High-efficiency two-dimensional Ruddlesden–Poppe

Nature 536, 312-316 DOI: 10.1038/nature18306

Citation Report

#	Article	IF	CITATIONS
8	A close examination of the structure and dynamics of HC(NH ₂) ₂ PbI ₃ by MD simulations and group theory. Physical Chemistry Chemical Physics, 2016, 18, 27109-27118.	1.3	48
9	Room-temperature electroluminescence from two-dimensional lead halide perovskites. Applied Physics Letters, 2016, 109, .	1.5	65
10	Elastic Constants, Optical Phonons, and Molecular Relaxations in the High Temperature Plastic Phase of the CH ₃ NH ₃ PbBr ₃ Hybrid Perovskite. Journal of Physical Chemistry Letters, 2016, 7, 3776-3784.	2.1	89
11	Impact of Photon Recycling on the Open-Circuit Voltage of Metal Halide Perovskite Solar Cells. ACS Energy Letters, 2016, 1, 731-739.	8.8	130
12	Recent progress on stability issues of organic–inorganic hybrid lead perovskite-based solar cells. RSC Advances, 2016, 6, 89356-89366.	1.7	69
13	Pure Cs ₄ PbBr ₆ : Highly Luminescent Zero-Dimensional Perovskite Solids. ACS Energy Letters, 2016, 1, 840-845.	8.8	481
14	Charge-Carrier Dynamics in 2D Hybrid Metal–Halide Perovskites. Nano Letters, 2016, 16, 7001-7007.	4.5	428
15	Role of Organic Counterion in Lead- and Tin-Based Two-Dimensional Semiconducting lodide Perovskites and Application in Planar Solar Cells. Chemistry of Materials, 2016, 28, 7781-7792.	3.2	228
16	Direct Observation of Electron–Phonon Coupling and Slow Vibrational Relaxation in Organic–Inorganic Hybrid Perovskites. Journal of the American Chemical Society, 2016, 138, 13798-13801.	6.6	196
17	Distinctive excitonic recombination in solution-processed layered organic–inorganic hybrid two-dimensional perovskites. Journal of Materials Chemistry C, 2016, 4, 10198-10204.	2.7	25
18	Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition. ACS Nano, 2016, 10, 7830-7839.	7.3	466
19	Multinuclear NMR as a tool for studying local order and dynamics in CH ₃ NH ₃ PbX ₃ (X = Cl, Br, I) hybrid perovskites. Physical Chemistry Chemical Physics, 2016, 18, 27133-27142.	1.3	78
20	Surface Electronic Structure of Hybrid Organo Lead Bromide Perovskite Single Crystals. Journal of Physical Chemistry C, 2016, 120, 21710-21715.	1.5	58
21	All-Inorganic Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 15829-15832.	6.6	899
22	Multidimensional Perovskites: A Mixed Cation Approach Towards Ambient Stable and Tunable Perovskite Photovoltaics. ChemSusChem, 2016, 9, 2541-2558.	3.6	88
23	Symmetry-Based Tight Binding Modeling of Halide Perovskite Semiconductors. Journal of Physical Chemistry Letters, 2016, 7, 3833-3840.	2.1	57
24	Photodetectors Based on Two-Dimensional Layer-Structured Hybrid Lead Iodide Perovskite Semiconductors. ACS Applied Materials & Interfaces, 2016, 8, 25660-25666.	4.0	174
25	Chemical Trends of Electronic Properties of Two-Dimensional Halide Perovskites and Their Potential Applications for Electronics and Optoelectronics. Journal of Physical Chemistry C, 2016, 120, 24682-24687.	1.5	41

#	Article	IF	CITATIONS
26	Photovoltaics literature survey (no. 130). Progress in Photovoltaics: Research and Applications, 2016, 24, 1641-1645.	4.4	0
27	Liquid Water- and Heat-Resistant Hybrid Perovskite Photovoltaics via an Inverted ALD Oxide Electron Extraction Layer Design. Nano Letters, 2016, 16, 7786-7790.	4.5	71
28	Surface Restructuring of Hybrid Perovskite Crystals. ACS Energy Letters, 2016, 1, 1119-1126.	8.8	140
29	Advances and Promises of Layered Halide Hybrid Perovskite Semiconductors. ACS Nano, 2016, 10, 9776-9786.	7.3	351
30	Turning a disadvantage into an advantage: synthesizing high-quality organometallic halide perovskite nanosheet arrays for humidity sensors. Journal of Materials Chemistry C, 2017, 5, 2504-2508.	2.7	74
31	A Ternary Solvent Method for Large‧ized Twoâ€Dimensional Perovskites. Angewandte Chemie, 2017, 129, 2430-2434.	1.6	28
32	A Ternary Solvent Method for Largeâ€Sized Twoâ€Dimensional Perovskites. Angewandte Chemie - International Edition, 2017, 56, 2390-2394.	7.2	80
33	Single-crystal microplates of two-dimensional organic–inorganic lead halide layered perovskites for optoelectronics. Nano Research, 2017, 10, 2117-2129.	5.8	109
34	Excitonic and Polaronic Properties of 2D Hybrid Organic–Inorganic Perovskites. ACS Energy Letters, 2017, 2, 417-423.	8.8	140
35	Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 2017, 355, 722-726.	6.0	2,019
36	Twoâ€Dimensional Metal Halide Perovskites: Theory, Synthesis, and Optoelectronics. Small Methods, 2017, 1, 1600018.	4.6	115
37	Black Phosphorus Quantum Dots for Hole Extraction of Typical Planar Hybrid Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 591-598.	2.1	191
38	Observation of Internal Photoinduced Electron and Hole Separation in Hybrid Two-Dimentional Perovskite Films. Journal of the American Chemical Society, 2017, 139, 1432-1435.	6.6	477
39	An effective method of predicting perovskite solar cell lifetime–Case study on planar CH 3 NH 3 PbI 3 and HC(NH 2) 2 PbI 3 perovskite solar cells and hole transfer materials of spiro-OMeTAD and PTAA. Solar Energy Materials and Solar Cells, 2017, 162, 41-46.	3.0	77
40	Effect of Precursor Solution Aging on the Crystallinity and Photovoltaic Performance of Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1602159.	10.2	130
41	Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. Journal of Materials Chemistry A, 2017, 5, 11462-11482.	5.2	378
42	Crack-free perovskite layers for high performance and reproducible devices via improved control of ambient conditions during fabrication. Applied Surface Science, 2017, 407, 427-433.	3.1	18
43	Dismantling the "Red Wall―of Colloidal Perovskites: Highly Luminescent Formamidinium and Formamidinium–Cesium Lead Iodide Nanocrystals. ACS Nano, 2017, 11, 3119-31 <u>34</u> .	7.3	414

#	Article	IF	CITATIONS
44	Tunable Light-Emitting Diodes Utilizing Quantum-Confined Layered Perovskite Emitters. ACS Photonics, 2017, 4, 476-481.	3.2	124
45	Ternary solvent boosts two-dimensional perovskites. Science Bulletin, 2017, 62, 462-463.	4.3	1
46	Perovskite Solar Cells: The Birth of a New Era in Photovoltaics. ACS Energy Letters, 2017, 2, 822-830.	8.8	305
47	Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science, 2017, 355, 1288-1292.	6.0	830
48	Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells. Nature Communications, 2017, 8, 14555.	5.8	270
49	Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells. Chemical Society Reviews, 2017, 46, 1730-1759.	18.7	99
50	Growth of Zr/N-codoped TiO2 nanorod arrays for enhanced photovoltaic performance of perovskite solar cells. RSC Advances, 2017, 7, 13325-13330.	1.7	13
51	Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nature Communications, 2017, 8, 14558.	5.8	473
52	Recent progress in stability of perovskite solar cells. Journal of Semiconductors, 2017, 38, 011002.	2.0	89
53	Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nature Reviews Materials, 2017, 2, .	23.3	867
54	Strong Interaction at the Perovskite/TiO ₂ Interface Facilitates Ultrafast Photoinduced Charge Separation: A Nonadiabatic Molecular Dynamics Study. Journal of Physical Chemistry C, 2017, 121, 3797-3806.	1.5	69
55	The rapid evolution of highly efficient perovskite solar cells. Energy and Environmental Science, 2017, 10, 710-727.	15.6	942
56	CH ₃ NH ₂ gas induced (110) preferred cesium-containing perovskite films with reduced PbI ₆ octahedron distortion and enhanced moisture stability. Journal of Materials Chemistry A, 2017, 5, 4803-4808.	5.2	33
57	Twoâ€Dimensional Materials for Halide Perovskiteâ€Based Optoelectronic Devices. Advanced Materials, 2017, 29, 1605448.	11.1	284
58	Direct Evidence of Ion Diffusion for the Silverâ€Electrodeâ€Induced Thermal Degradation of Inverted Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1602922.	10.2	277
59	Low-Dimensional-Networked Metal Halide Perovskites: The Next Big Thing. ACS Energy Letters, 2017, 2, 889-896.	8.8	367
60	Improved air stability of perovskite hybrid solar cells via blending poly(dimethylsiloxane)–urea copolymers. Journal of Materials Chemistry A, 2017, 5, 5486-5494.	5.2	49
61	Advances in Quantumâ€Confined Perovskite Nanocrystals for Optoelectronics. Advanced Energy Materials, 2017, 7, 1700267.	10.2	176

#	Article	IF	CITATIONS
62	On-axis pulsed laser deposition of hybrid perovskite films for solar cell and broadband photo-sensor applications. Journal of Applied Physics, 2017, 121, .	1.1	27
63	Recent progress in stabilizing hybrid perovskites for solar cell applications. Journal of Power Sources, 2017, 355, 98-133.	4.0	96
64	Cost-effective sustainable-engineering of CH3NH3PbI3 perovskite solar cells through slicing and restacking of 2D layers. Nano Energy, 2017, 36, 295-302.	8.2	30
65	Highly Oriented Low-Dimensional Tin Halide Perovskites with Enhanced Stability and Photovoltaic Performance. Journal of the American Chemical Society, 2017, 139, 6693-6699.	6.6	723
66	A Breakthrough Efficiency of 19.9% Obtained in Inverted Perovskite Solar Cells by Using an Efficient Trap State Passivator Cu(thiourea)I. Journal of the American Chemical Society, 2017, 139, 7504-7512.	6.6	330
67	Tailoring Organic Cation of 2D Airâ€Stable Organometal Halide Perovskites for Highly Efficient Planar Solar Cells. Advanced Energy Materials, 2017, 7, 1700162.	10.2	312
68	Trimethylsulfonium Lead Triiodide: An Air-Stable Hybrid Halide Perovskite. Inorganic Chemistry, 2017, 56, 6302-6309.	1.9	52
69	Role of Nonradiative Defects and Environmental Oxygen on Exciton Recombination Processes in CsPbBr ₃ Perovskite Nanocrystals. Nano Letters, 2017, 17, 3844-3853.	4.5	101
70	Colloidal Halide Perovskite Nanoplatelets: An Exciting New Class of Semiconductor Nanomaterials. Chemistry of Materials, 2017, 29, 5019-5030.	3.2	237
71	Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with carbon electrode based on ultrathin graphite. Carbon, 2017, 120, 71-76.	5.4	77
72	Pyridine-Induced Dimensionality Change in Hybrid Perovskite Nanocrystals. Chemistry of Materials, 2017, 29, 4393-4400.	3.2	100
73	Functionalization of transparent conductive oxide electrode for TiO ₂ -free perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 11882-11893.	5.2	56
74	Crystallinity Preservation and Ion Migration Suppression through Dual Ion Exchange Strategy for Stable Mixed Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700118.	10.2	74
75	Energy transfer yellow light emitting diodes based on blends of quasi-2D perovskites. Journal of Luminescence, 2017, 188, 567-576.	1.5	9
76	Stable and conductive lead halide perovskites facilitated by X-type ligands. Nanoscale, 2017, 9, 7252-7259.	2.8	62
77	Low temperature solution processed indium oxide thin films with reliable photoelectrochemical stability for efficient and stable planar perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 9641-9648.	5.2	53
78	An ABX 3 organic–inorganic perovskite-type material with the formula (C 5 N 2 H 9)CdCl 3 : Application for detection of volatile organic solvent molecules. Polyhedron, 2017, 131, 22-26.	1.0	16
79	Spin-coating free fabrication for highly efficient perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 168, 165-171.	3.0	70

#	Article	IF	CITATIONS
80	First-Principles Prediction of a Stable Hexagonal Phase of CH ₃ NH ₃ PbI ₃ . Chemistry of Materials, 2017, 29, 6003-6011.	3.2	62
81	Chemical tuning of dynamic cation off-centering in the cubic phases of hybrid tin and lead halide perovskites. Chemical Science, 2017, 8, 5628-5635.	3.7	93
82	Inorganic CsPbI ₃ Perovskiteâ€Based Solar Cells: A Choice for a Tandem Device. Solar Rrl, 2017, 1, 1700048.	3.1	268
83	Thermally Stable MAPbI ₃ Perovskite Solar Cells with Efficiency of 19.19% and Area over 1 cm ² achieved by Additive Engineering. Advanced Materials, 2017, 29, 1701073.	11.1	541
84	Stable High-Performance Flexible Photodetector Based on Upconversion Nanoparticles/Perovskite Microarrays Composite. ACS Applied Materials & Interfaces, 2017, 9, 19176-19183.	4.0	70
85	Diammonium and Monoammonium Mixedâ€Organicâ€Cation Perovskites for High Performance Solar Cells with Improved Stability. Advanced Energy Materials, 2017, 7, 1700444.	10.2	121
86	A Direct Bandgap Copper–Antimony Halide Perovskite. Journal of the American Chemical Society, 2017, 139, 9116-9119.	6.6	233
87	In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6]4â" cage nanoparticles. Nature Communications, 2017, 8, 15688.	5.8	191
88	Enhanced Photovoltaic Performance of Perovskite Solar Cells Based on Er-Yb Co-doped TiO2 Nanorod Arrays. Electrochimica Acta, 2017, 245, 839-845.	2.6	62
89	The Emergence of the Mixed Perovskites and Their Applications as Solar Cells. Advanced Energy Materials, 2017, 7, 1700491.	10.2	120
90	Electrochemistry and Electrochemiluminescence of Organometal Halide Perovskite Nanocrystals in Aqueous Medium. Journal of the American Chemical Society, 2017, 139, 8772-8776.	6.6	185
91	Layer-controlled two-dimensional perovskites: synthesis and optoelectronics. Journal of Materials Chemistry C, 2017, 5, 5610-5627.	2.7	60
92	NiO <i>_x</i> Hole Transport Layer for Perovskite Solar Cells with Improved Stability and Reproducibility. ACS Omega, 2017, 2, 2291-2299.	1.6	204
93	Orientation Control of Two-Dimensional Perovskites by Incorporating Carboxylic Acid Moieties. ACS Omega, 2017, 2, 2333-2336.	1.6	13
94	Synthesis and mechanical properties of a new 1D hybrid organic-inorganic lead iodide. Inorganic Chemistry Communication, 2017, 85, 45-48.	1.8	4
95	Quantum Dynamics of Photogenerated Charge Carriers in Hybrid Perovskites: Dopants, Grain Boundaries, Electric Order, and Other Realistic Aspects. ACS Energy Letters, 2017, 2, 1588-1597.	8.8	31
96	Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits. ACS Energy Letters, 2017, 2, 1539-1548.	8.8	928
97	Photovoltaic Properties of Two-dimensional (CH ₃ (CH ₂) ₃ NH ₃) ₂ Pbl ₄ Perovskite Crystals Oriented with TiO ₂ Nanowire Array. Chemistry Letters, 2017, 46, 1204-1206	0.7	17

#	Article	IF	CITATIONS
98	Broadly tunable metal halide perovskites for solid-state light-emission applications. Materials Today, 2017, 20, 413-424.	8.3	204
99	One-Year stable perovskite solar cells by 2D/3D interface engineering. Nature Communications, 2017, 8, 15684.	5.8	1,625
100	Charge transport in a two-dimensional hybrid metal halide thiocyanate compound. Journal of Materials Chemistry C, 2017, 5, 5930-5938.	2.7	37
101	Perovskite solar cells - An overview of critical issues. Progress in Quantum Electronics, 2017, 53, 1-37.	3.5	132
102	Perspective: Theory and simulation of hybrid halide perovskites. Journal of Chemical Physics, 2017, 146, 220901.	1.2	111
103	Suppressed Ion Migration in Low-Dimensional Perovskites. ACS Energy Letters, 2017, 2, 1571-1572.	8.8	404
104	Revealing the role of thiocyanate anion in layered hybrid halide perovskite (CH3NH3)2Pb(SCN)2I2. Journal of Chemical Physics, 2017, 146, 224702.	1.2	49
105	Exploring the Photovoltaic Performance of All-Inorganic Ag ₂ Pbl ₄ /Pbl ₂ Blends. Journal of Physical Chemistry Letters, 2017, 8, 1651-1656.	2.1	25
106	Powering up perovskite photoresponse. Science, 2017, 355, 1260-1261.	6.0	27
107	<i>In Situ</i> Preparation of Metal Halide Perovskite Nanocrystal Thin Films for Improved Light-Emitting Devices. ACS Nano, 2017, 11, 3957-3964.	7.3	151
108	Thin Films and Solar Cells Based on Semiconducting Two-Dimensional Ruddlesden–Popper (CH ₃ (CH ₂) ₃ NH ₃) ₂ (CH ₃ NH _{ Perovskites. ACS Energy Letters, 2017, 2, 982-990.}	3≪akanp>)<	:suabanas <i>n</i>
109	Morphology-Independent Stable White-Light Emission from Self-Assembled Two-Dimensional Perovskites Driven by Strong Exciton–Phonon Coupling to the Organic Framework. Chemistry of Materials, 2017, 29, 3947-3953.	3.2	200
110	Formamidine and cesium-based quasi-two-dimensional perovskites as photovoltaic absorbers. Chemical Communications, 2017, 53, 4366-4369.	2.2	61
111	Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability. Journal of Materials Chemistry A, 2017, 5, 11483-11500.	5.2	319
112	Colloidally prepared La-doped BaSnO ₃ electrodes for efficient, photostable perovskite solar cells. Science, 2017, 356, 167-171.	6.0	1,045
113	Ruddlesden-Popper Perovskite Solar Cells. CheM, 2017, 2, 326-327.	5.8	31
114	Fast growth of monocrystalline thin films of 2D layered hybrid perovskite. CrystEngComm, 2017, 19, 2598-2602.	1.3	66
115	Developing hierarchically porous MnO _x /NC hybrid nanorods for oxygen reduction and evolution catalysis. Green Chemistry, 2017, 19, 2793-2797.	4.6	57

#	Δρτιςι ε	IF	CITATIONS
"	High Members of the 2D Ruddlesden-Popper Halide Perovskites: Synthesis, Optical Properties, and Solar Cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16. CheM, 2017, 2, 427-440.	5.8	354
117	White-Light Emission and Structural Distortion in New Corrugated Two-Dimensional Lead Bromide Perovskites. Journal of the American Chemical Society, 2017, 139, 5210-5215.	6.6	536
118	Structure of Organometal Halide Perovskite Films as Determined with Grazingâ€Incidence Xâ€Ray Scattering Methods. Advanced Energy Materials, 2017, 7, 1700131.	10.2	113
119	Enhancement in efficiency and optoelectronic quality of perovskite thin films annealed in MACl vapor. Sustainable Energy and Fuels, 2017, 1, 755-766.	2.5	77
120	Mixed cation hybrid lead halide perovskites with enhanced performance and stability. Journal of Materials Chemistry A, 2017, 5, 11450-11461.	5.2	153
121	Optical determination of Shockley-Read-Hall and interface recombination currents in hybrid perovskites. Scientific Reports, 2017, 7, 44629.	1.6	175
122	Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour. Nature Energy, 2017, 2, .	19.8	491
123	Broadband Emission in Two-Dimensional Hybrid Perovskites: The Role of Structural Deformation. Journal of the American Chemical Society, 2017, 139, 39-42.	6.6	336
124	Thiophene-Functionalized Hybrid Perovskite Microrods and their Application in Photodetector Devices for Investigating Charge Transport Through Interfaces in Particle-Based Materials. ACS Applied Materials & Interfaces, 2017, 9, 1077-1085.	4.0	19
125	Effect of the solvent used for fabrication of perovskite films by solvent dropping on performance of perovskite light-emitting diodes. Nanoscale, 2017, 9, 2088-2094.	2.8	61
126	Organometallic Perovskite Metasurfaces. Advanced Materials, 2017, 29, 1604268.	11.1	118
127	Twoâ€Dimensional Singleâ€Layer Organic–Inorganic Hybrid Perovskite Semiconductors. Advanced Energy Materials, 2017, 7, 1601731.	10.2	93
128	Dimension engineering on cesium lead iodide for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 2066-2072.	5.2	198
129	Solution-Processed Nb:SnO ₂ Electron Transport Layer for Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 2421-2429.	4.0	315
130	Structure–Band Gap Relationships in Hexagonal Polytypes and Low-Dimensional Structures of Hybrid Tin Iodide Perovskites. Inorganic Chemistry, 2017, 56, 56-73.	1.9	220
131	Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Materials Horizons, 2017, 4, 206-216.	6.4	553
132	Syntheses of needle-shaped layered perovskite (C6H5CH2NH3)2PbI4 bundles via a two-step processing technique. Journal of Alloys and Compounds, 2017, 696, 1213-1219.	2.8	12
133	Highly enhanced long time stability of perovskite solar cells by involving a hydrophobic hole modification layer. Nano Energy, 2017, 32, 165-173.	8.2	63

# 134	ARTICLE Temperature-Induced Lattice Relaxation of Perovskite Crystal Enhances Optoelectronic Properties and Solar Cell Performance. Journal of Physical Chemistry Letters, 2017, 8, 137-143.	IF 2.1	Citations 39
135	Metal halide perovskite nanomaterials: synthesis and applications. Chemical Science, 2017, 8, 2522-2536.	3.7	233
136	Van der Waals Materials for Atomically-Thin Photovoltaics: Promise and Outlook. ACS Photonics, 2017, 4, 2962-2970.	3.2	241
137	Lead―and Iodideâ€Deficient (CH ₃ NH ₃)PbI ₃ (<i>d</i> â€MAPI): The Bridge between 2D and 3D Hybrid Perovskites. Angewandte Chemie - International Edition, 2017, 56, 16067-16072.	^e 7.2	75
138	Synergistic effect of caprolactam as lewis base and interface engineering for efficient and stable planar perovskite solar cells. Nano Energy, 2017, 42, 222-231.	8.2	38
139	Improved stability and efficiency of perovskite solar cells with submicron flexible barrier films deposited in air. Journal of Materials Chemistry A, 2017, 5, 22975-22983.	5.2	38
140	Vapor-Deposited Perovskites: The Route to High-Performance Solar Cell Production?. Joule, 2017, 1, 431-442.	11.7	274
141	Theoretical and experimental study on spectra, electronic structure and photoelectric properties of three nature dyes used for solar cells. Journal of Molecular Liquids, 2017, 247, 193-206.	2.3	12
142	Effects of Organic Cation Length on Exciton Recombination in Two-Dimensional Layered Lead Iodide Hybrid Perovskite Crystals. Journal of Physical Chemistry Letters, 2017, 8, 5177-5183.	2.1	87
143	Selective enhancement of optical nonlinearity in two-dimensional organic-inorganic lead iodide perovskites. Nature Communications, 2017, 8, 742.	5.8	134
144	Gas induced conversion of hybrid perovskite single crystal to single crystal for great enhancement of their photoelectric properties. Journal of Materials Chemistry A, 2017, 5, 21919-21925.	5.2	35
145	Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI ₃ perovskite phase for high-efficiency solar cells. Science Advances, 2017, 3, e1700841.	4.7	557
146	(2-Methylpiperidine)PbI3: an ABX3-type organic–inorganic hybrid chain compound and its semiconducting nanowires with photoconductive properties. Journal of Materials Chemistry C, 2017, 5, 11466-11471.	2.7	20
147	Two Regimes of Bandgap Red Shift and Partial Ambient Retention in Pressure-Treated Two-Dimensional Perovskites. ACS Energy Letters, 2017, 2, 2518-2524.	8.8	89
148	Lead―and Iodideâ€Deficient (CH ₃ NH ₃)PbI ₃ (<i>d</i> â€MAPI): The Bridge between 2D and 3D Hybrid Perovskites. Angewandte Chemie, 2017, 129, 16283-16288.	^e 1.6	11
149	Generalized Selfâ€Doping Engineering towards Ultrathin and Largeâ€Sized Twoâ€Dimensional Homologous Perovskites. Angewandte Chemie - International Edition, 2017, 56, 14893-14897.	7.2	81
150	Generalized Selfâ€Doping Engineering towards Ultrathin and Largeâ€Sized Twoâ€Dimensional Homologous Perovskites. Angewandte Chemie, 2017, 129, 15089-15093.	1.6	65
151	Efficient Lead-Free Solar Cells Based on Hollow {en}MASnI ₃ Perovskites. Journal of the American Chemical Society, 2017, 139, 14800-14806.	6.6	230

