21	nanoparticles: Preparation, characterization and simulation. Materials Science and Engineering C, 2018, 92, 631-643.	3.8	47
22	Drug delivery systems based on nonimmunogenic biopolymers. , 2018, , 317-344.		14
23	Triggering Depolymerization: Progress and Opportunities for Self-Immolative Polymers. Macromolecules, 2019, 52, 6342-6360.	2.2	107
24	Hydrogels: soft matters in photomedicine. Photochemical and Photobiological Sciences, 2019, 18, 2613-2656.	1.6	42
25	Alginate Hydrogels as Scaffolds and Delivery Systems to Repair the Damaged Spinal Cord. Biotechnology Journal, 2019, 14, e1900275.	1.8	49
26	Tubular Microcapsules with Polysaccharide Membranes Based on a Co-axial Microfluidic Chip. ACS Biomaterials Science and Engineering, 2019, 5, 6281-6289.	2.6	7
27	GSH and light dual stimuli-responsive supramolecular polymer drug carriers for cancer therapy. Polymer Degradation and Stability, 2019, 168, 108956.	2.7	19
28	Polyhydroxyalkanoates Applications in Drug Carriers. , 2019, , 77-124.		6
29	Freezing and drying of pink grapefruit-lycopene encapsulated in Ca(II)-alginate beads containing galactomannans. Journal of Food Science and Technology, 2019, 56, 3264-3271.	1.4	6
30	Synthesis and evaluation of hydrophobically modified fenugreek gum for potential hepatic drug delivery. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 1702-1709.	1.9	8
31	On the Race for More Stretchable and Tough Hydrogels. Gels, 2019, 5, 24.	2.1	26
32	Structural characterization and immunoregulatory activity of a new polysaccharide from <i>Citrus medica</i> ÂL. var. <i>sarcodactylis</i> . RSC Advances, 2019, 9, 6603-6612.	1.7	26
33	Recent advances in nanoengineering cellulose for cargo delivery. Journal of Controlled Release, 2019, 294, 53-76.	4.8	87
34	Natural Salep/PEGylated Chitosan Double Layer toward a More Sustainable pH-Responsive Magnetite Nanocarrier for Targeted Delivery of DOX and Hyperthermia Application. ACS Applied Nano Materials, 2019, 2, 853-866.	2.4	19
35	Cefuroxime conjugated chitosan hydrogel for treatment of wound infections. Colloids and Surfaces B: Biointerfaces, 2019, 173, 776-787.	2.5	52
36	Folate-conjugated, mesoporous silica functionalized boron nitride nanospheres for targeted delivery of doxorubicin. Materials Science and Engineering C, 2019, 96, 552-560.	3.8	29
37	Synthesis of polyorganophosphazenes and fabrication of their blend microspheres and micro/nanofibers as drug delivery systems. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 545-566.	1.8	5
38	Glycogen as a Building Block for Advanced Biological Materials. Advanced Materials, 2020, 32, e1904625.	11.1	53

#	ARTICLE	IF	CITATIONS
39	Synthesis of chitosan aerogels as promising carriers for drug delivery: A review. Carbohydrate Polymers, 2020, 231, 115744.	5.1	177
40	Electrospun cellulose acetate butyrate/polyethylene glycol (CAB/PEG) composite nanofibers: A potential scaffold for tissue engineering. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110713.	2.5	57
41	Effect of Active Site Modification towards Performance Enhancement in Biopolymer \hat{l}^2 -Carrageenan Derivatives. Polymers, 2020, 12, 2040.	2.0	12
42	Biocompatible Polymers Combined with Cyclodextrins: Fascinating Materials for Drug Delivery Applications. Molecules, 2020, 25, 3404.	1.7	41
43	Zinc diethyldithiocarbamate as a catalyst for synthesising biomedically-relevant thermogelling polyurethanes. Materials Advances, 2020, 1, 3221-3232.	2.6	9
44	Nanoporous Microsponge Particles (NMP) of Polysaccharides as Universal Carriers for Biomolecules Delivery. Nanomaterials, 2020, 10, 1075.	1.9	7
45	Self-immolative polymers in biomedicine. Journal of Materials Chemistry B, 2020, 8, 6697-6709.	2.9	35
46	<p>Burgeoning Polymer Nano Blends for Improved Controlled Drug Release: A Review</p> . International Journal of Nanomedicine, 2020, Volume 15, 4363-4392.	3.3	76
47	A Novel Strategy for Treating Inflammatory Bowel Disease by Targeting Delivery of Methotrexate through Glucan Particles. Advanced Healthcare Materials, 2020, 9, e1901805.	3.9	33
48	Surface modified cellulose nanomaterials: a source of non-spherical nanoparticles for drug delivery. Materials Horizons, 2020, 7, 1727-1758.	6.4	80
49	A pH-sensitive drug delivery system based on folic acid-targeted HBP-modified mesoporous silica nanoparticles for cancer therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 590, 124470.	2.3	44
50	A novel and simple oral colon-specific drug delivery system based on the pectin/modified nano-carbon sphere nanocomposite gel films. International Journal of Biological Macromolecules, 2020, 157, 170-176.	3.6	33
51	Carbohydrate Conjugates in Vaccine Developments. Frontiers in Chemistry, 2020, 8, 284.	1.8	50
52	Drug encapsulating polysaccharideâ€loaded metal nanoparticles: A perspective drug delivery system. Drug Development Research, 2021, 82, 145-148.	1.4	16
53	Microwave-initiated rapid synthesis of phthalated cashew gum for drug delivery systems. Carbohydrate Polymers, 2021, 254, 117226.	5.1	30
54	Dissolvable-soluble or biodegradable polymers. , 2021, , 367-394.		1
55	Multi-functionalized micro-helical capsule robots with superior loading and releasing capabilities. Journal of Materials Chemistry B, 2021, 9, 1441-1451.	2.9	22
56	Hemocompatible, biocompatible and antifouling Acylated dextran-g-polytetrahydrofuran graft copolymer with silver nanoparticles: Synthesis, characterization and properties. Materials Science and Engineering C, 2021, 123, 111998.	3.8	5

