Smart Electronic Textiles

Angewandte Chemie - International Edition 55, 6140-6169 DOI: 10.1002/anie.201507333

Citation Report

#	Article	IF	CITATIONS
1	Direct spinning of fiber supercapacitor. Nanoscale, 2016, 8, 12113-12117.	2.8	55
2	Coiled Fiberâ€ 5 haped Stretchable Thermal Sensors for Wearable Electronics. Advanced Materials Technologies, 2016, 1, 1600170.	3.0	48
3	Machineâ€Washable Textile Triboelectric Nanogenerators for Effective Human Respiratory Monitoring through Loom Weaving of Metallic Yarns. Advanced Materials, 2016, 28, 10267-10274.	11.1	328
4	Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage. ACS Nano, 2016, 10, 9201-9207.	7.3	213
5	Smart color-changing textile with high contrast based on a single-sided conductive fabric. Journal of Materials Chemistry C, 2016, 4, 7589-7594.	2.7	66
6	Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nature Energy, 2016, 1, .	19.8	879
7	Ultrathin and large-sized vanadium oxide nanosheets mildly prepared at room temperature for high performance fiber-based supercapacitors. Journal of Materials Chemistry A, 2017, 5, 2483-2487.	5.2	66
8	A highly torsionable fiber-shaped supercapacitor. Journal of Materials Chemistry A, 2017, 5, 4397-4403.	5.2	25
9	Solution-processed Au–Ag core–shell nanoparticle-decorated yarns for human motion monitoring. RSC Advances, 2017, 7, 10539-10544.	1.7	9
10	Molecular weaving via surface-templated epitaxy of crystalline coordination networks Nature Communications, 2017, 8, 14442.	5.8	70
11	Ambipolar azomethines as potential cathodic color switching materials. New Journal of Chemistry, 2017, 41, 2287-2295.	1.4	8
12	Machine-Washable PEDOT:PSS Dyed Silk Yarns for Electronic Textiles. ACS Applied Materials & Interfaces, 2017, 9, 9045-9050.	4.0	183
13	Green chemistry and polymers made from sulfur. Green Chemistry, 2017, 19, 2748-2761.	4.6	290
14	Recent Advances in Dualâ€Functional Devices Integrating Solar Cells and Supercapacitors. Solar Rrl, 2017, 1, 1700002.	3.1	83
15	From natural cotton thread to sewable energy dense supercapacitors. Nanoscale, 2017, 9, 6406-6416.	2.8	19
16	Semiconducting Nanowireâ€Based Optoelectronic Fibers. Advanced Materials, 2017, 29, 1700681.	11.1	116
17	Flexible fiber-shaped supercapacitors: Design, fabrication, and multi-functionalities. Energy Storage Materials, 2017, 8, 85-109.	9.5	108
18	Cellulose Nanofibril-Based Coatings of Woven Cotton Fabrics for Improved Inkjet Printing with a Potential in E-Textile Manufacturing. ACS Sustainable Chemistry and Engineering, 2017, 5, 4793-4801.	3.2	73

TATION REPO

#	Article	IF	CITATIONS
19	A crystalline zinc(<scp>ii</scp>) complex showing hollow hexagonal tubular morphology evolution, selective dye absorption and unique response to UV irradiation. Chemical Communications, 2017, 53, 5515-5518.	2.2	25
20	Application of carbon fibers to flexible, miniaturized wire/fiber-shaped energy conversion and storage devices. Journal of Materials Chemistry A, 2017, 5, 2444-2459.	5.2	67
21	An intercalated graphene/(molybdenum disulfide) hybrid fiber for capacitive energy storage. Journal of Materials Chemistry A, 2017, 5, 925-930.	5.2	78
22	Flexible and wearable strain sensing fabrics. Chemical Engineering Journal, 2017, 325, 396-403.	6.6	177
23	A low-cost wearable yarn supercapacitor constructed by a highly bended polyester fiber electrode and flexible film. Journal of Materials Chemistry A, 2017, 5, 15144-15153.	5.2	37
24	Three-Dimensionally Conformal Porous Microstructured Fabrics via Breath Figures: A Nature-Inspired Approach for Novel Surface Modification of Textiles. Scientific Reports, 2017, 7, 2354.	1.6	13
25	Multi-material optoelectronic fiber devices. Proceedings of SPIE, 2017, , .	0.8	2
26	Regenerated cellulose fiber solar cell. Flexible and Printed Electronics, 2017, 2, 014002.	1.5	16
27	RF sputtered electrochromic wool textile in different liquid media. Journal of Materials Science: Materials in Electronics, 2017, 28, 8725-8732.	1.1	11
28	Low-cost nanocarbon electrodes on arbitrary fibrous substrates as efficient bifacial photovoltaic wires. RSC Advances, 2017, 7, 9653-9661.	1.7	4
29	Detection of non-joint areas tiny strain and anti-interference voice recognition by micro-cracked metal thin film. Nano Energy, 2017, 34, 578-585.	8.2	128
30	Design of Amorphous Manganese Oxide@Multiwalled Carbon Nanotube Fiber for Robust Solid-State Supercapacitor. ACS Nano, 2017, 11, 444-452.	7.3	216
31	Oneâ€Ðimensional Nanomaterials for Soft Electronics. Advanced Electronic Materials, 2017, 3, 1600314.	2.6	271
32	Natureâ€Inspired Electrochemical Energyâ€Storage Materials and Devices. Advanced Energy Materials, 2017, 7, 1601709.	10.2	119
33	Three-Dimensional Flexible All-Organic Conductors for Multifunctional Wearable Applications. ACS Applied Materials & Interfaces, 2017, 9, 40580-40592.	4.0	15
34	Coaxialâ€Structured Weavable and Wearable Electroluminescent Fibers. Advanced Electronic Materials, 2017, 3, 1700401.	2.6	63
35	Self-Organized Frameworks on Textiles (SOFT): Conductive Fabrics for Simultaneous Sensing, Capture, and Filtration of Gases. Journal of the American Chemical Society, 2017, 139, 16759-16767.	6.6	231
36	Fiber-based MnO2/carbon nanotube/polyimide asymmetric supercapacitor. Carbon, 2017, 125, 595-604.	5.4	108

#	Article	IF	CITATIONS
37	General Metal-Ion Mediated Method for Functionalization of Graphene Fiber. ACS Applied Materials & Interfaces, 2017, 9, 37022-37030.	4.0	23
38	Largeâ€Area Allâ€Textile Pressure Sensors for Monitoring Human Motion and Physiological Signals. Advanced Materials, 2017, 29, 1703700.	11.1	558
39	Smart Electrochemical Energy Storage Devices with Selfâ€Protection and Selfâ€Adaptation Abilities. Advanced Materials, 2017, 29, 1703040.	11.1	77
40	Facile fabrication of flexible core–shell graphene/conducting polymer microfibers for fibriform supercapacitors. RSC Advances, 2017, 7, 38187-38192.	1.7	25
41	Weaving Nanoscale Cloth through Electrostatic Templating. Journal of the American Chemical Society, 2017, 139, 11718-11721.	6.6	36
42	Porous asphalt/graphene composite for supercapacitors with high energy density at superior power density without added conducting materials. Journal of Materials Chemistry A, 2017, 5, 21757-21764.	5.2	24
43	Electronic Textile by Dyeing Method for Multiresolution Physical Kineses Monitoring. Advanced Electronic Materials, 2017, 3, 1700253.	2.6	69
44	Carbon nanomaterials for flexible lithium ion batteries. Carbon, 2017, 124, 79-88.	5.4	64
45	Highly conductive and environmentally stable gold/graphene yarns for flexible and wearable electronics. Nanoscale, 2017, 9, 11439-11445.	2.8	39
46	Mechanical Analyses and Structural Design Requirements for Flexible Energy Storage Devices. Advanced Energy Materials, 2017, 7, 1700535.	10.2	170
47	Graphene-hollow-cubes with network-faces assembled a 3D micro-structured transparent and free-standing film for high performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 16803-16811.	5.2	22
48	Synthesis of Chlorineâ€Substituted Graphdiyne and Applications for Lithiumâ€Ion Storage. Angewandte Chemie - International Edition, 2017, 56, 10740-10745.	7.2	206
49	Synthesis of Chlorineâ€Substituted Graphdiyne and Applications for Lithiumâ€Ion Storage. Angewandte Chemie, 2017, 129, 10880-10885.	1.6	52
50	Multifunctional organic dyes: anion-sensing and light-harvesting properties of curcumin boron complexes. RSC Advances, 2017, 7, 36612-36616.	1.7	17
51	Highly Flexible and Efficient Fabric-Based Organic Light-Emitting Devices for Clothing-Shaped Wearable Displays. Scientific Reports, 2017, 7, 6424.	1.6	113
52	Interface-Confined High Crystalline Growth of Semiconducting Polymers at Graphene Fibers for High-Performance Wearable Supercapacitors. ACS Nano, 2017, 11, 9424-9434.	7.3	94
53	Scalable and Facile Preparation of Highly Stretchable Electrospun PEDOT:PSS@PU Fibrous Nonwovens toward Wearable Conductive Textile Applications. ACS Applied Materials & Interfaces, 2017, 9, 30014-30023.	4.0	107