# 152	ARTICLE Stabilizing the Ag Electrode and Reducing <i>J</i> – <i>V</i> Hysteresis through Suppression of Iodide Migration in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 36338-36349.	IF 4.0	Citations 129
153	High Performance Metal Halide Perovskite Lightâ€Emitting Diode: From Material Design to Device Optimization. Small, 2017, 13, 1701770.	5.2	209
154	Unveiling the Influence of pH on the Crystallization of Hybrid Perovskites, Delivering Low Voltage Loss Photovoltaics. Joule, 2017, 1, 328-343.	11.7	148
155	Perovskite Photovoltaics: The Path to a Printable Terawatt-Scale Technology. ACS Energy Letters, 2017, 2, 2540-2544.	8.8	64
156	Tetrabutylammonium cations for moisture-resistant and semitransparent perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 22325-22333.	5.2	69
157	Efficient and High-Color-Purity Light-Emitting Diodes Based on <i>In Situ</i> Grown Films of CsPbX ₃ (X = Br, I) Nanoplates with Controlled Thicknesses. ACS Nano, 2017, 11, 11100-11107.	7.3	190
158	Enhancing Optoelectronic Properties of Low-Dimensional Halide Perovskite via Ultrasonic-Assisted Template Refinement. ACS Applied Materials & Interfaces, 2017, 9, 39602-39609.	4.0	12
159	Real-Time Observation of Exciton–Phonon Coupling Dynamics in Self-Assembled Hybrid Perovskite Quantum Wells. ACS Nano, 2017, 11, 10834-10843.	7.3	181
160	Van Der Waals Hybrid Perovskite of High Optical Quality by Chemical Vapor Deposition. Advanced Optical Materials, 2017, 5, 1700373.	3.6	27
161	Outstanding Performance of Holeâ€Blocking Layerâ€Free Perovskite Solar Cell Using Hierarchically Porous Fluorineâ€Doped Tin Oxide Substrate. Advanced Energy Materials, 2017, 7, 1700749.	10.2	50
162	Progress in Theoretical Study of Metal Halide Perovskite Solar Cell Materials. Advanced Energy Materials, 2017, 7, 1701136.	10.2	257
163	Inhomogeneous degradation in metal halide perovskites. Applied Physics Letters, 2017, 111, .	1.5	19
164	Giant Rashba splitting in 2D organic-inorganic halide perovskites measured by transient spectroscopies. Science Advances, 2017, 3, e1700704.	4.7	288
165	Precise Composition Tailoring of Mixed-Cation Hybrid Perovskites for Efficient Solar Cells by Mixture Design Methods. ACS Nano, 2017, 11, 8804-8813.	7.3	48
166	Unveiling Structurally Engineered Carrier Dynamics in Hybrid Quasi-Two-Dimensional Perovskite Thin Films toward Controllable Emission. Journal of Physical Chemistry Letters, 2017, 8, 4431-4438.	2.1	147
167	Influence of processing temperature and precursor composition on phase region of solution processed methylammonium lead iodide perovskite. Materials Research Express, 2017, 4, 096201.	0.8	1
168	Perovskite nanocomposites as effective CO ₂ -splitting agents in a cyclic redox scheme. Science Advances, 2017, 3, e1701184.	4.7	97
169	Allâ€Inorganic Halide Perovskites for Optoelectronics: Progress and Prospects. Solar Rrl, 2017, 1, 1700086.	3.1	167

#	Article	IF	CITATIONS
170	(C ₆ H ₅ C ₂ H ₄ NH ₃) ₂ Gel _{4A Layered Two-Dimensional Perovskite with Potential for Photovoltaic Applications. Journal of Physical Chemistry Letters, 2017, 8, 4402-4406.})>: 2.1	98
171	Enhanced efficiency and stability of inverted perovskite solar cells by interfacial engineering with alkyl bisphosphonic molecules. RSC Advances, 2017, 7, 42105-42112.	1.7	13
172	Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications. Nature Energy, 2017, 2, 780-785.	19.8	369
173	Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability. Chemical Society Reviews, 2017, 46, 6345-6378.	18.7	246
174	CH ₃ NH ₃ Br Additive for Enhanced Photovoltaic Performance and Air Stability of Planar Perovskite Solar Cells prepared by Two‣tep Dipping Method. Energy Technology, 2017, 5, 1887-1894.	1.8	18
175	Discovery of Pb-Free Perovskite Solar Cells via High-Throughput Simulation on the K Computer. Journal of Physical Chemistry Letters, 2017, 8, 4826-4831.	2.1	134
176	Tuning the A-site cation composition of FA perovskites for efficient and stable NiO-based p–i–n perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 21858-21865.	5.2	39
177	Azetidinium lead iodide for perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 20658-20665.	5.2	53
178	Quantum confinement effect of two-dimensional all-inorganic halide perovskites. Science China Materials, 2017, 60, 811-818.	3.5	38
179	A wide potential window aqueous supercapacitor based on LiMn2O4–rGO nanocomposite. Journal of the Iranian Chemical Society, 2017, 14, 2579-2590.	1.2	15
180	Controlling Crystallization of All-Inorganic Perovskite Films for Ultralow-Threshold Amplification Spontaneous Emission. ACS Applied Materials & amp; Interfaces, 2017, 9, 32920-32929.	4.0	23
181	Luminescent and Photoconductive Layered Lead Halide Perovskite Compounds Comprising Mixtures of Cesium and Guanidinium Cations. Inorganic Chemistry, 2017, 56, 11552-11564.	1.9	130
182	Engineering interface structures between lead halide perovskite and copper phthalocyanine for efficient and stable perovskite solar cells. Energy and Environmental Science, 2017, 10, 2109-2116.	15.6	169
183	Perovskite solar cells: In pursuit of efficiency and stability. Materials and Design, 2017, 136, 54-80.	3.3	83
184	CsPb _{0.9} Sn _{0.1} IBr ₂ Based All-Inorganic Perovskite Solar Cells with Exceptional Efficiency and Stability. Journal of the American Chemical Society, 2017, 139, 14009-14012.	6.6	447
185	A benzobis(thiadiazole)-based small molecule as a solution-processing electron extraction material in planar perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 10777-10784.	2.7	25
186	Impact of H ₂ O on organic–inorganic hybrid perovskite solar cells. Energy and Environmental Science, 2017, 10, 2284-2311.	15.6	345
187	Critical Fluctuations and Anharmonicity in Lead Iodide Perovskites from Molecular Dynamics Supercell Simulations. Journal of Physical Chemistry C, 2017, 121, 20729-20738.	1.5	62

#	Article	IF	CITATIONS
188	Current progress and scientific challenges in the advancement of organic–inorganic lead halide perovskite solar cells. New Journal of Chemistry, 2017, 41, 10508-10527.	1.4	21
189	Engineered Directional Charge Flow in Mixed Two-Dimensional Perovskites Enabled by Facile Cation-Exchange. Journal of Physical Chemistry C, 2017, 121, 21281-21289.	1.5	38
190	TiO2/RbPbI3 halide perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 172, 44-54.	3.0	53
191	Investigation of Thermally Induced Degradation in CH3NH3PbI3 Perovskite Solar Cells using In-situ Synchrotron Radiation Analysis. Scientific Reports, 2017, 7, 4645.	1.6	177
192	Low-dimensional hybrid perovskites as high performance anodes for alkali-ion batteries. Journal of Materials Chemistry A, 2017, 5, 18634-18642.	5.2	64
193	Emerging Semitransparent Solar Cells: Materials and Device Design. Advanced Materials, 2017, 29, 1700192.	11.1	200
194	Dimensional Engineering of a Graded 3D–2D Halide Perovskite Interface Enables Ultrahigh <i>V</i> _{oc} Enhanced Stability in the pâ€iâ€n Photovoltaics. Advanced Energy Materials, 2017, 7, 1701038.	10.2	319
195	Aerosolâ€Jetâ€Assisted Thinâ€Film Growth of CH ₃ NH ₃ PbI ₃ Perovskites—A Means to Achieve High Quality, Defectâ€Free Films for Efficient Solar Cells. Advanced Energy Materials, 2017, 7, 1701151.	10.2	58
196	Lowâ€Dimensional Organic–Inorganic Halide Perovskite: Structure, Properties, and Applications. ChemSusChem, 2017, 10, 3712-3721.	3.6	100
197	Optical Properties and Modeling of 2D Perovskite Solar Cells. Solar Rrl, 2017, 1, 1700062.	3.1	48
198	Two-Dimensional Lead(II) Halide-Based Hybrid Perovskites Templated by Acene Alkylamines: Crystal Structures, Optical Properties, and Piezoelectricity. Inorganic Chemistry, 2017, 56, 9291-9302.	1.9	397
199	Tunable White-Light Emission in Single-Cation-Templated Three-Layered 2D Perovskites (CH ₃ CH ₂ NH ₃) ₄ Pb ₃ Br _{10–<i>x</i>/sub Journal of the American Chemical Society, 2017, 139, 11956-11963.}	≫cock≺sub>	<3>>>>>
200	Stabilizing and scaling up carbon-based perovskite solar cells. Journal of Materials Research, 2017, 32, 3011-3020.	1.2	30
201	Conjugated Organic Cations to Improve the Optoelectronic Properties of 2D/3D Perovskites. ACS Energy Letters, 2017, 2, 1969-1970.	8.8	52
202	Charge carrier localised in zero-dimensional (CH3NH3)3Bi2I9 clusters. Nature Communications, 2017, 8, 170.	5.8	62
203	Inside Perovskites: Quantum Luminescence from Bulk Cs ₄ PbBr ₆ Single Crystals. Chemistry of Materials, 2017, 29, 7108-7113.	3.2	200
204	Insights into charge carrier dynamics in organo-metal halide perovskites: from neat films to solar cells. Chemical Society Reviews, 2017, 46, 5714-5729.	18.7	197
205	CsPb ₂ Br ₅ Single Crystals: Synthesis and Characterization. ChemSusChem, 2017, 10, 3746-3749.	3.6	130

#	Article	IF	CITATIONS
206	Biexciton Resonances Reveal Exciton Localization in Stacked Perovskite Quantum Wells. Journal of Physical Chemistry Letters, 2017, 8, 3895-3901.	2.1	41
207	Crystalline orientation control using self-assembled TiO ₂ nanosheet scaffold to improve CH ₃ NH ₃ PbI ₃ perovskite solar cells. Japanese Journal of Applied Physics, 2017, 56, 08MC17.	0.8	6
208	Ruddlesden–Popper Phase in Two-Dimensional Inorganic Halide Perovskites: A Plausible Model and the Supporting Observations. Nano Letters, 2017, 17, 5489-5494.	4.5	90
209	Perovskite-based photodetectors: materials and devices. Chemical Society Reviews, 2017, 46, 5204-5236.	18.7	709
210	High efficiency quasi 2D lead bromide perovskite solar cells using various barrier molecules. Sustainable Energy and Fuels, 2017, 1, 1935-1943.	2.5	96
211	Stable high efficiency two-dimensional perovskite solar cells via cesium doping. Energy and Environmental Science, 2017, 10, 2095-2102.	15.6	588
212	An organic-inorganic perovskite ferroelectric with large piezoelectric response. Science, 2017, 357, 306-309.	6.0	744
213	Synthetic Manipulation of Hybrid Perovskite Systems in Search of New and Enhanced Functionalities. ChemSusChem, 2017, 10, 3722-3739.	3.6	11
214	Ultrafast Electron Dynamics in Solar Energy Conversion. Chemical Reviews, 2017, 117, 10940-11024.	23.0	266
215	Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nature Energy, 2017, 2, .	19.8	1,169
215 216	Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nature Energy, 2017, 2, . Influence of ligand shell ordering on dimensional confinement of cesium lead bromide (CsPbBr ₃) perovskite nanoplatelets. Journal of Materials Chemistry C, 2017, 5, 8810-8818.	19.8 2.7	1,169 66
215 216 217	Efficient ambient-air-stable solar cells with 2Dâ€"3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nature Energy, 2017, 2, . Influence of ligand shell ordering on dimensional confinement of cesium lead bromide (CsPbBr ₃) perovskite nanoplatelets. Journal of Materials Chemistry C, 2017, 5, 8810-8818. Exploring the effects of interfacial carrier transport layers on device performance and optoelectronic properties of planar perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 8819-8827.	19.8 2.7 2.7	1,169 66 106
215216217218	Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nature Energy, 2017, 2, . Influence of ligand shell ordering on dimensional confinement of cesium lead bromide (CsPbBr ₃) perovskite nanoplatelets. Journal of Materials Chemistry C, 2017, 5, 8810-8818. Exploring the effects of interfacial carrier transport layers on device performance and optoelectronic properties of planar perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 8819-8827. Controllable Synthesis of Two-Dimensional Ruddlesden–Popper-Type Perovskite Heterostructures. Journal of Physical Chemistry Letters, 2017, 8, 6211-6219.	19.8 2.7 2.7 2.1	1,169 66 106 54
 215 216 217 218 219 	Efficient ambient-air-stable solar cells with 2Dâ€"3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nature Energy, 2017, 2, . Influence of ligand shell ordering on dimensional confinement of cesium lead bromide (CsPbBr ₃) perovskite nanoplatelets. Journal of Materials Chemistry C, 2017, 5, 8810-8818. Exploring the effects of interfacial carrier transport layers on device performance and optoelectronic properties of planar perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 8819-8827. Controllable Synthesis of Two-Dimensional Ruddlesdenâ€"Popper-Type Perovskite Heterostructures. Journal of Physical Chemistry Letters, 2017, 8, 6211-6219. Effects of the additives <i>n</i> perovskite solar cells. RSC Advances, 2017, 7, 55986-55992.	19.8 2.7 2.7 2.1 1.7	1,169 66 106 54
 215 216 217 218 219 220 	Efficient ambient-air-stable solar cells with 2Dâ€"3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nature Energy, 2017, 2, . Influence of ligand shell ordering on dimensional confinement of cesium lead bromide (CsPbBr ₃) perovskite nanoplatelets. Journal of Materials Chemistry C, 2017, 5, 8810-8818. Exploring the effects of interfacial carrier transport layers on device performance and optoelectronic properties of planar perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 8819-8827. Controllable Synthesis of Two-Dimensional Ruddlesdenâ€"Popper-Type Perovskite Heterostructures. Journal of Physical Chemistry Letters, 2017, 8, 6211-6219. Effects of the additives <i>n</i> perovskite solar cells. RSC Advances, 2017, 7, 55986-55992. Extremely Low Operating Current Resistive Memory Based on Exfoliated 2D Perovskite Single Crystals for Neuromorphic Computing. ACS Nano, 2017, 11, 12247-12256.	 19.8 2.7 2.7 2.1 1.7 7.3 	1,169 66 106 54 12 286
 215 216 217 218 219 220 221 	Efficient ambient-air-stable solar cells with 2Dâ€"3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nature Energy, 2017, 2, . Influence of ligand shell ordering on dimensional confinement of cesium lead bromide (CsPbBr ₃) perovskite nanoplatelets. Journal of Materials Chemistry C, 2017, 5, 8810-8818. Exploring the effects of interfacial carrier transport layers on device performance and optoelectronic properties of planar perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 8819-8827. Controllable Synthesis of Two-Dimensional Ruddlesdenâ€"Popper-Type Perovskite Heterostructures. Journal of Physical Chemistry Letters, 2017, 8, 6211-6219. Effects of the additives <i>n Effects of the additives <i>n Effects of perovskite solar cells. RSC Advances, 2017, 7, 55986-55992. Extremely Low Operating Current Resistive Memory Based on Exfoliated 2D Perovskite Single Crystals for Neuromorphic Computing. ACS Nano, 2017, 11, 12247-12256. Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nature Energy, 2017, 2, 972-979.</i></i>	 19.8 2.7 2.7 2.1 1.7 7.3 19.8 	1,169 66 106 54 12 286 286
 215 216 217 218 219 220 221 222 	Efficient ambient-air-stable solar cells with 2Dâ€"3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites. Nature Energy, 2017, 2, . Influence of ligand shell ordering on dimensional confinement of cesium lead bromide (CsPbBr _{3<(sub>) perovskite nanoplatelets. Journal of Materials Chemistry C, 2017, 5, 8810-8818. Exploring the effects of interfacial carrier transport layers on device performance and optoelectronic properties of planar perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 8819-8827. Controllable Synthesis of Two-Dimensional Ruddlesdenâ€"Popper-Type Perovskite Heterostructures. Journal of Physical Chemistry Letters, 2017, 8, 6211-6219. Effects of the additives <i>n Effects of the additives <i>n Effects of perovskite solar cells. RSC Advances, 2017, 7, 55986-55992. Extremely Low Operating Current Resistive Memory Based on Exfoliated 2D Perovskite Single Crystals for Neuromorphic Computing. ACS Nano, 2017, 11, 12247-12256. Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nature Energy, 2017, 2, 972-979. Zero-dimensional methylammonium iodo bismuthate solar cells and synergistic interactions with silicon nanocrystals. Nanoscale, 2017, 9, 18759-18771.</i></i>}	 19.8 2.7 2.7 2.1 1.7 7.3 19.8 2.8 	1,169 66 106 54 12 286 286 25

#	Article	IF	CITATIONS
224	Room-Temperature and Solution-Processable Cu-Doped Nickel Oxide Nanoparticles for Efficient Hole-Transport Layers of Flexible Large-Area Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 41887-41897.	4.0	171
225	Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites. Nature Communications, 2017, 8, 1328.	5.8	35
226	Ferroelectricity in Ruddlesden–Popper Chalcogenide Perovskites for Photovoltaic Application: The Role of Tolerance Factor. Journal of Physical Chemistry Letters, 2017, 8, 5834-5839.	2.1	35
227	Stable Graphene-Two-Dimensional Multiphase Perovskite Heterostructure Phototransistors with High Gain. Nano Letters, 2017, 17, 7330-7338.	4.5	88
228	Strain-induced improper ferroelectricity in Ruddlesden-Popper perovskite halides. Physical Review B, 2017, 96, .	1.1	14
229	Synthesis of Lead-Free Perovskite Films by Combinatorial Evaporation: Fast Processes for Screening Different Precursor Combinations. Chemistry of Materials, 2017, 29, 9946-9953.	3.2	13
230	Interplay between Localized and Free Charge Carriers Can Explain Hot Fluorescence in the CH3NH3PbBr3 Perovskite: Time-Domain Ab Initio Analysis. Journal of the American Chemical Society, 2017, 139, 17327-17333.	6.6	70
231	Promises and challenges of perovskite solar cells. Science, 2017, 358, 739-744.	6.0	1,510
232	New Type of 2D Perovskites with Alternating Cations in the Interlayer Space, (C(NH ₂) ₃)(CH ₃ NH ₃) _{(i>n Structure, Properties, and Photovoltaic Performance. Journal of the American Chemical Society, 2017, 139, 16297-16309.}	l <su< td=""><td>ıb₃3<i>n</i></td></su<>	ıb ₃ 3 <i>n</i>
233	Cathodoluminescence of Self-Organized Heterogeneous Phases in Multidimensional Perovskite Thin Films. Chemistry of Materials, 2017, 29, 10088-10094.	3.2	30
234	Interconversion between Free Charges and Bound Excitons in 2D Hybrid Lead Halide Perovskites. Journal of Physical Chemistry C, 2017, 121, 26566-26574.	1.5	123
235	Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700264.	10.2	295
236	High-Efficiency Water-Splitting Solar Cells with Low Diffusion Resistance Corresponding to Halochromic Pigments Interfacing with ZrO ₂ . ACS Sustainable Chemistry and Engineering, 2017, 5, 7716-7722.	3.2	16
237	Perovskite solar cells: Stability lies at interfaces. Nature Energy, 2017, 2, .	19.8	117
238	A theoretical study of hybrid lead iodide perovskite homologous semiconductors with 0D, 1D, 2D and 3D structures. Journal of Materials Chemistry A, 2017, 5, 16786-16795.	5.2	43
239	Melt Processing of Hybrid Organic–Inorganic Lead Iodide Layered Perovskites. Chemistry of Materials, 2017, 29, 6200-6204.	3.2	67
240	Accelerated Lifetime Testing of Organic–Inorganic Perovskite Solar Cells Encapsulated by Polyisobutylene. ACS Applied Materials & Interfaces, 2017, 9, 25073-25081.	4.0	165
241	Ultralow Self-Doping in Two-dimensional Hybrid Perovskite Single Crystals. Nano Letters, 2017, 17, 4759-4767.	4.5	251

#	Article	IF	CITATIONS
242	Two-Dimensional Organic Tin Halide Perovskites with Tunable Visible Emission and Their Use in Light-Emitting Devices. ACS Energy Letters, 2017, 2, 1662-1668.	8.8	204
243	2D halide perovskite-based van der Waals heterostructures: contact evaluation and performance modulation. 2D Materials, 2017, 4, 035009.	2.0	23
244	Rashba and Dresselhaus Couplings in Halide Perovskites: Accomplishments and Opportunities for Spintronics and Spin–Orbitronics. Journal of Physical Chemistry Letters, 2017, 8, 3362-3370.	2.1	150
245	Semiconductor plasmon-sensitized broadband upconversion and its enhancement effect on the power conversion efficiency of perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 16559-16567.	5.2	70
246	In Situ Fabrication of Highly Luminescent Bifunctional Amino Acid Crosslinked 2D/3D NH ₃ C ₄ H ₉ COO(CH ₃ NH ₃ PbBr ₃) <i Perovskite Films. Advanced Functional Materials, 2017, 27, 1603568.</i 	>< 758 b>n<	/s ubø
247	Beyond methylammonium lead iodide: prospects for the emergent field of ns ² containing solar absorbers. Chemical Communications, 2017, 53, 20-44.	2.2	357
248	Mixtures of quasi-two and three dimensional hybrid organic-inorganic semiconducting perovskites for single layer LED. Journal of Alloys and Compounds, 2017, 692, 589-598.	2.8	42
249	Main-Group Halide Semiconductors Derived from Perovskite: Distinguishing Chemical, Structural, and Electronic Aspects. Inorganic Chemistry, 2017, 56, 11-25.	1.9	45
250	Structural and Morphological Evolution for Water-resistant Organic Thermoelectrics. Scientific Reports, 2017, 7, 13287.	1.6	18
251	Methylamine Gas Based Synthesis and Healing Process Toward Upscaling of Perovskite Solar Cells: Progress and Perspective. Solar Rrl, 2017, 1, 1700076.	3.1	40
252	The energy conversion processes. , 2017, , 357-567.		1
253	Modeling and designing multilayer 2D perovskite / silicon bifacial tandem photovoltaics for high efficiencies and long-term stability. Optics Express, 2017, 25, A311.	1.7	19
254	Make perovskite solar cells stable. Nature, 2017, 544, 155-156.	13.7	304
255	Amplified Spontaneous Emission Based on 2D Ruddlesden–Popper Perovskites. Advanced Functional Materials, 2018, 28, 1707006.	7.8	129
256	Hybrid Dion–Jacobson 2D Lead Iodide Perovskites. Journal of the American Chemical Society, 2018, 140, 3775-3783.	6.6	686
257	2D Ruddlesden–Popper Perovskites Microring Laser Array. Advanced Materials, 2018, 30, e1706186.	11.1	190
258	Influence of a cobalt additive in spiro-OMeTAD on charge recombination and carrier density in perovskite solar cells investigated using impedance spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 10114-10120.	1.3	26
259	Electrons, Excitons, and Phonons in Two-Dimensional Hybrid Perovskites: Connecting Structural, Optical, and Electronic Properties. Journal of Physical Chemistry Letters, 2018, 9, 1434-1447.	2.1	283

#	Article	IF	CITATIONS
260	Composite Nature of Layered Hybrid Perovskites: Assessment on Quantum and Dielectric Confinements and Band Alignment. ACS Nano, 2018, 12, 3321-3332.	7.3	146
261	Coating Evaporated MAPI Thin Films with Organic Molecules: Improved Stability at High Temperature and Implementation in High-Efficiency Solar Cells. ACS Energy Letters, 2018, 3, 835-839.	8.8	30
262	Magnetism in monolayer 1T-MoS ₂ and 1T-MoS ₂ H tuned by strain. RSC Advances, 2018, 8, 8435-8441.	1.7	21
263	Broadband Emission in a New Two-Dimensional Cd-Based Hybrid Perovskite. ACS Photonics, 2018, 5, 1599-1611.	3.2	96
264	Key parameters of two typical intercalation reactions to prepare hybrid inorganic–organic perovskite films. Chinese Physics B, 2018, 27, 018807.	0.7	0
265	Guanidinium-Formamidinium Lead Iodide: A Layered Perovskite-Related Compound with Red Luminescence at Room Temperature. Journal of the American Chemical Society, 2018, 140, 3850-3853.	6.6	123
266	Characterising degradation of perovskite solar cells through in-situ and operando electron microscopy. Nano Energy, 2018, 47, 243-256.	8.2	67
267	High transport and excellent optical property of a two-dimensional single-layered hybrid perovskite (C ₄ H ₉ NH ₃) ₂ PbBr ₄ : a theoretical study. Physical Chemistry Chemical Physics, 2018, 20, 13241-13248.	1.3	17
268	Synchronized-pressing fabrication of cost-efficient crystalline perovskite solar cells <i>via</i> intermediate engineering. Nanoscale, 2018, 10, 9628-9633.	2.8	8
269	Device simulation of inverted CH3NH3PbI3â^'xClx perovskite solar cells based on PCBM electron transport layer and NiO hole transport layer. Solar Energy, 2018, 169, 11-18.	2.9	92
270	Exploring Inorganic Binary Alkaline Halide to Passivate Defects in Lowâ€Temperatureâ€Processed Planarâ€Structure Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1800138.	10.2	186
271	Trash into Treasure: δâ€FAPbI ₃ Polymorph Stabilized MAPbI ₃ Perovskite with Power Conversion Efficiency beyond 21%. Advanced Materials, 2018, 30, e1707143.	11.1	101
272	Continuous Grain-Boundary Functionalization for High-Efficiency Perovskite Solar Cells with Exceptional Stability. CheM, 2018, 4, 1404-1415.	5.8	165
273	Quasi-Two-Dimensional Halide Perovskite Single Crystal Photodetector. ACS Nano, 2018, 12, 4919-4929.	7.3	252
274	The formation of perovskite multiple quantum well structures for high performance light-emitting diodes. Npj Flexible Electronics, 2018, 2, .	5.1	46
275	Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering. Chemical Society Reviews, 2018, 47, 4581-4610.	18.7	455
276	In Situ X-Ray Studies of Crystallization Kinetics and Ordering in Functional Organic and Hybrid Materials. , 2018, , 33-60.		0
277	Low-Threshold Lasing from 2D Homologous Organic–Inorganic Hybrid Ruddlesden–Popper Perovskite Single Crystals. Nano Letters, 2018, 18, 3221-3228.	4.5	177

