The nanotechnology of life-inspired systems

Nature Nanotechnology 11, 585-592 DOI: 10.1038/nnano.2016.116

Citation Report

#	Article	IF	CITATIONS
1	Emergence of hierarchical structural complexities in nanoparticles and their assembly. Science, 2016, 354, 1580-1584.	6.0	490
2	Nonlinear Kinetic Behavior in Constitutional Dynamic Reaction Networks. Journal of the American Chemical Society, 2016, 138, 16809-16814.	6.6	17
3	Learning to 'think systems'. Nature Nanotechnology, 2016, 11, 824-824.	15.6	2
4	Mimicking Primitive Photobacteria: Sustainable Hydrogen Evolution Based on Peptide–Porphyrin Coâ€Assemblies with a Selfâ€Mineralized Reaction Center. Angewandte Chemie, 2016, 128, 12691-12695.	1.6	23
5	Mimicking Primitive Photobacteria: Sustainable Hydrogen Evolution Based on Peptide–Porphyrin Coâ€Assemblies with a Selfâ€Mineralized Reaction Center. Angewandte Chemie - International Edition, 2016, 55, 12503-12507.	7.2	145
6	Leaving the Scientific Comfort Zone to Address Complex Challenges. CheM, 2016, 1, 181-183.	5.8	1
7	Preprogramming Complex Hydrogel Responses using Enzymatic Reaction Networks. Angewandte Chemie - International Edition, 2017, 56, 1794-1798.	7.2	54
8	Programmed communication. Nature Nanotechnology, 2017, 12, 291-292.	15.6	0
9	Transient self-assembly of molecular nanostructures driven by chemical fuels. Current Opinion in Biotechnology, 2017, 46, 27-33.	3.3	94
10	Self-Organization Induced by Self-Assembly in Microheterogeneous Reaction-Diffusion System. Journal of Physical Chemistry B, 2017, 121, 2127-2131.	1.2	6
11	A nanobiosensor composed of Exfoliated Graphene Oxide and Gold Nano-Urchins, for detection of GMO products. Biosensors and Bioelectronics, 2017, 95, 72-80.	5.3	43
12	Synthesis and Characterization of Cefotaxime Conjugated Gold Nanoparticles and Their Use to Target Drug-Resistant CTX-M-Producing Bacterial Pathogens. Journal of Cellular Biochemistry, 2017, 118, 2802-2808.	1.2	45
13	Preprogramming Complex Hydrogel Responses using Enzymatic Reaction Networks. Angewandte Chemie, 2017, 129, 1820-1824.	1.6	13
14	Cell Guidance on Nanostructured Metal Based Surfaces. Advanced Healthcare Materials, 2017, 6, 1600914.	3.9	22
15	Crossâ€Regulation of an Artificial Metalloenzyme. Angewandte Chemie - International Edition, 2017, 56, 10156-10160.	7.2	23
16	Biocatalytic Selfâ€Assembly Cascades. Angewandte Chemie - International Edition, 2017, 56, 6828-6832.	7.2	65
17	Crossâ€Regulation of an Artificial Metalloenzyme. Angewandte Chemie, 2017, 129, 10290-10294.	1.6	3
18	Non-equilibrium steady states in supramolecular polymerization. Nature Communications, 2017, 8, 15899.	5.8	228

#	Article	IF	CITATIONS
19	Temporal Control over Transient Chemical Systems using Structurally Diverse Chemical Fuels. Chemistry - A European Journal, 2017, 23, 11549-11559.	1.7	33
20	The interfacial structure of water droplets in a hydrophobic liquid. Nature Communications, 2017, 8, 15548.	5.8	56
21	Dynamic and programmable self-assembly of micro-rafts at the air-water interface. Science Advances, 2017, 3, e1602522.	4.7	87
22	Simple, Direct Routes to Polymer Brush Traps and Nanostructures for Studies of Diffusional Transport in Supported Lipid Bilayers. Langmuir, 2017, 33, 3672-3679.	1.6	4
23	Growth of nanotubes using IC-PECVD as benzene carbon carrier. Microsystem Technologies, 2017, 23, 5447-5453.	1.2	14
24	A Biocatalytic Nanomaterial for the Labelâ€Free Detection of Virusâ€Like Particles. ChemBioChem, 2017, 18, 996-1000.	1.3	3
25	Dual-light control of nanomachines that integrate motor and modulator subunits. Nature Nanotechnology, 2017, 12, 540-545.	15.6	190
26	Transient Helicity: Fuelâ€Ðriven Temporal Control over Conformational Switching in a Supramolecular Polymer. Angewandte Chemie - International Edition, 2017, 56, 1329-1333.	7.2	132
27	Transient Helicity: Fuelâ€Ðriven Temporal Control over Conformational Switching in a Supramolecular Polymer. Angewandte Chemie, 2017, 129, 1349-1353.	1.6	69
28	Programmierbare transiente Thermogele vermittelt durch eine pH―und Redox―egulierte supramolekulare Polymerisation. Angewandte Chemie, 2017, 129, 15664-15669.	1.6	30
29	In Situ Characterization of Interfaces Relevant for Efficient Photoinduced Reactions. Advanced Materials Interfaces, 2017, 4, 1601118.	1.9	21
30	Tuneable Transient Thermogels Mediated by a pH―and Redoxâ€Regulated Supramolecular Polymerization. Angewandte Chemie - International Edition, 2017, 56, 15461-15465.	7.2	101
31	Photochemical Control over Oscillations in Chemical Reaction Networks. Journal of the American Chemical Society, 2017, 139, 15296-15299.	6.6	35
32	Optical imaging of surface chemistry and dynamics in confinement. Science, 2017, 357, 784-788.	6.0	89
33	Autocatalytic Time-Dependent Evolution of Metastable Two-Component Supramolecular Assemblies to Self-Sorted or Coassembled State. Scientific Reports, 2017, 7, 2425.	1.6	27
34	Self-assembly of micro/nanosystems across scales and interfaces. , 2017, , .		3
35	Cellular interfaces with hydrogen-bonded organic semiconductor hierarchical nanocrystals. Nature Communications, 2017, 8, 91.	5.8	51
36	The Molecular Mechanism of Nanodroplet Stability. ACS Nano, 2017, 11, 12111-12120.	7.3	46