#	Article	IF	CITATIONS
55	Centimeter-Long Single-Crystalline Si Nanowires. Nano Letters, 2017, 17, 7323-7329.	4.5	29
56	Core–Shell-Yarn-Based Triboelectric Nanogenerator Textiles as Power Cloths. ACS Nano, 2017, 11, 12764-12771.	7.3	203
57	Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets. Journal of Materials Chemistry A, 2017, 5, 24076-24082.	5.2	191
58	Hollow Few-Layer Graphene-Based Structures from Parafilm Waste for Flexible Transparent Supercapacitors and Oil Spill Cleanup. ACS Applied Materials & Interfaces, 2017, 9, 40645-40654.	4.0	32
59	Smart supercapacitors with deformable and healable functions. Journal of Materials Chemistry A, 2017, 5, 16-30.	5.2	58
60	Morphology dependent thermal conductivity of ZnO nanostructures prepared via a green approach. Journal of Alloys and Compounds, 2017, 695, 888-894.	2.8	48
61	Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives. Advanced Materials, 2017, 29, 1603436.	11.1	872
62	Soft Robotics Mechanosensing. Biosystems and Biorobotics, 2017, , 11-21.	0.2	9
63	Rational design of carbon shell endows TiN@C nanotube based fiber supercapacitors with significantly enhanced mechanical stability and electrochemical performance. Nano Energy, 2017, 31, 432-440.	8.2	112
64	Fabrication of Photovoltaic Textiles. Coatings, 2017, 7, 63.	1.2	34
65	Synthesis of Hierachical Bio-Inspired Pine Needle-Shaped MnO2/CNTs/Carbon Cloth Composite as Highly Cycling Stable Symmetrical Supercapacitor. International Journal of Electrochemical Science, 2017, , 4733-4744.	0.5	3
66	Holey nickel hydroxide nanosheets for wearable solid-state fiber-supercapacitors. Nanoscale, 2018, 10, 5442-5448.	2.8	50
67	Toward a Highâ€Performance Allâ€Plastic Full Battery with a'Single Organic Polymer as Both Cathode and Anode. Advanced Energy Materials, 2018, 8, 1703509.	10.2	189
68	Highâ€Performance Polypyrrole/Graphene/SnCl ₂ Modified Polyester Textile Electrodes and Yarn Electrodes for Wearable Energy Storage. Advanced Functional Materials, 2018, 28, 1800064.	7.8	66
69	Highly Sensitive Multifilament Fiber Strain Sensors with Ultrabroad Sensing Range for Textile Electronics. ACS Nano, 2018, 12, 4259-4268.	7.3	207
70	Pyroprotein-based electronic textiles with high thermal durability. Materials Today, 2018, 21, 944-950.	8.3	5
71	Flexible fiber-shaped energy storage devices: principles, progress, applications and challenges. Flexible and Printed Electronics, 2018, 3, 013001.	1.5	34
72	Flexible Interconnects for Electronic Textiles. Advanced Materials Technologies, 2018, 3, 1700277.	3.0	109

#	Article	IF	CITATIONS
73	Three dimensional photovoltaic fibers for wearable energy harvesting and conversion. Journal of Energy Chemistry, 2018, 27, 611-621.	7.1	31
74	Dual-Function Metal–Organic Framework-Based Wearable Fibers for Gas Probing and Energy Storage. ACS Applied Materials & Interfaces, 2018, 10, 2837-2842.	4.0	68
75	Wearable Supercapacitors Printed on Garments. Advanced Functional Materials, 2018, 28, 1705571.	7.8	62
76	All-in-one fiber for stretchable fiber-shaped tandem supercapacitors. Nano Energy, 2018, 45, 210-219.	8.2	161
77	Solidâ€State Supercapacitor Fabricated in a Single Woven Textile Layer for Eâ€Textiles Applications. Advanced Engineering Materials, 2018, 20, 1700860.	1.6	53
78	Durable, Highly Electrically Conductive Cotton Fabrics with Healable Superamphiphobicity. ACS Applied Materials & Interfaces, 2018, 10, 12042-12050.	4.0	101
79	Energy harvesting textiles for a rainy day: woven piezoelectrics based on melt-spun PVDF microfibres with a conducting core. Npj Flexible Electronics, 2018, 2, .	5.1	114
80	Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Research, 2018, 11, 5799-5811.	5.8	99
81	Graphene fiber based supercapacitors: Strategies and perspective toward high performances. Journal of Energy Chemistry, 2018, 27, 6-11.	7.1	34
82	Utilizing Waste Cable Wires for Highâ€Performance Fiberâ€Based Hybrid Supercapacitors: An Effective Approach to Electronicâ€Waste Management. Advanced Energy Materials, 2018, 8, 1702201.	10.2	140
83	Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. Journal of Materials Chemistry C, 2018, 6, 2258-2269.	2.7	376
84	Nanomaterialâ€Enabled Wearable Sensors for Healthcare. Advanced Healthcare Materials, 2018, 7, 1700889.	3.9	412
85	Preparation of Highly Conductive Yarns by an Optimized Impregnation Process. Journal of Electronic Materials, 2018, 47, 1970-1978.	1.0	6
86	Hierarchically porous sheath–core graphene-based fiber-shaped supercapacitors with high energy density. Journal of Materials Chemistry A, 2018, 6, 896-907.	5.2	77
87	A Wetness Detection Technique Towards Scalable, Array-Based, Fully-Textile Sensing. , 2018, , .		6
88	Sewing machine stitching of polyvinylidene fluoride fibers: programmable textile patterns for wearable triboelectric sensors. Journal of Materials Chemistry A, 2018, 6, 22879-22888.	5.2	80
89	Extreme Temperature-Tolerant Organohydrogel Electrolytes for Laminated Assembly of Biaxially Stretchable Pseudocapacitors. ACS Applied Materials & Interfaces, 2018, 10, 42959-42966.	4.0	39
90	Wearable Hardware Design for the Internet of Medical Things (IoMT). Sensors, 2018, 18, 3812.	2.1	104

	CITATION REP	ORT	
Article		IF	CITATIONS
Stretchable Triboelectric Textile Composed of Wavy Conductive-Cloth PET and Pattern Electrode for Harvesting Multivariant Human Motion Energy. ACS Applied Materials & 2018, 10, 43661-43668.		4.0	32
Smart Arse. , 2018, , .			13
Breathable Materials for Triboelectric Effect-Based Wearable Electronics. Applied Scier (Switzerland), 2018, 8, 2485.	ices	1.3	22
Evaluation of Laundering Durability of Electro-conductive Textile Dip-coated on Para A with Graphene/Waterborne Polyurethane Composite. Fibers and Polymers, 2018, 19, 2		1.1	19
Internet of Musical Things: Vision and Challenges. IEEE Access, 2018, 6, 61994-62017		2.6	116
Integration of a 2D Touch Sensor with an Electroluminescent Display by Using a Scree Technology on Textile Substrate. Sensors, 2018, 18, 3313.	n-Printing	2.1	17
A Low ost Polyaniline@Textileâ€Based Multifunctional Sensor for Simultaneously I and Olfactory Stimuli. Macromolecular Materials and Engineering, 2018, 303, 180034		1.7	16
Graphene electronic fibres with touch-sensing and light-emitting functionalities for sm Npj Flexible Electronics, 2018, 2, .	art textiles.	5.1	62
Polymer solar cell textiles with interlaced cathode and anode fibers. Journal of Material A, 2018, 6, 19947-19953.	ls Chemistry	5.2	62
Solution Processed Organic Solar Cells on Textiles. IEEE Journal of Photovoltaics, 2018	, 8, 1710-1715.	1.5	26
Recent Progress in Nanostructured Zinc Oxide Grown on Fabric for Wearable Thermoe	electric Power		

104	Recent Progress in Nanostructured Zinc Oxide Grown on Fabric for Wearable Thermoelectric Power Generator with UV Shielding. , 2018, , .		1
105	Versatile nanodot-patterned Gore-Tex fabric for multiple energy harvesting in wearable and aerodynamic nanogenerators. Nano Energy, 2018, 54, 209-217.	8.2	45
107	Flexible Lithium–Air Battery in Ambient Air with an Inâ€Situ Formed Gel Electrolyte. Angewandte Chemie - International Edition, 2018, 57, 16131-16135.	7.2	89
108	Flexible Lithium–Air Battery in Ambient Air with an Inâ€Situ Formed Gel Electrolyte. Angewandte Chemie, 2018, 130, 16363-16367.	1.6	63
109	Design and Electromagnetic Properties of a Conformal Ultra Wideband Antenna Integrated in Three-Dimensional Woven Fabrics. Polymers, 2018, 10, 861.	2.0	8
110	Large-Scale Production of Highly Stretchable CNT/Cotton/Spandex Composite Yarn for Wearable Applications. ACS Applied Materials & amp; Interfaces, 2018, 10, 32726-32735.	4.0	96
111	Directly printed wearable electronic sensing textiles towards human–machine interfaces. Journal of Materials Chemistry C, 2018, 6, 12841-12848.	2.7	54

Weaving Sensing Fibers into Electrochemical Fabric for Realâ€Time Health Monitoring. Advanced Functional Materials, 2018, 28, 1804456.