#	Article	IF	CITATIONS
278	A Twoâ€Dimensional Ruddlesden–Popper Perovskite Nanowire Laser Array based on Ultrafast Lightâ€Harvesting Quantum Wells. Angewandte Chemie - International Edition, 2018, 57, 7748-7752.	7.2	72
279	Recent progress in 2D/quasi-2D layered metal halide perovskites for solar cells. Journal of Materials Chemistry A, 2018, 6, 11063-11077.	5.2	183
280	Material challenges for solar cells in the twenty-first century: directions in emerging technologies. Science and Technology of Advanced Materials, 2018, 19, 336-369.	2.8	162
281	Mixed 3D–2D Passivation Treatment for Mixedâ€Cation Lead Mixedâ€Halide Perovskite Solar Cells for Higher Efficiency and Better Stability. Advanced Energy Materials, 2018, 8, 1703392.	10.2	289
282	2D Perovskites with Short Interlayer Distance for Highâ€Performance Solar Cell Application. Advanced Materials, 2018, 30, e1800710.	11.1	297
283	The Effect of Hydrophobicity of Ammonium Salts on Stability of Quasiâ€2D Perovskite Materials in Moist Condition. Advanced Energy Materials, 2018, 8, 1800051.	10.2	205
284	Layer-dependent transport and optoelectronic property in two-dimensional perovskite: (PEA) ₂ Pbl ₄ . Nanoscale, 2018, 10, 8677-8688.	2.8	169
285	Improving the stability and decreasing the trap state density of mixed-cation perovskite solar cells through compositional engineering. Sustainable Energy and Fuels, 2018, 2, 1332-1341.	2.5	36
286	Cs ₄ PbBr ₆ /CsPbBr ₃ Perovskite Composites with Near-Unity Luminescence Quantum Yield: Large-Scale Synthesis, Luminescence and Formation Mechanism, and White Light-Emitting Diode Application. ACS Applied Materials & Interfaces, 2018, 10, 15905-15912.	4.0	135
287	Perovskite solar cells: must lead be replaced – and can it be done?. Science and Technology of Advanced Materials, 2018, 19, 425-442.	2.8	151
288	Phase Transition Control for High Performance Ruddlesden–Popper Perovskite Solar Cells. Advanced Materials, 2018, 30, e1707166.	11.1	244
289	Impedance Spectroscopy Measurements in Perovskite Solar Cells: Device Stability and Noise Reduction. ACS Energy Letters, 2018, 3, 1044-1048.	8.8	103
290	Totally room-temperature solution-processing method for fabricating flexible perovskite solar cells using an Nb ₂ O ₅ –TiO ₂ electron transport layer. RSC Advances, 2018, 8, 12823-12831.	1.7	25
291	WO _{<i>x</i>} @PEDOT Core–Shell Nanorods: Hybrid Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 1742-1752.	2.5	15
292	Light-induced lattice expansion leads to high-efficiency perovskite solar cells. Science, 2018, 360, 67-70.	6.0	554
293	The Diversity of Layered Halide Perovskites. Annual Review of Materials Research, 2018, 48, 111-136.	4.3	132
294	Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance. Nature Communications, 2018, 9, 1336.	5.8	323
295	Extra thermo- and water-stable one-dimensional organic–inorganic hybrid perovskite [<i>N</i> -methyldabconium]Pbl ₃ showing switchable dielectric behaviour, conductivity and bright yellow-green emission. Chemical Communications, 2018, 54, 4321-4324	2.2	50

#	Article	IF	CITATIONS
296	Low Thermal Conductivity of RE-Doped SrO(SrTiO3)1 Ruddlesden Popper Phase Bulk Materials Prepared by Molten Salt Method. Electronic Materials Letters, 2018, 14, 556-562.	1.0	9
297	Organic–Inorganic Hybrid Ruddlesden–Popper Perovskites: An Emerging Paradigm for High-Performance Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2018, 9, 2251-2258.	2.1	59
298	Unravelling Lightâ€induced Degradation of Layered Perovskite Crystals and Design of Efficient Encapsulation for Improved Photostability. Advanced Functional Materials, 2018, 28, 1800305.	7.8	95
299	Imaging Heterogeneously Distributed Photoâ€Active Traps in Perovskite Single Crystals. Advanced Materials, 2018, 30, e1705494.	11.1	28
300	Pseudohalideâ€induced 2D (CH ₃ NH ₃) ₂ PbI ₂ (SCN) ₂ Perovskite for Ternary Resistive Memory with High Performance. Small, 2018, 14, e1703667.	5.2	91
301	Enhanced Performance of Red Perovskite Light-Emitting Diodes through the Dimensional Tailoring of Perovskite Multiple Quantum Wells. Journal of Physical Chemistry Letters, 2018, 9, 881-886.	2.1	102
302	Synthetic Control over Quantum Well Width Distribution and Carrier Migration in Low-Dimensional Perovskite Photovoltaics. Journal of the American Chemical Society, 2018, 140, 2890-2896.	6.6	288
303	Aromatic Alkylammonium Spacer Cations for Efficient Twoâ€Dimensional Perovskite Solar Cells with Enhanced Moisture and Thermal Stability. Solar Rrl, 2018, 2, 1700215.	3.1	55
304	Suppressed Ion Migration along the In-Plane Direction in Layered Perovskites. ACS Energy Letters, 2018, 3, 684-688.	8.8	240
305	Structural and Electronic Properties of Two-Dimensional Organic–inorganic Halide Perovskites and their Stability against Moisture. Journal of Physical Chemistry C, 2018, 122, 5844-5853.	1.5	19
306	Improved Performance of Printable Perovskite Solar Cells with Bifunctional Conjugated Organic Molecule. Advanced Materials, 2018, 30, 1705786.	11.1	209
307	Low-dimensional halide perovskites: review and issues. Journal of Materials Chemistry C, 2018, 6, 2189-2209.	2.7	165
308	Ab Initio Design of Low Band Gap 2D Tin Organohalide Perovskites. Journal of Physical Chemistry C, 2018, 122, 3677-3689.	1.5	10
309	2D layered organic–inorganic heterostructures for clean energy applications. Journal of Materials Chemistry A, 2018, 6, 3824-3849.	5.2	51
310	Hybrid Perovskites: Prospects for Concentrator Solar Cells. Advanced Science, 2018, 5, 1700792.	5.6	76
311	Firefly-like Water Splitting Cells Based on FRET Phenomena with Ultrahigh Performance over 12%. ACS Applied Materials & amp; Interfaces, 2018, 10, 5007-5013.	4.0	15
312	Charge-Carrier Dynamics and Crystalline Texture of Layered Ruddlesden–Popper Hybrid Lead Iodide Perovskite Thin Films. ACS Energy Letters, 2018, 3, 380-386.	8.8	97
313	Progress and Perspective in Lowâ€Dimensional Metal Halide Perovskites for Optoelectronic Applications. Solar Rrl, 2018, 2, 1700186.	3.1	98

#	Article	IF	CITATIONS
314	Selective growth of layered perovskites for stable and efficient photovoltaics. Energy and Environmental Science, 2018, 11, 952-959.	15.6	305
315	Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nature Communications, 2018, 9, 570.	5.8	763
316	Design Principles for the Atomic and Electronic Structure of Halide Perovskite Photovoltaic Materials: Insights from Computation. Chemistry - A European Journal, 2018, 24, 8708-8716.	1.7	26
317	Photo-Rechargeable Organo-Halide Perovskite Batteries. Nano Letters, 2018, 18, 1856-1862.	4.5	170
318	Unraveling the Growth of Hierarchical Quasi-2D/3D Perovskite and Carrier Dynamics. Journal of Physical Chemistry Letters, 2018, 9, 1124-1132.	2.1	52
319	In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1706923.	7.8	543
320	Characterization of the Valence and Conduction Band Levels of <i>n</i> = 1 2D Perovskites: A Combined Experimental and Theoretical Investigation. Advanced Energy Materials, 2018, 8, 1703468.	10.2	76
321	Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures. Journal of Physical Chemistry Letters, 2018, 9, 654-658.	2.1	447
322	Surface Electronic Modification of Perovskite Thin Film with Waterâ€Resistant Electron Delocalized Molecules for Stable and Efficient Photovoltaics. Advanced Energy Materials, 2018, 8, 1703143.	10.2	91
323	Simultaneous Improvement of Photovoltaic Performance and Stability by In Situ Formation of 2D Perovskite at (FAPbI ₃) _{0.88} (CsPbBr ₃) _{0.12} /CuSCN Interface. Advanced Energy Materials, 2018, 8, 1702714.	10.2	253
324	Extending the Compositional Space of Mixed Lead Halide Perovskites by Cs, Rb, K, and Na Doping. Journal of Physical Chemistry C, 2018, 122, 13548-13557.	1.5	70
325	Criticality of Symmetry in Rational Design of Chalcogenide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 248-257.	2.1	43
326	Computational analysis of hybrid perovskite on silicon 2-T tandem solar cells based on a Si tunnel junction. Optical and Quantum Electronics, 2018, 50, 1.	1.5	26
327	Roomâ€Temperature Red–Green–Blue Whisperingâ€Gallery Mode Lasing and Whiteâ€Light Emission from Cesium Lead Halide Perovskite (CsPbX ₃ , X = Cl, Br, I) Microstructures. Advanced Optical Materials, 2018, 6, 1700993.	3.6	47
328	Heat Treatment for Regenerating Degraded Low-Dimensional Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 4860-4865.	4.0	14
329	Allâ€Solidâ€State Mechanochemical Synthesis and Postâ€Synthetic Transformation of Inorganic Perovskiteâ€type Halides. Chemistry - A European Journal, 2018, 24, 1811-1815.	1.7	110
330	Lowâ€Dimensional Perovskites: From Synthesis to Stability in Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702073.	10.2	74
331	Broadband white-light emission with a high color rendering index in a two-dimensional organic–inorganic hybrid perovskite. Journal of Materials Chemistry C, 2018, 6, 1171-1175.	2.7	86

#	Article	IF	CITATIONS
332	Enhancing moisture tolerance in efficient hybrid 3D/2D perovskite photovoltaics. Journal of Materials Chemistry A, 2018, 6, 2122-2128.	5.2	163
333	Carbon-sandwiched perovskite solar cell. Journal of Materials Chemistry A, 2018, 6, 1382-1389.	5.2	98
334	Highly Enhanced Third-Harmonic Generation in 2D Perovskites at Excitonic Resonances. ACS Nano, 2018, 12, 644-650.	7.3	100
335	Control of Electrical Potential Distribution for High-Performance Perovskite Solar Cells. Joule, 2018, 2, 296-306.	11.7	138
336	Light-induced current mapping in oxide based solar cells with nanoscale resolution. Solar Energy Materials and Solar Cells, 2018, 176, 310-317.	3.0	5
337	Influence of metal substitution on hybrid halide perovskites: towards lead-free perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 3793-3823.	5.2	154
338	Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nature Reviews Chemistry, 2018, 2, .	13.8	631
339	Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation. 2D Materials, 2018, 5, 021001.	2.0	65
340	Stable Lightâ€Emitting Diodes Using Phaseâ€Pure Ruddlesden–Popper Layered Perovskites. Advanced Materials, 2018, 30, 1704217.	11.1	258
341	Effect of Cs on the Stability and Photovoltaic Performance of 2D/3D Perovskite-Based Solar Cells. ACS Energy Letters, 2018, 3, 366-372.	8.8	64
342	<i>In situ</i> induced core/shell stabilized hybrid perovskites <i>via</i> gallium(<scp>iii</scp>) acetylacetonate intermediate towards highly efficient and stable solar cells. Energy and Environmental Science, 2018, 11, 286-293.	15.6	79
343	Alternative Perovskites for Photovoltaics. Advanced Energy Materials, 2018, 8, 1703120.	10.2	85
344	Cyclic Utilization of Lead in Carbon-Based Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2018, 6, 7558-7564.	3.2	30
345	From Ultrafast to Ultraslow: Charge-Carrier Dynamics of Perovskite Solar Cells. Joule, 2018, 2, 879-901.	11.7	190
346	Concentrated Sunlight for Materials Synthesis and Diagnostics. Advanced Materials, 2018, 30, e1800444.	11.1	12
347	A Twoâ€Dimensional Ruddlesden–Popper Perovskite Nanowire Laser Array based on Ultrafast Lightâ€Harvesting Quantum Wells. Angewandte Chemie, 2018, 130, 7874-7878.	1.6	24
348	Lead-Free, Two-Dimensional Mixed Germanium and Tin Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 2518-2522.	2.1	92
349	Enhanced Exciton and Photon Confinement in Ruddlesden–Popper Perovskite Microplatelets for Highly Stable Lowâ€Threshold Polarized Lasing. Advanced Materials, 2018, 30, e1707235.	11.1	101

#	Article	IF	CITATIONS
350	Phase Engineering in Quasi-2D Ruddlesden–Popper Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 2627-2631.	2.1	82
351	High-Performance Photodetectors Based on Single All-Inorganic CsPbBr ₃ Perovskite Microwire. ACS Photonics, 2018, 5, 2113-2119.	3.2	61
352	Highly Efficient Spectrally Stable Red Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, e1707093.	11.1	184
353	Atomic and Electronic Structure of Two-Dimensional Inorganic Halide Perovskites A _{<i>n</i>+1} M <i>_n</i> X _{3<i>n</i>+1} (<i>n</i> = 1–6, A = Cs, M = Pb) Tj 122. 7464-7473.	ETQq1 1 1.5	0.784314 rg
354	Highly Efficient and Stable Solar Cells with 2D MA ₃ Bi ₂ I ₉ /3D MAPbI ₃ Heterostructured Perovskites. Advanced Energy Materials, 2018, 8, 1703620.	10.2	94
355	Overcoming Bulk Recombination Limits of Layered Perovskite Solar Cells with Mesoporous Substrates. Journal of Physical Chemistry C, 2018, 122, 14177-14185.	1.5	20
356	Scalable fabrication of perovskite solar cells. Nature Reviews Materials, 2018, 3, .	23.3	764
357	Solution Based Synthesis of Cs4PbBr6 Perovskite Particles with High Luminescence and Stability. MRS Advances, 2018, 3, 2825-2831.	0.5	7
358	Anharmonicity and Disorder in the Black Phases of Cesium Lead Iodide Used for Stable Inorganic Perovskite Solar Cells. ACS Nano, 2018, 12, 3477-3486.	7.3	546
359	Two-dimensional halide perovskite nanomaterials and heterostructures. Chemical Society Reviews, 2018, 47, 6046-6072.	18.7	339
360	Highly efficient white-light emission in a polar two-dimensional hybrid perovskite. Chemical Communications, 2018, 54, 4053-4056.	2.2	94
361	Perovskite Solar Absorbers: Materials by Design. Small Methods, 2018, 2, 1700316.	4.6	95
362	Ligand-mediated synthesis of compositionally related cesium lead halide CsPb ₂ X ₅ nanowires with improved stability. Nanoscale, 2018, 10, 7658-7665.	2.8	30
363	Inter-phase charge and energy transfer in Ruddlesden–Popper 2D perovskites: critical role of the spacing cations. Journal of Materials Chemistry A, 2018, 6, 6244-6250.	5.2	94
364	Solvent-dependent self-assembly of two dimensional layered perovskite (C6H5CH2CH2NH3)2MCl4 (M = Cu, Mn) thin films in ambient humidity. Scientific Reports, 2018, 8, 4661.	1.6	11
365	Rapid Decoherence Suppresses Charge Recombination in Multi-Layer 2D Halide Perovskites: Time-Domain Ab Initio Analysis. Nano Letters, 2018, 18, 2459-2466.	4.5	114
366	Large-area perovskite solar cells – a review of recent progress and issues. RSC Advances, 2018, 8, 10489-10508.	1.7	171
367	Tailored dimensionality to regulate the phase stability of inorganic cesium lead iodide perovskites. Nanoscale, 2018, 10, 6318-6322.	2.8	104

#	Article	IF	CITATIONS
368	First-principles insights into tin-based two-dimensional hybrid halide perovskites for photovoltaics. Journal of Materials Chemistry A, 2018, 6, 5652-5660.	5.2	71
369	Perowskitâ€Solarzellen: atomare Ebene, Schichtqualitäund Leistungsfäigkeit der Zellen. Angewandte Chemie, 2018, 130, 2582-2598.	1.6	37
370	Perovskite Solar Cells: From the Atomic Level to Film Quality and Device Performance. Angewandte Chemie - International Edition, 2018, 57, 2554-2569.	7.2	413
371	Recent progress on low dimensional perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 1091-1100.	7.1	28
372	Inorganic–organic halide perovskites for new photovoltaic technology. National Science Review, 2018, 5, 559-576.	4.6	49
373	Exploring the Stability of Novel Wide Bandgap Perovskites by a Robot Based High Throughput Approach. Advanced Energy Materials, 2018, 8, 1701543.	10.2	75
374	2D Ruddlesden–Popper Perovskites for Optoelectronics. Advanced Materials, 2018, 30, 1703487.	11.1	613
375	Recent theoretical progress in the development of perovskite photovoltaic materials. Journal of Energy Chemistry, 2018, 27, 637-649.	7.1	48
376	Rapid development in two-dimensional layered perovskite materials and their application in solar cells. Chinese Chemical Letters, 2018, 29, 657-663.	4.8	46
377	Understanding Film Formation Morphology and Orientation in High Member 2D Ruddlesden–Popper Perovskites for Highâ€Efficiency Solar Cells. Advanced Energy Materials, 2018, 8, 1700979.	10.2	286
378	Highly Reproducible Snâ€Based Hybrid Perovskite Solar Cells with 9% Efficiency. Advanced Energy Materials, 2018, 8, 1702019.	10.2	726
379	Nanomaterials for Sustainable Energy Production and Storage: Present Day Applications and Possible Developments. , 2018, , 31-72.		2
380	Molecular Interlayers in Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1701544.	10.2	80
381	Photodetectors Based on Organic–Inorganic Hybrid Lead Halide Perovskites. Advanced Science, 2018, 5, 1700256.	5.6	213
382	A brief review on the lead element substitution in perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 1054-1066.	7.1	38
383	Multi-functional organic molecules for surface passivation of perovskite. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 42-47.	2.0	12
384	Degradation of encapsulated perovskite solar cells driven by deep trap states and interfacial deterioration. Journal of Materials Chemistry C, 2018, 6, 162-170.	2.7	91
385	Low-Dimensional Organometal Halide Perovskites. ACS Energy Letters, 2018, 3, 54-62.	8.8	528

	CITATION	Report	
# 386	ARTICLE Bioâ€Inspired Photonic Materials: Prototypes and Structural Effect Designs for Applications in Solar Energy Manipulation. Advanced Functional Materials, 2018, 28, 1705309.	lF 7.8	CITATIONS
387	Critical Role of Interface and Crystallinity on the Performance and Photostability of Perovskite Solar Cell on Nickel Oxide. Advanced Materials, 2018, 30, 1703879.	11.1	198
388	Amine treatment induced perovskite nanowire network in perovskite solar cells: efficient surface passivation and carrier transport. Nanotechnology, 2018, 29, 065401.	1.3	25
389	Layered Halide Double Perovskites Cs _{3+<i>n</i>} M(II) _{<i>n</i>} Sb ₂ X _{9+3<i>n</i>} (M = Sn,) Tj E	TQq 1.1 1 0.7	84 31 4 rgBT
390	The merit of perovskite's dimensionality; can this replace the 3D halide perovskite?. Energy and Environmental Science, 2018, 11, 234-242.	15.6	196
391	Two-dimensional material functional devices enabled by direct laser fabrication. Frontiers of Optoelectronics, 2018, 11, 2-22.	1.9	28
392	Exploration of Crystallization Kinetics in Quasi Two-Dimensional Perovskite and High Performance Solar Cells. Journal of the American Chemical Society, 2018, 140, 459-465.	6.6	327
393	Bidentate Ligand-Passivated CsPbI ₃ Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes. Journal of the American Chemical Society, 2018, 140, 562-565.	6.6	745
394	Effect of Cation Composition on the Mechanical Stability of Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702116.	10.2	130
395	Inorganic Holeâ€Transporting Materials for Perovskite Solar Cells. Small Methods, 2018, 2, 1700280.	4.6	141
396	A Mechanistic Study of Phase Transformation in Perovskite Nanocrystals Driven by Ligand Passivation. Chemistry of Materials, 2018, 30, 84-93.	3.2	154
397	Compositional Engineering To Improve the Stability of Lead Halide Perovskites: A Comparative Study of Cationic and Anionic Dopants. ACS Applied Energy Materials, 2018, 1, 181-190.	2.5	29
398	Cation engineering on lead iodide perovskites for stable and high-performance photovoltaic applications. Journal of Energy Chemistry, 2018, 27, 1017-1039.	7.1	37
399	Interface Engineering for Highly Efficient and Stable Planar pâ€iâ€n Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1701883.	10.2	338
400	Highly oriented two-dimensional formamidinium lead iodide perovskites with a small bandgap of 1.51 eV. Materials Chemistry Frontiers, 2018, 2, 121-128.	3.2	95
401	Leadâ€Free Hybrid Perovskite Absorbers for Viable Application: Can We Eat the Cake and Have It too?. Advanced Science, 2018, 5, 1700331.	5.6	233
402	Recent Progress in Singleâ€Crystalline Perovskite Research Including Crystal Preparation, Property Evaluation, and Applications. Advanced Science, 2018, 5, 1700471.	5.6	223
403	Recent progress in organohalide lead perovskites for photovoltaic and optoelectronic applications. Coordination Chemistry Reviews, 2018, 373, 258-294.	9.5	67

	CITATION R	EPORT	
#	Article	IF	CITATIONS
404	Vapor-fumigation for record efficiency two-dimensional perovskite solar cells with superior stability. Energy and Environmental Science, 2018, 11, 3349-3357.	15.6	87
405	An inverted planar solar cell with 13% efficiency and a sensitive visible light detector based on orientation regulated 2D perovskites. Journal of Materials Chemistry A, 2018, 6, 24633-24640.	5.2	38
406	First-principles characterization of two-dimensional (CH ₃ (CH ₂) ₃ NH ₃) ₂ (CH ₃ NH <sub perovskite. Journal of Materials Chemistry A, 2018, 6, 24389-24396.</sub 	>3 <i>4</i> anp>)	<suaba⊗nâ^'1< <="" td=""></suaba⊗nâ^'1<>
407	Promising photovoltaic and solid-state-lighting materials: two-dimensional Ruddlesdena€ Popper type lead-free halide double perovskites Cs _{n+1} ln _{n/2} Sb _{n/2} l _{3n+1} (<i>n</i> = 3) and Cs _{n+1} ln _{n/2} Sb _{n/2} Cl _{3n+1} /Cs _{m+1} /Cs _{/Cs}}}	2.7 :/sub>Bi <s< td=""><td>19 sub>m/2</td></s<>	19 sub>m/2
408	Tuning optical/electrical properties of 2D/3D perovskite by the inclusion of aromatic cation. Physical Chemistry Chemical Physics, 2018, 20, 30189-30199.	1.3	22
409	High performance ambient-air-stable FAPbI ₃ perovskite solar cells with molecule-passivated Ruddlesden–Popper/3D heterostructured film. Energy and Environmental Science, 2018, 11, 3358-3366.	15.6	196
410	Multi-layered hybrid perovskites templated with carbazole derivatives: optical properties, enhanced moisture stability and solar cell characteristics. Journal of Materials Chemistry A, 2018, 6, 22899-22908.	5.2	42
412	Efficient ambient-air-stable HTM-free carbon-based perovskite solar cells with hybrid 2D–3D lead halide photoabsorbers. Journal of Materials Chemistry A, 2018, 6, 22626-22635.	5.2	31
413	Perovskite-Structured Photovoltaic Materials. , 2018, , .		3
414	A Simple Route Towards Heat Resistant Halide Perovskite-Based Optoelectronics. , 2018, , .		0
415	Effect of Composition and Microstructure on the Mechanical Stability of Perovskite Solar Cells. , 2018, , .		1
416	General Nondestructive Passivation by 4â€Fluoroaniline for Perovskite Solar Cells with Improved Performance and Stability. Small, 2018, 14, e1803350.	5.2	82
417	Extremely reduced dielectric confinement in two-dimensional hybrid perovskites with large polar organics. Communications Physics, 2018, 1, .	2.0	135
418	Phase Intergrowth and Structural Defects in Organic Metal Halide Ruddlesden–Popper Thin Films. Chemistry of Materials, 2018, 30, 8615-8623.	3.2	29
419	Dimensionality engineering of hybrid halide perovskite light absorbers. Nature Communications, 2018, 9, 5028.	5.8	245
420	Synthesis of Ultrathin Few-Layer 2D Nanoplates of Halide Perovskite Cs ₃ Bi ₂ I ₉ and Single-Nanoplate Super-Resolved Fluorescence Microscopy. Inorganic Chemistry, 2018, 57, 15558-15565.	1.9	38
421	Stable Sn/Pb-Based Perovskite Solar Cells with a Coherent 2D/3D Interface. IScience, 2018, 9, 337-346.	1.9	82
422	Ultrasensitive Heterojunctions of Graphene and 2D Perovskites Reveal Spontaneous Iodide Loss. Joule, 2018, 2, 2133-2144.	11.7	39

#	Article	IF	CITATIONS
423	Thiocyanate Containing Two-Dimensional Cesium Lead Iodide Perovskite, Cs ₂ PbI ₂ (SCN) ₂ : Characterization, Photovoltaic Application, and Degradation Mechanism. ACS Applied Materials & Interfaces, 2018, 10, 42363-42371.	4.0	40
424	Intrinsic Carrier Transport of Phaseâ€Pure Homologous 2D Organolead Halide Hybrid Perovskite Single Crystals. Small, 2018, 14, e1803763.	5.2	42
425	Trap states in multication mesoscopic perovskite solar cells: A deep levels transient spectroscopy investigation. Applied Physics Letters, 2018, 113, .	1.5	33
426	Ruddlesden–Popper Perovskite for Stable Solar Cells. Energy and Environmental Materials, 2018, 1, 221-231.	7.3	85
431	Facile synthesis of two-dimensional Ruddlesden–Popper perovskite quantum dots with fine-tunable optical properties. Nanoscale Research Letters, 2018, 13, 247.	3.1	55
432	Materials toward the Upscaling of Perovskite Solar Cells: Progress, Challenges, and Strategies. Advanced Functional Materials, 2018, 28, 1803753.	7.8	145
433	Structure-controlled optical thermoresponse in Ruddlesden-Popper layered perovskites. APL Materials, 2018, 6, .	2.2	26
434	Preface: Two dimensional (2D) hybrid organic-inorganic perovskites. APL Materials, 2018, 6, .	2.2	0
435	Addressing the stability issue of perovskite solar cells for commercial applications. Nature Communications, 2018, 9, 5265.	5.8	527
436	Effect of High Dipole Moment Cation on Layered 2D Organic–Inorganic Halide Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803024.	10.2	117
437	Nature of the Electronic and Optical Excitations of Ruddlesden–Popper Hybrid Organic–Inorganic Perovskites: The Role of the Many-Body Interactions. Journal of Physical Chemistry Letters, 2018, 9, 5891-5896.	2.1	51
438	High-performance mixed-dimensional perovskite solar cells with enhanced stability against humidity, heat and UV light. Journal of Materials Chemistry A, 2018, 6, 20233-20241.	5.2	21
439	Cystamine-configured lead halide based 2D hybrid molecular crystals: Synthesis and photoluminescence systematics. APL Materials, 2018, 6, 114204.	2.2	13
440	Surface Effect on 2D Hybrid Perovskite Crystals: Perovskites Using an Ethanolamine Organic Layer as an Example. Advanced Materials, 2018, 30, e1804372.	11.1	34
441	Attaining High Photovoltaic Efficiency and Stability with Multidimensional Perovskites. ChemSusChem, 2018, 11, 4193-4202.	3.6	16
442	Yellowish White-Light Emission Involving Resonant Energy Transfer in a New One-Dimensional Hybrid Material: (C ₉ H ₁₀ N ₂)PbCl ₄ . Journal of Physical Chemistry C, 2018, 122, 24253-24261.	1.5	60
443	Stretching and Breaking of Ultrathin 2D Hybrid Organic–Inorganic Perovskites. ACS Nano, 2018, 12, 10347-10354.	7.3	60
444	Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nature Communications, 2018, 9, 3892.	5.8	379