#	ARTICLE	IF	CITATIONS
57	Current-status and applications of polysaccharides in drug delivery systems. Colloids and Interface Science Communications, 2021, 42, 100418.	2.0	66
58	Biocompatible, Hemocompatible and Antibacterial Acylated Dextran-g-polyisobutylene Graft Copolymers with Silver Nanoparticles. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1550-1561.	2.0	6
59	Okra (Abelmoschus esculentus L.) as a Potential Functional Food Source of Mucilage and Bioactive Compounds with Technological Applications and Health Benefits. Plants, 2021, 10, 1683.	1.6	65
60	Development of a Polysaccharide-Based Hydrogel Drug Delivery System (DDS): An Update. Gels, 2021, 7, 153.	2.1	45
61	Polyvinylchloride (PVC)-Based Blends: State of Art, New Challenges and Opportunities. Springer Series on Polymer and Composite Materials, 2022, , 1-17.	0.5	1
62	Polyvinylchloride (PVC)/Polysaccharides Blends. Springer Series on Polymer and Composite Materials, 2022, , 159-174.	0.5	0
63	Nanocellulose: A mini-review on types and use in drug delivery systems. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100031.	1.6	45
64	Hydrogel of Natural as a Potential Vehicle for Colon-Targeted. Methods in Molecular Biology, 2021, 2211, 171-182.	0.4	5
65	Nanoparticles as Budding Trends in Colon Drug Delivery for the Management of Ulcerative Colitis. Current Nanomedicine, 2020, 10, 225-247.	0.2	5
68	Sodium Cefotaxime–Potato Starch Conjugate as a Potential System for Antibacterial Drug Delivery. Pharmaceutical Chemistry Journal, 2021, 55, 803-807.	0.3	2
69	Biomass vs inorganic and plastic-based aerogels: Structural design, functional tailoring, resource-efficient applications and sustainability analysis. Progress in Materials Science, 2022, 125, 100915.	16.0	73
70	Triggering the nanophase separation of albumin through multivalent binding to glycogen for drug delivery in 2D and 3D multicellular constructs. Nanoscale, 2022, 14, 3452-3466.	2.8	1
71	Herb Polysaccharide-Based Drug Delivery System: Fabrication, Properties, and Applications for Immunotherapy. Pharmaceutics, 2022, 14, 1703.	2.0	6
72	Customizing nano-chitosan for sustainable drug delivery. Journal of Controlled Release, 2022, 350, 175-192.	4.8	94
73	Grafted polysaccharides in drug delivery. , 2023, , 157-175.		1
74	Polysaccharide gum based network hydrogels for controlled drug delivery of ceftriaxone: Synthesis, characterization and biomedical evaluations. Results in Chemistry, 2023, 5, 100695.	0.9	6
75	Removal of dimethylarsinate from water by robust NU-1000 aerogels: Impact of the aerogel materials. Chemical Engineering Journal, 2023, 455, 140387.	6.6	3
76	A road map on synthetic strategies and applications of biodegradable polymers. Polymer Bulletin, 2023, 80, 11507-11556.	1.7	1

#	Article	IF	CITATIONS
77	Sodium alginate/xanthan-based nanocomposite hydrogels containing 5-fluorouracil: Characterization and cancer cell death studies in presence of halloysite nanotube. Journal of Industrial and Engineering Chemistry, 2023, 120, 374-386.	2.9	9
78	A pH responsive and superporous biocomposite hydrogel of <i>Salvia spinosa</i> polysaccharide- <i>co</i> -methacrylic acid for intelligent drug delivery. RSC Advances, 2023, 13, 4932-4948.	1.7	4
79	Antiviral and Antibacterial Sulfated Polysaccharide–Chitosan Nanocomposite Particles as a Drug Carrier. Molecules, 2023, 28, 2105.	1.7	4
80	Natural Gums in Drug-Loaded Micro- and Nanogels. Pharmaceutics, 2023, 15, 759.	2.0	10
81	A Small Sugar Molecule with Huge Potential in Targeted Cancer Therapy. Pharmaceutics, 2023, 15, 913.	2.0	3
82	Polysaccharide-based nanogels for biomedical applications: A comprehensive review. Journal of Drug Delivery Science and Technology, 2023, 84, 104447.	1.4	10
83	Biodegradable Polymers and Polymer Composites with Antibacterial Properties. International Journal of Molecular Sciences, 2023, 24, 7473.	1.8	9
84	Polysaccharide-Based Drug Delivery Systems. , 2023, , 1-30.		0
86	Implementation of agriculture waste for the synthesis of metal oxide nanoparticles: its management, future opportunities and challenges. Journal of Material Cycles and Waste Management, 2023, 25, 3144-3160.	1.6	1
89	Nanoparticles for triggering gene expression and osteoconductivity., 2023,, 477-496.		O