#

91

96

98

100

102

ARTICLE IF CITATIONS # Skinâ€Inspired Lowâ€Grade Heat Energy Harvesting Using Directed Ionic Flow through Conical 10.2 47 113 Nanochannels. Advanced Energy Materials, 2018, 8, 1800459. A Flexible Composite Mechanical Energy Harvester from a Ferroelectric Organoamino Phosphonium 114 7.2 Salt. Angewandte Chemie - International Edition, 2018, 57, 9054-9058. Ternary composite solid-state flexible supercapacitor based on nanocarbons/manganese 115 3.3 34 dioxide/PEDOT:PSS fibres. Materials and Design, 2018, 155, 194-202. Solutionâ€Processable Design of Fiberâ€Shaped Wearable Zn//Ni(OH)₂ Battery. Energy 116 1.8 24 Technology, 2018, 6, 2326-2332. A Solidâ€State Fibriform Supercapacitor Boosted by Hostâ€"Guest Hybridization between the Carbon 117 5.2 158 Nanotube Scaffold and MXene Nanosheets. Small, 2018, 14, e1801203. Carbon Nanostructures Based Mechanically Robust Conducting Cotton Fabric for Improved 1.1 Electromagnetic Interference Shielding. Fibers and Polymers, 2018, 19, 1064-1073. Actuating Textiles: Next Generation of Smart Textiles. Advanced Materials Technologies, 2018, 3, 119 3.0 93 1700397. Design and development of wearable sensing nanomaterials for smart textiles. AIP Conference 120 0.3 19 Proceedings, 2018, , . New Perspectives on Graphene/Polymer Fibers and Fabrics for Smart Textiles: The Relevance of the 121 1.2 21 Polymer/Graphene Interphase. Frontiers in Materials, 2018, 5, . A Historical Review of the Development of Electronic Textiles. Fibers, 2018, 6, 34. 1.8 Conductive Cotton Fabrics for Motion Sensing and Heating Applications. Polymers, 2018, 10, 568. 123 2.0 76 Rapid Self-Recoverable Hydrogels with High Toughness and Excellent Conductivity. ACS Applied 124 4.0 Materials & amp; Interfacés, 2018, 10, 26610-26617. 3D carbon foam-supported WS₂ nanosheets for cable-shaped flexible sodium ion batteries. 125 5.2 112 Journal of Materials Chemistry A, 2018, 6, 10813-10824. Conductive and durable CNT-cotton ring spun yarns. Cellulose, 2018, 25, 4239-4249. 2.4 Recent Progress in Wearable Fully Textile Chemical Sensors. Advanced Materials Technologies, 2018, 3, 127 3.0 59 1700310. Electrically conducting fibres for e-textiles: An open playground for conjugated polymers and carbon 14.8 nanomatérials. Materials Science and Engineering Reports, 2018, 126, 1-29. Fabrication of highly conductive and multifunctional polyester fabrics by spray-coating with 129 1.9 39 PEDOT:PSS solutions. Progress in Organic Coatings, 2018, 121, 89-96. High-Performing and Stable Wearable Supercapacitor Exploiting rGO Aerogel Decorated with Copper and Molybdenum Sulfides on Carbon Fibers. ACS Applied Energy Materials, 2018, 1, 4440-4447.

#	Article	IF	CITATIONS
131	A Flexible Composite Mechanical Energy Harvester from a Ferroelectric Organoamino Phosphonium Salt. Angewandte Chemie, 2018, 130, 9192-9196.	1.6	13
132	From Wood to Textiles: Topâ€Down Assembly of Aligned Cellulose Nanofibers. Advanced Materials, 2018, 30, e1801347.	11.1	121
133	Nanostructured Fused Pyrrole Thin Films: Encoding Nano "Bits―with Temporary Remanence. Advanced Electronic Materials, 2018, 4, 1700626.	2.6	4
134	All-Organic Textile Thermoelectrics with Carbon-Nanotube-Coated n-Type Yarns. ACS Applied Energy Materials, 2018, 1, 2934-2941.	2.5	75
135	A bottom-up approach to design wearable and stretchable smart fibers with organic vapor sensing behaviors and energy storage properties. Journal of Materials Chemistry A, 2018, 6, 13633-13643.	5.2	55
136	Frequency-Based Design of Smart Textiles. , 2019, , .		10
137	Stretchable multi-luminescent fibers with AlEgens. Journal of Materials Chemistry C, 2019, 7, 10769-10776.	2.7	30
138	Energy Scavenging and Powering E-Skin Functional Devices. Proceedings of the IEEE, 2019, 107, 2118-2136.	16.4	34
139	Progress on wearable triboelectric nanogenerators in shapes of fiber, yarn, and textile. Science and Technology of Advanced Materials, 2019, 20, 837-857.	2.8	79
140	Photothermal Welding, Melting, and Patterned Expansion of Nonwoven Mats of Polymer Nanofibers for Biomedical and Printing Applications. Angewandte Chemie - International Edition, 2019, 58, 16416-16421.	7.2	39
141	Electrodeposition of α-MnO2/γ-MnO2 on Carbon Nanotube for Yarn Supercapacitor. Scientific Reports, 2019, 9, 11271.	1.6	55
142	Photothermal Welding, Melting, and Patterned Expansion of Nonwoven Mats of Polymer Nanofibers for Biomedical and Printing Applications. Angewandte Chemie, 2019, 131, 16568-16573.	1.6	8
143	Low-Leakage Fiber-Based Field-Effect Transistors with an Al ₂ O ₃ –MgO Nanolaminate as Gate Insulator. ACS Applied Electronic Materials, 2019, 1, 1400-1407.	2.0	21
144	Electrospun carbon nanofiber-based composites for lithium-ion batteries: Structure optimization towards high performance. Composites Communications, 2019, 15, 135-148.	3.3	31
145	Commercial Silk-Based Electronic Yarns Fabricated Using Microwave Irradiation. ACS Applied Materials &	4.0	7
146	â€~ <i>Smart – not only intelligent!'</i> Co-creating priorities and design direction for †smart' footwe to support independent ageing International Journal of Fashion Design, Technology and Education, 2019, 12, 313-324.	ear 0.9	9
147	Waterproof, Breathable, and Antibacterial Selfâ€Powered eâ€Textiles Based on Omniphobic Triboelectric Nanogenerators. Advanced Functional Materials, 2019, 29, 1904350.	7.8	85
148	Printed fabric heater based on Ag nanowire/carbon nanotube composites. Nanotechnology, 2019, 30, 455707.	1.3	33

#	Article	IF	CITATIONS
149	Planar all-solid-state rechargeable Zn–air batteries for compact wearable energy storage. Journal of Materials Chemistry A, 2019, 7, 17581-17593.	5.2	130
150	Advanced Functional Fiber and Smart Textile. Advanced Fiber Materials, 2019, 1, 3-31.	7.9	169
151	Turning cotton into tough energy textile via metal oxide assisted carbonization. Carbon, 2019, 153, 257-264.	5.4	12
152	Flexible and Multifunctional Silk Textiles with Biomimetic Leafâ€Like MXene/Silver Nanowire Nanostructures for Electromagnetic Interference Shielding, Humidity Monitoring, and Selfâ€Derived Hydrophobicity. Advanced Functional Materials, 2019, 29, 1905197.	7.8	490
153	Multifunctional Micro/Nanoscale Fibers Based on Microfluidic Spinning Technology. Advanced Materials, 2019, 31, e1903733.	11.1	161
154	Mercerization to enhance flexibility and electromechanical stability of reduced graphene oxide cotton yarns. Composites Science and Technology, 2019, 184, 107845.	3.8	13
155	Stretchable fabric heater based on silver nanowire, carbon nanotube composites. , 2019, , .		0
156	Sulfur-rich Graphdiyne-Containing Electrochemical Active Tetrathiafulvalene for Highly Efficient Lithium Storage Application. ACS Applied Materials & Interfaces, 2019, 11, 46070-46076.	4.0	29
158	Versatile 3D porous recycled carbon garments with fully-loaded active materials in the current collector for advanced lithium-ion batteries. Composites Part B: Engineering, 2019, 179, 107519.	5.9	12
159	Knittable and Washable Multifunctional MXene oated Cellulose Yarns. Advanced Functional Materials, 2019, 29, 1905015.	7.8	239
160	An Ultrahigh Energy Density Quasiâ€Solidâ€State Zinc Ion Microbattery with Excellent Flexibility and Thermostability. Advanced Energy Materials, 2019, 9, 1901957.	10.2	111
161	Dynamically Stretchable Supercapacitor for Powering an Integrated Biosensor in an All-in-One Textile System. ACS Nano, 2019, 13, 10469-10480.	7.3	116
162	Core-Shell Fiber-Based 2D Woven Triboelectric Nanogenerator for Effective Motion Energy Harvesting. Nanoscale Research Letters, 2019, 14, 311.	3.1	19
163	Highly Surfaceâ€Wrinkled and Nâ€Doped CNTs Anchored on Metal Wire: A Novel Fiberâ€Shaped Cathode toward Highâ€Performance Flexible Li–CO ₂ Batteries. Advanced Functional Materials, 2019, 29, 1808117.	7.8	75
164	Flexible Znâ€lon Batteries: Recent Progresses and Challenges. Small, 2019, 15, e1804760.	5.2	412
165	Carbonâ€Nanomaterialâ€Based Flexible Batteries for Wearable Electronics. Advanced Materials, 2019, 31, e1800716.	11.1	228
166	Stretchable and Highly Sensitive Braided Composite Yarn@Polydopamine@Polypyrrole for Wearable Applications. ACS Applied Materials & Interfaces, 2019, 11, 7338-7348.	4.0	88
167	Critical insight: challenges and requirements of fibre electrodes for wearable electrochemical energy storage. Energy and Environmental Science, 2019, 12, 2148-2160.	15.6	104