#	Article	IF	CITATIONS
445	Realization of "warm―white light <i>via</i> halide substitution in polar two-dimensional hybrid perovskites (2meptH ₂)PbCl _x Br _{4â^'x} . Journal of Materials Chemistry C, 2018, 6, 12267-12272.	2.7	60
446	Bandgap Engineering of Singleâ€Crystalline Perovskite Arrays for Highâ€Performance Photodetectors. Advanced Functional Materials, 2018, 28, 1804349.	7.8	66
447	Manipulating the Tradeâ€off Between Quantum Yield and Electrical Conductivity for Highâ€Brightness Quasiâ€2D Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1804187.	7.8	113
448	3D/2D multidimensional perovskites: Balance of high performance and stability for perovskite solar cells. Current Opinion in Electrochemistry, 2018, 11, 105-113.	2.5	59
449	Layer-Dependent Rashba Band Splitting in 2D Hybrid Perovskites. Chemistry of Materials, 2018, 30, 8538-8545.	3.2	92
450	Stable and Efficient 3D-2D Perovskite-Perovskite Planar Heterojunction Solar Cell without Organic Hole Transport Layer. Joule, 2018, 2, 2706-2721.	11.7	124
451	Phase Pure 2D Perovskite for Highâ€Performance 2D–3D Heterostructured Perovskite Solar Cells. Advanced Materials, 2018, 30, e1805323.	11.1	244
452	General Synthesis Principles for Ruddlesden–Popper Hybrid Perovskite Halides from a Dynamic Equilibrium. Chemistry of Materials, 2018, 30, 8606-8614.	3.2	37
453	Low Temperature Formation of Ruddlesden–Popperâ€Type Layered La ₂ CoO ₄ _{±δ} Perovskite Monitored via In Situ Xâ€ray Powder Diffraction. European Journal of Inorganic Chemistry, 2018, 2018, 5238-5245.	1.0	6
454	Ultrafast Broadband Charge Collection from Clean Graphene/CH ₃ NH ₃ PbI ₃ Interface. Journal of the American Chemical Society, 2018, 140, 14952-14957.	6.6	29
455	NH4I Facilitated the Formation of Mixed-Dimensional Perovskite and Improved Stability at Different Annealing Temperatures. ACS Sustainable Chemistry and Engineering, 2018, 6, 15143-15150.	3.2	4
456	Inâ€Plane Ferroelectricity in Thin Flakes of Van der Waals Hybrid Perovskite. Advanced Materials, 2018, 30, e1803249.	11.1	76
457	Multicolor Heterostructures of Two-Dimensional Layered Halide Perovskites that Show Interlayer Energy Transfer. Journal of the American Chemical Society, 2018, 140, 15675-15683.	6.6	95
458	In Situ Grain Boundary Modification via Two-Dimensional Nanoplates to Remarkably Improve Stability and Efficiency of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 39802-39808.	4.0	24
459	Oriented Quasiâ€2D Perovskites for High Performance Optoelectronic Devices. Advanced Materials, 2018, 30, e1804771.	11.1	268
460	A simple method for phase control in two-dimensional perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 18871-18876.	5.2	41
461	Opportunities and Challenges in Perovskite Light-Emitting Devices. ACS Photonics, 2018, 5, 3866-3875.	3.2	129
462	Versatile perovskite solar cell encapsulation by low-temperature ALD-Al ₂ O ₃ with long-term stability improvement. Sustainable Energy and Fuels, 2018, 2, 2468-2479.	2.5	66

#	Article	IF	CITATIONS
463	Mode‣ocking of Allâ€Fiber Lasers Operating at Both Anomalous and Normal Dispersion Regimes in the C― and Lâ€Bands Using Thin Film of 2D Perovskite Crystallites. Laser and Photonics Reviews, 2018, 12, 1800118.	4.4	41
464	General Post-annealing Method Enables High-Efficiency Two-Dimensional Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 33187-33197.	4.0	66
465	Challenges for commercializing perovskite solar cells. Science, 2018, 361, .	6.0	1,327
466	A facile synthesis of two new IR optical perovskites based on 1,4-diazabicyclo[2,2,2]octane with a high laser damage threshold. Dalton Transactions, 2018, 47, 14497-14502.	1.6	1
467	Engineering two-dimensional layered nanomaterials for wearable biomedical sensors and power devices. Materials Chemistry Frontiers, 2018, 2, 1944-1986.	3.2	59
468	Controllable growth of two-dimensional perovskite microstructures. CrystEngComm, 2018, 20, 6538-6545.	1.3	14
469	Twoâ€Đimensional Organic–Inorganic Hybrid Perovskites: A New Platform for Optoelectronic Applications. Advanced Materials, 2018, 30, e1802041.	11.1	138
470	Enhanced performance and stability of inverted planar perovskite solar cells by incorporating 1,6-diaminohexane dihydrochloride additive. Solar Energy Materials and Solar Cells, 2018, 188, 140-148.	3.0	23
471	Compositional and orientational control in metal halide perovskites of reduced dimensionality. Nature Materials, 2018, 17, 900-907.	13.3	351
472	Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nature Materials, 2018, 17, 908-914.	13.3	295
473	Segregation Induced Selfâ€Assembly of Highly Active Perovskite for Rapid Oxygen Reduction Reaction. Advanced Energy Materials, 2018, 8, 1801893.	10.2	30
474	Ultrafast Carrier Transfer Promoted by Interlayer Coulomb Coupling in 2D/3D Perovskite Heterostructures. Laser and Photonics Reviews, 2018, 12, 1800128.	4.4	59
475	Thousandâ€fold Conductivity Increase in 2D Perovskites by Polydiacetylene Incorporation and Doping. Angewandte Chemie, 2018, 130, 14078-14082.	1.6	17
476	Thousandâ€fold Conductivity Increase in 2D Perovskites by Polydiacetylene Incorporation and Doping. Angewandte Chemie - International Edition, 2018, 57, 13882-13886.	7.2	65
477	Interface Engineering in nâ€iâ€p Metal Halide Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800177.	3.1	53
478	In Situ Cesium Modification at Interface Enhances the Stability of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 33205-33213.	4.0	27
479	Structural evolution and photoluminescence properties of a 2D hybrid perovskite under pressure. APL Materials, 2018, 6, .	2.2	31
480	Progress toward Stable Lead Halide Perovskite Solar Cells. Joule, 2018, 2, 1961-1990.	11.7	181

	СПАНОГ	N KEPOKI	
#	Article	IF	CITATIONS
481	Two-Dimensional Ruddlesden–Popper Perovskite with Nanorod-like Morphology for Solar Cells with Efficiency Exceeding 15%. Journal of the American Chemical Society, 2018, 140, 11639-11646.	6.6	397
482	Perovskites for Light Emission. Advanced Materials, 2018, 30, e1801996.	11.1	417
483	Two-Dimensional Halide Perovskites Incorporating Straight Chain Symmetric Diammonium Ions, (NH ₃ C _{<i>m</i>} H _{2<i>m</i>} NH ₃)(CH ₃ NH< (<i>m</i> = 4–9; <i>n</i> = 1–4). Journal of the American Chemical Society, 2018, 140, 12226-12238.	sub>3 6/6 ub>)) <suba₄<i>n<!--</td--></i></s
484	Identifying and controlling phase purity in 2D hybrid perovskite thin films. Journal of Materials Chemistry A, 2018, 6, 22215-22225.	5.2	59
485	Efficient and Ambientâ€Airâ€Stable Solar Cell with Highly Oriented 2D@3D Perovskites. Advanced Functional Materials, 2018, 28, 1801654.	7.8	98
486	Bilayered Hybrid Perovskite Ferroelectric with Giant Two-Photon Absorption. Journal of the American Chemical Society, 2018, 140, 6806-6809.	6.6	185
487	Caesium for Perovskite Solar Cells: An Overview. Chemistry - A European Journal, 2018, 24, 12183-12205.	1.7	138
488	A Review on Halide Perovskites as Color Conversion Layers in White Light Emitting Diode Applications. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800120.	0.8	73
489	Ultrafast Imaging of Carrier Transport across Grain Boundaries in Hybrid Perovskite Thin Films. ACS Energy Letters, 2018, 3, 1402-1408.	8.8	55
490	<i>A</i> -Site Cation in Inorganic <i>A</i> ₃ Sb ₂ I ₉ Perovskite Influences Structural Dimensionality, Exciton Binding Energy, and Solar Cell Performance. Chemistry of Materials, 2018, 30, 3734-3742.	3.2	134
491	Recent progressive efforts in perovskite solar cells toward commercialization. Journal of Materials Chemistry A, 2018, 6, 12215-12236.	5.2	56
492	Cross-plane coherent acoustic phonons in two-dimensional organic-inorganic hybrid perovskites. Nature Communications, 2018, 9, 2019.	5.8	71
493	Diammonium Cations in the FASnI ₃ Perovskite Structure Lead to Lower Dark Currents and More Efficient Solar Cells. ACS Energy Letters, 2018, 3, 1470-1476.	8.8	114
494	Structural features and their functions in surfactant-armoured methylammonium lead iodide perovskites for highly efficient and stable solar cells. Energy and Environmental Science, 2018, 11, 2188-2197.	15.6	162
495	(C ₆ H ₅ CH ₂ NH ₃) ₂ CuBr ₄ : A Lead-Free, Highly Stable Two-Dimensional Perovskite for Solar Cell Applications. ACS Applied Energy Materials, 2018, 1, 2709-2716.	2.5	73
496	Design principles for electronic charge transport in solution-processed vertically stacked 2D perovskite quantum wells. Nature Communications, 2018, 9, 2130.	5.8	153
497	Improving the stability and performance of perovskite solar cells <i>via</i> off-the-shelf post-device ligand treatment. Energy and Environmental Science, 2018, 11, 2253-2262.	15.6	181
498	Improved performance and reproducibility of perovskite solar cells by jointly tuning the hole transport layer and the perovskite layer deposition. Journal of Materials Science: Materials in Electronics, 2018, 29, 12652-12661.	1.1	2

		LPORT	
#	Article	IF	CITATIONS
499	Excellent Stability of Perovskite Solar Cells by Passivation Engineering. Solar Rrl, 2018, 2, 1800088.	3.1	61
500	<i>In situ</i> identification of cation-exchange-induced reversible transformations of 3D and 2D perovskites. Chemical Communications, 2018, 54, 5879-5882.	2.2	12
501	Efficient Photon Recycling and Radiation Trapping in Cesium Lead Halide Perovskite Waveguides. ACS Energy Letters, 2018, 3, 1492-1498.	8.8	70
502	Rational Design of Metal Oxide–Based Cathodes for Efficient Dyeâ€ S ensitized Solar Cells. Advanced Energy Materials, 2018, 8, 1800172.	10.2	30
503	Cation-Assisted Restraint of a Wide Quantum Well and Interfacial Charge Accumulation in Two-Dimensional Perovskites. ACS Energy Letters, 2018, 3, 1815-1823.	8.8	22
504	Fabrication of Perovskite Uniform Film in Air via Introduction of Aniline Cations. ChemistrySelect, 2018, 3, 7023-7029.	0.7	3
505	Photonics and Optoelectronics of 2D Metalâ€Halide Perovskites. Small, 2018, 14, e1800682.	5.2	168
506	Low-Dimensional Perovskites. , 2018, , 197-229.		22
507	Direct tuning of the band gap <i>via</i> electronically-active organic cations and large piezoelectric response in one-dimensional hybrid halides from first-principles. Journal of Materials Chemistry C, 2018, 6, 7671-7676.	2.7	11
508	Efficient Moistureâ€Resistant Perovskite Solar Cell With Nanostructure Featuring 3D Amine Motif. Solar Rrl, 2018, 2, 1800069.	3.1	13
509	Origin of the stability of two-dimensional perovskites: a first-principles study. Journal of Materials Chemistry A, 2018, 6, 14949-14955.	5.2	79
510	Excited-state vibrational dynamics toward the polaron in methylammonium lead iodide perovskite. Nature Communications, 2018, 9, 2525.	5.8	129
511	Two-dimensional light-emitting materials: preparation, properties and applications. Chemical Society Reviews, 2018, 47, 6128-6174.	18.7	167
512	Organic–inorganic metal halide hybrids beyond perovskites. Materials Research Letters, 2018, 6, 552-569.	4.1	97
513	Recent Advances in Growth of Novel 2D Materials: Beyond Graphene and Transition Metal Dichalcogenides. Advanced Materials, 2018, 30, e1800865.	11.1	203
514	High-performance inverted two-dimensional perovskite solar cells using non-fullerene acceptor as electron transport layer. Organic Electronics, 2018, 62, 189-194.	1.4	13
515	Stability of Perovskites at the Surface Analytic Level. Journal of Physical Chemistry Letters, 2018, 9, 4657-4666.	2.1	17
516	Random lasing in uniform perovskite thin films. Optics Express, 2018, 26, A75.	1.7	52

#	Article	IF	CITATIONS
517	Allâ€Inorganic CsPb _{1â^'<i>x</i>} Ge _{<i>x</i>} I ₂ Br Perovskite with Enhanced Phase Stability and Photovoltaic Performance. Angewandte Chemie, 2018, 130, 12927-12931.	1.6	31
518	Cs ₂ Pbl ₂ Cl ₂ , All-Inorganic Two-Dimensional Ruddlesden–Popper Mixed Halide Perovskite with Optoelectronic Response. Journal of the American Chemical Society, 2018, 140, 11085-11090.	6.6	167
519	Interfacial crosslinked quasi-2D perovskite with boosted carrier transport and enhanced stability. Journal Physics D: Applied Physics, 2018, 51, 404001.	1.3	28
520	Ligand-Directed Stabilization of Ternary Phases: Synthetic Control of Structural Dimensionality in Solution-Grown Cesium Lead Bromide Nanocrystals. Chemistry of Materials, 2018, 30, 6144-6155.	3.2	39
521	Concept of Lattice Mismatch and Emergence of Surface States in Two-dimensional Hybrid Perovskite Quantum Wells. Nano Letters, 2018, 18, 5603-5609.	4.5	103
522	Above-room-temperature switching of quadratic nonlinear optical properties in a Bi–halide organic–inorganic hybrid. Journal of Materials Chemistry C, 2018, 6, 9532-9536.	2.7	34
523	Scaling limits to large area perovskite solar cell efficiency. Progress in Photovoltaics: Research and Applications, 2018, 26, 659-674.	4.4	31
524	Efficient planar CsPbBr3 perovskite solar cells by dual-source vacuum evaporation. Solar Energy Materials and Solar Cells, 2018, 187, 1-8.	3.0	139
525	Electronic Structure of Two-Dimensional Lead(II) Iodide Perovskites: An Experimental and Theoretical Study. Chemistry of Materials, 2018, 30, 4959-4967.	3.2	29
526	(1,4-Butyldiammonium)CdBr ₄ : a layered organic–inorganic hybrid perovskite with a visible-blind ultraviolet photoelectric response. Inorganic Chemistry Frontiers, 2018, 5, 2450-2455.	3.0	17
527	Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8076-8081.	3.3	137
528	Two-Step Growth of 2D Organic–Inorganic Perovskite Microplates and Arrays for Functional Optoelectronics. Journal of Physical Chemistry Letters, 2018, 9, 4532-4538.	2.1	31
529	Efficient Roomâ€Temperature Phosphorescence from Organic–Inorganic Hybrid Perovskites by Molecular Engineering. Advanced Materials, 2018, 30, e1707621.	11.1	126
530	Defect Engineering toward Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800326.	1.9	40
531	Surface Modification of Methylamine Lead Halide Perovskite with Aliphatic Amine Hydroiodide. Langmuir, 2018, 34, 9507-9515.	1.6	6
532	Zero-Dimensional Organic–Inorganic Perovskite Variant: Transition between Molecular and Solid Crystal. Journal of the American Chemical Society, 2018, 140, 10456-10463.	6.6	79
533	Metal Halide Perovskites: Synthesis, Ion Migration, and Application in Fieldâ€Effect Transistors. Small, 2018, 14, e1801460.	5.2	88
534	Molecular and Selfâ€Trapped Excitonic Contributions to the Broadband Luminescence in Diamineâ€Based Lowâ€Dimensional Hybrid Perovskite Systems. Advanced Optical Materials, 2018, 6, 1800751.	3.6	43

#	Article	IF	CITATIONS
535	Allâ€Inorganic CsPb _{1â^'<i>x</i>} Ge _{<i>x</i>} I ₂ Br Perovskite with Enhanced Phase Stability and Photovoltaic Performance. Angewandte Chemie - International Edition, 2018, 57, 12745-12749.	7.2	157
536	Highly Emissive Selfâ€Trapped Excitons in Fully Inorganic Zeroâ€Dimensional Tin Halides. Angewandte Chemie - International Edition, 2018, 57, 11329-11333.	7.2	242
537	Emerging Characterizing Techniques in the Fine Structure Observation of Metal Halide Perovskite Crystal. Crystals, 2018, 8, 232.	1.0	8
538	Graphene-Analogue Boron Nitride Modified Bismuth Oxyiodide with Increased Visible-Light Photocatalytic Performance. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800146.	0.8	2
539	Two-dimensional organic-inorganic hybrid perovskite: from material properties to device applications. Science China Materials, 2018, 61, 1257-1277.	3.5	84
540	Computational Design of Two-Dimensional Perovskites with Functional Organic Cations. Journal of Physical Chemistry C, 2018, 122, 17118-17122.	1.5	51
541	Divalent Anionic Doping in Perovskite Solar Cells for Enhanced Chemical Stability. Advanced Materials, 2018, 30, e1800973.	11.1	50
542	Crystallization, Properties, and Challenges of Lowâ€Bandgap Sn–Pb Binary Perovskites. Solar Rrl, 2018, 2, 1800146.	3.1	43
543	A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy, 2018, 3, 682-689.	19.8	1,856
544	The Impact of Hybrid Compositional Film/Structure on Organic–Inorganic Perovskite Solar Cells. Nanomaterials, 2018, 8, 356.	1.9	30
545	Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nature Energy, 2018, 3, 648-654.	19.8	552
546	Highly Emissive Selfâ€Trapped Excitons in Fully Inorganic Zeroâ€Dimensional Tin Halides. Angewandte Chemie, 2018, 130, 11499-11503.	1.6	37
547	Precursor Solution Annealing Forms Cubicâ€Phase Perovskite and Improves Humidity Resistance of Solar Cells. Advanced Functional Materials, 2018, 28, 1801508.	7.8	15
548	Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors. Nature Electronics, 2018, 1, 404-410.	13.1	351
549	Toward Eco-friendly and Stable Perovskite Materials for Photovoltaics. Joule, 2018, 2, 1231-1241.	11.7	224
550	Perovskite Solar Cells: Toward Industrial-Scale Methods. Journal of Physical Chemistry Letters, 2018, 9, 4326-4335.	2.1	66
551	Layered hybrid perovskite solar cells based on single-crystalline precursor solutions with superior reproducibility. Sustainable Energy and Fuels, 2018, 2, 2237-2243.	2.5	18
552	Highly Efficient Ruddlesden–Popper Halide Perovskite PA ₂ MA ₄ Pb ₅ 16 Solar Cells. ACS Energy Letters, 2018, 3, 1975-1982.	8.8	135

#	Article	IF	CITATIONS
553	Aligned and Graded Typeâ€II Ruddlesden–Popper Perovskite Films for Efficient Solar Cells. Advanced Energy Materials, 2018, 8, 1800185.	10.2	247
554	Stabilization of organometallic halide perovskite nanocrystals in aqueous solutions and their applications in copper ion detection. Chemical Communications, 2018, 54, 5784-5787.	2.2	24
555	Ambient-air-stable inorganic Cs ₂ SnI ₆ double perovskite thin films <i>via</i> aerosol-assisted chemical vapour deposition. Journal of Materials Chemistry A, 2018, 6, 11205-11214.	5.2	85
556	Enhanced Power Conversion Efficiency of Perovskite Solar Cells with an Up-Conversion Material of Er3+-Yb3+-Li+ Tri-doped TiO2. Nanoscale Research Letters, 2018, 13, 147.	3.1	30
557	Novel Series of Quasi-2D Ruddlesden–Popper Perovskites Based on Short-Chained Spacer Cation for Enhanced Photodetection. ACS Applied Materials & Interfaces, 2018, 10, 19019-19026.	4.0	75
558	Efficient solar cells with enhanced humidity and heat stability based on benzylammonium–caesium–formamidinium mixed-dimensional perovskites. Journal of Materials Chemistry A, 2018, 6, 18067-18074.	5.2	24
559	Coherent Spin and Quasiparticle Dynamics in Solutionâ€Processed Layered 2D Lead Halide Perovskites. Advanced Science, 2018, 5, 1800664.	5.6	66
560	Dynamic Surface Reconstruction of 2D Ruddlesden-Popper Halide Perovskite under e-Beam Irradiation. Microscopy and Microanalysis, 2018, 24, 1490-1491.	0.2	0
561	Spin control in reduced-dimensional chiral perovskites. Nature Photonics, 2018, 12, 528-533.	15.6	371
562	Bromine Doping as an Efficient Strategy to Reduce the Interfacial Defects in Hybrid Two-Dimensional/Three-Dimensional Stacking Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 31755-31764.	4.0	65
563	Layered Mixed Tin–Lead Hybrid Perovskite Solar Cells with High Stability. ACS Energy Letters, 2018, 3, 2246-2251.	8.8	64
564	Interfacial engineering enables high efficiency with a high open-circuit voltage above 1.23ÂV in 2D perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 18010-18017.	5.2	39
565	Completing the Picture of 2-(Aminomethylpyridinium) Lead Hybrid Perovskites: Insights into Structure, Conductivity Behavior, and Optical Properties. Chemistry of Materials, 2018, 30, 6289-6297.	3.2	32
566	Intracation and Interanion–Cation Charge-Transfer Properties of Tetrathiafulvalene-Bismuth-Halide Hybrids. Inorganic Chemistry, 2018, 57, 11113-11122.	1.9	14
567	Trap-Limited Dynamics of Excited Carriers and Interpretation of the Photoluminescence Decay Kinetics in Metal Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 4955-4962.	2.1	46
568	Experimental and Theoretical Investigation of the Photoelectrical Properties of Tetrabromophenol Blue- and Bromoxylenol Blue-Based Solar Cells. Journal of Nanomaterials, 2018, 2018, 1-13.	1.5	4
569	Role of alkyl chain length in diaminoalkane linked 2D Ruddlesden–Popper halide perovskites. CrystEngComm, 2018, 20, 6704-6712.	1.3	25
570	Room Temperature Coherently Coupled Exciton–Polaritons in Two-Dimensional Organic–Inorganic Perovskite. ACS Nano, 2018, 12, 8382-8389.	7.3	107

#	Article	IF	CITATIONS
571	Two-Dimensional Perovskite Solar Cells with 14.1% Power Conversion Efficiency and 0.68% External Radiative Efficiency. ACS Energy Letters, 2018, 3, 2086-2093.	8.8	224
572	Bio-inspired Carbon Hole Transporting Layer Derived from Aloe Vera Plant for Cost-Effective Fully Printable Mesoscopic Carbon Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 31280-31290.	4.0	51
573	Water-Repellent Low-Dimensional Fluorous Perovskite as Interfacial Coating for 20% Efficient Solar Cells. Nano Letters, 2018, 18, 5467-5474.	4.5	118
574	Improved Moisture Stability of 2D Hybrid Perovskite (HOOC–CH2–NH3)2PbI4 by Dehydration Condensation between Organic Components. ACS Applied Energy Materials, 2018, 1, 2502-2511.	2.5	13
575	Tin and germanium based two-dimensional Ruddlesden–Popper hybrid perovskites for potential lead-free photovoltaic and photoelectronic applications. Nanoscale, 2018, 10, 11314-11319.	2.8	73
576	Tuning the Optoelectronic Properties of Two-Dimensional Hybrid Perovskite Semiconductors with Alkyl Chain Spacers. Journal of Physical Chemistry Letters, 2018, 9, 3416-3424.	2.1	77
577	Composition Engineering in Two-Dimensional Pb–Sn-Alloyed Perovskites for Efficient and Stable Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 21343-21348.	4.0	23
578	Enhanced Out-of-Plane Conductivity and Photovoltaic Performance in <i>n</i> = 1 Layered Perovskites through Organic Cation Design. Journal of the American Chemical Society, 2018, 140, 7313-7323.	6.6	260
579	Photoluminescence and Photoconductivity to Assess Maximum Open-Circuit Voltage and Carrier Transport in Hybrid Perovskites and Other Photovoltaic Materials. Journal of Physical Chemistry Letters, 2018, 9, 3779-3792.	2.1	17
580	A Lead Iodide Perovskite Based on a Large Organic Cation for Solar Cell Applications. Angewandte Chemie, 2018, 130, 10089-10092.	1.6	0
581	A Lead Iodide Perovskite Based on a Large Organic Cation for Solar Cell Applications. Angewandte Chemie - International Edition, 2018, 57, 9941-9944.	7.2	14
582	Tailoring the Band Gap in 3D Hybrid Perovskites by Substitution of the Organic Cations: (CH ₃ NH ₃) _{1â^2<i>y</i>} (NH ₃ (CH ₂) _{2(0≤i>yâ‰ê.25). Chemistry - A European Journal, 2018, 24, 9075-9082.}	o>aNdH≺sub	> 3 2/sub>)<
583	Degradation of Two-Dimensional CH ₃ NH ₃ Pbl ₃ Perovskite and CH ₃ NH ₃ Pbl ₃ /Graphene Heterostructure. ACS Applied Materials & Interfaces, 2018, 10, 24258-24265.	4.0	40
584	Highly Efficient 2D/3D Hybrid Perovskite Solar Cells via Lowâ€Pressure Vaporâ€Assisted Solution Process. Advanced Materials, 2018, 30, e1801401.	11.1	154
585	Influence of Bulky Organoâ€Ammonium Halide Additive Choice on the Flexibility and Efficiency of Perovskite Lightâ€Emitting Devices. Advanced Functional Materials, 2018, 28, 1802060.	7.8	76
586	Zero-dimensional Cs ₄ EuX ₆ (X = Br, I) all-inorganic perovskite single crystals for gamma-ray spectroscopy. Journal of Materials Chemistry C, 2018, 6, 6647-6655.	2.7	66
587	Enhancing the hydrophobicity of perovskite solar cells using C18 capped CH ₃ NH ₃ PbI ₃ nanocrystals. Journal of Materials Chemistry C, 2018, 6, 7149-7156.	2.7	14
588	Out-of-Plane Mechanical Properties of 2D Hybrid Organic–Inorganic Perovskites by Nanoindentation. ACS Applied Materials & Interfaces, 2018, 10, 22167-22173.	4.0	64