#	Article	IF	CITATIONS
37	Directed self-assembly of fluorescence responsive nanoparticles and their use for real-time surface and cellular imaging. Nature Communications, 2017, 8, 1885.	5.8	45
38	Heterogeneous Catalysis "On Demand― Mechanically Controlled Catalytic Activity of a Metal Surface. ACS Applied Materials & Interfaces, 2017, 9, 44264-44269.	4.0	4
39	Hierarchical Self-Assembly of a Copolymer-Stabilized Coacervate Protocell. Journal of the American Chemical Society, 2017, 139, 17309-17312.	6.6	175
40	Phosphate-dependent modulation of antibacterial strategy: a redox state-controlled toxicity of cerium oxide nanoparticles. Bulletin of Materials Science, 2017, 40, 1231-1240.	0.8	13
41	Biocatalytic Selfâ€Assembly Cascades. Angewandte Chemie, 2017, 129, 6932-6936.	1.6	26
42	Hybrid membranes for pervaporation separations. Journal of Membrane Science, 2017, 541, 329-346.	4.1	174
43	From dynamic self-assembly to networked chemical systems. Chemical Society Reviews, 2017, 46, 5647-5678.	18.7	241
44	Light-Induced Proton Pumping with a Semiconductor: Vision for Photoproton Lateral Separation and Robust Manipulation. ACS Applied Materials & Interfaces, 2017, 9, 24282-24289.	4.0	22
45	Native protein hydrogels by dynamic boronic acid chemistry. Tetrahedron, 2017, 73, 4979-4987.	1.0	19
46	Designing dynamic functional molecular systems. Tetrahedron, 2017, 73, 4837-4848.	1.0	43
47	Adenosine-Phosphate-Fueled, Temporally Programmed Supramolecular Polymers with Multiple Transient States. Journal of the American Chemical Society, 2017, 139, 16568-16575.	6.6	139
48	Grip on complexity in chemical reaction networks. Beilstein Journal of Organic Chemistry, 2017, 13, 1486-1497.	1.3	23
49	Programming Cells for Dynamic Assembly of Inorganic Nanoâ€Objects with Spatiotemporal Control. Advanced Materials, 2018, 30, e1705968.	11.1	40
51	Nanotechnologies in preventive and regenerative medicine: Quo Vadis, Domine ?. , 2018, , 513-566.		3
52	Complex dynamics in a two-enzyme reaction network with substrate competition. Nature Catalysis, 2018, 1, 276-281.	16.1	66
53	Discovery and Enumeration of Organicâ€Chemical and Biomimetic Reaction Cycles within the Network of Chemistry. Angewandte Chemie - International Edition, 2018, 57, 2367-2371.	7.2	15
54	Temporally Controlled Supramolecular Polymerization. Bulletin of the Chemical Society of Japan, 2018, 91, 687-699.	2.0	106
55	A Step into the Future: Applications of Nanoparticle Enzyme Mimics. Chemistry - A European Journal, 2018, 24, 9703-9713.	1.7	80

#	Article	IF	CITATIONS
56	Fuel‧elective Transient Activation of Nanosystems for Signal Generation. Angewandte Chemie - International Edition, 2018, 57, 1611-1615.	7.2	50
57	Fuelâ€Selective Transient Activation of Nanosystems for Signal Generation. Angewandte Chemie, 2018, 130, 1627-1631.	1.6	30
58	Artificial Cell Fermentation as a Platform for Highly Efficient Cascade Conversion. ACS Synthetic Biology, 2018, 7, 363-370.	1.9	22
59	Dynamical inversion of the energy landscape promotes non-equilibrium self-assembly of binary mixtures. Chemical Science, 2018, 9, 1640-1646.	3.7	1
60	Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design. Chemical Society Reviews, 2018, 47, 3721-3736.	18.7	205
61	Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures. Nature Chemistry, 2018, 10, 696-703.	6.6	189
62	Fuel-Driven Dissipative Self-Assembly of a Supra-Amphiphile in Batch Reactor. Biomacromolecules, 2018, 19, 2542-2548.	2.6	19
63	Carbamazepine-loaded solid lipid nanoparticles and nanostructured lipid carriers: Physicochemical characterization and in vitro/in vivo evaluation. Colloids and Surfaces B: Biointerfaces, 2018, 167, 73-81.	2.5	63
64	Biomimetic artificial organelles with in vitro and in vivo activity triggered by reduction in microenvironment. Nature Communications, 2018, 9, 1127.	5.8	118
65	Nanotechnology based electrical control and navigation system for worm guidance using electric field gradient. Microsystem Technologies, 2018, 24, 989-993.	1.2	11
66	Synthesis of vertically aligned carbon nanofibers using inductively coupled plasma-enhanced chemical vapor deposition. Electrical Engineering, 2018, 100, 997-1002.	1.2	22
67	Introduction to Atomic Force Microscopy-Based Nanorobotics for Biomedical Applications. Springer Theses, 2018, , 1-20.	0.0	2
68	Switchable Stimuli-Responsive Heterogeneous Catalysis. Catalysts, 2018, 8, 569.	1.6	31
69	Nonequilibrium Spatiotemporal Sensing within Acoustically Patterned Two-Dimensional Protocell Arrays. ACS Central Science, 2018, 4, 1551-1558.	5.3	42
70	Direct Observation and Manipulation of Supramolecular Polymerization by High‧peed Atomic Force Microscopy. Angewandte Chemie - International Edition, 2018, 57, 15465-15470.	7.2	38
71	Substrateâ€Induced Selfâ€Assembly of Cooperative Catalysts. Angewandte Chemie - International Edition, 2018, 57, 16469-16474	7.2	76
72	Rational Design and Construction of Hierarchical Superstructures Using Shape-Persistent Organic Cages: Porphyrin Box-Based Metallosupramolecular Assemblies. Journal of the American Chemical Society, 2018, 140, 14547-14551.	6.6	59
73	Recent advances in emerging DNA-based methods for genetically modified organisms (GMOs) rapid detection. TrAC - Trends in Analytical Chemistry, 2018, 109, 19-31.	5.8	40

#	Article	IF	CITATIONS
74	Direct Observation and Manipulation of Supramolecular Polymerization by High‧peed Atomic Force Microscopy. Angewandte Chemie, 2018, 130, 15691-15696.	1.6	13
75	Substrateâ€Induced Selfâ€Assembly of Cooperative Catalysts. Angewandte Chemie, 2018, 130, 16707-16712.	1.6	33
76	Oscillations, travelling fronts and patterns in a supramolecular system. Nature Nanotechnology, 2018, 13, 1021-1027.	15.6	180
77	Energy consumption in chemical fuel-driven self-assembly. Nature Nanotechnology, 2018, 13, 882-889.	15.6	306
78	Bottomâ€Up Construction of an Adaptive Enzymatic Reaction Network. Angewandte Chemie, 2018, 130, 14261-14265.	1.6	10
79	Bottomâ€Up Construction of an Adaptive Enzymatic Reaction Network. Angewandte Chemie - International Edition, 2018, 57, 14065-14069.	7.2	36
80	Polymer-Based Nanomaterials for Photothermal Therapy: From Light-Responsive to Multifunctional Nanoplatforms for Synergistically Combined Technologies. Biomacromolecules, 2018, 19, 4147-4167.	2.6	81
81	Deployment and exploitation of nanotechnology nanomaterials and nanomedicine. AIP Conference Proceedings, 2018, , .	0.3	31
82	Information Thermodynamics of Turing Patterns. Physical Review Letters, 2018, 121, 108301.	2.9	53
83	Selfâ€sustained actuation from heat dissipation in liquid crystal polymer networks. Journal of Polymer Science Part A, 2018, 56, 1331-1336.	2.5	33
84	Dissipative adaptation in driven self-assembly leading to self-dividing fibrils. Nature Nanotechnology, 2018, 13, 849-855.	15.6	160
85	Cobalt oxide nanoparticles mediate tau denaturation and cytotoxicity against PC-12 cell line. International Journal of Biological Macromolecules, 2018, 118, 1763-1772.	3.6	12
86	Discovery and Enumeration of Organicâ€Chemical and Biomimetic Reaction Cycles within the Network of Chemistry. Angewandte Chemie, 2018, 130, 2391-2395.	1.6	3
87	Functional Enzyme Mimics for Oxidative Halogenation Reactions that Combat Biofilm Formation. Advanced Materials, 2018, 30, e1707073.	11.1	73
88	Life-like motion driven by artificial molecular machines. Nature Reviews Chemistry, 2019, 3, 536-551.	13.8	220
89	Sequence Programming with Dynamic Boronic Acid/Catechol Binary Codes. Journal of the American Chemical Society, 2019, 141, 14026-14031.	6.6	26
90	Spatial Organization in Proteinaceous Membrane‣tabilized Coacervate Protocells. Small, 2019, 15, e1902893.	5.2	50
91	Creating a global database "Nanomaterials in the soil environment― future need for the terrestrial ecosystem. Energy, Ecology and Environment, 2019, 4, 271-285.	1.9	4