#	Article	IF	CITATIONS
168	Ultrastretchable and superior healable supercapacitors based on a double cross-linked hydrogel electrolyte. Nature Communications, 2019, 10, 536.	5.8	220
169	Highly loaded MXene/carbon nanotube yarn electrodes for improved asymmetric supercapacitor performance. MRS Communications, 2019, 9, 114-121.	0.8	45
170	Textile-based washable polymer solar cells for optoelectronic modules: toward self-powered smart clothing. Energy and Environmental Science, 2019, 12, 1878-1889.	15.6	136
171	Wireless body sensor networks based on metamaterial textiles. Nature Electronics, 2019, 2, 243-251.	13.1	276
172	High flexibility and electrocatalytic activity MoS2/TiC/carbon nanofibrous film for flexible dye-sensitized solar cell based photovoltaic textile. Materials Research Bulletin, 2019, 118, 110522.	2.7	25
173	Highly Sensitive, Rugged, and Wearable Fabric Strain Sensor Based on Graphene Clad Polyester Knitted Elastic Band for Human Motion Monitoring. Advanced Materials Interfaces, 2019, 6, 1900409.	1.9	57
174	Flexible fiber-shaped supercapacitors with high energy density based on self-twisted graphene fibers. Journal of Power Sources, 2019, 433, 226711.	4.0	35
175	CNT/cotton composite yarn for electro-thermochromic textiles. Smart Materials and Structures, 2019, 28, 085003.	1.8	23
176	Organic Solar Cells on Paper Substrates. Advanced Materials Technologies, 2019, 4, 1900184.	3.0	30
177	Functionalized carbon nanotube films by thiol-ene click reaction. Applied Surface Science, 2019, 486, 144-152.	3.1	22
178	Polymer complexation for functional fibers. Science China Technological Sciences, 2019, 62, 931-944.	2.0	11
179	Thermodynamic approach to tailor porosity in piezoelectric polymer fibers for application in nanogenerators. Nano Energy, 2019, 62, 594-600.	8.2	46
180	Highly Stretchable and Strain-Insensitive Fiber-Based Wearable Electrochemical Biosensor to Monitor Glucose in the Sweat. Analytical Chemistry, 2019, 91, 6569-6576.	3.2	209
181	MXene-conducting polymer electrochromic microsupercapacitors. Energy Storage Materials, 2019, 20, 455-461.	9.5	136
182	Self-powered, flexible and remote-controlled breath monitor based on TiO ₂ nanowire networks. Nanotechnology, 2019, 30, 325503.	1.3	24
183	Carbon-based electronic textiles: materials, fabrication processes and applications. Journal of Materials Science, 2019, 54, 10079-10101.	1.7	48
184	Kirigami Patterning of MXene/Bacterial Cellulose Composite Paper for Allâ€5olidâ€5tate Stretchable Microâ€5upercapacitor Arrays. Advanced Science, 2019, 6, 1900529.	5.6	250
185	A tactile sensing textile with bending-independent pressure perception and spatial acuity. Carbon, 2019, 149, 63-70.	5.4	30

#	Article	IF	CITATIONS
186	Thermally Activated in Situ Doping Enables Solid-State Processing of Conducting Polymers. Chemistry of Materials, 2019, 31, 2770-2777.	3.2	15
187	From Single Molecules to Thin Film Electronics, Nanofibers, eâ€Textiles and Power Cables: Bridging Length Scales with Organic Semiconductors. Advanced Materials, 2019, 31, e1807286.	11.1	20
188	Fast and scalable wet-spinning of highly conductive PEDOT:PSS fibers enables versatile applications. Journal of Materials Chemistry A, 2019, 7, 6401-6410.	5.2	135
189	A Novel Method for Embedding Semiconductor Dies within Textile Yarn to Create Electronic Textiles. Fibers, 2019, 7, 12.	1.8	19
190	Flexible textile power module. Journal of Physics: Conference Series, 2019, 1407, 012002.	0.3	0
191	Wearable Triboelectric Generator based on a Hybrid Mix of Carbon Nanotube and Polymer Layers. Journal of Physics: Conference Series, 2019, 1407, 012047.	0.3	3
192	A self-protective, reproducible textile sensor with high performance towards human–machine interactions. Journal of Materials Chemistry A, 2019, 7, 26631-26640.	5.2	86
193	Flexible heteroatom-doped graphitic hollow carbon fibers for ultrasensitive and reusable electric current sensing. Chemical Communications, 2019, 55, 12853-12856.	2.2	3
194	Advanced Multimaterial Electronic and Optoelectronic Fibers and Textiles. Advanced Materials, 2019, 31, e1802348.	11.1	200
195	Significance of Nanomaterials in Wearables: A Review on Wearable Actuators and Sensors. Advanced Materials, 2019, 31, e1805921.	11.1	438
196	Effect of TiO ₂ -rGO heterojunction on electron collection efficiency and mechanical properties of fiber-shaped dye-sensitized solar cells. Journal Physics D: Applied Physics, 2019, 52, 095502.	1.3	20
197	Wearable Textile Power Module Based on Flexible Ferroelectret and Supercapacitor. Energy Technology, 2019, 7, 1800938.	1.8	23
198	Design of High-Performance Wearable Energy and Sensor Electronics from Fiber Materials. ACS Applied Materials & Interfaces, 2019, 11, 2120-2129.	4.0	52
199	A study about lifetime of photovoltaic fibers. Solar Energy Materials and Solar Cells, 2019, 192, 52-56.	3.0	5
200	Progress in textile-based triboelectric nanogenerators for smart fabrics. Nano Energy, 2019, 56, 16-24.	8.2	122
201	Highly Conductive Ti ₃ C ₂ T <i>_x</i> MXene Hybrid Fibers for Flexible and Elastic Fiber‣haped Supercapacitors. Small, 2019, 15, e1804732.	5.2	171
202	Wet-spun poly(ionic liquid)-graphene hybrid fibers for high performance all-solid-state flexible supercapacitors. Journal of Energy Chemistry, 2019, 34, 104-110.	7.1	29
203	Printable Fabrication of a Fully Integrated and Selfâ€Powered Sensor System on Plastic Substrates. Advanced Materials, 2019, 31, e1804285.	11.1	148