		CITATION REPORT	
#	ARTICLE Scaling law for excitons in 2D perovskite quantum wells. Nature Communications, 2018, 9, 2254.	IF 5.8	Citations
590	High-Bandgap Perovskite Materials for Multijunction Solar Cells. Joule, 2018, 2, 1421-1436.	11.7	173
591	Chemically controlled crystal growth of (CH3NH3)2AgInBr6. CrystEngComm, 2018, 20, 5929-5934.	1.3	20
592	Density Functional Theory – Machine Learning Approach to Analyze the Bandgap of Elemental Halide Perovskites and Ruddlesdenâ€Popper Phases. ChemPhysChem, 2018, 19, 2559-2565.	1.0	27
593	A practical method for fabricating perovskite solar cells with remarkable water resistance <i>via</i> additive engineering. Molecular Systems Design and Engineering, 2018, 3, 729-733.	1.7	1
594	Near-infrared-excitable perovskite quantum dots <i>via</i> coupling with upconversion nanoparticles for dual-model anti-counterfeiting. New Journal of Chemistry, 2018, 42, 12353-12356.	1.4	24
595	Fiber‶ype Solar Cells, Nanogenerators, Batteries, and Supercapacitors for Wearable Applications. Advanced Science, 2018, 5, 1800340.	5.6	108
596	Air-Stable Direct Bandgap Perovskite Semiconductors: All-Inorganic Tin-Based Heteroleptic Halides A _{<i>x</i>} SnCl _{<i>y</i>} I _{<i>z</i>} (A = Cs, Rb). Chemistry of Materials, 2018, 30, 4847-4856.	3.2	65
597	Enhanced moisture stability of metal halide perovskite solar cells based on sulfur–oleylamine surface modification. Nanoscale Horizons, 2019, 4, 208-213.	4.1	45
598	Uncovering the Cu-driven electrochemical mechanism of transition metal chalcogenides based electrodes. Energy Storage Materials, 2019, 16, 625-631.	9.5	56
599	Self-Assembly of Two-Dimensional Perovskite Nanosheet Building Blocks into Ordered Ruddlesden–Popper Perovskite Phase. Journal of the American Chemical Society, 2019, 141, 13028-13032.	6.6	59
600	Methylamine-induced defect-healing and cationic substitution: a new method for low-defect perovskite thin films and solar cells. Journal of Materials Chemistry C, 2019, 7, 10724-10742.	2.7	49
601	Ultrathin Ruddlesden–Popper Perovskite Heterojunction for Sensitive Photodetection. Small, 2019, 15, e1902890.	5.2	56
602	The charge carrier dynamics, efficiency and stability of two-dimensional material-based perovskite solar cells. Chemical Society Reviews, 2019, 48, 4854-4891.	18.7	139
603	Quantifying multiple crystallite orientations and crystal heterogeneities in complex thin film materials. CrystEngComm, 2019, 21, 5707-5720.	1.3	17
604	Multilayered PdSe ₂ /Perovskite Schottky Junction for Fast, Selfâ€Powered, Polarization‣ensitive, Broadband Photodetectors, and Image Sensor Application. Advanced Science, 2019, 6, 1901134.	5.6	308
605	Polyethylenimine ethoxylated interlayer-mediated ZnO interfacial engineering for high-performance and low-temperature processed flexible perovskite solar cells: A simple and viable route for one-step processed CH3NH3PbI3. Journal of Power Sources, 2019, 438, 226956.	4.0	22
606	Lattice Expansion in Hybrid Perovskites: Effect on Optoelectronic Properties and Charge Carrier Dynamics. Journal of Physical Chemistry Letters, 2019, 10, 5000-5007.	2.1	60

#	Article	IF	CITATIONS
607	Surface engineering towards highly efficient perovskite light-emitting diodes. Nano Energy, 2019, 65, 104029.	8.2	26
608	Structures of (4-Y-C ₆ H ₄ CH ₂ NH ₃) ₂ Pbl ₄ {Y = H, F, Cl, Br, I}: Tuning of Hybrid Organic Inorganic Perovskite Structures from Ruddlesden–Popper to Dion–lacobson Limits. Chemistry of Materials. 2019. 31. 6145-6153.	3.2	62
609	Self-Passivation of 2D Ruddlesden–Popper Perovskite by Polytypic Surface PbI2 Encapsulation. Nano Letters, 2019, 19, 6109-6117.	4.5	31
610	Transient Energy Reservoir in 2D Perovskites. Advanced Optical Materials, 2019, 7, 1900971.	3.6	46
611	Exciton–Exciton Annihilation in Two-Dimensional Halide Perovskites at Room Temperature. Journal of Physical Chemistry Letters, 2019, 10, 5153-5159.	2.1	74
612	Single-phase alkylammonium cesium lead iodide quasi-2D perovskites for color-tunable and spectrum-stable red LEDs. Nanoscale, 2019, 11, 16907-16918.	2.8	24
613	Dual Emission of Waterâ€ 5 table 2D Organic–Inorganic Halide Perovskites with Mn(II) Dopant. Advanced Functional Materials, 2019, 29, 1904768.	7.8	66
614	Photochemically Cross-Linked Quantum Well Ligands for 2D/3D Perovskite Photovoltaics with Improved Photovoltage and Stability. Journal of the American Chemical Society, 2019, 141, 14180-14189.	6.6	107
615	Sodium Ion Modifying In Situ Fabricated CsPbBr ₃ Nanoparticles for Efficient Perovskite Light Emitting Diodes. Advanced Optical Materials, 2019, 7, 1900747.	3.6	59
616	Highly Efficient and Stable Planar Perovskite Solar Cells with Modulated Diffusion Passivation Toward High Power Conversion Efficiency and Ultrahigh Fill Factor. Solar Rrl, 2019, 3, 1900293.	3.1	87
617	A New Organic Interlayer Spacer for Stable and Efficient 2D Ruddlesden–Popper Perovskite Solar Cells. Nano Letters, 2019, 19, 5237-5245.	4.5	76
618	Ligand-Induced Surface Charge Density Modulation Generates Local Type-II Band Alignment in Reduced-Dimensional Perovskites. Journal of the American Chemical Society, 2019, 141, 13459-13467.	6.6	62
619	Ultrafast long-range spin-funneling in solution-processed Ruddlesden–Popper halide perovskites. Nature Communications, 2019, 10, 3456.	5.8	38
620	Aqueous Synthesis of Low-Dimensional Lead Halide Perovskites for Room-Temperature Circularly Polarized Light Emission and Detection. ACS Nano, 2019, 13, 9473-9481.	7.3	135
621	Fluorinated Lowâ€Dimensional Ruddlesden–Popper Perovskite Solar Cells with over 17% Power Conversion Efficiency and Improved Stability. Advanced Materials, 2019, 31, e1901673.	11.1	197
622	2D Ruddlesden–Popper Perovskite Nanoplate Based Deepâ€Blue Lightâ€Emitting Diodes for Light Communication. Advanced Functional Materials, 2019, 29, 1903861.	7.8	101
623	Highly Stable Twoâ€Dimensional Tin(II) Iodide Hybrid Organic–Inorganic Perovskite Based on Stilbene Derivative. Advanced Functional Materials, 2019, 29, 1904810.	7.8	55
624	Highly Oriented Thin Films of 2D Ruddlesdenâ€Popper Hybrid Perovskite toward Superfast Response Photodetectors. Small, 2019, 15, e1901194.	5.2	29

ARTICLE IF CITATIONS Layer-Dependent Coherent Acoustic Phonons in Two-Dimensional Ruddlesden–Popper Perovskite 625 2.1 38 Crystals. Journal of Physical Chemistry Letters, 2019, 10, 5259-5264. Two-Dimensional Dion–Jacobson Hybrid Lead Iodide Perovskites with Aromatic Diammonium Cations. 6.6 241 Journal of the American Chemical Society, 2019, 141, 12880-12890. Effect of organic spacers on electronic, optical and transport properties of two-dimensional layered 627 1.4 3 lead-halide perovskites. Computational Materials Science, 2019, 169, 109130. Lead-free thermochromic perovskites with tunable transition temperatures for smart window 39 applications. Science China Chemistry, 2019, 62, 1257-1262. Cesium Oleate Passivation for Stable Perovskite Photovoltaics. ACS Applied Materials & amp; Interfaces, 629 4.0 12 2019, 11, 27882-27889. Two-dimensional benzylammonium based perovskites incorporated with hexamethylendiammonium for solar cell application. Journal of Solid State Chemistry, 2019, 277, 624-629. 1.4 Distinct conducting layer edge states in two-dimensional (2D) halide perovskite. Science Advances, 631 4.7 62 2019, 5, eaau3241. Searching for stability at lower dimensions: current trends and future prospects of layered 15.6 perovskite solar cells. Energy and Environmental Science, 2019, 12, 2860-2889. Tailored Phase Transformation of CsPbI₂Br Films by Copper(II) Bromide for 633 4.5 161 High-Performance All-Inorganic Perovskite Solar Cells. Nano Letters, 2019, 19, 5176-5184. Rational Coreâ€"Shell Design of Open Air Low Temperature In Situ Processable CsPbI₃ 634 10.2 53 Quasiâ€Nanocrystals for Stabilized pâ€iâ€n Solar Cells. Advanced Energy Materials, 2019, 9, 1901787. Ligand-Size Related Dimensionality Control in Metal Halide Perovskites. ACS Energy Letters, 2019, 4, 635 8.8 38 1830-1838. Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar 5.8 268 cells. Nature Communications, 2019, 10, 3008. The impact of energy alignment and interfacial recombination on the internal and external 637 15.6 570 open-circuit voltage of perovskite solar cells. Energy and Environmental Science, 2019, 12, 2778-2788. Boosting the efficiency of quasi two-dimensional perovskite solar cells via an interfacial layer of metallic nanoparticles. Organic Electronics, 2019, 74, 190-196. 1.4 14 Synthetic Variation and Structural Trends in Layered Two-Dimensional Alkylammonium Lead Halide 639 3.2 80 Perovskites. Chemistry of Materials, 2019, 31, 5592-5607. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature, 2019, 571, 640 1,103 245-250. Recent progress in fundamental understanding of halide perovskite semiconductors. Progress in 641 16.0 95 Materials Science, 2019, 106, 100580. Highly Efficient Guanidiniumâ€Based Quasi 2D Perovskite Solar Cells via a Twoâ€Step Postâ€Treatment 642 Process. Small Methods, 2019, 3, 1900375.
#	Article	IF	CITATIONS
643	Controlling Solvate Intermediate Growth for Phase-Pure Organic Lead Iodide Ruddlesden–Popper (C ₄ H ₉ NH ₃) ₂ (CH ₃ NH ₃) _{<i Perovskite Thin Films. Chemistry of Materials, 2019, 31, 5832-5844.</i }	•n< å≫â^' 1<	:/suabay>Pb <i><s< td=""></s<></i>
644	Enhanced Performance of Perovskite Light-Emitting Diodes via Diamine Interface Modification. ACS Applied Materials & Interfaces, 2019, 11, 29132-29138.	4.0	42
645	Exciton Self-Trapping in Hybrid Lead Halides: Role of Halogen. Journal of the American Chemical Society, 2019, 141, 12619-12623.	6.6	126
646	High Versatility and Stability of Mechanochemically Synthesized Halide Perovskite Powders for Optoelectronic Devices. ACS Applied Materials & Interfaces, 2019, 11, 30259-30268.	4.0	47
647	Two-dimensional inverted planar perovskite solar cells with efficiency over 15% <i>via</i> solvent and interface engineering. Journal of Materials Chemistry A, 2019, 7, 18980-18986.	5.2	41
648	Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. Science Advances, 2019, 5, eaav9445.	4.7	130
649	Light coupling to quasi-guided modes in nanoimprinted perovskite solar cells. Solar Energy Materials and Solar Cells, 2019, 201, 110080.	3.0	29
650	High-Temperature Antiferroelectric of Lead Iodide Hybrid Perovskites. Journal of the American Chemical Society, 2019, 141, 12470-12474.	6.6	108
651	Solvation effect in precursor solution enables over 16% efficiency in thick 2D perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 19423-19429.	5.2	29
652	Editors' Choice—Stability of Unstable Perovskites: Recent Strategies for Making Stable Perovskite Solar Cells. ECS Journal of Solid State Science and Technology, 2019, 8, Q111-Q117.	0.9	12
653	Controlling the Property of Edges in Layered 2D Perovskite Single Crystals. Journal of Physical Chemistry Letters, 2019, 10, 3950-3954.	2.1	40
654	Perovskites for Laser and Detector Applications. Energy and Environmental Materials, 2019, 2, 146-153.	7.3	42
655	Power Conversion Efficiency Enhancement of Low-Bandgap Mixed Pb–Sn Perovskite Solar Cells by Improved Interfacial Charge Transfer. ACS Energy Letters, 2019, 4, 1784-1790.	8.8	76
656	Lowâ€Dimensional Perovskites with Diammonium and Monoammonium Alternant Cations for Highâ€Performance Photovoltaics. Advanced Materials, 2019, 31, e1901966.	11.1	96
657	Impact of Electrode Materials on Process Environmental Stability of Efficient Perovskite Solar Cells. Joule, 2019, 3, 1977-1985.	11.7	25
658	Recent advances and prospects toward blue perovskite materials and lightâ€emitting diodes. InformaÄnÃ- Materiály, 2019, 1, 211-233.	8.5	84
659	Designing highly stable yet efficient solar cells based on a new triple-cation quasi-2D/3D hybrid perovskites family. Ceramics International, 2019, 45, 20788-20795.	2.3	3
660	Defect Engineering in 2D Perovskite by Mn(II) Doping for Light-Emitting Applications. CheM, 2019, 5, 2146-2158.	5.8	78

#	Article	IF	CITATIONS
661	Bimolecular Additives Improve Wide-Band-Gap Perovskites for Efficient Tandem Solar Cells with CIGS. Joule, 2019, 3, 1734-1745.	11.7	227
662	Synthesis of Polycrystalline Ruddlesden–Popper Organic Lead Halides and Their Growth Dynamics. Chemistry of Materials, 2019, 31, 9472-9479.	3.2	18
663	Surfaceâ€Modified Metallic Ti ₃ C ₂ T _x MXene as Electron Transport Layer for Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1905694.	7.8	125
664	Compositional Control in 2D Perovskites with Alternating Cations in the Interlayer Space for Photovoltaics with Efficiency over 18%. Advanced Materials, 2019, 31, e1903848.	11.1	171
665	Fine Multiâ€Phase Alignments in 2D Perovskite Solar Cells with Efficiency over 17% via Slow Postâ€Annealing. Advanced Materials, 2019, 31, e1903889.	11.1	178
666	Ruddlesden–Popper Perovskites: Synthesis and Optical Properties for Optoelectronic Applications. Advanced Science, 2019, 6, 1900941.	5.6	112
667	Ruddlesden–Popper 2D Component to Stabilize γ sPbI ₃ Perovskite Phase for Stable and Efficient Photovoltaics. Advanced Energy Materials, 2019, 9, 1902529.	10.2	111
668	2D Perovskites with Giant Excitonic Optical Nonlinearities for Highâ€Performance Subâ€Bandgap Photodetection. Advanced Materials, 2019, 31, e1904155.	11.1	70
669	Aminosilaneâ€Modified CuGaO ₂ Nanoparticles Incorporated with CuSCN as a Holeâ€Transport Layer for Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2019, 6, 1901372.	1.9	43
670	Dependence of material properties and photovoltaic performance of triple cation tin perovskites on the iodide to bromide ratio. Monatshefte Für Chemie, 2019, 150, 1921-1927.	0.9	10
671	Nanostructured Perovskite Solar Cells. Nanomaterials, 2019, 9, 1481.	1.9	19
672	Efficient Perovskite Solar Cell Modules with High Stability Enabled by Iodide Diffusion Barriers. Joule, 2019, 3, 2748-2760.	11.7	167
673	Recent advances in atomic imaging of organic-inorganic hybrid perovskites. Nano Materials Science, 2019, 1, 260-267.	3.9	10
674	Designing Two-Dimensional Properties in Three-Dimensional Halide Perovskites via Orbital Engineering. Journal of Physical Chemistry Letters, 2019, 10, 6688-6694.	2.1	25
675	Cesium Copper Iodide Tailored Nanoplates and Nanorods for Blue, Yellow, and White Emission. Chemistry of Materials, 2019, 31, 9003-9011.	3.2	111
676	Detailed balance analysis of plasmonic metamaterial perovskite solar cells. Optics Express, 2019, 27, A1241.	1.7	31
677	Regeneration of Phenol-Saturated Activated Carbon by Supercritical Water: Effect of H2O2 and Alkali Metal Catalysts. Journal of Environmental Engineering, ASCE, 2019, 145, .	0.7	5
678	Optimization of Lowâ€Dimensional Components of Quasiâ€2D Perovskite Films for Deepâ€Blue Lightâ€Emitting Diodes. Advanced Materials, 2019, 31, e1904319.	11.1	242

#	Article	IF	CITATIONS
679	Biomimetic Synchronized Motion of Two Interacting Macrocycles in [3]Rotaxaneâ€Based Molecular Shuttles. Angewandte Chemie, 2019, 131, 15280-15285.	1.6	16
680	Controlling the Growth Kinetics and Optoelectronic Properties of 2D/3D Lead–Tin Perovskite Heterojunctions. Advanced Materials, 2019, 31, e1905247.	11.1	36
681	Interfacial Passivation for Perovskite Solar Cells: The Effects of the Functional Group in Phenethylammonium Iodide. ACS Energy Letters, 2019, 4, 2913-2921.	8.8	176
682	Synergistic Improvements in Efficiency and Stability of 2D Perovskite Solar Cells with Metal Ion Doping. Advanced Materials Interfaces, 2019, 6, 1901259.	1.9	14
683	Non-standard inversion method of ellipsometric equations for uniaxially anisotropic 2D materials on semiconductor or metallic substrates. Photonics and Nanostructures - Fundamentals and Applications, 2019, 37, 100743.	1.0	1
684	Toward Phase Stability: Dion–Jacobson Layered Perovskite for Solar Cells. ACS Energy Letters, 2019, 4, 2960-2974.	8.8	124
685	Introduction of a Bifunctional Cation Affords Perovskite Solar Cells Stable at Temperatures Exceeding 80 °C. ACS Energy Letters, 2019, 4, 2989-2994.	8.8	18
686	Molecular engineering of organic–inorganic hybrid perovskites quantum wells. Nature Chemistry, 2019, 11, 1151-1157.	6.6	302
687	Uniform Permutation of Quasi-2D Perovskites by Vacuum Poling for Efficient, High-Fill-Factor Solar Cells. Joule, 2019, 3, 3061-3071.	11.7	177
688	Probing the Degradation Chemistry and Enhanced Stability of 2D Organolead Halide Perovskites. Journal of the American Chemical Society, 2019, 141, 18170-18181.	6.6	50
689	Two-Dimensional Organic–Inorganic Perovskite Ferroelectric Semiconductors with Fluorinated Aromatic Spacers. Journal of the American Chemical Society, 2019, 141, 18334-18340.	6.6	157
690	Orientation Engineering in Lowâ€Dimensional Crystalâ€Structural Materials via Seed Screening. Advanced Materials, 2019, 31, e1903914.	11.1	104
691	Toward a New Energy Era: Selfâ€Driven Integrated Systems Based on Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900320.	3.1	9
692	Hydrogen bond enables highly efficient and stable two-dimensional perovskite solar cells based on 4-pyridine-ethylamine. Organic Electronics, 2019, 67, 122-127.	1.4	22
693	Probing Fabry–Perot Interference in Self-Assembled Excitonic Microcrystals with Subgap Light Emission. Journal of Physical Chemistry C, 2019, 123, 23103-23112.	1.5	9
694	Seven-Layered 2D Hybrid Lead Iodide Perovskites. CheM, 2019, 5, 2593-2604.	5.8	79
695	Engineering of perovskite light-emitting diodes based on quasi-2D perovskites formed by diamine cations. Organic Electronics, 2019, 75, 105400.	1.4	27
696	Tuning Pressure-Induced Phase Transitions, Amorphization, and Excitonic Emissions of 2D Hybrid Perovskites via Varying Organic Amine Cations. Journal of Physical Chemistry C, 2019, 123, 22491-22498.	1.5	19

#	Article	IF	CITATIONS
697	Wavelength-Dependent Charge Carrier Dynamics for Single Pixel Color Sensing Using Graded Perovskite Structures. Nano Letters, 2019, 19, 6577-6584.	4.5	16
698	Bulk Photovoltaic Effect in a Pair of Chiral–Polar Layered Perovskite-Type Lead Iodides Altered by Chirality of Organic Cations. Journal of the American Chemical Society, 2019, 141, 14520-14523.	6.6	113
699	Phase-Transition-Induced Carrier Mass Enhancement in 2D Ruddlesden–Popper Perovskites. ACS Energy Letters, 2019, 4, 2386-2392.	8.8	38
700	Enhanced yield-mobility products in hybrid halide Ruddlesden–Popper compounds with aromatic ammonium spacers. Dalton Transactions, 2019, 48, 14019-14026.	1.6	20
701	Optical Constants and Effective-Medium Origins of Large Optical Anisotropies in Layered Hybrid Organic/Inorganic Perovskites. ACS Nano, 2019, 13, 10745-10753.	7.3	24
702	Exciton Dissociation and Suppressed Charge Recombination at 2D Perovskite Edges: Key Roles of Unsaturated Halide Bonds and Thermal Disorder. Journal of the American Chemical Society, 2019, 141, 15557-15566.	6.6	98
703	Effect of surface intrinsic defects on the structural stability and electronic properties of the all-inorganic halide perovskite CsPbI3(0 0 1) film. Chemical Physics Letters, 2019, 734, 136719.	1.2	19
704	Nanoscale hybrid multidimensional perovskites with alternating cations for high performance photovoltaic. Nano Energy, 2019, 65, 104050.	8.2	44
705	Barium acetate as an additive for high performance perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 11411-11418.	2.7	7
706	Scaling of the free and the relaxed exciton in perovskites (RNH3)2(CH3NH3)pâ^'1PbpI3p+1 large sized monolayers. Journal of Applied Physics, 2019, 126, 085502.	1.1	1
707	Interfacial Engineering at the 2D/3D Heterojunction for High-Performance Perovskite Solar Cells. Nano Letters, 2019, 19, 7181-7190.	4.5	163
708	Lead-Free Hybrid Metal Halides with a Green-Emissive [MnBr ₄] Unit as a Selective Turn-On Fluorescent Sensor for Acetone. Inorganic Chemistry, 2019, 58, 13464-13470.	1.9	112
709	Green Emission Induced by Intrinsic Defects in All-Inorganic Perovskite CsPb ₂ Br ₅ . Journal of Physical Chemistry Letters, 2019, 10, 6118-6123.	2.1	28
710	Role of Ligand–Ligand Interactions in the Stabilization of Thin Layers of Tin Bromide Perovskite: An Ab Initio Study of the Atomic and Electronic Structure, and Optical Properties. Journal of Physical Chemistry C, 2019, 123, 25176-25184.	1.5	14
711	Ferroelectricity and Rashba Effect in a Two-Dimensional Dion-Jacobson Hybrid Organic–Inorganic Perovskite. Journal of the American Chemical Society, 2019, 141, 15972-15976.	6.6	113
712	Optical deformation potential and self-trapped excitons in 2D hybrid perovskites. Physical Chemistry Chemical Physics, 2019, 21, 22293-22301.	1.3	13
713	Resolving Rotational Stacking Disorder and Electronic Level Alignment in a 2D Oligothiophene-Based Lead Iodide Perovskite. Chemistry of Materials, 2019, 31, 8523-8532.	3.2	26
714	4-(Aminoethyl)pyridine as a Bifunctional Spacer Cation for Efficient and Stable 2D Ruddlesden–Popper Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 37804-37811.	4.0	36

#	Article	IF	CITATIONS
715	Influence of the Organic Chain on the Optical Properties of Two-Dimensional Organic–Inorganic Hybrid Lead Iodide Perovskites. ACS Applied Electronic Materials, 2019, 1, 2253-2259.	2.0	13
716	Understanding the Improvement in the Stability of a Self-Assembled Multiple-Quantum Well Perovskite Light-Emitting Diode. Journal of Physical Chemistry Letters, 2019, 10, 6857-6864.	2.1	42
717	Optical Properties of Layered Hybrid Organic–Inorganic Halide Perovskites: A Tight-Binding GW-BSE Study. Journal of Physical Chemistry Letters, 2019, 10, 6189-6196.	2.1	51
718	Organic composition tailored perovskite solar cells and light-emitting diodes: Perspectives and advances. Materials Today Energy, 2019, 14, 100338.	2.5	9
719	Design of High-Performance Mixed-Dimensional Perovskite by Incorporating Different Halogenated Cesium Sources. ACS Sustainable Chemistry and Engineering, 2019, 7, 17507-17514.	3.2	6
720	Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chemical Society Reviews, 2019, 48, 2011-2038.	18.7	526
721	Enabling room-temperature processed highly efficient and stable 2D Ruddlesden–Popper perovskite solar cells with eliminated hysteresis by synergistic exploitation of additives and solvents. Journal of Materials Chemistry A, 2019, 7, 2015-2021.	5.2	55
722	The Role of Chloride Incorporation in Leadâ€Free 2D Perovskite (BA) ₂ SnI ₄ : Morphology, Photoluminescence, Phase Transition, and Charge Transport. Advanced Science, 2019, 6, 1802019.	5.6	42
723	Perfection of Perovskite Grain Boundary Passivation by Euâ€Porphyrin Complex for Overallâ€Stable Perovskite Solar Cells. Advanced Science, 2019, 6, 1802040.	5.6	65
724	Two-Dimensional Hybrid Perovskite-Type Ferroelectric for Highly Polarization-Sensitive Shortwave Photodetection. Journal of the American Chemical Society, 2019, 141, 2623-2629.	6.6	237
725	Ultrafast narrowband exciton routing within layered perovskite nanoplatelets enables low-loss luminescent solar concentrators. Nature Energy, 2019, 4, 197-205.	19.8	132
726	Phase control of quasi-2D perovskites and improved light-emitting performance by excess organic cations and nanoparticle intercalation. Nanoscale, 2019, 11, 3546-3556.	2.8	55
727	Moisture-tolerant supermolecule for the stability enhancement of organic–inorganic perovskite solar cells in ambient air. Nanoscale, 2019, 11, 1228-1235.	2.8	46
728	Photo-oxidative degradation of methylammonium lead iodide perovskite: mechanism and protection. Journal of Materials Chemistry A, 2019, 7, 2275-2282.	5.2	105
729	Efficient and accurate calculation of band gaps of halide perovskites with the Tran-Blaha modified Becke-Johnson potential. Physical Review B, 2019, 99, .	1.1	61
730	Structural and optical properties of 2D Ruddlesdenâ€Popper perovskite (BA) 2 (FA) nâ^'1 Pb n I 3n+1 compounds for photovoltaic applications. Journal of the American Ceramic Society, 2019, 102, 4152-4160.	1.9	8
731	A Dualâ€Retarded Reaction Processed Mixed ation Perovskite Layer for Highâ€Efficiency Solar Cells. Advanced Functional Materials, 2019, 29, 1807420.	7.8	28
732	Organicâ€Inorganic Hybrid Perovskite Single Crystals: Crystallization, Molecular Structures, and Bandgap Engineering. ChemNanoMat, 2019, 5, 278-289.	1.5	29