#	Article	IF	CITATIONS
92	Adenosine Triphosphate Templated Self-Assembly of Cationic Porphyrin into Chiral Double Superhelices and Enzyme-Mediated Disassembly. Journal of the American Chemical Society, 2019, 141, 12610-12618.	6.6	64
93	Dynamics of Synthetic Membraneless Organelles in Microfluidic Droplets. Angewandte Chemie - International Edition, 2019, 58, 14489-14494.	7.2	53
94	Phase Separation in Supramolecular Hydrogels Based on Peptide Self-Assembly from Enzyme-Coated Nanoparticles. Langmuir, 2019, 35, 10838-10845.	1.6	20
95	Programmable responsive hydrogels inspired by classical conditioning algorithm. Nature Communications, 2019, 10, 3267.	5.8	47
96	Dynamics of Synthetic Membraneless Organelles in Microfluidic Droplets. Angewandte Chemie, 2019, 131, 14631-14636.	1.6	10
97	Fatty acid based transient nanostructures for temporal regulation of artificial peroxidase activity. Chemical Science, 2019, 10, 7574-7578.	3.7	27
98	Measurement Challenges in Dynamic and Nonequilibrium Nanoscale Systems. Analytical Chemistry, 2019, 91, 13324-13336.	3.2	6
99	Deep Molecular Orbital Driven High-Temperature Hydrogen Tautomerization Switching. Journal of Physical Chemistry Letters, 2019, 10, 6755-6761.	2.1	12
100	Biomimetic 3D DNA Nanomachine via Free DNA Walker Movement on Lipid Bilayers Supported by Hard SiO ₂ @CdTe Nanoparticles for Ultrasensitive MicroRNA Detection. Analytical Chemistry, 2019, 91, 14920-14926.	3.2	43
101	Synthetic asters as elastic and radial skeletons. Nature Communications, 2019, 10, 4954.	5.8	3
102	Designed Negative Feedback from Transiently Formed Catalytic Nanostructures. Angewandte Chemie, 2019, 131, 15930-15934.	1.6	15
103	Designed Negative Feedback from Transiently Formed Catalytic Nanostructures. Angewandte Chemie - International Edition, 2019, 58, 15783-15787.	7.2	53
104	Turn-On Selectivity in Inherently Nonselective Gold Nanoparticles for Pb ²⁺ Detection by Preferential Breaking of Interparticle Interactions. ACS Applied Nano Materials, 2019, 2, 5625-5633.	2.4	12
105	Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis. Nano Today, 2019, 28, 100767.	6.2	149
106	Programmable dynamic steady states in ATP-driven nonequilibrium DNA systems. Science Advances, 2019, 5, eaaw0590.	4.7	134
107	Quasiperiodic behavior in the electrodeposition of Cu/Sn multilayers: extraction of activation energies and wavelet analysis. Physical Chemistry Chemical Physics, 2019, 21, 21057-21063.	1.3	6
108	Thermodynamic efficiency in dissipative chemistry. Nature Communications, 2019, 10, 3865.	5.8	41
109	Catalytic transport of molecular cargo using diffusive binding along a polymer track. Nature Chemistry, 2019, 11, 359-366.	6.6	21

	CITATION N	REPORT	
# 110	ARTICLE Stimuli-responsive self-assembly of nanoparticles. Chemical Society Reviews, 2019, 48, 1342-1361.	IF 18.7	Citations 339
111	Gel-based soft actuators driven by light. Journal of Materials Chemistry B, 2019, 7, 4234-4242.	2.9	40
112	Chemical fuel-driven living and transient supramolecular polymerization. Nature Communications, 2019, 10, 450.	5.8	116
113	Fuelâ€Responsive Allosteric DNAâ€Based Aptamers for the Transient Release of ATP and Cocaine. Angewandte Chemie - International Edition, 2019, 58, 5582-5586.	7.2	86
114	Nanomaterials Properties of Environmental Interest and How to Assess Them. , 2019, , 45-105.		2
115	Shape-encoded dynamic assembly of mobile micromachines. Nature Materials, 2019, 18, 1244-1251.	13.3	117
116	The Motion of an Azobenzene Light ontrolled Switch: A Joint Theoretical and Experimental Approach. ChemSystemsChem, 2019, 1, e1900003.	1,1	2
117	Use of Photoacids and Photobases To Control Dynamic Self-Assembly of Gold Nanoparticles in Aqueous and Nonaqueous Solutions. Nano Letters, 2019, 19, 3804-3810.	4.5	42
118	Dissipative Catalysis with a Molecular Machine. Angewandte Chemie - International Edition, 2019, 58, 9876-9880.	7.2	116
119	Dissipative Catalysis with a Molecular Machine. Angewandte Chemie, 2019, 131, 9981-9985.	1.6	37
120	Unbiased Discovery of Dynamic Peptideâ€ATP Complexes. ChemSystemsChem, 2019, 1, 7-11.	1.1	12
121	Synthesis of nanostructured based carbon nanowalls at low temperature using inductively coupled plasma chemical vapor deposition (ICP-CVD). Microsystem Technologies, 2019, 25, 4439-4444.	1.2	4
122	Buckling of Two-Dimensional Colloidal Nanoplatelets in Confined Space To Design Heterogeneous Catalysts. Chemistry of Materials, 2019, 31, 3812-3817.	3.2	8
123	Coupling pH-Regulated Multilayers with Inorganic Surfaces for Bionic Devices and Infochemistry. Langmuir, 2019, 35, 8543-8556.	1.6	15
124	Biocomputing with Nanostructures on Lipid Bilayers. Small, 2019, 15, e1900998.	5.2	10
125	Achieving Selective Targeting Using Engineered Nanomaterials. Series in Bioengineering, 2019, , 147-182.	0.3	2
126	A chemically fuelled self-replicator. Nature Communications, 2019, 10, 1011.	5.8	102
127	Magnetoliposomes as model for signal transmission. Royal Society Open Science, 2019, 6, 181108.	1.1	10