#	Article	IF	CITATIONS
204	Nylon Fabric Enabled Tough and Flaw Insensitive Stretchable Electronics. Advanced Materials Technologies, 2019, 4, 1800466.	3.0	4
205	Mechanical, <i>in-situ</i> electrical and thermal properties of wearable conductive textile yarn coated with polypyrrole/carbon black composite. Materials Research Express, 2019, 6, 016307.	0.8	25
206	Recent Advances in Fiber Supercapacitors: Materials, Device Configurations, and Applications. Advanced Materials, 2020, 32, e1901806.	11.1	225
207	Inverse-opal-structured hybrids of N, S-codoped-carbon-confined Co9S8 nanoparticles as bifunctional oxygen electrocatalyst for on-chip all-solid-state rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2020, 260, 118209.	10.8	156
208	A Route Toward Smart System Integration: From Fiber Design to Device Construction. Advanced Materials, 2020, 32, e1902301.	11.1	116
209	Highly robust and durable core-sheath nanocomposite yarns for electro-thermochromic performance application. Chemical Engineering Journal, 2020, 384, 123376.	6.6	24
210	Recent Progress of Fiber Shaped Lighting Devices for Smart Display Applications—A Fibertronic Perspective. Advanced Materials, 2020, 32, e1903488.	11.1	81
211	Breathable and Flexible Polymer Membranes with Mechanoresponsive Electric Resistance. Advanced Functional Materials, 2020, 30, 1907555.	7.8	44
212	High-performance solid-state Zn batteries based on a free-standing organic cathode and metal Zn anode with an ordered nano-architecture. Nanoscale Advances, 2020, 2, 296-303.	2.2	21
213	Stretchable gold fiber-based wearable electrochemical sensor toward pH monitoring. Journal of Materials Chemistry B, 2020, 8, 3655-3660.	2.9	50
214	Turn-on fluorescence in a pyridine-decorated tetraphenylethylene: the cooperative effect of coordination-driven rigidification and silver ion induced aggregation. Dalton Transactions, 2020, 49, 1883-1890.	1.6	19
215	Active-powering pressure-sensing fabric devices. Journal of Materials Chemistry A, 2020, 8, 358-368.	5.2	21
216	Enhanced Electrical and Mechanical Properties of Chemically Cross-Linked Carbon-Nanotube-Based Fibers and Their Application in High-Performance Supercapacitors. ACS Nano, 2020, 14, 632-639.	7.3	44
217	Embroidering a Filmsy Photorechargeable Energy Fabric with Wide Weather Adaptability. ACS Applied Materials & Interfaces, 2020, 12, 3654-3660.	4.0	17
218	Core-sheath nanofiber yarn for textile pressure sensor with high pressure sensitivity and spatial tactile acuity. Journal of Colloid and Interface Science, 2020, 561, 93-103.	5.0	56
219	Multiscale Disordered Porous Fibers for Self-Sensing and Self-Cooling Integrated Smart Sportswear. ACS Nano, 2020, 14, 559-567.	7.3	162
220	Continuous wet-spinning of flexible and water-stable conductive PEDOT: PSS/PVA composite fibers for wearable sensors. Composites Communications, 2020, 17, 134-140.	3.3	70
221	A Naturally Integrated Smart Textile for Wearable Electronics Applications. Advanced Materials Technologies, 2020, 5, 1900781.	3.0	40

#	Article	IF	CITATIONS
222	Thermally drawn advanced functional fibers: New frontier of flexible electronics. Materials Today, 2020, 35, 168-194.	8.3	153
223	Silver Nanowire–Bacterial Cellulose Composite Fiber-Based Sensor for Highly Sensitive Detection of Pressure and Proximity. ACS Nano, 2020, 14, 15428-15439.	7.3	130
224	Flexible single-electrode triboelectric nanogenerators with MXene/PDMS composite film for biomechanical motion sensors. Nano Energy, 2020, 78, 105383.	8.2	131
225	Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles. Nano Energy, 2020, 78, 105389.	8.2	186
226	Challenges in Design and Fabrication of Flexible/Stretchable Carbon- and Textile-Based Wearable Sensors for Health Monitoring: A Critical Review. Sensors, 2020, 20, 3927.	2.1	65
227	Tuning the Mechanical and Electrical Properties of Stretchable PEDOT:PSS/Ionic Liquid Conductors. Macromolecular Chemistry and Physics, 2020, 221, 2000291.	1.1	17
228	Turning peptides into bioactive nylons. European Polymer Journal, 2020, 135, 109886.	2.6	4
229	Piezoelectric Sensor with a Helical Structure on the Thread Core. Applied Sciences (Switzerland), 2020, 10, 5073.	1.3	4
230	Fiber-based Piezoelectric Sensors in Woven Structure. , 2020, , .		0
231	Knitted Cotton Fabric Strain Sensor by In-situ Polymerization of Pyrrole. IOP Conference Series: Materials Science and Engineering, 2020, 827, 012041.	0.3	2
232	Printable elastic silver nanowire-based conductor for washable electronic textiles. Nano Research, 2020, 13, 2879-2884.	5.8	27
233	Towards Truly Wearable Systems: Optimizing and Scaling Up Wearable Triboelectric Nanogenerators. IScience, 2020, 23, 101360.	1.9	65
234	Devising Materials Manufacturing Toward Labâ€ŧoâ€Fab Translation of Flexible Electronics. Advanced		
	Materials, 2020, 32, e2001903.	11.1	60
235		11.1 1.6	60 110
235 236	Materials, 2020, 32, e2001903. High-Sensitivity Wearable and Flexible Humidity Sensor Based on Graphene Oxide/Non-Woven Fabric		
	 Materials, 2020, 32, e2001903. High-Sensitivity Wearable and Flexible Humidity Sensor Based on Graphene Oxide/Non-Woven Fabric for Respiration Monitoring. Langmuir, 2020, 36, 9443-9448. Concurrently Realizing Geometric Confined Growth and Doping of Transition Metals within Graphene Hosts for Bifunctional Electrocatalysts toward a Solid-State Rechargeable Micro-Zn–Air Battery. ACS 	1.6	110
236	 Materials, 2020, 32, e2001903. High-Sensitivity Wearable and Flexible Humidity Sensor Based on Graphene Oxide/Non-Woven Fabric for Respiration Monitoring. Langmuir, 2020, 36, 9443-9448. Concurrently Realizing Geometric Confined Growth and Doping of Transition Metals within Graphene Hosts for Bifunctional Electrocatalysts toward a Solid-State Rechargeable Micro-Zn–Air Battery. ACS Applied Materials & amp; Interfaces, 2020, 12, 38031-38044. A multifunctional hydrogel polyelectrolyte based flexible and wearable supercapacitor. Journal of 	1.6 4.0	110 24

#	Article	IF	CITATIONS
240	Ultrasensitive and Stretchable Conductive Fibers Using Percolated Pd Nanoparticle Networks for Multisensing Wearable Electronics: Crack-Based Strain and H ₂ Sensors. ACS Applied Materials & Interfaces, 2020, 12, 45243-45253.	4.0	16
241	A Machineâ€Fabricated 3D Honeycombâ€Structured Flameâ€Retardant Triboelectric Fabric for Fire Escape and Rescue. Advanced Materials, 2020, 32, e2003897.	11.1	136
242	Fabrication and properties of silver nanowires (AgNWs) functionalized fabric. SN Applied Sciences, 2020, 2, 1.	1.5	4
243	Biomimetic Approach to Facilitate the High Filler Content in Free-Standing and Flexible Thermoelectric Polymer Composite Films Based on PVDF and Ag ₂ Se Nanowires. ACS Applied Materials & Interfaces, 2020, 12, 51506-51516.	4.0	45
244	Design and Optimization of Piezoresistive PEO/PEDOT:PSS Electrospun Nanofibers for Wearable Flex Sensors. Nanomaterials, 2020, 10, 2166.	1.9	22
245	A Review of Solar Energy Harvesting Electronic Textiles. Sensors, 2020, 20, 5938.	2.1	37
246	Progress in lead-free piezoelectric nanofiller materials and related composite nanogenerator devices. Nanoscale Advances, 2020, 2, 3131-3149.	2.2	62
247	Stretchable electromagnetic fibers for self-powered mechanical sensing. Applied Materials Today, 2020, 20, 100623.	2.3	12
248	Direct current contact-mode triboelectric nanogenerators via systematic phase shifting. Nano Energy, 2020, 75, 104887.	8.2	34
249	Electrons/ions dual transport channels design: Concurrently tuning interlayer conductivity and space within re-stacked few-layered MXenes film electrodes for high-areal-capacitance stretchable micro-supercapacitor-arrays. Nano Energy, 2020, 74, 104812.	8.2	90
250	Crystal nucleation in poly(ether ether ketone)/carbon nanotube nanocomposites at high and low supercooling of the melt. Polymer, 2020, 199, 122548.	1.8	14
251	High-Performance Electromagnetic Interference Shielding Electrodes/Substrates for Wearable Electronics. Industrial & Engineering Chemistry Research, 2020, 59, 12774-12783.	1.8	10
252	Enabling Deformable and Stretchable Batteries. Advanced Energy Materials, 2020, 10, 2001424.	10.2	136
253	A Highly Elastic and Fatigueâ€Resistant Natural Proteinâ€Reinforced Hydrogel Electrolyte for Reversible ompressible Quasiâ€5olidâ€State Supercapacitors. Advanced Science, 2020, 7, 2000587.	5.6	64
254	Scalable graphene-based nanocomposite coatings for flexible and washable conductive textiles. Carbon, 2020, 167, 495-503.	5.4	23
255	Polymer nanocomposite meshes for flexible electronic devices. Progress in Polymer Science, 2020, 107, 101279.	11.8	119
257	Smart Textiles for Electricity Generation. Chemical Reviews, 2020, 120, 3668-3720.	23.0	644
258	A Multifunctional Smart Textile Derived from Merino Wool/Nylon Polymer Nanocomposites as Next Generation Microwave Absorber and Soft Touch Sensor. ACS Applied Materials & Interfaces, 2020, 12, 17988-18001.	4.0	80