		CITATION REPORT		
#	Article		IF	CITATIONS
733	Tuning the Luminescence of Layered Halide Perovskites. Chemical Reviews, 2019, 119	, 3104-3139.	23.0	545
734	Bio-Integrated Wearable Systems: A Comprehensive Review. Chemical Reviews, 2019,	119, 5461-5533.	23.0	822
735	Green Anti-solvent Processed Efficient Flexible Perovskite Solar Cells. ACS Sustainable Engineering, 2019, 7, 4343-4350.	Chemistry and	3.2	24
736	Evidence for surface defect passivation as the origin of the remarkable photostability c unencapsulated perovskite solar cells employing aminovaleric acid as a processing add of Materials Chemistry A, 2019, 7, 3006-3011.	of itive. Journal	5.2	70
737	Introduction of Hydrophobic Ammonium Salts with Halogen Functional Groups for Hig and Stable 2D/3D Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 180	hâ€Efficiency 07565.	7.8	90
738	Compositional and Solvent Engineering in Dion–Jacobson 2D Perovskites Boosts Sol and Stability. Advanced Energy Materials, 2019, 9, 1803384.	ar Cell Efficiency	10.2	219
739	2D perovskite hybrid with both semiconductive and yellow light emission properties. Ir Chemistry Communication, 2019, 102, 90-94.	ıorganic	1.8	8
740	High-Performance Photodetectors Based on Lead-Free 2D Ruddlesden–Popper Perovskite/MoS ₂ Heterostructures. ACS Applied Materials & Interfac 8419-8427.	res, 2019, 11,	4.0	114
741	Unraveling the Impacts Induced by Organic and Inorganic Hole Transport Layers in Inve Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 7055-7065.	erted Halide	4.0	49
742	Single pot synthesis of indirect band gap 2D CsPb ₂ Br ₅ nano band gap 3D CsPbBr ₃ nanocrystals and the origin of their luminescence p Nanoscale, 2019, 11, 4001-4007.	sheets from direct roperties.	2.8	65
743	Dielectric and ferroic properties of metal halide perovskites. APL Materials, 2019, 7, .		2.2	173
744	Orientation Regulation of Tinâ€Based Reducedâ€Dimensional Perovskites for Highly El Photovoltaics. Advanced Functional Materials, 2019, 29, 1807696.	fficient and Stable	7.8	136
745	Towards 2D layered hybrid perovskites with enhanced functionality: introducing charg complexes <i>via</i> self-assembly. Chemical Communications, 2019, 55, 2481-2484.	e-transfer	2.2	51
746	Understanding the Formation of Vertical Orientation in Two-dimensional Metal Halide Thin Films. Chemistry of Materials, 2019, 31, 1336-1343.	Perovskite	3.2	93
747	Stability progress of perovskite solar cells dependent on the crystalline structure: From ABX ₃ to 2D Ruddlesden–Popper perovskite absorbers. Journal of Mater 2019, 7, 5898-5933.	າ 3D rials Chemistry A,	5.2	102
748	Extrinsic and Dynamic Edge States of Two-Dimensional Lead Halide Perovskites. ACS N 1635-1644.	lano, 2019, 13,	7.3	79
749	Highâ€Performance Perovskite Solar Cells with Enhanced Environmental Stability Base (<i>p</i> â€FC ₆ H ₄ C ₂ H ₄ Capping Layer. Advanced Energy Materials, 2019, 9, 1802595.	d on a 3) ₂ [Pl	ol<1500.b2>4<	/su2b133]
750	Spontaneous grain polymerization for efficient and stable perovskite solar cells. Nano 58, 825-833.	Energy, 2019,	8.2	64

#	Article	IF	CITATIONS
751	Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nature Reviews Materials, 2019, 4, 169-188.	23.3	598
752	Syntheses of two-dimensional propylammonium lead halide perovskite microstructures by a solution route. CrystEngComm, 2019, 21, 1458-1465.	1.3	8
753	SnO ₂ –Ti ₃ C ₂ MXene electron transport layers for perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 5635-5642.	5.2	173
754	Enhancement in lifespan of halide perovskite solar cells. Energy and Environmental Science, 2019, 12, 865-886.	15.6	143
755	Polymeric iodobismuthates {[Bi ₃ 1 ₁₀]} and {[Bil ₄]} with N-heterocyclic cations: promising perovskite-like photoactive materials for electronic devices. Journal of Materials Chemistry A, 2019, 7, 5957-5966.	5.2	53
756	Lithium-ion batteries: outlook on present, future, and hybridized technologies. Journal of Materials Chemistry A, 2019, 7, 2942-2964.	5.2	1,266
757	Luminescent perovskite quantum dots: synthesis, microstructures, optical properties and applications. Journal of Materials Chemistry C, 2019, 7, 1413-1446.	2.7	182
758	Two-dimensional (PEA) ₂ PbBr ₄ perovskite single crystals for a high performance UV-detector. Journal of Materials Chemistry C, 2019, 7, 1584-1591.	2.7	138
759	Excitons in 2D Organic–Inorganic Halide Perovskites. Trends in Chemistry, 2019, 1, 380-393.	4.4	146
760	Layered Ruddlesden–Popper Efficient Perovskite Solar Cells with Controlled Quantum and Dielectric Confinement Introduced via Doping. Advanced Functional Materials, 2019, 29, 1903293.	7.8	66
761	Metal halide perovskites under compression. Journal of Materials Chemistry A, 2019, 7, 16089-16108.	5.2	42
762	Lead-free low-dimensional tin halide perovskites with functional organic spacers: breaking the charge-transport bottleneck. Journal of Materials Chemistry A, 2019, 7, 16742-16747.	5.2	24
763	Charge arrier Dynamics, Mobilities, and Diffusion Lengths of 2D–3D Hybrid Butylammonium–Cesium–Formamidinium Lead Halide Perovskites. Advanced Functional Materials, 2019, 29, 1902656.	7.8	45
764	Exploring low-temperature processed a-WOx/SnO2 hybrid electron transporting layer for perovskite solar cells with efficiency >20.5%. Nano Energy, 2019, 63, 103825.	8.2	49
765	Factors determining the vertical orientation of two-dimensional perovskites. CrystEngComm, 2019, 21, 4529-4533.	1.3	16
766	An interface stabilized perovskite solar cell with high stabilized efficiency and low voltage loss. Energy and Environmental Science, 2019, 12, 2192-2199.	15.6	542
767	Air-processed, large grain perovskite films with low trap density from perovskite crystal engineering for high-performance perovskite solar cells with improved ambient stability. Journal of Materials Science, 2019, 54, 12000-12011.	1.7	27
768	Decreasing Exciton Binding Energy in Two-Dimensional Halide Perovskites by Lead Vacancies. Journal of Physical Chemistry Letters, 2019, 10, 3820-3827.	2.1	27

#	Article	IF	CITATIONS
769	Extrinsic Green Photoluminescence from the Edges of 2D Cesium Lead Halides. Advanced Materials, 2019, 31, e1902492.	11.1	75
770	Three-dimensional perovskite modulated by two-dimensional homologue as light-absorbing materials for efficient solar cells. Organic Electronics, 2019, 74, 126-134.	1.4	14
771	Giant Enhancement of Photoluminescence Emission in WS ₂ -Two-Dimensional Perovskite Heterostructures. Nano Letters, 2019, 19, 4852-4860.	4.5	72
772	Improved Environmental Stability and Solar Cell Efficiency of (MA,FA)PbI ₃ Perovskite Using a Wide-Band-Gap 1D Thiazolium Lead Iodide Capping Layer Strategy. ACS Energy Letters, 2019, 4, 1763-1769.	8.8	118
773	Two-dimensional Ruddlesden-Popper perovskite nanosheets: Synthesis, optoelectronic properties and miniaturized optoelectronic devices. FlatChem, 2019, 17, 100116.	2.8	13
774	Cation Alloying Delocalizes Polarons in Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 3516-3524.	2.1	33
775	Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%. Science Advances, 2019, 5, eaaw2543.	4.7	524
776	Suppressed Ion Migration in Reduced-Dimensional Perovskites Improves Operating Stability. ACS Energy Letters, 2019, 4, 1521-1527.	8.8	130
777	Mixed Two-Dimensional Organic-Inorganic Halide Perovskites for Highly Efficient and Stable Photovoltaic Application. Molecules, 2019, 24, 2144.	1.7	2
778	Surfaceâ€Plasmonâ€Assisted Metal Halide Perovskite Small Lasers. Advanced Optical Materials, 2019, 7, 1900279.	3.6	35
779	2D–3D Mixed Organic–Inorganic Perovskite Layers for Solar Cells with Enhanced Efficiency and Stability Induced by <i>n</i> -Propylammonium Iodide Additives. ACS Applied Materials & Interfaces, 2019, 11, 29753-29764.	4.0	83
780	Recent advances in controlling the crystallization of two-dimensional perovskites for optoelectronic device. Frontiers of Physics, 2019, 14, 1.	2.4	42
781	Memristors with organicâ€inorganic halide perovskites. InformaÄnÃ-Materiály, 2019, 1, 183-210.	8.5	111
782	Metal halide perovskites for resistive switching memory devices and artificial synapses. Journal of Materials Chemistry C, 2019, 7, 7476-7493.	2.7	72
783	Spintronics of Hybrid Organic–Inorganic Perovskites: Miraculous Basis of Integrated Optoelectronic Devices. Advanced Optical Materials, 2019, 7, 1900350.	3.6	47
784	Giant and Tunable Optical Nonlinearity in Singleâ€Crystalline 2D Perovskites due to Excitonic and Plasma Effects. Advanced Materials, 2019, 31, e1902685.	11.1	56
785	The Role of Bulk and Interface Recombination in Highâ€Efficiency Lowâ€Dimensional Perovskite Solar Cells. Advanced Materials, 2019, 31, e1901090.	11.1	59
786	Efficient rare earth co-doped TiO2 electron transport layer for high-performance perovskite solar cells. Journal of Colloid and Interface Science, 2019, 553, 14-21.	5.0	48

#	Article	IF	Citations
787	Improving the Stability and Monodispersity of Layered Cesium Lead Iodide Perovskite Thin Films by Tuning Crystallization Dynamics. Chemistry of Materials, 2019, 31, 4990-4998.	3.2	19
788	2D Intermediate Suppression for Efficient Ruddlesden–Popper (RP) Phase Lead-Free Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 1513-1520.	8.8	176
789	Aryl-Perfluoroaryl Interaction in Two-Dimensional Organic–Inorganic Hybrid Perovskites Boosts Stability and Photovoltaic Efficiency. , 2019, 1, 171-176.		63
790	From 2D to 1D Electronic Dimensionality in Halide Perovskites with Stepped and Flat Layers Using Propylammonium as a Spacer. Journal of the American Chemical Society, 2019, 141, 10661-10676.	6.6	66
791	Fluorinated 2D Lead Iodide Perovskite Ferroelectrics. Advanced Materials, 2019, 31, e1901843.	11.1	137
792	Highly Efficient and Stable Solar Cells Based on Crystalline Oriented 2D/3D Hybrid Perovskite. Advanced Materials, 2019, 31, e1901242.	11.1	210
793	Bi ³⁺ doped 2D Ruddlesden–Popper organic lead halide perovskites. Journal of Materials Chemistry A, 2019, 7, 15627-15632.	5.2	10
794	Hydrophobic perovskites based on an alkylamine compound for high efficiency solar cells with improved environmental stability. Journal of Materials Chemistry A, 2019, 7, 14689-14704.	5.2	19
795	The Second Spacer Cation Assisted Growth of a 2D Perovskite Film with Oriented Large Grain for Highly Efficient and Stable Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 9409-9413.	7.2	118
796	Oriented and Uniform Distribution of Dion–Jacobson Phase Perovskites Controlled by Quantum Well Barrier Thickness. Solar Rrl, 2019, 3, 1900090.	3.1	102
797	Graphite-protected CsPbBr3 perovskite photoanodes functionalised with water oxidation catalyst for oxygen evolution in water. Nature Communications, 2019, 10, 2097.	5.8	124
798	The Second Spacer Cation Assisted Growth of a 2D Perovskite Film with Oriented Large Grain for Highly Efficient and Stable Solar Cells. Angewandte Chemie, 2019, 131, 9509-9513.	1.6	23
799	Heterogeneous Photon Recycling and Charge Diffusion Enhance Charge Transport in Quasi-2D Lead-Halide Perovskite Films. Nano Letters, 2019, 19, 3953-3960.	4.5	67
800	Benefiting from Spontaneously Generated 2D/3D Bulkâ€Heterojunctions in Ruddlesdenâ^Popper Perovskite by Incorporation of Sâ€Bearing Spacer Cation. Advanced Science, 2019, 6, 1900548.	5.6	61
801	Properties of Excitons and Photogenerated Charge Carriers in Metal Halide Perovskites. Advanced Materials, 2019, 31, e1806671.	11.1	134
802	Defect and Contact Passivation for Perovskite Solar Cells. Advanced Materials, 2019, 31, e1900428.	11.1	445
803	Compositional, Processing, and Interfacial Engineering of Nanocrystal- and Quantum-Dot-Based Perovskite Solar Cells. Chemistry of Materials, 2019, 31, 6387-6411.	3.2	82
804	Surface-Tension-Controlled Crystallization for High-Quality 2D Perovskite Single Crystals for Ultrahigh Photodetection. Matter, 2019, 1, 465-480.	5.0	202

ARTICLE IF CITATIONS Microstructural Study of Two-Dimensional Organic-Inorganic Hybrid Perovskite Nanosheet 805 1.9 16 Degradation under Illumination. Nanomaterials, 2019, 9, 722. Phase-Pure Hybrid Layered Lead Iodide Perovskite Films Based on a Two-Step Melt-Processing Approach. 806 3.2 Chemistry of Materials, 2019, 31, 4267-4274. Self-template Synthesis of Metal Halide Perovskite Nanotubes as Functional Cavities for Tailored 807 4.0 6 Optoelectronic Devices. ACS Applied Materials & amp; Interfaces, 2019, 11, 21100-21108. Electronic and optical absorption properties of organic–inorganic perovskites as influenced by different long-chain diamine molecules: first-principles calculations. RSC Advances, 2019, 9, 808 14718-14726. Strong thickness-dependent quantum confinement in all-inorganic perovskite Cs₂Pbl₄with a Ruddlesdenâ€"Popper structure. Journal of Materials Chemistry 809 2.7 62 C, 2019, 7, 7433-7441. (C₆H₅NH₃)Bil₄: a lead-free perovskite with >330 days humidity stability for optoelectronic applications. Journal of Materials Chemistry A, 2019, 7, 5.2 15722-15730. Giant Nonlinear Optical Response in 2D Perovskite Heterostructures. Advanced Optical Materials, 811 3.6 58 2019, 7, 1900398. Screened excitons and trions by free carriers in the two-dimensional perovskite structure. Physica E: 1.3 Low-Dimensional Systems and Nanostructures, 2019, 113, 181-187. Unique characteristics of 2D Ruddlesdenâ€"Popper (2DRP) perovskite for future photovoltaic 813 5.2 84 application. Journal of Materials Chemistry A, 2019, 7, 13860-13872. Engineering the underlying surface to manipulate the growth of 2D perovskites for highly efficient 814 5.2 solar cells. Journal of Materials Chemistry A, 2019, 7, 14027-14032. Tailoring the Functionality of Organic Spacer Cations for Efficient and Stable Quasiâ€2D Perovskite 815 7.8 144 Solar Cells. Advanced Functional Materials, 2019, 29, 1900221. Inorganic and Layered Perovskites for Optoelectronic Devices. Advanced Materials, 2019, 31, e1807095. 816 11.1 94 Record Openâ€Circuit Voltage Wideâ€Bandgap Perovskite Solar Cells Utilizing 2D/3D Perovskite 817 10.2 325 Heterostructure. Advanced Energy Materials, 2019, 9, 1803699. Direct-Bandgap 2D Silver–Bismuth Iodide Double Perovskite: The Structure-Directing Influence of an 6.6 Oligothiophene Spacer Cation. Journal of the American Chemical Society, 2019, 141, 7955-7964. Role of Water and Defects in Photoâ€Oxidative Degradation of Methylammonium Lead Iodide Perovskite. 819 49 4.6 Small Methods, 2019, 3, 1900154. Origin of Exceptionally Slow Light Soaking Effect in Mesoporous Carbon Perovskite Solar Cells with 29 AVĂ Additive. Journal of Physical Chemistry C, 2019, 123, 11414-11421. An overview of the decompositions in organo-metal halide perovskites and shielding with 821 8.2 42 2-dimensional perovskites. Renewable and Sustainable Energy Reviews, 2019, 109, 160-186. Small Cyclic Diammonium Cation Templated (110)-Oriented 2D Halide (X = I, Br, Cl) Perovskites with 3.2 101 White-Light Emission. Chemistry of Materials, 2019, 31, 3582-3590.

#	Article	IF	CITATIONS
823	Reduced-Dimensional Perovskite Enabled by Organic Diamine for Efficient Photovoltaics. Journal of Physical Chemistry Letters, 2019, 10, 2349-2356.	2.1	104
824	Design of Mixedâ€Cation Triâ€Layered Pbâ€Free Halide Perovskites for Optoelectronic Applications. Advanced Electronic Materials, 2019, 5, 1900234.	2.6	21
825	Intralayer A-Site Compositional Engineering of Ruddlesden–Popper Perovskites for Thermostable and Efficient Solar Cells. ACS Energy Letters, 2019, 4, 1216-1224.	8.8	65
826	Temperature-Dependent Band Gap in Two-Dimensional Perovskites: Thermal Expansion Interaction and Electron–Phonon Interaction. Journal of Physical Chemistry Letters, 2019, 10, 2546-2553.	2.1	90
827	Recent Progress in Metal Halide Perovskite Micro―and Nanolasers. Advanced Optical Materials, 2019, 7, 1900080.	3.6	95
828	Enhancing High Humidity Stability of Quasiâ€⊉D Perovskite Thin Films through Mixed Cation Doping and Solvent Engineering. ChemNanoMat, 2019, 5, 1280-1288.	1.5	13
829	Phthalocyanines and porphyrinoid analogues as hole- and electron-transporting materials for perovskite solar cells. Chemical Society Reviews, 2019, 48, 2738-2766.	18.7	165
830	White-Light Emission from the Structural Distortion Induced by Control of Halide Composition of Two-Dimensional Perovskites ((C ₆ H ₅ CH ₂ NH ₃) ₂ PbBr _{4–<i>x</i>/i>Inorganic Chemistry, 2019, 58, 6748-6757}	>tl	< <mark>43</mark> <i>x</i>
831	Band engineering of two-dimensional Ruddlesden–Popper perovskites for solar utilization: the relationship between chemical components and electronic properties. Journal of Materials Chemistry A, 2019, 7, 11530-11536.	5.2	17
832	Reverseâ€Graded 2D Ruddlesden–Popper Perovskites for Efficient Airâ€Stable Solar Cells. Advanced Energy Materials, 2019, 9, 1900612.	10.2	69
833	Perovskite Solar Cells Processed by Solution Nanotechnology. , 2019, , 119-174.		0
834	Two-dimensional innovative materials for photovoltaics. Current Opinion in Green and Sustainable Chemistry, 2019, 17, 49-56.	3.2	6
835	Perovskites for Next-Generation Optical Sources. Chemical Reviews, 2019, 119, 7444-7477.	23.0	640
836	Monitoring the morphological evolution in mixed-dimensional lead bromide perovskite films with lamellar-stacked perovskite nanoplatelets. Nanoscale Horizons, 2019, 4, 1139-1144.	4.1	7
837	Conjugated Polyelectrolytes as Multifunctional Passivating and Holeâ€Transporting Layers for Efficient Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2019, 31, e1900067.	11.1	44
838	Structural and Functional Diversity in Leadâ€Free Halide Perovskite Materials. Advanced Materials, 2019, 31, e1900326.	11.1	198
839	Reversible high temperature dielectric switching in a 2 <i>H</i> -perovskite compound: [Me ₃ NCH ₂ CH ₃]CdCl ₃ . CrystEngComm, 2019, 21, 2669-2674.	1.3	15
840	Optimized band gap and fast interlayer charge transfer in two-dimensional perovskite oxynitride Ba2NbO3N and Sr2NbO3/Ba2NbO3N bonded heterostructure visible-light photocatalysts for overall water splitting. Journal of Colloid and Interface Science, 2019, 546, 20-31.	5.0	26

#	Article	IF	CITATIONS
841	Favorable growth of well-crystallized layered hybrid perovskite by combination of thermal and solvent assistance. Journal of Power Sources, 2019, 422, 156-162.	4.0	14
842	Room-Temperature Broadband Light Emission from Hybrid Lead Iodide Perovskite-Like Quantum Wells: Terahertz Spectroscopic Investigation of Metastable Defects. Journal of Physical Chemistry Letters, 2019, 10, 1653-1662.	2.1	14
843	Enhanced Charge Transport in 2D Perovskites via Fluorination of Organic Cation. Journal of the American Chemical Society, 2019, 141, 5972-5979.	6.6	274
844	Synthetic control over orientational degeneracy of spacer cations enhances solar cell efficiency in two-dimensional perovskites. Nature Communications, 2019, 10, 1276.	5.8	222
845	Uncovering the Mechanism Behind the Improved Stability of 2D Organic–Inorganic Hybrid Perovskites. Small, 2019, 15, e1900462.	5.2	27
846	The First 2D Homochiral Lead Iodide Perovskite Ferroelectrics: [<i>R</i> ―and <i>S</i> â€1â€(4â€Chlorophenyl)ethylammonium] ₂ PbI ₄ . Advanced Materials, 2019, 31 e1808088.	, 11.1	268
847	(C ₆ H ₁₃ NH ₃) ₂ (NH ₂ CHNH ₂)Pb <su A Twoâ€dimensional Bilayer Inorganic–Organic Hybrid Perovskite Showing Photodetecting Behavior. Chemistry - an Asian Journal, 2019, 14, 1530-1534.</su 	b>21.7	>I ₇₁₈
848	(C6H5C2H4NH3)2FAn-1PbnI3n+1: A quasi two-dimensional perovskite with high performance produced via two-step solution method. Journal of Alloys and Compounds, 2019, 788, 954-960.	2.8	11
849	Stable and scalable 3D-2D planar heterojunction perovskite solar cells via vapor deposition. Nano Energy, 2019, 59, 619-625.	8.2	88
850	(4NPEA) ₂ PbI ₄ (4NPEA = 4-Nitrophenylethylammonium): Structural, NMR, and Optical Properties of a 3 × 3 Corrugated 2D Hybrid Perovskite. Journal of the American Chemical Society, 2019, 141, 4521-4525.	6.6	37
851	Pressure engineering of photovoltaic perovskites. Materials Today, 2019, 27, 91-106.	8.3	79
852	Passivating Crystal Boundaries with Potassiumâ€Rich Phase in Organic Halide Perovskite. Solar Rrl, 2019, 3, 1900053.	3.1	64
853	Fully Inorganic Ruddlesden–Popper Double Cl–I and Triple Cl–Br–I Lead Halide Perovskite Nanocrystals. Chemistry of Materials, 2019, 31, 2182-2190.	3.2	60
854	Uniaxial Expansion of the 2D Ruddlesden–Popper Perovskite Family for Improved Environmental Stability. Journal of the American Chemical Society, 2019, 141, 5518-5534.	6.6	193
855	Highly Sensitive and Ultrafast Responding Array Photodetector Based on a Newly Tailored 2D Lead Iodide Perovskite Crystal. Advanced Optical Materials, 2019, 7, 1900308.	3.6	42
856	Highly stable semi-transparent MAPbI3 perovskite solar cells with operational output for 4000†h. Solar Energy Materials and Solar Cells, 2019, 195, 323-329.	3.0	84
857	Photovoltaic properties of a triple cation methylammonium/formamidinium/phenylethylammonium tin iodide perovskite. Journal of Materials Chemistry A, 2019, 7, 9523-9529.	5.2	31
858	Binary organic spacer-based quasi-two-dimensional perovskites with preferable vertical orientation and efficient charge transport for high-performance planar solar cells. Journal of Materials Chemistry A, 2019, 7, 9542-9549.	5.2	50

#	Article	IF	CITATIONS
859	Origin and Suppression of the Graded Phase Distribution in Ruddlesdenâ€Popper Perovskite Films for Photovoltaic Application. Solar Rrl, 2019, 3, 1800357.	3.1	27
860	Highly efficient and thermal stable guanidinium-based two-dimensional perovskite solar cells via partial substitution with hydrophobic ammonium. Science China Chemistry, 2019, 62, 859-865.	4.2	32
861	Simultaneously boost diffusion length and stability of perovskite for high performance solar cells. Nano Energy, 2019, 59, 721-729.	8.2	33
862	Dion–Jacobson Two-Dimensional Perovskite Solar Cells Based on Benzene Dimethanammonium Cation. Nano Letters, 2019, 19, 2588-2597.	4.5	155
863	Two-dimensional additive diethylammonium iodide promoting crystal growth for efficient and stable perovskite solar cells. RSC Advances, 2019, 9, 7984-7991.	1.7	25
864	Theoretical Prediction of Chiral 3D Hybrid Organic–Inorganic Perovskites. Advanced Materials, 2019, 31, e1807628.	11.1	64
865	High performance low-dimensional perovskite solar cells based on a one dimensional lead iodide perovskite. Journal of Materials Chemistry A, 2019, 7, 8811-8817.	5.2	54
866	Materials Design of Solar Cell Absorbers Beyond Perovskites and Conventional Semiconductors via Combining Tetrahedral and Octahedral Coordination. Advanced Materials, 2019, 31, e1806593.	11.1	48
867	Solutionâ€Processable Perovskite Solar Cells toward Commercialization: Progress and Challenges. Advanced Functional Materials, 2019, 29, 1807661.	7.8	149
868	Oriented Growth of Ultrathin Single Crystals of 2D Ruddlesden–Popper Hybrid Lead Iodide Perovskites for High-Performance Photodetectors. ACS Applied Materials & Interfaces, 2019, 11, 15905-15912.	4.0	43
869	Excitonic states and structural stability in two-dimensional hybrid organic-inorganic perovskites. Journal of Science: Advanced Materials and Devices, 2019, 4, 189-200.	1.5	32
870	Controlling Oxygen Defect Formation and Its Effect on Reversible Symmetry Lowering and Disorder-to-Order Phase Transformations in Nonstoichiometric Ternary Uranium Oxides. Inorganic Chemistry, 2019, 58, 6143-6154.	1.9	14
871	Interlayer Interaction Enhancement in Ruddlesden–Popper Perovskite Solar Cells toward High Efficiency and Phase Stability. ACS Energy Letters, 2019, 4, 1025-1033.	8.8	64
872	Recent progress of the optoelectronic properties of 2D Ruddlesden-Popper perovskites. Journal of Semiconductors, 2019, 40, 041901.	2.0	17
873	Improving Charge Transport via Intermediateâ€Controlled Crystal Growth in 2D Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1901652.	7.8	103
874	2D perovskite microsheets for high-performance photodetectors. Journal of Materials Chemistry C, 2019, 7, 5353-5358.	2.7	54
875	30% Enhancement of Efficiency in Layered 2D Perovskites Absorbers by Employing Homoâ€Tandem Structures. Solar Rrl, 2019, 3, 1900083.	3.1	10
876	Supramolecular Engineering for Formamidiniumâ€Based Layered 2D Perovskite Solar Cells: Structural Complexity and Dynamics Revealed by Solidâ€State NMR Spectroscopy. Advanced Energy Materials, 2019, 9, 1900284.	10.2	89