		CITATION REPORT		
#	Article		IF	CITATIONS
128	Thermodynamics and Biophysics of Biomedical Nanosystems. Series in Bioengineering	,2019,,.	0.3	6
129	Shear-induced assembly of a transient yet highly stretchable hydrogel based on pseud Nature Chemistry, 2019, 11, 470-477.	opolyrotaxanes.	6.6	161
130	Fuelâ€Responsive Allosteric DNAâ€Based Aptamers for the Transient Release of ATP a Angewandte Chemie, 2019, 131, 5638-5642.	nd Cocaine.	1.6	31
131	Single molecule analysis of structural fluctuations in DNA nanostructures. Nanoscale, 18475-18482.	2019, 11,	2.8	9
132	Propagation of Oscillating Chemical Signals through Reaction Networks. Angewandte 131, 4568-4573.	Chemie, 2019,	1.6	2
133	Propagation of Oscillating Chemical Signals through Reaction Networks. Angewandte International Edition, 2019, 58, 4520-4525.	Chemie -	7.2	5
134	Colloidal systems chemistry. Replication, reproduction and selection at nanoscale. Jou and Interface Science, 2019, 537, 269-279.	rnal of Colloid	5.0	8
135	Tuning the life-time of supramolecular hydrogels using ROS-responsive telechelic pept conjugates. European Polymer Journal, 2019, 110, 90-96.	ide-polymer	2.6	20
136	Chemically Fueled Dissipative Selfâ€Assembly that Exploits Cooperative Catalysis. Ang 2019, 131, 250-253.	ewandte Chemie,	1.6	45
137	Chemically Fueled Dissipative Selfâ€Assembly that Exploits Cooperative Catalysis. Ang International Edition, 2019, 58, 244-247.	ewandte Chemie -	7.2	138
138	Molecular bionics $\hat{a} \in$ " engineering biomaterials at the molecular level using biological Biomaterials, 2019, 192, 26-50.	principles.	5.7	35
139	Thermodynamic costs of dynamic function in active soft matter. Current Opinion in So Materials Science, 2019, 23, 28-40.	blid State and	5.6	13
140	Towards mimicking biological function with responsive surface-grafted polymer brush Opinion in Solid State and Materials Science, 2019, 23, 1-12.	25. Current	5.6	14
141	3D Printing of Silk Protein Structures by Aqueous Solventâ€Directed Molecular Assem Macromolecular Bioscience, 2020, 20, e1900191.	bly.	2.1	42
142	Evaluation of Chargeâ€Regulated Supramolecular Copolymerization to Tune the Time Oxidative Disassembly of l²â€Sheet Comonomers. Macromolecular Rapid Communica 1900476.	Scale for tions, 2020, 41,	2.0	6
143	Selection from a pool of self-assembling lipid replicators. Nature Communications, 202	20, 11, 176.	5.8	39
144	Synthesis and properties of a redox-switchable calix[6]arene-based molecular lasso. Of Chemistry Frontiers, 2020, 7, 648-659.	'ganic	2.3	10
145	ATP-fuelled self-assembly to regulate chemical reactivity in the time domain. Chemical 1518-1522.	Science, 2020, 11,	3.7	36

#	Article	IF	CITATIONS
146	Pathway Complexity in Fuel-Driven DNA Nanostructures with Autonomous Reconfiguration of Multiple Dynamic Steady States. Journal of the American Chemical Society, 2020, 142, 685-689.	6.6	59
147	Bioâ€Assisted Tailored Synthesis of Plasmonic Silver Nanorings and Siteâ€&elective Deposition on Graphene Arrays. Advanced Optical Materials, 2020, 8, 1901583.	3.6	18
148	Formation and Outâ€ofâ€Equilibrium, High/Low State Switching of a Nitroaldol Dynamer in Neutral Aqueous Media. Angewandte Chemie, 2020, 132, 3462-3466.	1.6	3
149	Formation and Outâ€ofâ€Equilibrium, High/Low State Switching of a Nitroaldol Dynamer in Neutral Aqueous Media. Angewandte Chemie - International Edition, 2020, 59, 3434-3438.	7.2	6
150	Amalgamation of aligned carbon nanostructures at low temperature and the synthesis of vertically aligned carbon nanofibers (CNFs). Microsystem Technologies, 2020, 26, 1521-1529.	1.2	2
151	Associative Learning by Classical Conditioning in Liquid Crystal Network Actuators. Matter, 2020, 2, 194-206.	5.0	51
152	Redox Chemicalâ€Fueled Dissipative Selfâ€Assembly of Active Materials. ChemSystemsChem, 2020, 2, e1900030.	1.1	45
153	Application of Bacteriophages in Nanotechnology. Nanomaterials, 2020, 10, 1944.	1.9	34
154	Autonomous mesoscale positioning emerging from myelin filament self-organization and Marangoni flows. Nature Communications, 2020, 11, 4800.	5.8	25
155	Active coacervate droplets as a model for membraneless organelles and protocells. Nature Communications, 2020, 11, 5167.	5.8	135
156	Supramolecular double-stranded Archimedean spirals and concentric toroids. Nature Communications, 2020, 11, 3578.	5.8	67
157	Enhanced catalytic activity under non-equilibrium conditions. Nature Nanotechnology, 2020, 15, 868-874.	15.6	60
158	Dynamic and Modular Formation of a Synergistic Transphosphorylation Catalyst. ACS Catalysis, 2020, 10, 8395-8401.	5.5	13
159	Force generation by a propagating wave of supramolecular nanofibers. Nature Communications, 2020, 11, 3541.	5.8	24
160	Adaptive Chemoenzymatic Microreactors Composed of Inorganic Nanoparticles and Bioinspired Intrinsically Disordered Proteins. Angewandte Chemie, 2020, 132, 8215-8219.	1.6	0
161	Pumps through the Ages. CheM, 2020, 6, 1952-1977.	5.8	70
162	Disulfideâ€Linked Allosteric Modulators for Multiâ€cycle Kinetic Control of DNAâ€Based Nanodevices. Angewandte Chemie - International Edition, 2020, 59, 21058-21063.	7.2	22
163	Disulfideâ€Linked Allosteric Modulators for Multi ycle Kinetic Control of DNAâ€Based Nanodevices. Angewandte Chemie, 2020, 132, 21244-21249.	1.6	9