		CITATION RE	PORT	
#	Article		IF	CITATIONS
259	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-2	1915.	3.2	117
261	Electrospinning core-sheath piezoelectric microfibers for self-powered stitchable sensc Energy, 2020, 76, 104966.	br. Nano	8.2	62
262	A 1-D Yarn-Based Biobattery for Scalable Power Generation in 2-D and 3-D Structured ⁻ of Microelectromechanical Systems, 2020, 29, 1064-1068.	Textiles. Journal	1.7	0
263	One-Step and Spontaneous in Situ Growth of Popcorn-like Nanostructures on Stretcha Double-Twisted Fiber for Ultrasensitive Textile Pressure Sensor. ACS Applied Materials Interfaces, 2020, 12, 10689-10696.	able &	4.0	60
264	Conformable core-shell fiber tactile sensor by continuous tubular deposition modeling water-based sacrificial coaxial writing. Materials and Design, 2020, 190, 108567.	with	3.3	28
265	Materials, systems, and devices for wearable bioelectronics. , 2020, , 1-48.			0
266	Machine-washable and breathable pressure sensors based on triboelectric nanogenera textile technologies. Nano Energy, 2020, 70, 104528.	tors enabled by	8.2	151
267	Flexible, Wearable Organic Lightâ€Emitting Fibers Based on PEDOT:PSS/Agâ€Fiber Em Electrodes for Largeâ€Area Textile Lighting. Advanced Materials Technologies, 2020, 5	bedded Hybrid , 2000168.	3.0	30
268	Continuous and Scalable Manufacture of Hybridized Nano-Micro Triboelectric Yarns fo Harvesting and Signal Sensing. ACS Nano, 2020, 14, 4716-4726.	r Energy	7.3	130
269	The Electrical-Triggered High Contrast and Reversible Color-Changing Janus Fabric Base Side Coating. ACS Applied Materials & Interfaces, 2020, 12, 21854-21862.	ed on Double	4.0	25
270	A Living Biotic–Abiotic Composite that can Switch Function Between Current Gener Electrochemical Energy Storage. Advanced Functional Materials, 2021, 31, 2007351.	ation and	7.8	20
271	Stretchable gold fiber-based wearable textile electrochemical biosensor for lactate mo sweat. Talanta, 2021, 222, 121484.	nitoring in	2.9	104
272	Functional Fibers and Fabrics for Soft Robotics, Wearables, and Human–Robot Inter Materials, 2021, 33, e2002640.	face. Advanced	11.1	278
273	Review – polymeric materials for energy harvesting and storage applications. Polyme Technology and Materials, 2021, 60, 626-649.	er-Plastics	0.6	4
274	Matching electrode lengths enables the practical use of asymmetric fiber supercapacit energy density. Nano Energy, 2021, 80, 105523.	ors with a high	8.2	32
275	Stretchable Supercapacitors: From Materials and Structures to Devices. Small Method e2000853.	s, 2021, 5,	4.6	30
276	Vapor phase polymerized conducting polymer/MXene textiles for wearable electronics 2021, 13, 1832-1841.	. Nanoscale,	2.8	101
277	Facile fabrication of highly conductive, waterproof, and washable e-textiles for wearabl applications. Nano Research, 2021, 14, 1043-1052.	le	5.8	46

#	Article	IF	CITATIONS
278	Effect of interaction between conjugated polymers and nanofillers on sensing properties. , 2021, , 237-263.		0
279	Polymer Composites: Smart Synthetic Fibers Approach in Energy and Environmental Care. , 2021, , 3637-3661.		0
280	E-Textile Technology Review–From Materials to Application. IEEE Access, 2021, 9, 97152-97179.	2.6	40
281	Interfacial growth of free-standing PANI films: toward high-performance all-polymer supercapacitors. Chemical Science, 2021, 12, 1783-1790.	3.7	23
282	Natural textile based triboelectric nanogenerators for efficient energy harvesting applications. Nanoscale, 2021, 13, 2420-2428.	2.8	21
283	Smart Nanocomposite Nonwoven Wearable Fabrics Embedding Phase Change Materials for Highly Efficient Energy Conversion–Storage and Use as a Stretchable Conductor. ACS Applied Materials & Interfaces, 2021, 13, 4508-4518.	4.0	50
284	Dynamic Liquid Gating Artificially Spinning System for Self-Evolving Topographies and Microstructures. Langmuir, 2021, 37, 1438-1445.	1.6	7
285	Recent advances on the fabrication methods of nanocomposite yarn-based strain sensor. Nanotechnology Reviews, 2021, 10, 221-236.	2.6	22
286	Rational construction of K _{0.5} V ₂ O ₅ nanobelts/CNTs flexible cathode for multi-functional potassium-ion batteries. Nanoscale, 2021, 13, 8199-8209.	2.8	17
287	Proprioceptively displayed interfaces: aiding non-visual on-body input through active and passive touch. Personal and Ubiquitous Computing, 2021, 25, 551-569.	1.9	3
288	Fibre electronics: towards scaled-up manufacturing of integrated e-textile systems. Nanoscale, 2021, 13, 12818-12847.	2.8	37
289	Hollow-porous fibers for intrinsically thermally insulating textiles and wearable electronics with ultrahigh working sensitivity. Materials Horizons, 2021, 8, 1037-1046.	6.4	59
290	Wearables design. , 2021, , 31-84.		1
291	Plasma treatment toward electrically conductive and superhydrophobic cotton fibers by in situ preparation of polypyrrole and silver nanoparticles. Reactive and Functional Polymers, 2021, 159, 104810.	2.0	49
292	Electroluminescent Fabric Woven by Ultrastretchable Fibers for Arbitrarily Controllable Pattern Display. ACS Applied Materials & Interfaces, 2021, 13, 11260-11267.	4.0	31
293	From Fiber to Fabric: Progress Towards Photovoltaic Energy Textile. Advanced Fiber Materials, 2021, 3, 76-106.	7.9	36
294	Durable and Flexible Bio-assembled RGO-BC/BC Bilayer Electrodes for Pressure Sensing. Advanced Fiber Materials, 2021, 3, 128-137.	7.9	33
295	Chemically reduced graphene oxide-coated knitted fabric imparted conductivity and outstanding hydrophobicity. Textile Reseach Journal, 2021, 91, 2169-2183.	1.1	8

#	Article	IF	CITATIONS
296	High-performance wire-shaped aluminum ion batteries based on continuous graphene fiber cathodes. Journal of Power Sources, 2021, 488, 229460.	4.0	19
297	Novel Response Acquisition Method for Enhancing Spatial Resolution in Capacitive Tactile Sensing Array. IEEE Sensors Journal, 2021, 21, 5895-5903.	2.4	7
298	Rib Stitch Knitted Extremely Stretchable and Washable Textile Triboelectric Nanogenerator. Advanced Materials Technologies, 2021, 6, 2000983.	3.0	24
299	Environmentally Stable, Highly Conductive, and Mechanically Robust Metallized Textiles. ACS Applied Electronic Materials, 2021, 3, 1477-1488.	2.0	23
300	Large-area display textiles integrated with functional systems. Nature, 2021, 591, 240-245.	13.7	550
301	A universal method towards conductive textile for flexible batteries with superior softness. Energy Storage Materials, 2021, 36, 272-278.	9.5	31
302	Electrical and Capacitive Response of Hydrogel Solid-Like Electrolytes for Supercapacitors. Polymers, 2021, 13, 1337.	2.0	17
303	Textile Triboelectric Nanogenerators Simultaneously Harvesting Multiple "High-Entropy―Kinetic Energies. ACS Applied Materials & Interfaces, 2021, 13, 20145-20152.	4.0	38
304	Making large-scale, functional, electronic textiles. Nature, 2021, , .	13.7	2
305	Ultrastretchable and Washable Conductive Microtextiles by Coassembly of Silver Nanowires and Elastomeric Microfibers for Epidermal Human–Machine Interfaces. , 2021, 3, 912-920.		58
306	Multifunctional, Wash Durable and Reâ€usable Conductive Textiles for Wearable Electro/Physiological Monitoring. Macromolecular Materials and Engineering, 2021, 306, 2000804.	1.7	3
307	Abrasion Resistant/Waterproof Stretchable Triboelectric Yarns Based on Fermat Spirals. Advanced Materials, 2021, 33, e2100782.	11.1	68
308	Self-Packaged, Flexible, Bendable MEMS Sensors and Energy Harvesters. IEEE Sensors Journal, 2021, 21, 12606-12617.	2.4	8
309	Asymmetric Superhydrophobic Textiles for Electromagnetic Interference Shielding, Photothermal Conversion, and Solar Water Evaporation. ACS Applied Materials & Interfaces, 2021, 13, 28996-29007.	4.0	65
310	Smart materials and devices for electronic textiles. MRS Bulletin, 2021, 46, 488-490.	1.7	6
311	Electrospun PEO/PEDOT:PSS Nanofibers for Wearable Physiological Flex Sensors. Sensors, 2021, 21, 4110.	2.1	5
312	Leatherâ€Based Multi‣timuli Responsive Chromisms. Advanced Functional Materials, 2021, 31, 2104427.	7.8	16
313	A high-performance textile-based triboelectric nanogenerator manufactured by a novel brush method for self-powered human motion pattern detector. Sustainable Energy Technologies and Assessments, 2021, 46, 101290.	1.7	14