#	Article	IF	CITATIONS
877	White light emission in low-dimensional perovskites. Journal of Materials Chemistry C, 2019, 7, 4956-4969.	2.7	163
878	Two-dimensional eclipsed arrangement hybrid perovskites for tunable energy level alignments and photovoltaics. Journal of Materials Chemistry C, 2019, 7, 5139-5147.	2.7	22
879	Metal halide perovskite photodetectors: Material features and device engineering. Chinese Physics B, 2019, 28, 018502.	0.7	18
880	Stability improvement under high efficiency—next stage development of perovskite solar cells. Science China Chemistry, 2019, 62, 684-707.	4.2	50
881	Low-dimensional emissive states in non-stoichiometric methylammonium lead halide perovskites. Journal of Materials Chemistry A, 2019, 7, 11104-11116.	5.2	7
882	Optically pumped lasing of segregated quasi-2D perovskite microcrystals in vertical microcavity at room temperature. Applied Physics Letters, 2019, 114, 131107.	1.5	18
883	All-polymer methylammonium lead iodide perovskite microcavities. Nanoscale, 2019, 11, 8978-8983.	2.8	30
884	Zero-Dimensional Lead-Free Hybrid Perovskite-like Material with a Quantum-Well Structure. Chemistry of Materials, 2019, 31, 1941-1945.	3.2	49
885	From Lead Halide Perovskites to Leadâ€Free Metal Halide Perovskites and Perovskite Derivatives. Advanced Materials, 2019, 31, e1803792.	11.1	621
886	Intrinsic Instability of Inorganic–Organic Hybrid Halide Perovskite Materials. Advanced Materials, 2019, 31, e1805337.	11.1	278
887	Perovskite Photovoltaics: The Significant Role of Ligands in Film Formation, Passivation, and Stability. Advanced Materials, 2019, 31, e1805702.	11.1	192
888	Fundamental Understanding of Photocurrent Hysteresis in Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803017.	10.2	224
889	Progress of Leadâ€Free Halide Double Perovskites. Advanced Energy Materials, 2019, 9, 1803150.	10.2	322
890	Twoâ€Dimensional Halide Perovskites in Solar Cells: 2D or not 2D?. ChemSusChem, 2019, 12, 1560-1575.	3.6	195
891	Manipulating the Phase Distributions and Carrier Transfers in Hybrid Quasiâ€Twoâ€Dimensional Perovskite Films. Solar Rrl, 2019, 3, 1800359.	3.1	46
892	Fullerene Polymer Complex Inducing Dipole Electric Field for Stable Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1804419.	7.8	42
893	Lowâ€Bandgap Mixed Tinâ€Lead Perovskites and Their Applications in Allâ€Perovskite Tandem Solar Cells. Advanced Functional Materials, 2019, 29, 1808801.	7.8	133
894	Causes and Solutions of Recombination in Perovskite Solar Cells. Advanced Materials, 2019, 31, e1803019.	11.1	422

#	Article	IF	CITATIONS
895	Review of Novel Passivation Techniques for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800302.	3.1	139
896	Management of the crystallization in two-dimensional perovskite solar cells with enhanced efficiency within a wide temperature range and high stability. Nano Energy, 2019, 58, 706-714.	8.2	52
897	Demonstration of Photovoltaic Action and Enhanced Stability from a Quasi-Two-Dimensional Hybrid Organic–Inorganic Copperâ"Halide Material Incorporating Divalent Organic Groups. ACS Applied Energy Materials, 2019, 2, 2178-2187.	2.5	6
898	Time-Resolved Electrical Scanning Probe Microscopy of Layered Perovskites Reveals Spatial Variations in Photoinduced Ionic and Electronic Carrier Motion. ACS Nano, 2019, 13, 2812-2821.	7.3	38
899	Recent progress toward perovskite light-emitting diodes with enhanced spectral and operational stability. Materials Today Nano, 2019, 5, 100028.	2.3	86
900	Emission enhancement and bandgap retention of a two-dimensional mixed cation lead halide perovskite under high pressure. Journal of Materials Chemistry A, 2019, 7, 6357-6362.	5.2	30
901	Two-dimensional organic–inorganic hybrid perovskite field-effect transistors with polymers as bottom-gate dielectrics. Journal of Materials Chemistry C, 2019, 7, 4004-4012.	2.7	45
902	Lead Halide Postâ€Perovskiteâ€Type Chains for Highâ€Efficiency Whiteâ€Light Emission. Advanced Materials, 2019, 31, e1807383.	11.1	147
903	Solution Route to Singleâ€Crystalline Ethylammonium Lead Halide Microstructures. ChemistrySelect, 2019, 4, 2174-2180.	0.7	1
904	Encapsulation of Printable Mesoscopic Perovskite Solar Cells Enables High Temperature and Longâ€∓erm Outdoor Stability. Advanced Functional Materials, 2019, 29, 1809129.	7.8	133
905	Two-Dimensional CH ₃ NH ₃ PbI ₃ with High Efficiency and Superior Carrier Mobility: A Theoretical Study. Journal of Physical Chemistry C, 2019, 123, 5231-5239.	1.5	41
906	Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Physics Reports, 2019, 795, 1-51.	10.3	303
907	Hole Blocking Layer-Free Perovskite Solar Cells with High Efficiencies and Stabilities by Integrating Subwavelength-Sized Plasmonic Alloy Nanoparticles. ACS Applied Energy Materials, 2019, 2, 2094-2103.	2.5	13
908	Efficient and Stable Low-Dimensional Ruddlesden–Popper Perovskite Solar Cells Enabled by Reducing Tunnel Barrier. Journal of Physical Chemistry Letters, 2019, 10, 1173-1179.	2.1	47
909	Lead-Free Halide Double Perovskite Materials: A New Superstar Toward Green and Stable Optoelectronic Applications. Nano-Micro Letters, 2019, 11, 16.	14.4	238
910	Probing Strain-Induced Band Gap Modulation in 2D Hybrid Organic–Inorganic Perovskites. ACS Energy Letters, 2019, 4, 796-802.	8.8	47
911	Prospects for low-toxicity lead-free perovskite solar cells. Nature Communications, 2019, 10, 965.	5.8	695
912	Halide Perovskites: Is It All about the Interfaces?. Chemical Reviews, 2019, 119, 3349-3417.	23.0	404

#	ARTICLE Unveiling the operation mechanism of layered perovskite solar cells. Nature Communications, 2019, 10,	IF	CITATIONS
913 914	1008. Tailoring vertical phase distribution of quasi-two-dimensional perovskite films via surface	5.8	115
915	A Review of Perovskites Solar Cell Stability. Advanced Functional Materials, 2019, 29, 1808843.	7.8	835
916	Hybrid perovskites for device applications. , 2019, , 211-256.		13
917	Three New Lead Iodide Chain Compounds, APbI3, Templated by Molecular Cations. Crystals, 2019, 9, 616.	1.0	5
919	Tuning Emission and Electron–Phonon Coupling in Lead-Free Halide Double Perovskite Cs ₂ AgBiCl ₆ under Pressure. ACS Energy Letters, 2019, 4, 2975-2982.	8.8	94
920	The role of excitons in 3D and 2D lead halide perovskites. Journal of Materials Chemistry C, 2019, 7, 12006-12018.	2.7	80
921	Understanding the mechanism of metal-induced degradation in perovskite nanocrystals. Nanoscale, 2019, 11, 19543-19550.	2.8	12
922	<i>In situ</i> formation of a 2D/3D heterostructure for efficient and stable CsPbI ₂ Br solar cells. Journal of Materials Chemistry A, 2019, 7, 22675-22682.	5.2	63
923	Stacking of Layered Halide Perovskite from Incorporating a Diammonium Cation into Three-Dimensional Perovskites. Langmuir, 2019, 35, 16444-16458.	1.6	5
924	Performance and stability gain in zero-dimensional perovskite solar cells after >2 years when hybridized with silicon nanocrystals. Nanoscale Advances, 2019, 1, 4683-4687.	2.2	2
925	Improving Photovoltaic Stability and Performance of Perovskite Solar Cells by Molecular Interface Engineering. Journal of Physical Chemistry C, 2019, 123, 1219-1225.	1.5	16
926	Rational chemical doping of metal halide perovskites. Chemical Society Reviews, 2019, 48, 517-539.	18.7	196
927	Lead-free, stable, and effective double FA4GeIISbIIICl12 perovskite for photovoltaic applications. Solar Energy Materials and Solar Cells, 2019, 192, 140-146.	3.0	31
928	Bulk Heterojunction Quasi-Two-Dimensional Perovskite Solar Cell with 1.18 V High Photovoltage. ACS Applied Materials & Interfaces, 2019, 11, 2935-2943.	4.0	13
929	Pressure-Engineered Structural and Optical Properties of Two-Dimensional (C ₄ H ₉ NH ₃) ₂ Pbl ₄ Perovskite Exfoliated nm-Thin Flakes. Journal of the American Chemical Society, 2019, 141, 1235-1241.	6.6	95
930	Structural and thermodynamic limits of layer thickness in 2D halide perovskites. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 58-66.	3.3	236
931	Two dimensional metal halide perovskites: Promising candidates for light-emitting diodes. Journal of Energy Chemistry, 2019, 37, 97-110.	7.1	52

#	Article	IF	CITATIONS
932	Optical Properties of Two-Dimensional Perovskite Films of (C ₆ H ₅ C ₂ H ₄ NH ₃) ₂ [PbI _{4and (C₆H₅C₂H₄NH₃)₂ (CH₃NH₃)₂[Pb₃10}]. Journal of Physical Chemistry Letters, 2019, 10, 13-19.	b>] 2.1	43
933	Improved Moisture Stability of Perovskite Solar Cells with a Surfaceâ€Treated PCBM Layer. Solar Rrl, 2019, 3, 1800289.	3.1	20
934	Dion-Jacobson Phase 2D Layered Perovskites for Solar Cells with Ultrahigh Stability. Joule, 2019, 3, 794-806.	11.7	416
935	Alternative Type Two-Dimensional–Three-Dimensional Lead Halide Perovskite with Inorganic Sodium Ions as a Spacer for High-Performance Light-Emitting Diodes. ACS Nano, 2019, 13, 1645-1654.	7.3	43
936	Mixed Dimensional 2D/3D Hybrid Perovskite Absorbers: The Future of Perovskite Solar Cells?. Advanced Functional Materials, 2019, 29, 1806482.	7.8	257
937	Low dimensional metal halide perovskites and hybrids. Materials Science and Engineering Reports, 2019, 137, 38-65.	14.8	300
938	Two-Dimensional Hybrid Halide Perovskites: Principles and Promises. Journal of the American Chemical Society, 2019, 141, 1171-1190.	6.6	999
939	Dimensional tailoring of hybrid perovskites for photovoltaics. Nature Reviews Materials, 2019, 4, 4-22.	23.3	671
940	Management of Crystallization Kinetics for Efficient and Stable Lowâ€Dimensional Ruddlesden–Popper (LDRP) Leadâ€Free Perovskite Solar Cells. Advanced Science, 2019, 6, 1800793.	5.6	97
941	Critical role of chloride in organic ammonium spacer on the performance of Low-dimensional Ruddlesden-Popper perovskite solar cells. Nano Energy, 2019, 56, 373-381.	8.2	59
942	Study on the Stability of Ammonium Iodideâ€Based Mixedâ€Dimensional Perovskite Solar Cells under Different Humidity. Solar Rrl, 2019, 3, 1800276.	3.1	12
943	Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chemical Reviews, 2019, 119, 3418-3451.	23.0	1,131
944	Metal Halide Perovskite Materials for Solar Cells with Longâ€Term Stability. Advanced Energy Materials, 2019, 9, 1802671.	10.2	97
945	Two-dimensional perovskite materials: From synthesis to energy-related applications. Materials Today Energy, 2019, 11, 61-82.	2.5	133
946	SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress. Journal of Energy Chemistry, 2019, 35, 144-167.	7.1	129
947	Melamine Hydroiodide Functionalized MAPbI ₃ Perovskite with Enhanced Photovoltaic Performance and Stability in Ambient Atmosphere. Solar Rrl, 2019, 3, 1800275.	3.1	18
948	Pressureâ€Induced Broadband Emission of 2D Organic–Inorganic Hybrid Perovskite (C ₆ H ₅ C ₂ H ₄ NH ₃) ₂ PbBr _{4Advanced Science, 2019, 6, 1801628.}	1526	89
949	Impact of Organic Spacers on the Carrier Dynamics in 2D Hybrid Lead-Halide Perovskites. ACS Energy Letters, 2019, 4, 17-25.	8.8	44

#	Article	IF	CITATIONS
950	Lead and HTM Free Stable Twoâ€Ðimensional Tin Perovskites with Suitable Band Gap for Solar Cell Applications. Angewandte Chemie, 2019, 131, 1084-1088.	1.6	22
951	Lead and HTM Free Stable Twoâ€Dimensional Tin Perovskites with Suitable Band Gap for Solar Cell Applications. Angewandte Chemie - International Edition, 2019, 58, 1072-1076.	7.2	96
952	Pushing the frontiers of modeling excited electronic states and dynamics to accelerate materials engineering and design. Computational Materials Science, 2019, 160, 207-216.	1.4	18
953	Optoelectronic Properties of TiS2: A Never Ended Story Tackled by Density Functional Theory and Many-Body Methods. Inorganic Chemistry, 2019, 58, 1949-1957.	1.9	12
954	Improved Photovoltaic Efficiency and Amplified Photocurrent Generation in Mesoporous <i>n</i> = 1 Two-Dimensional Lead–lodide Perovskite Solar Cells. Chemistry of Materials, 2019, 31, 890-898.	3.2	57
955	Acid-Compatible Halide Perovskite Photocathodes Utilizing Atomic Layer Deposited TiO ₂ for Solar-Driven Hydrogen Evolution. ACS Energy Letters, 2019, 4, 293-298.	8.8	75
956	Machine Learning for Understanding Compatibility of Organic–Inorganic Hybrid Perovskites with Post-Treatment Amines. ACS Energy Letters, 2019, 4, 397-404.	8.8	78
957	Binary Solvent Engineering for High-Performance Two-Dimensional Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 3487-3495.	3.2	90
958	Blue Electrogenerated Chemiluminescence from Halide Perovskite Nanocrystals. Journal of Analysis and Testing, 2019, 3, 125-133.	2.5	11
959	Coral-like perovskite nanostructures for enhanced light-harvesting and accelerated charge extraction in perovskite solar cells. Nano Energy, 2019, 58, 138-146.	8.2	38
960	Quantum and Dielectric Confinement Effects in Lower-Dimensional Hybrid Perovskite Semiconductors. Chemical Reviews, 2019, 119, 3140-3192.	23.0	525
961	Spectrally Resolved Ultrafast Exciton Transfer in Mixed Perovskite Quantum Wells. Journal of Physical Chemistry Letters, 2019, 10, 419-426.	2.1	74
962	A Strategy toward New Lowâ€Dimensional Hybrid Halide Perovskites with Anionic Spacers. Small, 2019, 15, e1804152.	5.2	3
963	Enhanced efficiency and light stability of planar perovskite solar cells by diethylammonium bromide induced large-grain 2D/3D hybrid film. Organic Electronics, 2019, 67, 101-108.	1.4	28
964	Photoexcited Dynamics in Metal Halide Perovskites: From Relaxation Mechanisms to Applications. Journal of Physical Chemistry C, 2019, 123, 3255-3269.	1.5	9
965	Ultrafast Charge Separation in Two-Dimensional CsPbBr ₃ Perovskite Nanoplatelets. Journal of Physical Chemistry Letters, 2019, 10, 566-573.	2.1	71
966	Dynamical Transformation of Two-Dimensional Perovskites with Alternating Cations in the Interlayer Space for High-Performance Photovoltaics. Journal of the American Chemical Society, 2019, 141, 2684-2694.	6.6	189
967	A Review: Thermal Stability of Methylammonium Lead Halide Based Perovskite Solar Cells. Applied Sciences (Switzerland), 2019, 9, 188.	1.3	173

		CITATION REPORT		
#	Article		IF	CITATIONS
968	Synthetic Approaches for Halide Perovskite Thin Films. Chemical Reviews, 2019, 119, 3	193-3295.	23.0	454
969	Revealing Photoluminescence Modulation from Layered Halide Perovskite Microcrystal Compression. Advanced Materials, 2019, 31, e1805608.	s upon Cyclic	11.1	16
970	Perovskite Nanoparticles: Synthesis, Properties, and Novel Applications in Photovoltaic Small Methods, 2019, 3, 1800231.	s and LEDs.	4.6	77
971	From scalable solution fabrication of perovskite films towards commercialization of sol Energy and Environmental Science, 2019, 12, 518-549.	ar cells.	15.6	269
972	An overview on enhancing the stability of lead halide perovskite quantum dots and the in phosphor-converted LEDs. Chemical Society Reviews, 2019, 48, 310-350.	ir applications	18.7	845
973	Bifunctional Organic Spacers for Formamidinium-Based Hybrid Dion–Jacobson Two-E Perovskite Solar Cells. Nano Letters, 2019, 19, 150-157.	Dimensional	4.5	218
974	Methylammonium acetate as an additive to improve performance and eliminate J-V hys homologous organic-inorganic perovskite solar cells. Solar Energy Materials and Solar (191, 283-289.	teresis in 2D Cells, 2019,	3.0	18
975	Hydrophobic polythiophene hole-transport layers to address the moisture-induced decorproblem of perovskite solar cells. Canadian Journal of Chemistry, 2019, 97, 435-441.	omposition	0.6	8
976	Rapid Crystallization for Efficient 2D Ruddlesden–Popper (2DRP) Perovskite Solar Ce Functional Materials, 2019, 29, 1806831.	Ils. Advanced	7.8	102
977	Polyiodide Hybrid Perovskites: A Strategy To Convert Intrinsic 2D Systems into 3D Pho Materials. ACS Applied Energy Materials, 2019, 2, 477-485.	tovoltaic	2.5	19
978	Recent Advances in Energetics and Stability of Metal Halide Perovskites for Optoelectr Applications. Advanced Materials Interfaces, 2019, 6, 1801351.	onic	1.9	29
979	2D Perovskiteâ€Based Selfâ€Aligned Lateral Heterostructure Photodetectors Utilizing Advanced Optical Materials, 2019, 7, 1801356.	Vapor Deposition.	3.6	50
980	Control of Barrier Width in Perovskite Multiple Quantum Wells for High Performance C Light–Emitting Diodes. Advanced Optical Materials, 2019, 7, 1801575.	ireen	3.6	55
981	Selfâ€Assembled 2D Perovskite Layers for Efficient Printable Solar Cells. Advanced Ene 2019, 9, 1803258.	rgy Materials,	10.2	149
982	Merits and Challenges of Ruddlesden–Popper Soft Halide Perovskites in Electroâ€Op Optoelectronics. Advanced Materials, 2019, 31, e1803514.	otics and	11.1	82
983	"Unleaded―Perovskites: Status Quo and Future Prospects of Tinâ€Based Perovski Advanced Materials, 2019, 31, e1803230.	te Solar Cells.	11.1	345
984	New-type highly stable 2D/3D perovskite materials: the effect of introducing ammoniu performance of perovskite solar cells. Science China Materials, 2019, 62, 508-518.	m cation on	3.5	31
985	Integrated Perovskite/Bulkâ€Heterojunction Organic Solar Cells. Advanced Materials, 2	.020, 32, e1805843.	11.1	61

#	Article	IF	CITATIONS
986	Bleifreie Halogenidâ€Perowskitâ€Nanokristalle: Kristallstrukturen, Synthese, StabilitÃæn und optische Eigenschaften. Angewandte Chemie, 2020, 132, 1042-1059.	1.6	22
987	Leadâ€Free Halide Perovskite Nanocrystals: Crystal Structures, Synthesis, Stabilities, and Optical Properties. Angewandte Chemie - International Edition, 2020, 59, 1030-1046.	7.2	320
988	Hierarchical Sn and AgCl co-doped TiO2 microspheres as electron transport layer for enhanced perovskite solar cell performance. Catalysis Today, 2020, 355, 333-339.	2.2	6
989	Ambient stable FAPbI3-based perovskite solar cells with a 2D-EDAPbI4 thin capping layer. Science China Materials, 2020, 63, 47-54.	3.5	18
990	Multipleâ€Quantumâ€Well Perovskites for Highâ€Performance Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e1904163.	11.1	129
991	A Review on Additives for Halide Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902492.	10.2	240
992	Progress of Triple Cation Organometal Halide Perovskite Solar Cells. Energy Technology, 2020, 8, 1900804.	1.8	24
993	Enhancing Photovoltaic Performance of Aromatic Ammoniumâ€based Twoâ€Dimensional Organicâ€Inorganic Hybrid Perovskites via Tuning CH··Â'l€ Interaction. Solar Rrl, 2020, 4, 1900374.	3.1	15
994	2D and Quasiâ€2D Halide Perovskites: Applications and Progress. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900435.	1.2	37
995	Impaired Fracture Healing in Sarcoâ€Osteoporotic Mice Can Be Rescued by Vibration Treatment Through Myostatin Suppression. Journal of Orthopaedic Research, 2020, 38, 277-287.	1.2	16
996	Structural and electronic features of Si/CH3NH3PbI3 interfaces with optoelectronic applicability: Insights from first-principles. Nano Energy, 2020, 67, 104166.	8.2	6
997	Photoexcited charge carrier behaviors in solar energy conversion systems from theoretical simulations. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1441.	6.2	7
998	Progress in Multifunctional Molecules for Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900248.	3.1	13
999	Organicâ€Inorganic Halide Perovskites: From Crystallization of Polycrystalline Films to Solar Cell Applications. Solar Rrl, 2020, 4, 1900200.	3.1	43
1000	The development of all-inorganic CsPbX3 perovskite solar cells. Journal of Materials Science, 2020, 55, 464-479.	1.7	52
1001	A photo-crosslinkable bis-triarylamine side-chain polymer as a hole-transport material for stable perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 190-198.	2.5	22
1002	Printable Semiconductors for Backplane TFTs of Flexible OLED Displays. Advanced Functional Materials, 2020, 30, 1904588.	7.8	136
1003	Printable materials for printed perovskite solar cells. Flexible and Printed Electronics, 2020, 5, 014002.	1.5	2

# 1004	ARTICLE Large Polaron Self-Trapped States in Three-Dimensional Metal-Halide Perovskites. , 2020, 2, 20-27.	IF	CITATIONS
1005	Perovskite solar cells. , 2020, , 163-228.		8
1006	The Spacer Cations Interplay for Efficient and Stable Layered 2D Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1901566.	10.2	89
1007	A‧ite Management for Highly Crystalline Perovskites. Advanced Materials, 2020, 32, e1904702.	11.1	62
1008	Highly oriented perovskites for efficient light-emitting diodes with balanced charge transport. Organic Electronics, 2020, 77, 105529.	1.4	5
1009	Spectral Signatures of Positive and Negative Polarons in Lead-Halide Perovskite Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 1027-1041.	1.5	11
1010	Reversible Thermochromism and Strong Ferromagnetism in Twoâ€Đimensional Hybrid Perovskites. Angewandte Chemie, 2020, 132, 209-214.	1.6	21
1011	Morphology evolution and degradation of methylammonium lead iodide under accelerated electron beam with energy of 1.8†MeV. Chemical Physics, 2020, 529, 110573.	0.9	0
1012	Revealing Crystallization Dynamics and the Compositional Control Mechanism of 2D Perovskite Film Growth by In Situ Synchrotron-Based GIXRD. ACS Energy Letters, 2020, 5, 8-16.	8.8	68
1013	Solar perovskite thin films with enhanced mechanical, thermal, UV, and moisture stability via vacuum-assisted deposition. Journal of Materials Science, 2020, 55, 3484-3494.	1.7	14
1014	Triplet management for efficient perovskite light-emitting diodes. Nature Photonics, 2020, 14, 70-75.	15.6	190
1015	Stability Issue of Perovskite Solar Cells under Realâ€World Operating Conditions. Energy Technology, 2020, 8, 1900744.	1.8	25
1016	Tuning the Energetic Landscape of Ruddlesden–Popper Perovskite Films for Efficient Solar Cells. ACS Energy Letters, 2020, 5, 39-46.	8.8	47
1017	1D Pyrrolidinium Lead Iodide for Efficient and Stable Perovskite Solar Cells. Energy Technology, 2020, 8, 1900918.	1.8	21
1018	The Effect of Constituent Ratios and Varisized Ammonium Salts on the Performance of Twoâ€Đimensional Perovskite Materials. ChemSusChem, 2020, 13, 252-259.	3.6	8
1019	Reversible Thermochromism and Strong Ferromagnetism in Twoâ€Đimensional Hybrid Perovskites. Angewandte Chemie - International Edition, 2020, 59, 203-208.	7.2	75
1020	Ferromagnetic ordering in cobalt doped methylammonium lead bromide: An ab-initio study. Computational Condensed Matter, 2020, 22, e00444.	0.9	3
1021	Efficient and stable Ruddlesden–Popper perovskite solar cell with tailored interlayer molecular interaction. Nature Photonics, 2020, 14, 154-163.	15.6	443