#	Article	IF	CITATIONS
164	Simultaneous regulation of optical properties and cellular behaviors of gold hanoclusters by pre-engineering the biotemplates. Chemical Communications, 2020, 56, 11414-11417.	2.2	20
	Construction of Organelle3£Like Architecture by Dynamic DNA Assembly in Living Cells, Angewandte		
165	Chemie - International Edition, 2020, 59, 20651-20658.	7.2	57
144	Self-Assembly at Water Nanodroplet Interfaces Quantified with Nonlinear Light Scattering. Langmuir,		10
166	2020, 36, 9317-9322.	1.6	13
167	Construction of Organelleâ€Like Architecture by Dynamic DNA Assembly in Living Cells. Angewandte	1.6	7
	Chemie, 2020, 132, 20832-20839.		
168	Polymerization in MOF-Confined Nanospaces: Tailored Architectures, Functions, and Applications.	1.6	35
	Langinui, 2020, 50, 10057-10075.		
169	Luminescent Supramolecular Nano- or Microstructures Formed in Aqueous Media by Amphiphile-Noble Metal Complexes, Journal of Nanomaterials, 2020, 2020, 1-24.	1.5	6
170	Dissipative Constitutional Dynamic Networks for Tunable Transient Responses and Catalytic Functions. Journal of the American Chemical Society, 2020, 142, 17480-17488.	6.6	36
171	Nucleotide‧elective Templated Selfâ€Assembly of Nanoreactors under Dissipative Conditions. Angewandte Chemie - International Edition, 2020, 59, 22223-22229.	7.2	21
	Kinetic and Thermodynamic Hysteresis in Clustering of Gold Nanoparticles: Implications for		
172	Nanotransducers and Information Storage in Dynamic Systems. ACS Applied Nano Materials, 2020, 3, 9520-9527.	2.4	13
	A numerical investigation of the effect of external resistance and applied potential on the		
173	distribution of periodicity and chaos in the anodic dissolution of nickel. Physical Chemistry Chemical Physics, 2020, 22, 21823-21834.	1.3	11
	Nucleotide ² = Selective Templated Self ² = Assembly of Nanoreactors under Dissipative Conditions		
174	Angewandte Chemie, 2020, 132, 22407-22413.	1.6	7
	Influence of the Ligands in Cu(II) Complexes on the Oscillatory Electrodeposition of		
175	Cu/Cu ₂ O. Journal of Physical Chemistry C, 2020, 124, 12559-12568.	1.5	9
174	Riefunctional hydrogola based on heat \hat{e} guest interactions, Relymor lawrood 2020, 52, 820,850	1.0	45
176	Biorunctional hydrogels based on nosta€ guest interactions. Polymer Journal, 2020, 52, 859-859.	1.3	45
177	Biology-Inspired Supremolecular Pentide Systems CheM 2020 6 1222-1236	5.8	44
1//		0.0	
178	Consequences of hidden kinetic pathways on supramolecular polymerization. Chemical Science, 2020,	3.7	49
	11, ७/४८-७/४४.		
179	Lightâ€Driven Flipping of Azobenzene Assemblies—Sparse Crystal Structures and Responsive Behaviour	1.7	27
	to Polansed Light. Chemistry - A European Journal, 2020, 26, 10759-10768.		
180	Adaptive Chemoenzymatic Microreactors Composed of Inorganic Nanoparticles and Bioinspired	7.2	18
181	Spontaneous Aminolytic Cyclization and Selfâ€Assembly of Dipeptide Methyl Esters in Water.	1.1	9

#	Article	IF	CITATIONS
182	Disordered protein-graphene oxide co-assembly and supramolecular biofabrication of functional fluidic devices. Nature Communications, 2020, 11, 1182.	5.8	42
183	Synthetic Supramolecular Systems in Life-like Materials and Protocell Models. CheM, 2020, 6, 1652-1682.	5.8	35
184	From Silk Spinning to 3D Printing: Polymer Manufacturing using Directed Hierarchical Molecular Assembly. Advanced Healthcare Materials, 2020, 9, e1901552.	3.9	53
185	Templateâ€Dependent (Ir)reversibility of Noncovalent Synthesis Pathways. ChemSystemsChem, 2020, 2, e1900063.	1.1	2
186	The Power of Confocal Laser Scanning Microscopy in Supramolecular Chemistry: In situ Realâ€ŧime Imaging of Stimuliâ€Responsive Multicomponent Supramolecular Hydrogels. ChemistryOpen, 2020, 9, 67-79.	0.9	39
187	Non-equilibrium signal integration in hydrogels. Nature Communications, 2020, 11, 386.	5.8	38
188	Nanozymology. Nanostructure Science and Technology, 2020, , .	0.1	30
189	Molecular evolution: The origins of interaction. , 2020, , 1-20.		Ο
190	Selfâ€Organization in Electrochemical Synthesis as a Methodology towards New Materials. ChemElectroChem, 2020, 7, 2979-3005.	1.7	4
191	Chemical reactivity under nanoconfinement. Nature Nanotechnology, 2020, 15, 256-271.	15.6	403
191 192	Chemical reactivity under nanoconfinement. Nature Nanotechnology, 2020, 15, 256-271. Biomimetic self-assembly of subcellular structures. Chemical Communications, 2020, 56, 8342-8354.	15.6 2.2	403 10
191 192 193	Chemical reactivity under nanoconfinement. Nature Nanotechnology, 2020, 15, 256-271. Biomimetic self-assembly of subcellular structures. Chemical Communications, 2020, 56, 8342-8354. Cooperative and synchronized rotation in motorized porous frameworks: impact on local and global transport properties of confined fluids. Faraday Discussions, 2021, 225, 286-300.	15.6 2.2 1.6	403 10 16
191 192 193 194	Chemical reactivity under nanoconfinement. Nature Nanotechnology, 2020, 15, 256-271. Biomimetic self-assembly of subcellular structures. Chemical Communications, 2020, 56, 8342-8354. Cooperative and synchronized rotation in motorized porous frameworks: impact on local and global transport properties of confined fluids. Faraday Discussions, 2021, 225, 286-300. ATPâ€Driven Synthetic Supramolecular Assemblies: From ATP as a Template to Fuel. Angewandte Chemie - International Edition, 2021, 60, 2740-2756.	15.6 2.2 1.6 7.2	403 10 16 84
191 192 193 194	Chemical reactivity under nanoconfinement. Nature Nanotechnology, 2020, 15, 256-271. Biomimetic self-assembly of subcellular structures. Chemical Communications, 2020, 56, 8342-8354. Cooperative and synchronized rotation in motorized porous frameworks: impact on local and global transport properties of confined fluids. Faraday Discussions, 2021, 225, 286-300. ATPâ€Driven Synthetic Supramolecular Assemblies: From ATP as a Template to Fuel. Angewandte Chemie - International Edition, 2021, 60, 2740-2756. ATPâ€Driven Synthetic Supramolecular Assemblies: From ATP as a Template to Fuel. Angewandte Chemie, 2021, 133, 2772-2788.	15.6 2.2 1.6 7.2 1.6	403 10 16 84 25
 191 192 193 194 195 196 	Chemical reactivity under nanoconfinement. Nature Nanotechnology, 2020, 15, 256-271. Biomimetic self-assembly of subcellular structures. Chemical Communications, 2020, 56, 8342-8354. Cooperative and synchronized rotation in motorized porous frameworks: impact on local and global transport properties of confined fluids. Faraday Discussions, 2021, 225, 286-300. ATPâ€Driven Synthetic Supramolecular Assemblies: From ATP as a Template to Fuel. Angewandte Chemie - International Edition, 2021, 60, 2740-2756. ATPâ€Driven Synthetic Supramolecular Assemblies: From ATP as a Template to Fuel. Angewandte Chemie, 2021, 133, 2772-2788. Analysis of biomolecular condensates and protein phase separation with microfluidic technology. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118823.	15.6 2.2 1.6 7.2 1.6 1.9	 403 10 16 84 25 33
 191 192 193 194 195 196 197 	Chemical reactivity under nanoconfinement. Nature Nanotechnology, 2020, 15, 256-271. Biomimetic self-assembly of subcellular structures. Chemical Communications, 2020, 56, 8342-8354. Cooperative and synchronized rotation in motorized porous frameworks: impact on local and global transport properties of confined fluids. Faraday Discussions, 2021, 225, 286-300. ATPâ€Driven Synthetic Supramolecular Assemblies: From ATP as a Template to Fuel. Angewandte Chemie - International Edition, 2021, 60, 2740-2756. ATPâ€Driven Synthetic Supramolecular Assemblies: From ATP as a Template to Fuel. Angewandte Chemie, 2021, 133, 2772-2788. Analysis of biomolecular condensates and protein phase separation with microfluidic technology. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118823. Understanding the self-ordering of amino acids into supramolecular architectures: co-assembly-based modulation of phenylalanine nanofibrils. Materials Chemistry Frontiers, 2021, 5, 1971-1981.	15.6 2.2 1.6 7.2 1.6 1.9 3.2	403 10 16 84 25 33
 191 192 193 194 194 195 196 197 198 	Chemical reactivity under nanoconfinement. Nature Nanotechnology, 2020, 15, 256-271. Biomimetic self-assembly of subcellular structures. Chemical Communications, 2020, 56, 8342-8354. Cooperative and synchronized rotation in motorized porous frameworks: impact on local and global transport properties of confined fluids. Faraday Discussions, 2021, 225, 286-300. ATPâ€Driven Synthetic Supramolecular Assemblies: From ATP as a Template to Fuel. Angewandte Chemie - International Edition, 2021, 60, 2740-2756. ATPâ€Driven Synthetic Supramolecular Assemblies: From ATP as a Template to Fuel. Angewandte Chemie, 2021, 133, 2772-2788. Analysis of biomolecular condensates and protein phase separation with microfluidic technology. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118823. Understanding the self-ordering of amino acids into supramolecular architectures: co-assembly-based modulation of phenylalanine nanofibrils. Materials Chemistry Frontiers, 2021, 5, 1971-1981. Autonomous Transient pH Flips Shaped by Layered Compartmentalization of Antagonistic Enzymatic Reactions. Angewandte Chemie - International Edition, 2021, 60, 3619-3624.	15.6 2.2 1.6 7.2 1.6 1.9 3.2 7.2	403 10 16 84 25 33 21 21