#	Article	IF	CITATIONS
314	A Facile Approach of Fabricating Electrically Conductive Knitted Fabrics Using Graphene Oxide and Textile-Based Waste Material. Polymers, 2021, 13, 3003.	2.0	8
315	Washable, breathable, and stretchable e-textiles wirelessly powered by omniphobic silk-based coils. Nano Energy, 2021, 87, 106155.	8.2	27
316	Fully Flexible, Highly Conductive Threads Based on single walled carbon nanotube (SWCNTs) and poly (3,4 ethylenedioxy thiophene) poly(styrenesulfonate) (PEDOT:PSS). Advanced Engineering Materials, 2021, 23, 2100448.	1.6	6
317	Quantitative Evaluation of Pseudo Strain Signals Caused by Yarn Structural Deformation. Advanced Fiber Materials, 0, , 1.	7.9	9
318	A safeguarding and high temperature tolerant organogel electrolyte for flexible solid-state supercapacitors. Journal of Power Sources, 2021, 505, 230083.	4.0	13
319	Wearable supercapacitor based on polyaniline supported by graphene coated polyester textile. International Journal of Energy Research, 2021, 45, 21403-21413.	2.2	16
320	Electrical behavior investigation of sewn textile transmission paths on weft-knitted fabrics used for muscle activity monitoring. Journal of the Textile Institute, 2022, 113, 2215-2226.	1.0	1
321	Fabric based printed-distributed battery for wearable e-textiles: a review. Science and Technology of Advanced Materials, 2021, 22, 772-793.	2.8	14
322	Synthesis and plasma treatment of nitrogen-doped graphene fibers for high-performance supercapacitors. Ceramics International, 2022, 48, 2058-2067.	2.3	7
323	Magnetoelectrical Clothing Generator for Highâ€Performance Transduction from Biomechanical Energy to Electricity. Advanced Functional Materials, 2022, 32, 2107682.	7.8	21
324	A humidity-resistant, stretchable and wearable textile-based triboelectric nanogenerator for mechanical energy harvesting and multifunctional self-powered haptic sensing. Chemical Engineering Journal, 2021, 423, 130200.	6.6	60
325	All-in-one wearable electronics design: Smart electrochromic liquid-crystal-clad fibers without external electrodes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127535.	2.3	5
326	The fabrication of a graphene and conductive polymer nanocomposite-coated highly flexible and washable woven thermoelectric nanogenerator. Materials Advances, 2021, 2, 3695-3704.	2.6	17
327	Rolled-up island-bridge (RIB): a new and general electrode configuration design for a wire-shaped stretchable micro-supercapacitor array. Journal of Materials Chemistry A, 2021, 9, 2899-2911.	5.2	25
328	All-fabric-based multifunctional textile sensor for detection and discrimination of humidity, temperature, and strain stimuli. Journal of Materials Chemistry C, 2021, 9, 13789-13798.	2.7	34
329	Self-powered ultrasensitive and highly stretchable temperature–strain sensing composite yarns. Materials Horizons, 2021, 8, 2513-2519.	6.4	21
331	Influence of Graphene Oxide on Thermally Induced Shape Memory Behavior of PLA/TPU Blends: Correlation with Morphology, Creep Behavior, Crystallinity, and Dynamic Mechanical Properties. Macromolecular Materials and Engineering, 2021, 306, 2000576.	1.7	26
332	Nanoengineered textiles: from advanced functional nanomaterials to groundbreaking high-performance clothing. , 2020, , 611-714.		11

#	Article	IF	CITATIONS
333	Wireless battery-free body sensor networks using near-field-enabled clothing. Nature Communications, 2020, 11, 444.	5.8	165
334	Flexible metal–gas batteries: a potential option for next-generation power accessories for wearable electronics. Energy and Environmental Science, 2020, 13, 1933-1970.	15.6	121
335	Giyilebilir Elektronik/Akıllı Tekstiller ve Uygulamaları. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 2017, 20, 1-1.	0.0	5
336	Performance Degradation of Polymer Solar Cells Measured in High Humidity Environment. Journal of Nanoelectronics and Optoelectronics, 2021, 16, 1182-1187.	0.1	0
338	Breathable and Flexible Dualâ€ 6 ided Nonwovens with Adjustable Infrared Optical Performances for Smart Textile. Advanced Functional Materials, 2022, 32, 2108808.	7.8	27
339	Ionic Liquids in Wearable Chemical Sensors. RSC Smart Materials, 2017, , 416-455.	0.1	0
340	Strike A Pose. , 2018, , .		0
341	Integrated Flexible Textile Supercapacitor Fabricated in a Polyester-Cotton Fabric. Proceedings (mdpi), 2019, 32, 15.	0.2	5
342	Fiber Light-Emitting Devices. , 2020, , 253-289.		1
343	A Study of the Intelligent Design of Smart Textile in Future Life. , 2020, , .		1
344	Textile Designer Perspective on Haptic Interface Design: A Sensorial Platform for Conversation Between Discipline. Lecture Notes in Computer Science, 2020, , 110-127.	1.0	1
345	Stretchable supercapacitors: Electrodes, electrolytes, and devices. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 178801.	0.2	1
346	Scalable core–spun coating yarn-based triboelectric nanogenerators with hierarchical structure for wearable energy harvesting and sensing via continuous manufacturing. Nano Energy, 2022, 91, 106672.	8.2	49
348	Piezo-phototronic effect promoted carrier separation in coaxial p-n junctions for self-powered photodetector. Nano Energy, 2022, 92, 106694.	8.2	91
349	Recent Progress in Flexible Graphene-Based Composite Fiber Electrodes for Supercapacitors. Crystals, 2021, 11, 1484.	1.0	6
350	Conception and evaluation of a washable multimodal smart textile. Health and Technology, 2022, 12, 69.	2.1	5
351	Highly wearable, machine-washable, and self-cleaning fabric-based triboelectric nanogenerator for wireless drowning sensors. Nano Energy, 2022, 93, 106835.	8.2	55
352	A washable and breathable metallized fabric designed by silane bionic. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637, 128232.	2.3	11

ARTICLE IF CITATIONS A study of the Intelligent Material towards Fashion Innovation., 2021,,. 353 0 Smart textiles and the indoor environment of buildings. Indoor and Built Environment, 2022, 31, 354 1.5 1443-1446. Acoustic Green Synthesis of Graphene-Gallium Nanoparticles and PEDOT:PSS Hybrid Coating for 355 2.4 61 Textile To Mitigate Electromagnetic Radiation Pollution. ACS Applied Nano Materials, 2022, 5, 1644-1655. Textile-based moisture power generator with dual asymmetric structure and high flexibility for wearable applications. Nano Energy, 2022, 95, 107017. Applications of nanogenerators for biomedical engineering and healthcare systems. InformaÄnÃ-358 8.5 45 MateriÃ; ly, 2022, 4, . Electronic Textiles for Wearable Point-of-Care Systems. Chemical Reviews, 2022, 122, 3259-3291. 23.0 Thermogalvanic hydrogels for self-powered temperature monitoring in extreme environments. 360 2.7 19 Journal of Materials Chemistry C, 2022, 10, 13789-13796. <scp>Largeâ€scale</scp> fabrication of <scp>coreâ€shell</scp> triboelectric braided fibers and power 361 6.8 44 textiles for energy harvesting and plantar pressure monitoring. EcoMat, 2022, 4, . Hydrophilic, Breathable, and Washable Graphene Decorated Textile Assisted by Silk Sericin for 363 7.8 54 Integrated Multimodal Smart Wearables. Advanced Functional Materials, 2022, 32, . Highly Permeable and Ultrastretchable Liquid Metal Micromesh for Skin-Attachable Electronics. 364 34 2022, 4, 634-641. Smart Electronic Textiles for Wearable Sensing and Display. Biosensors, 2022, 12, 222. 365 2.326 Skin-inspired textile-based tactile sensors enable multifunctional sensing of wearables and soft 366 8.2 robots. Nano Energy, 2022, 96, 107137. Highly stretchable three-dimensional thermoelectric fabrics exploiting woven structure 367 8.2 24 deformability and passivation-induced fiber elasticity. Nano Energy, 2022, 97, 107143. MXene/MWCNT electronic fabric with enhanced mechanical robustness on humidity sensing for 368 4.0 real-time respiration monitoring. Sensors and Actuators B: Chemical, 2022, 361, 131704. Flexible bioelectrode via in-situ growth of MOF/enzyme on electrospun nanofibers for stretchable 369 6.6 13 enzymatic biofuel cell. Chemical Engineering Journal, 2022, 440, 135719. The E-Textile for Biomedical Applications: A Systematic Review of Literature. Diagnostics, 2021, 11, 2263. 370 Oneâ€step anchored polymers via phenolamine bionic design on textileâ€based heater for application in 371 1.38 personal heat management. Journal of Applied Polymer Science, 2022, 139, . Study on the microstructure, electrical properties, and electric-heating performance of 372 MWCNT/AgNW/cellulose hybrid fibers. Journal of the Textile Institute, 2023, 114, 613-621.