#	Article	IF	CITATIONS
200	Combinatorial Discovery and Validation of Heptapeptides with UTP Binding Induced Structure. ChemSystemsChem, 2021, 3, e2000025.	1.1	1
201	Carbon nanotubes: a review on properties, synthesis methods and applications in micro and nanotechnology. Microsystem Technologies, 2021, 27, 4183-4192.	1.2	77
202	Temporal Changes in Interparticle Interactions Drive the Formation of Transiently Stable Nanoparticle Precipitates. Langmuir, 2021, 37, 1843-1849.	1.6	16
203	A transient high-energy surface powered by a chemical fuel. Materials Chemistry Frontiers, 2021, 5, 5390-5399.	3.2	0
204	The desalting/salting pathway: a route to form metastable aggregates with tuneable morphologies and lifetimes. Soft Matter, 2021, 17, 8496-8505.	1.2	2
205	Ultracentrifugation Techniques for the Ordering of Nanoparticles. Nanomaterials, 2021, 11, 333.	1.9	21
206	DNAzyme- and light-induced dissipative and gated DNA networks. Chemical Science, 2021, 12, 11204-11212.	3.7	32
207	Steering the Assembly and Disassembly of Active Pd Sites in Organometallic Networks for Electrocatalytic Performance and Organic Transformation. Advanced Functional Materials, 2021, 31, 2009557.	7.8	1
208	Mimicking evolution of â€~mini-homeostatic' modules in supramolecular systems. Giant, 2021, 5, 100041.	2.5	16
209	Controllable Release Mode Based on ATP Hydrolysis-Fueled Supra-Amphiphile Assembly. ACS Applied Bio Materials, 2021, 4, 3532-3538.	2.3	2
210	Dissipative Gated and Cascaded DNA Networks. Journal of the American Chemical Society, 2021, 143, 5071-5079.	6.6	55
211	Simultaneous Nanolocal Polymer and <i>In Situ</i> Readout Unit Placement in Mesoporous Separation Layers. Analytical Chemistry, 2021, 93, 5394-5402.	3.2	4
212	Constructing Large 2D Lattices Out of DNA-Tiles. Molecules, 2021, 26, 1502.	1.7	15
214	Chemically Fueled Selfâ€Assembly in Biology and Chemistry. Angewandte Chemie, 2021, 133, 20280-20303.	1.6	24
217	Reversible Photoswitchable Inhibitors Generate Ultrasensitivity in Out-of-Equilibrium Enzymatic Reactions. Journal of the American Chemical Society, 2021, 143, 5709-5716.	6.6	13
219	Mechanism of periodic field driven self-assembly process. Journal of Chemical Physics, 2021, 154, 144904.	1.2	4
222	Chemically Fueled Selfâ€Assembly in Biology and Chemistry. Angewandte Chemie - International Edition, 2021, 60, 20120-20143.	7.2	160
223	Autocatalytic and oscillatory reaction networks that form guanidines and products of their cyclization. Nature Communications, 2021, 12, 2994.	5.8	13

#	Article	IF	CITATIONS
224	Molecular Engineering of Water-Soluble Oligomers to Elucidate Radical π–Anion Interactions in n-Doped Nanoscale Objects. Journal of Physical Chemistry C, 2021, 125, 10526-10538.	1.5	7
225	Dictating Catalytic Preference and Activity of a Nanoparticle by Modulating Its Multivalent Engagement. ACS Catalysis, 2021, 11, 8504-8509.	5.5	13
226	Reversible Photoswitchable Inhibitors Enable Wavelengthâ€Selective Regulation of Outâ€ofâ€Equilibrium Biâ€enzymatic Systems. ChemSystemsChem, 2021, 3, .	1.1	1
227	Interfacial Liquid–Liquid Phase Separation-Driven Polymerization-Induced Electrostatic Self-Assembly. Macromolecules, 2021, 54, 5577-5585.	2.2	17
228	A dissipative pathway for the structural evolution of DNA fibres. Nature Chemistry, 2021, 13, 843-849.	6.6	60
229	Outâ€ofâ€equilibrium supramolecular selfâ€essembling systems driven by chemical fuel. Aggregate, 2021, 2, e110.	5.2	31
230	Bridging Rigidity and Flexibility: Modulation of Supramolecular Hydrogels by Metal Complexation. Macromolecular Rapid Communications, 2022, 43, e2100473.	2.0	2
231	Programmed exosome fusion for energy generation in living cells. Nature Catalysis, 2021, 4, 763-774.	16.1	19
232	Ionic organic cage-encapsulated metal clusters for switchable catalysis. Cell Reports Physical Science, 2021, 2, 100546.	2.8	16
233	Peptide-Based Supramolecular Systems Chemistry. Chemical Reviews, 2021, 121, 13869-13914.	23.0	171
234	Bio-inspired graphene-based nano-systems for biomedical applications. Nanotechnology, 2021, 32, 502001.	1.3	38
235	Stimuli-Responsive Three-Dimensional DNA Nanomachines Engineered by Controlling Dynamic Interactions at Biomolecule-Nanoparticle Interfaces. ACS Nano, 2021, 15, 16870-16877.	7.3	17
236	Stimuli responsive dynamic transformations in supramolecular gels. Chemical Society Reviews, 2021, 50, 5165-5200.	18.7	209
237	Functional Enzyme Mimics for Oxidative Halogenation Reactions that Combat Biofilm Formation. Nanostructure Science and Technology, 2020, , 195-278.	0.1	7
238	Design and development of a clip building block system for MEMS. Microsystem Technologies, 2018, 24, 1025-1031.	1.2	11
239	Molecular Engineering of Robustness and Resilience in Enzymatic Reaction Networks. Journal of the American Chemical Society, 2017, 139, 8146-8151.	6.6	20
240	Serotyping, antibiotic susceptibility, and virulence genes screening of Escherichia coli isolates obtained from diarrheic buffalo calves in Egyptian farms. Veterinary World, 2017, 10, 769-773.	0.7	12
241	Proteins and Peptides at the Interfaces of Nanostructures. Anais Da Academia Brasileira De Ciencias, 2019, 91, e20181236.	0.3	7

#	Article	IF	CITATIONS
242	Record breaking achievements by spiders and the scientists who study them. PeerJ, 2017, 5, e3972.	0.9	42
243	Nano Surface-Heterogeneities of Particles Modulate the Macroscopic Properties of Hydrogels. SSRN Electronic Journal, 0, , .	0.4	0
244	Chemical engines: driving systems away from equilibrium through catalyst reaction cycles. Nature Nanotechnology, 2021, 16, 1057-1067.	15.6	70
245	Transient Dissipative Optical Properties of Aggregated Au Nanoparticles, CdSe/ZnS Quantum Dots, and Supramolecular Nucleic Acid-Stabilized Ag Nanoclusters. Journal of the American Chemical Society, 2021, 143, 17622-17632.	6.6	34
246	Selfâ€Propulsion of Droplets via Lightâ€Stimuli Rapid Control of Their Surface Tension. Advanced Materials Interfaces, 2021, 8, 2100751.	1.9	13
249	Alloying nanoparticles by discharges in liquids: a quest for metastability. Plasma Physics and Controlled Fusion, 2022, 64, 014003.	0.9	2
250	Morphological transitions in chemically fueled self-assembly. Nanoscale, 2021, 13, 19864-19869.	2.8	4
251	Exploiting the fundamentals of biological organization for the advancement of biofabrication. Current Opinion in Biotechnology, 2022, 74, 42-54.	3.3	7
252	Spontaneous Reorganization of DNA-Based Polymers in Higher Ordered Structures Fueled by RNA. Journal of the American Chemical Society, 2021, 143, 20296-20301.	6.6	21
253	Phototriggered Spatially Controlled Out-of-Equilibrium Patterns of Peptide Nanofibers in a Self-Sorting Double Network Hydrogel. Journal of the American Chemical Society, 2021, 143, 19532-19541.	6.6	26
254	Energetic scaling in microbial growth. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
255	Lightâ€Controlled Nucleation and Shaping of Selfâ€Assembling Nanocomposites. Advanced Materials, 2022, 34, e2107843.	11.1	13
256	Bioinspired Artificial Photosynthetic Systems. Chemistry - A European Journal, 2022, 28, .	1.7	9
257	Supramolecular assembly-enabled homochiral polymerization of short (dA) _{<i>n</i>} oligonucleotides. Chemical Communications, 2021, 57, 13602-13605.	2.2	3
258	Concurrent base and silver(<scp>i</scp>) catalysis pulsed by fuel acid. Chemical Communications, 2022, 58, 1728-1731.	2.2	9
259	Emergence of energy-avoiding and energy-seeking behaviors in nonequilibrium dissipative quantum systems. Communications Physics, 2022, 5, .	2.0	2
260	Oscillating the local milieu of polymersome interiors via single input-regulated bilayer crosslinking and permeability tuning. Nature Communications, 2022, 13, 585.	5.8	16
261	Photoresponsive DNA materials and their applications. Chemical Society Reviews, 2022, 51, 720-760.	18.7	48

#	Article	IF	CITATIONS
262	Progressive Local Accumulation of Self-Assembled Nanoreactors in a Hydrogel Matrix through Repetitive Injections of ATP. Journal of the American Chemical Society, 2022, 144, 2010-2018.	6.6	16
263	Luminescent gold-peptide spheric aggregates: selective and effective cellular targeting. Journal of Colloid and Interface Science, 2022, 614, 502-510.	5.0	5
264	Bi-directional feedback controlled transience in Cucurbituril based tandem nanozyme. Journal of Colloid and Interface Science, 2022, 614, 172-180.	5.0	14
265	Embracing complexity in biomaterials design. Biomaterials and Biosystems, 2022, 6, 100039.	1.0	8
266	Carbon nanotubes/nanofibers (CNTs/CNFs): a review on state of the art synthesis methods. Microsystem Technologies, 2022, 28, 885-901.	1.2	35
267	History Dependence in a Chemical Reaction Network Enables Dynamic Switching. Small, 2022, 18, e2107523.	5.2	1
268	Stimuli-Responsive Adaptive Nanotoxin to Directly Penetrate the Cellular Membrane by Molecular Folding and Unfolding. Journal of the American Chemical Society, 2022, 144, 5503-5516.	6.6	8
269	Breakthroughs on tailoring membrane materials for ethanol recovery by pervaporation. Chinese Journal of Chemical Engineering, 2022, 52, 19-36.	1.7	3
270	An autonomously oscillating supramolecular self-replicator. Nature Chemistry, 2022, 14, 805-810.	6.6	39
271	Memory, switches, and an OR-port through bistability in chemically fueled crystals. Nature Communications, 2022, 13, .	5.8	19
272	Porous Organic Cage Nanostructures for Construction of Complex Sequential Reaction Networks. ACS Applied Nano Materials, 2022, 5, 7974-7982.	2.4	4
273	Modulating the Fluorescence of Silver Nanoclusters Wrapped in DNA Hairpin Loops via Confined Strand Displacement and Transient Concatenate Ligation for Amplifiable Biosensing. Analytical Chemistry, 2022, 94, 8041-8049.	3.2	15
275	Perpetuating enzymatically induced spatiotemporal pH and catalytic heterogeneity of a hydrogel by nanoparticles. Chemical Science, 2022, 13, 8557-8566.	3.7	11
276	Supramolecular copolymerization through self-correction of non-polymerizable transient intermediates. Chemical Science, 2022, 13, 7796-7804.	3.7	1
277	Nanoparticle Self-Assembly: From Design Principles to Complex Matter to Functional Materials. ACS Applied Materials & Interfaces, 2023, 15, 25248-25274.	4.0	33
278	Inhibiting Stressâ€Activated Signals to Reverse Heat Resistance for Augmented Photothermal Therapy Based on Biologically Derived Nanotherapeutics. Advanced Functional Materials, 2022, 32, .	7.8	5
279	Regulating Spatial Localization and Reactivity Biasness of DNAzymes by Metal Ions and Oligonucleotides. ChemBioChem, 2022, 23, .	1.3	2
280	Programmable, Spatiotemporal Control of Colloidal Motion Waves via Structured Light. ACS Nano, 2022, 16, 12755-12766.	7.3	7