#	Article	IF	CITATIONS
373	Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nature Communications, 2022, 13, 2190.	5.8	87
374	Skin-Inspired Textile-Based Tactile Sensors Enable Multifunctional Sensing of Wearables and Soft Robots. SSRN Electronic Journal, 0, , .	0.4	1
375	Responsive polymer composite fiber. Chinese Journal of Chemistry, 0, , .	2.6	4
376	Thin-film electronics on active substrates: review of materials, technologies and applications. Journal Physics D: Applied Physics, 2022, 55, 323002.	1.3	33
377	Ultrafast, highly sensitive, flexible textile-based humidity sensors made of nanocomposite filaments. Materials Today Nano, 2022, 18, 100214.	2.3	9
378	Emerging technologies and their potential role in sleep medicine. , 2021, , .		1
379	Marangoni-flow-assisted assembly of single-walled carbon nanotube films for human motion sensing. Fundamental Research, 2022, , .	1.6	1
380	Carbon-based polymer nanocomposites for electronic textiles (e-textiles). , 2022, , 443-482.		3
381	Spinning of Stiff and Conductive Filaments from Cellulose Nanofibrils and PEDOT:PSS Nanocomplexes. ACS Applied Polymer Materials, 2022, 4, 4119-4130.	2.0	8
382	Preparation and Properties of Green-yellow Reversible Electro-thermochromic Fabric. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2022, 37, 954.	0.6	4
383	Enhanced Output of Onâ€Body Direct urrent Power Textiles by Efficient Energy Management for Sustainable Working of Mobile Electronics. Advanced Energy Materials, 2022, 12, .	10.2	23
384	Textile-based flexible and printable sensors for next generation uses and their contemporary challenges: A critical review. Sensors and Actuators A: Physical, 2022, 344, 113696.	2.0	27
385	Polymer Hydrogel Electrolytes for Flexible and Multifunctional Zincâ€ion Batteries and Capacitors. Energy and Environmental Materials, 2023, 6, .	7.3	34
386	RGB WGM lasing woven in fiber braiding cavity. Science China Information Sciences, 2022, 65, .	2.7	11
387	Recent status and future perspectives of 2D MXene for micro-supercapacitors and micro-batteries. Energy Storage Materials, 2022, 51, 500-526.	9.5	58
388	Soft electronics by inkjet printing metal inks on porous substrates. Flexible and Printed Electronics, 2022, 7, 033001.	1.5	3
389	AgNWs/MXene derived multifunctional knitted fabric capable of high electrothermal conversion efficiency, large strain and temperature sensing, and EMI shielding. Journal of Alloys and Compounds, 2022, 923, 166471.	2.8	19
390	Functional Fiber Materials to Smart Fiber Devices. Chemical Reviews, 2023, 123, 613-662.	23.0	69

#	Article	IF	CITATIONS
391	Carbon-Related Materials: Graphene and Carbon Nanotubes in Semiconductor Applications and Design. Micromachines, 2022, 13, 1257.	1.4	40
392	Consumer reactions to high-tech wearable textiles: perceived product importance, consumption benefits and price perceptions. Journal of the Textile Institute, 2023, 114, 1059-1069.	1.0	1
393	Screen-Printed Highly Mechanical and Conductive Flexible Electrodes Based on Chiral Structure with Negative Poisson's Ratio. SSRN Electronic Journal, 0, , .	0.4	0
394	Influence of surface functionalization on the contact electrification of fabrics. New Journal of Chemistry, 2022, 46, 15645-15656.	1.4	1
395	Tailoring molecular interaction in heteronetwork polymer electrolytes for stretchable, high-voltage fiber supercapacitors. Chemical Engineering Journal, 2023, 452, 139432.	6.6	5
396	Shapeâ€Memory Electrochemical Energy Storage Devices. Batteries and Supercaps, 0, , .	2.4	1
397	Electronic Features of Cotton Fabric e-Textiles Prepared with Aqueous Carbon Nanofiber Inks. , 2023, 1, 122-131.		4
399	Smart Electronic Textileâ€Based Wearable Supercapacitors. Advanced Science, 2022, 9, .	5.6	59
400	Screen-printed highly mechanical and conductive flexible electrodes based on chiral structure with negative Poisson's ratio. Sensors and Actuators B: Chemical, 2022, 373, 132728.	4.0	6
401	Continuously fabricated nano/micro aligned fiber based waterproof and breathable fabric triboelectric nanogenerators for self-powered sensing systems. Nano Energy, 2022, 104, 107885.	8.2	34
402	From Triboelectric Nanogenerator to Uninterrupted Power Supply System: The Key Role of Electrochemical Batteries and Supercapacitors. Batteries, 2022, 8, 215.	2.1	16
403	MXene fibers for electronic textiles: Progress and perspectives. Chinese Chemical Letters, 2023, 34, 107996.	4.8	1
404	Flexible, Stretchable, Waterâ€∤Fireâ€Proof Fiberâ€Shaped Liâ€CO ₂ Batteries with High Energy Density. Advanced Energy Materials, 2023, 13, .	10.2	16
405	OTFT Biosensor on Flexible Substrates for Human Health Monitoring: a Review. IEEE Sensors Journal, 2023, 23, 997-1011.	2.4	4
406	Toward Sustainable Wearable Electronic Textiles. ACS Nano, 2022, 16, 19755-19788.	7.3	42
407	Flexible piezoelectric coatings on textiles for energy harvesting and autonomous sensing applications: a review. Journal of Coatings Technology Research, 2023, 20, 141-172.	1.2	4
408	Stretchable One-Dimensional Conductors for Wearable Applications. ACS Nano, 2022, 16, 19810-19839.	7.3	21
409	Fiber/Yarn-Based Triboelectric Nanogenerators (TENGs): Fabrication Strategy, Structure, and Application. Sensors, 2022, 22, 9716.	2.1	9

#	Article	IF	CITATIONS
410	Development of WS ₂ /MXene (Ti ₃ C ₂ T _x) nanohybrid based multi-functional textronic sensor for non-invasive personal healthcare monitoring. Flexible and Printed Electronics, 2023, 8, 015001.	1.5	4
411	Enhanced Textile Hybrid Energy Storage Device. , 2022, , .		0
412	Extremely Robust and Multifunctional Nanocomposite Fibers for Strainâ€Unperturbed Textile Electronics. Advanced Materials, 2023, 35, .	11.1	21
413	Structural and conformable designs for aqueous multifunctional batteries. Materials Today Energy, 2023, 33, 101255.	2.5	3
414	Characteristics of Electrical Heating and Sensing Properties for CNTs/GNs Polyester-Knitted Fabrics Based on Network Structure. Fibers and Polymers, 2023, 24, 1139-1148.	1.1	4
415	Anodeâ€Patterned Monorailâ€Structure Fiberâ€Based Organic Lightâ€Emitting Diodes with Long Lifetime and High Performance for Truly Wearable Displays. Advanced Optical Materials, 2023, 11, .	3.6	1
416	Stretchable, breathable, and washable epidermal electrodes based on microfoam reinforced ultrathin conductive nanocomposites. Nano Research, 2023, 16, 10412-10419.	5.8	2
417	Advances in Wearable Strain Sensors Based on Electrospun Fibers. Advanced Functional Materials, 2023, 33, .	7.8	31
418	Flexible Organic Transistors for Biosensing: Devices and Applications. Advanced Materials, 0, , .	11.1	21
419	Modern Developments for Textile-Based Supercapacitors. ACS Omega, 2023, 8, 12613-12629.	1.6	9
420	Copper-Coordinated Cellulose Fibers for Electric Devices with Motion Sensitivity and Flame Retardance. ACS Applied Materials & amp; Interfaces, 2023, 15, 18272-18280.	4.0	8
421	Skin-Friendly and Wearable Iontronic Touch Panel for Virtual-Real Handwriting Interaction. ACS Nano, 2023, 17, 8293-8302.	7.3	30
425	Electrospun Nanofibers for Optimized Fiber-Shaped Wearable Sensors. , 0, , .		0
430	Liquid metal-based textiles for smart clothes. Science China Technological Sciences, 2023, 66, 1511-1529.	2.0	3
457	Nanomaterials in energy generators. , 2024, , 173-196.		0

457 Nanomaterials in energy generators. , 2024, , 173-196.