#	Article	IF	Citations
281	Application of Super Photoacids in Controlling Dynamic Processes: Light-Triggering the Self-Propulsion of Oil Droplets. Journal of Physical Chemistry B, 2022, 126, 6331-6337.	1.2	1
282	When Design Meets Function: The Prodigious Role of Surface Ligands in Regulating Nanoparticle Chemistry. Chemistry of Materials, 2022, 34, 7579-7597.	3.2	18
283	Coiling of Single-Walled Carbon Nanotubes via Selective Topological Fluid Flow: Implications for Sensors. ACS Applied Nano Materials, 2022, 5, 11586-11594.	2.4	3
284	Spatial programming of self-organizing chemical systems using sustained physicochemical gradients from reaction, diffusion and hydrodynamics. Physical Chemistry Chemical Physics, 2022, 24, 23980-24001.	1.3	11
285	The Systems Chemistry of Nucleicâ€acidâ€₽eptide Networks. Israel Journal of Chemistry, 2022, 62, .	1.0	3
286	Switchable aqueous catalytic systems for organic transformations. Communications Chemistry, 2022, 5, .	2.0	7
287	Life brought to artificial cells. Nature, 0, , .	13.7	0
288	Amyloidâ€inspired Peptide Selfâ€assembly/Disassembly as Intervened by Gold Nanoparticles and Polydopamine Coating to Dictate Spatiotemporal Organization. ChemNanoMat, 2022, 8, .	1.5	7
289	Density-tunable pathway complexity in a minimalistic self-assembly model. Soft Matter, 2022, 18, 8106-8116.	1.2	2
290	Emergent microrobotic oscillators via asymmetry-induced order. Nature Communications, 2022, 13, .	5.8	5
291	Construction of Transient Supramolecular Polymers Controlled by Mass Transfer in Biphasic System. Chemical Science, 0, , .	3.7	0
292	Gravity-resisting colloidal collectives. Science Advances, 2022, 8, .	4.7	16
293	Transition from continuous to microglobular shaped peptide assemblies through a Liesegang-like enzyme-assisted mechanism. Journal of Colloid and Interface Science, 2022, , .	5.0	1
294	Feedback-controlled hydrogels with homeostatic oscillations and dissipative signal transduction. Nature Nanotechnology, 2022, 17, 1303-1310.	15.6	26
295	Autonomous Nonâ€Equilibrium Selfâ€Assembly and Molecular Movements Powered by Electrical Energy**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	11
296	Persistent ATP oncentration Gradients in a Hydrogel Sustained by Chemical Fuel Consumption. Angewandte Chemie, 0, , .	1.6	1
297	Autonomous Nonâ€Equilibrium Selfâ€Assembly and Molecular Movements Powered by Electrical Energy**. Angewandte Chemie, 0, , .	1.6	1
298	Persistent ATP oncentration Gradients in a Hydrogel Sustained by Chemical Fuel Consumption. Angewandte Chemie - International Edition, 2023, 62, .	7.2	3

		LPUKI	
#	Article	IF	CITATIONS
299	Templated Outâ€ofâ€Equilibrium Selfâ€Assembly of Branched Au Nanoshells. Small, 2023, 19, .	5.2	2
300	Formation of Catalytic Hotspots in ATP-Templated Assemblies. Journal of the American Chemical Society, 2023, 145, 898-904.	6.6	10
301	Kinetic Barrier Diagrams to Visualize and Engineer Molecular Nonequilibrium Systems. Small, 2023, 19, .	5.2	15
302	Stability and validation of bionanomaterials. , 2023, , 251-263.		0
303	Future prospects for the biodegradability of conventional plastics. , 2023, , 361-375.		0
304	A Dissipative Reaction Network Drives Transient Solidâ€Liquid and Liquidâ€Liquid Phase Cycling of Nanoparticles. Angewandte Chemie, 0, , .	1.6	2
305	Design of confined catalysts and applications in environmental catalysis: Original perspectives and further prospects. Journal of Cleaner Production, 2023, 390, 136125.	4.6	6
306	Stacking Cyclophanes into Chiral Microvessels. Angewandte Chemie - International Edition, 2023, 62, .	7.2	0
307	Stacking Cyclophanes into Chiral Microvessels. Angewandte Chemie, 2023, 135, .	1.6	0
308	Waste-Free Fully Electrically Fueled Dissipative Self-Assembly System. Journal of the American Chemical Society, 2023, 145, 3727-3735.	6.6	8
309	Functional advantages of building nanosystems using multiple molecular components. Nature Chemistry, 2023, 15, 458-467.	6.6	5
310	Orbiting Selfâ€Organization of Filamentâ€Tethered Surfaceâ€Active Droplets. Small, 2023, 19, .	5.2	2
311	Self-Regulatory Micro- and Macroscale Patterning of ATP-Mediated Nanobioconjugate. ACS Nano, 2023, 17, 5108-5120.	7.3	4
312	Theory of Anisotropic Metal Nanostructures. Chemical Reviews, 2023, 123, 4146-4183.	23.0	12
313	A Dissipative Reaction Network Drives Transient Solid–Liquid and Liquid–Liquid Phase Cycling of Nanoparticles. Angewandte Chemie - International Edition, 0, , .	7.2	1
314	Nano Surfaceâ€Heterogeneities of Particles Modulate the Macroscopic Properties of Hydrogels. Advanced Materials Interfaces, 2023, 10, .	1.9	1
325	Nanotechnology for bacteriophages, bacteriophages for nanotechnology. , 2023, , 243-271.		0
326	The entropy-controlled strategy in self-assembling systems. Chemical Society Reviews, 2023, 52, 6806-6837.	18.7	9

	C	CITATION REPORT	
#	Article	IF	CITATIONS
338	Interlinking spatial dimensions and kinetic processes in dissipative materials to create synthetic systems with lifelike functionality. Nature Nanotechnology, 2024, 19, 146-159.	15.6	1