#	Article	IF	CITATIONS
1022	Reducing trap density and carrier concentration by a Ge additive for an efficient quasi 2D/3D perovskite solar cell. Journal of Materials Chemistry A, 2020, 8, 2962-2968.	5.2	53
1023	Development of a triple-cation Ruddlesden–Popper perovskite structure with various morphologies for solar cell applications. Journal of Materials Science: Materials in Electronics, 2020, 31, 2766-2776.	1.1	4
1024	Stability of Lead and Tin Halide Perovskites: The Link between Defects and Degradation. Journal of Physical Chemistry Letters, 2020, 11, 574-585.	2.1	84
1025	Diammonium-Cesium Lead Halide Perovskite with Phase-Segregated Interpenetrating Morphology for Photovoltaics. Journal of Physical Chemistry Letters, 2020, 11, 747-754.	2.1	20
1026	A Potential Sn-Based Hybrid Perovskite Ferroelectric Semiconductor. Journal of the American Chemical Society, 2020, 142, 1159-1163.	6.6	72
1027	Orientationally engineered 2D/3D perovskite for high efficiency solar cells. Sustainable Energy and Fuels, 2020, 4, 324-330.	2.5	35
1028	Recent progress towards roll-to-roll manufacturing of perovskite solar cells using slot-die processing. Flexible and Printed Electronics, 2020, 5, 014006.	1.5	37
1029	Edge stabilization in reduced-dimensional perovskites. Nature Communications, 2020, 11, 170.	5.8	147
1030	Laminated Perovskite Photovoltaics: Enabling Novel Layer Combinations and Device Architectures. Advanced Functional Materials, 2020, 30, 1907481.	7.8	33
1031	Interlayer Crossâ€Linked 2D Perovskite Solar Cell with Uniform Phase Distribution and Increased Exciton Coupling. Solar Rrl, 2020, 4, 1900578.	3.1	39
1032	(TMT–TTF)[Pb2.6/3â−¡0.4/3I2]3: a TTF-intercalated two-dimensional hybrid lead iodide: crystal structure and properties. New Journal of Chemistry, 2020, 44, 1263-1268.	1.4	1
1033	Liquid-phase growth and optoelectronic properties of two-dimensional hybrid perovskites CH ₃ NH ₃ PbX ₃ (X = Cl, Br, I). Nanoscale, 2020, 12, 1100-1108.	2.8	20
1034	In situ growth of a 2D/3D mixed perovskite interface layer by seed-mediated and solvent-assisted Ostwald ripening for stable and efficient photovoltaics. Journal of Materials Chemistry C, 2020, 8, 2425-2435.	2.7	29
1035	Vertical Orientated Dion–Jacobson Quasiâ€2D Perovskite Film with Improved Photovoltaic Performance and Stability. Small Methods, 2020, 4, 1900831.	4.6	96
1036	Pressure-Induced Phase Changes in Cesium Lead Bromide Perovskite Nanocrystals with and without Ruddlesden–Popper Faults. Chemistry of Materials, 2020, 32, 785-794.	3.2	25
1037	2D Nanoplates and Scaled-Up Bulk Polycrystals of Ruddlesden–Popper Cs ₂ Pbl ₂ Cl ₂ for Optoelectronic Applications. ACS Applied Nano Materials, 2020, 3, 877-886.	2.4	28
1038	Flexible Quasiâ€2D Perovskite/IGZO Phototransistors for Ultrasensitive and Broadband Photodetection. Advanced Materials, 2020, 32, e1907527.	11.1	88
1039	Controlling Spatial Crystallization Uniformity and Phase Orientation of Quasiâ€2D Perovskiteâ€Based Lightâ€Emitting Diodes Using Lewis Bases. Advanced Materials Interfaces, 2020, 7, 1901860.	1.9	11

#	Article	IF	CITATIONS
1040	Exploiting the Bulk Photovoltaic Effect in a 2D Trilayered Hybrid Ferroelectric for Highly Sensitive Polarized Light Detection. Angewandte Chemie, 2020, 132, 3961-3965.	1.6	16
1041	Exploiting the Bulk Photovoltaic Effect in a 2D Trilayered Hybrid Ferroelectric for Highly Sensitive Polarized Light Detection. Angewandte Chemie - International Edition, 2020, 59, 3933-3937.	7.2	111
1042	The effects of hydroxyl by water addition on the photoluminescence of zero-dimensional perovskites Cs4PbBr6 nanocrystals. Journal of Luminescence, 2020, 221, 116986.	1.5	8
1043	New Strategies for Defect Passivation in Highâ€Efficiency Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903090.	10.2	237
1044	Chemical Approaches for Stabilizing Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903249.	10.2	132
1045	A Review of Diverse Halide Perovskite Morphologies for Efficient Optoelectronic Applications. Small Methods, 2020, 4, 1900662.	4.6	69
1046	Improved morphological characteristics and electronic properties of MAPbI3 thin film with multiple methylamine spray treatments. Organic Electronics, 2020, 78, 105556.	1.4	6
1047	2D Hybrid Perovskite Ferroelectric Enables Highly Sensitive Xâ€Ray Detection with Low Driving Voltage. Advanced Functional Materials, 2020, 30, 1905529.	7.8	110
1048	Exciton-Polariton Properties in Planar Microcavity of Millimeter-Sized Two-Dimensional Perovskite Sheet. ACS Applied Materials & Interfaces, 2020, 12, 5081-5089.	4.0	14
1049	Enhanced <i>V</i> _{OC} of two-dimensional Ruddlesden–Popper perovskite solar cells using binary synergetic organic spacer cations. Physical Chemistry Chemical Physics, 2020, 22, 54-61.	1.3	15
1050	Broadband white light emission from one-dimensional zigzag edge-sharing perovskite. New Journal of Chemistry, 2020, 44, 171-180.	1.4	24
1051	Crystal structural and thermochromic luminescence properties modulation by ion liquid cations in bromoplumbate perovskites. Inorganic Chemistry Communication, 2020, 112, 107690.	1.8	4
1052	Perfluorinated Self-Assembled Monolayers Enhance the Stability and Efficiency of Inverted Perovskite Solar Cells. ACS Nano, 2020, 14, 1445-1456.	7.3	115
1053	Vapor phase fabrication of threeâ€dimensional arrayed Bil ₃ nanosheets for costâ€effective solar cells. InformaÄnÃ-Materiály, 2020, 2, 975-983.	8.5	20
1054	Probing Phase Distribution in 2D Perovskites for Efficient Device Design. ACS Applied Materials & Interfaces, 2020, 12, 3127-3133.	4.0	39
1055	Origin of Openâ€Circuit Voltage Enhancements in Planar Perovskite Solar Cells Induced by Addition of Bulky Organic Cations. Advanced Functional Materials, 2020, 30, 1906763.	7.8	47
1056	Operational stability of perovskite light emitting diodes. JPhys Materials, 2020, 3, 012002.	1.8	95
1057	Guanineâ€Stabilized Formamidinium Lead Iodide Perovskites. Angewandte Chemie - International Edition, 2020, 59, 4691-4697.	7.2	61

#	Article	IF	CITATIONS
1058	Improved efficiency of methylammonium-free perovskite thin film solar cells by fluorinated ammonium iodide treatment. Organic Electronics, 2020, 78, 105596.	1.4	15
1059	Dimensional Reduction of Cs ₂ AgBiBr ₆ : A 2D Hybrid Double Perovskite with Strong Polarization Sensitivity. Angewandte Chemie, 2020, 132, 3457-3461.	1.6	18
1060	Dimensional Reduction of Cs ₂ AgBiBr ₆ : A 2D Hybrid Double Perovskite with Strong Polarization Sensitivity. Angewandte Chemie - International Edition, 2020, 59, 3429-3433.	7.2	78
1061	Perovskite solar cells: The new epoch in photovoltaics. Solar Energy, 2020, 196, 295-309.	2.9	53
1062	CuSCN as Hole Transport Material with 3D/2D Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 114-121.	2.5	83
1063	Facile Formation of 2D–3D Heterojunctions on Perovskite Thin Film Surfaces for Efficient Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 1159-1168.	4.0	55
1064	The balance between efficiency, stability and environmental impacts in perovskite solar cells: a review. JPhys Energy, 2020, 2, 022001.	2.3	76
1065	Bandâ€Edge Exciton Fine Structure and Exciton Recombination Dynamics in Single Crystals of Layered Hybrid Perovskites. Advanced Functional Materials, 2020, 30, 1907979.	7.8	68
1066	Modulating Band Alignment in Mixed Dimensionality 3D/2D Perovskites by Surface Termination Ligand Engineering. Chemistry of Materials, 2020, 32, 105-113.	3.2	19
1067	2D multilayered perovskites based on 4-chlorophenylethylamine for solar cell application. Solar Energy, 2020, 196, 1-9.	2.9	7
1068	Hexylammonium Iodide Derived Two-Dimensional Perovskite as Interfacial Passivation Layer in Efficient Two-Dimensional/Three-Dimensional Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 698-705.	4.0	36
1069	Enhanced Charge Carrier Transport in 2D Perovskites by Incorporating Single-Walled Carbon Nanotubes or Graphene. ACS Energy Letters, 2020, 5, 109-116.	8.8	17
1070	A new hybrid layered perovskite [CH3–C6H4–NH3]2ZnBr4: Synthesis, crystal structure, optical and electrical properties. Journal of Molecular Structure, 2020, 1203, 127430.	1.8	8
1071	Bandgap tuning and compositional exchange for lead halide perovskite materials. , 2020, , 1-22.		9
1072	X-ray diffraction and Raman spectroscopy for lead halide perovskites. , 2020, , 23-47.		2
1073	Green emitter and thermally stable layered tetraethyl ammonium lead bromoiodide perovskite. Optik, 2020, 207, 163828.	1.4	2
1074	Chemical inhibition of reversible decomposition for efficient and super-stable perovskite solar cells. Nano Energy, 2020, 68, 104315.	8.2	25
1075	Synthesis and optical applications of low dimensional metal-halide perovskites. Nanotechnology, 2020, 31, 152002.	1.3	31

#	Article	IF	CITATIONS
1076	Processingâ€Performance Evolution of Perovskite Solar Cells: From Large Grain Polycrystalline Films to Single Crystals. Advanced Energy Materials, 2020, 10, 1902762.	10.2	50
1077	Unveiling the guest effect of N-butylammonium iodide towards efficient and stable 2D-3D perovskite solar cells through sequential deposition process. Chemical Engineering Journal, 2020, 391, 123589.	6.6	34
1078	Recent progress in development of diverse kinds of hole transport materials for the perovskite solar cells: A review. Renewable and Sustainable Energy Reviews, 2020, 119, 109608.	8.2	83
1079	Visualizing Buried Local Carrier Diffusion in Halide Perovskite Crystals via Two-Photon Microscopy. ACS Energy Letters, 2020, 5, 117-123.	8.8	37
1080	2D Perovskite Sr ₂ Nb ₃ O ₁₀ for Highâ€Performance UV Photodetectors. Advanced Materials, 2020, 32, e1905443.	11.1	210
1081	Crystallographic orientation and layer impurities in two-dimensional metal halide perovskite thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 010801.	0.9	19
1082	Guanine‣tabilized Formamidinium Lead Iodide Perovskites. Angewandte Chemie, 2020, 132, 4721-4727.	1.6	0
1083	Perovskite solar cells based on a perovskite film with improved film coverage. Synthetic Metals, 2020, 260, 116283.	2.1	6
1084	Organic intercalation engineering of quasi-2D Dion–Jacobson α-CsPbI ₃ perovskites. Materials Horizons, 2020, 7, 1042-1050.	6.4	55
1085	Airâ€Stable 2D Intrinsic Ferromagnetic Ta ₃ FeS ₆ with Four Months Durability. Advanced Science, 2020, 7, 2001722.	5.6	33
1086	New insights into the structure of two-dimensional lead iodide-based perovskites. Organic Electronics, 2020, 87, 105935.	1.4	7
1087	The synergistic effect of co-solvent engineering and thermal engineering towards phase control two-dimensional perovskite solar cells. Solar Energy, 2020, 209, 446-453.	2.9	16
1088	Solid-State NMR and NQR Spectroscopy of Lead-Halide Perovskite Materials. Journal of the American Chemical Society, 2020, 142, 19413-19437.	6.6	76
1089	An <i>in situ</i> cross-linked 1D/3D perovskite heterostructure improves the stability of hybrid perovskite solar cells for over 3000 h operation. Energy and Environmental Science, 2020, 13, 4344-4352.	15.6	142
1090	Naphthalenediimide Cations Inhibit 2D Perovskite Formation and Facilitate Subpicosecond Electron Transfer. Journal of Physical Chemistry C, 2020, 124, 24379-24390.	1.5	17
1091	Rapid synthesis of inorganic halide perovskite single crystals with high thermal stability. Chemical Physics Letters, 2020, 759, 137985.	1.2	7
1092	Long periodic ripple in a 2D hybrid halide perovskite structure using branched organic spacers. Chemical Science, 2020, 11, 12139-12148.	3.7	22
1093	Investigation of strain behavior and carrier mobility of organic–inorganic hybrid perovskites: (C ₄ H ₉ NH ₃) ₂ Gel ₄ and (C ₄ H ₉ NH ₃) ₂ SnI ₄ . Nanoscale, 2020, 12, 22551-22563.	2.8	5

#	Article	IF	CITATIONS
1094	Ultrafast Exciton Transport with a Long Diffusion Length in Layered Perovskites with Organic Cation Functionalization. Advanced Materials, 2020, 32, e2004080.	11.1	34
1095	Crystallization Kinetics in 2D Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2002558.	10.2	124
1096	Insight into the Origins of Figures of Merit and Design Strategies for Organic/Inorganic Leadâ€Halide Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000452.	3.1	14
1097	The study of optical and thermoelectric properties of lead-free variant iodes (K/Rb)2Til6; Renewable energy. Journal of Materials Research and Technology, 2020, 9, 13043-13053.	2.6	21
1098	Two-dimensional perovskite solar cells with high luminescence and ultra-low open-circuit voltage deficit. Journal of Materials Chemistry A, 2020, 8, 22175-22180.	5.2	9
1099	Traps in metal halide perovskites: characterization and passivation. Nanoscale, 2020, 12, 22425-22451.	2.8	26
1100	Blue electroluminescent metal halide perovskites. Journal of Applied Physics, 2020, 128, 120901.	1.1	4
1101	Laser-oxidized Fe3O4 nanoparticles anchored on 3D macroporous graphene flexible electrodes for ultrahigh-energy in-plane hybrid micro-supercapacitors. Nano Energy, 2020, 77, 105058.	8.2	72
1102	Enhanced performance of CH3NH3PbI3 perovskite solar cells via interface modification using phenyl ammonium iodide derivatives. Journal of Power Sources, 2020, 473, 228492.	4.0	32
1103	Unraveling the Crystallization Kinetics of 2D Perovskites with Sandwichâ€Type Structure for Highâ€Performance Photovoltaics. Advanced Materials, 2020, 32, e2002784.	11.1	52
1104	Halide Pb-Free Double–Perovskites: Ternary vs. Quaternary Stoichiometry. Energies, 2020, 13, 3516.	1.6	10
1105	Perovskiteâ€Based Tandem Solar Cells: Get the Most Out of the Sun. Advanced Functional Materials, 2020, 30, 2001904.	7.8	78
1106	Even-Parity Self-Trapped Excitons Lead to Magnetic Dipole Radiation in Two-Dimensional Lead Halide Perovskites. ACS Nano, 2020, 14, 8958-8968.	7.3	23
1107	All-inorganic copper(<scp>i</scp>)-based ternary metal halides: promising materials toward optoelectronics. Nanoscale, 2020, 12, 15560-15576.	2.8	60
1108	Perovskite Solar Cells for BIPV Application: A Review. Buildings, 2020, 10, 129.	1.4	60
1109	Lateral Photodetectors Based on Double-Cable Polymer/Two-Dimensional Perovskite Heterojunction. ACS Applied Materials & Interfaces, 2020, 12, 8826-8834.	4.0	27
1110	Robot-Based High-Throughput Screening of Antisolvents for Lead Halide Perovskites. Joule, 2020, 4, 1806-1822.	11.7	65
1111	Formamidiniumâ€Based Dionâ€Jacobson Layered Hybrid Perovskites: Structural Complexity and Optoelectronic Properties. Advanced Functional Materials, 2020, 30, 2003428.	7.8	61

#	Article	IF	CITATIONS
1112	Lowâ€Dimensional Hybrid Perovskites for Fieldâ€Effect Transistors with Improved Stability: Progress and Challenges. Advanced Electronic Materials, 2020, 6, 2000137.	2.6	45
1113	Ruddlesden–Popper perovskites in electrocatalysis. Materials Horizons, 2020, 7, 2519-2565.	6.4	139
1114	Ferroelectricityâ€Driven Selfâ€Powered Ultraviolet Photodetection with Strong Polarization Sensitivity in a Twoâ€Dimensional Halide Hybrid Perovskite. Angewandte Chemie, 2020, 132, 19095-19099.	1.6	19
1115	Ferroelectricityâ€Driven Selfâ€Powered Ultraviolet Photodetection with Strong Polarization Sensitivity in a Twoâ€Dimensional Halide Hybrid Perovskite. Angewandte Chemie - International Edition, 2020, 59, 18933-18937.	7.2	88
1116	Advances in perovskite photodetectors. InformaÄnÄ-MateriÄ¡ly, 2020, 2, 1247-1256.	8.5	107
1117	Accelerated design of photovoltaic Ruddlesden–Popper perovskite Ca6Sn4S14â^' <i>x</i> O <i>x</i> using machine learning. APL Materials, 2020, 8, .	2.2	9
1118	Recent developments in fabrication and performance of metal halide perovskite field-effect transistors. Journal of Materials Chemistry C, 2020, 8, 16691-16715.	2.7	34
1119	Unraveling the Microstructure of Layered Metal Halide Perovskite Films. Small Structures, 2020, 1, 2000074.	6.9	8
1120	A brief review on the moisture stability for perovskite solar cells. IOP Conference Series: Earth and Environmental Science, 2020, 585, 012027.	0.2	15
1121	Overall photocatalytic water splitting by an organolead iodide crystalline material. Nature Catalysis, 2020, 3, 1027-1033.	16.1	113
1122	Understanding and harnessing the potential of layered perovskite-based absorbersÂfor solar cells. Emergent Materials, 2020, 3, 751-778.	3.2	13
1123	Interfacial engineering with conjugated polyelectrolyte for high performance 2D perovskite solar cells. Chemical Physics Letters, 2020, 761, 138063.	1.2	0
1124	Halide Perovskite Epitaxial Heterostructures. Accounts of Materials Research, 2020, 1, 213-224.	5.9	20
1125	Structure and Optical Properties of Layered Perovskite (MA)2PbI2–xBrx(SCN)2 (0 ≤ < 1.6). Inorganic Chemistry, 2020, 59, 17379-17384.	1.9	6
1126	Unveiling hot carrier relaxation and carrier transport mechanisms in quasi-two-dimensional layered perovskites. Journal of Materials Chemistry A, 2020, 8, 25402-25410.	5.2	25
1127	Switchable Rashba anisotropy in layered hybrid organic–inorganic perovskite by hybrid improper ferroelectricity. Npj Computational Materials, 2020, 6, .	3.5	26
1128	Semiconductor physics of organic–inorganic 2D halide perovskites. Nature Nanotechnology, 2020, 15, 969-985.	15.6	268
1129	Rubidium Ions Enhanced Crystallinity for Ruddlesden–Popper Perovskites. Advanced Science, 2020, 7, 2002445.	5.6	25

#	Article	IF	CITATIONS
1130	Microscopic Picture of Electron–Phonon Interaction in Two-Dimensional Halide Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 9975-9982.	2.1	16
1131	Nonradiative Relaxation Dynamics of a Cesium Lead Halide Perovskite Photovoltaic Architecture: Effect of External Electric Fields. Journal of Physical Chemistry Letters, 2020, 11, 9983-9989.	2.1	11
1132	Quantifying Exciton Heterogeneities in Mixed-Phase Organometal Halide Multiple Quantum Wells via Stark Spectroscopy Studies. ACS Applied Materials & Interfaces, 2020, 12, 52538-52548.	4.0	7
1133	Controllable deposition of organic metal halide perovskite films with wafer-scale uniformity by single source flash evaporation. Scientific Reports, 2020, 10, 18781.	1.6	6
1134	Chain-Length Dependence of Thermal Conductivity in 2D Alkylammonium Lead Iodide Single Crystals. ACS Applied Materials & Interfaces, 2020, 12, 53705-53711.	4.0	10
1135	Waterâ€Assisted Crystal Growth in Quasiâ€2D Perovskites with Enhanced Charge Transport and Photovoltaic Performance. Advanced Energy Materials, 2020, 10, 2001832.	10.2	52
1136	Fast and Anomalous Exciton Diffusion in Two-Dimensional Hybrid Perovskites. Nano Letters, 2020, 20, 6674-6681.	4.5	44
1137	Alkali-cation-enhanced benzylammonium passivation for efficient and stable perovskite solar cells fabricated through sequential deposition. Journal of Materials Chemistry A, 2020, 8, 19357-19366.	5.2	13
1138	Giant and Broadband Multiphoton Absorption Nonlinearities of a 2D Organometallic Perovskite Ferroelectric. Advanced Materials, 2020, 32, e2002972.	11.1	51
1139	Searching for stable perovskite solar cell materials using materials genome techniques and high-throughput calculations. Journal of Materials Chemistry C, 2020, 8, 12012-12035.	2.7	22
1140	Universal approach toward high-efficiency two-dimensional perovskite solar cells <i>via</i> a vertical-rotation process. Energy and Environmental Science, 2020, 13, 3093-3101.	15.6	82
1141	Ruddlesden–Popper Perovskite Oxides for Photocatalysis-Based Water Splitting and Wastewater Treatment. Energy & Fuels, 2020, 34, 9208-9221.	2.5	53
1142	Effect of Lattice Strain on the Formation of Ruddlesden–Popper Faults in Heteroepitaxial LaNiO ₃ for Oxygen Evolution Electrocatalysis. Journal of Physical Chemistry Letters, 2020, 11, 7253-7260.	2.1	35
1143	Disentangling Second Harmonic Generation from Multiphoton Photoluminescence in Halide Perovskites using Multidimensional Harmonic Generation. Journal of Physical Chemistry Letters, 2020, 11, 6551-6559.	2.1	18
1144	Oriented Perovskite Crystal towards Efficient Charge Transport in FASnI ₃ Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000153.	3.1	26
1145	Barrier Designs in Perovskite Solar Cells for Longâ€Term Stability. Advanced Energy Materials, 2020, 10, 2001610.	10.2	84
1146	High-Efficiency Perovskite Solar Cells. Chemical Reviews, 2020, 120, 7867-7918.	23.0	1,480
1147	Low-frequency Raman spectrum of 2D layered perovskites: Local atomistic motion or superlattice modes?. Journal of Chemical Physics, 2020, 153, 044710.	1.2	26

#	Article	IF	CITATIONS
1148	Photoinduced Dynamics of Charge Carriers in Metal Halide Perovskites from an Atomistic Perspective. Journal of Physical Chemistry Letters, 2020, 11, 7066-7082.	2.1	41
1149	Unprecedented random lasing in 2D organolead halide single-crystalline perovskite microrods. Nanoscale, 2020, 12, 18269-18277.	2.8	19
1150	Effect of Structural Defects and Impurities on the Excited State Dynamics of 2D BA ₂ PbI ₄ Perovskite. Helvetica Chimica Acta, 2020, 103, e2000121.	1.0	17
1151	Hot-Casting Large-Grain Perovskite Film for Efficient Solar Cells: Film Formation and Device Performance. Nano-Micro Letters, 2020, 12, 156.	14.4	47
1152	Efficient Lone-Pair-Driven Luminescence: Structure–Property Relationships in Emissive 5s ² Metal Halides. , 2020, 2, 1218-1232.		220
1153	Narrow-Bandgap Mixed Lead/Tin-Based 2D Dion–Jacobson Perovskites Boost the Performance of Solar Cells. Journal of the American Chemical Society, 2020, 142, 15049-15057.	6.6	103
1154	A novel two-dimensional oxysulfide Sr _{3.5} Pb _{2.5} Sb ₆ O ₅ S ₁₀ : synthesis, crystal structure, and photoelectric properties. Journal of Materials Chemistry C, 2020, 8, 11018-11021.	2.7	7
1155	Trap-Enabled Long-Distance Carrier Transport in Perovskite Quantum Wells. Journal of the American Chemical Society, 2020, 142, 15091-15097.	6.6	66
1156	Improving the performance of inverted two-dimensional perovskite solar cells by adding an anti-solvent into the perovskite precursor. Journal of Materials Chemistry C, 2020, 8, 11882-11889.	2.7	16
1157	Role of specific distorted metal complexes in exciton self-trapping for hybrid metal halides. Chemical Communications, 2020, 56, 10139-10142.	2.2	7
1158	3Dâ€toâ€2D Dimensional Reduction for Exploiting a Multilayered Perovskite Ferroelectric toward Polarizedâ€Light Detection in the Solarâ€Blind Ultraviolet Region. Angewandte Chemie - International Edition, 2020, 59, 21693-21697.	7.2	55
1159	Dimensionality engineering of metal halide perovskites. Frontiers of Optoelectronics, 2020, 13, 196-224.	1.9	25
1160	Intrinsically Ultralow Thermal Conductivity in Ruddlesden–Popper 2D Perovskite Cs ₂ Pbl ₂ Cl ₂ : Localized Anharmonic Vibrations and Dynamic Octahedral Distortions. Journal of the American Chemical Society, 2020, 142, 15595-15603.	6.6	82
1161	The compositional engineering of organic–inorganic hybrid perovskites for high-performance perovskite solar cells. Emergent Materials, 2020, 3, 727-750.	3.2	10
1162	Solid-phase hetero epitaxial growth of α-phase formamidinium perovskite. Nature Communications, 2020, 11, 5514.	5.8	71
1163	Engineered Electronic Structure and Carrier Dynamics in Emerging Cs ₂ Ag _{<i>x</i>} Na _{1–<i>x</i>} FeCl ₆ Perovskite Single Crystals. Journal of Physical Chemistry Letters, 2020, 11, 9535-9542.	2.1	27
1164	The <i>J</i> – <i>V</i> Hysteresis Behavior and Solutions in Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000586.	3.1	27
1165	Enhancing electrochemiluminescence of FAPbBr3 nanocrystals by using carbon nanotubes and TiO2 nanoparticles as conductivity and co-reaction accelerator for dopamine determination. Electrochimica Acta, 2020, 360, 136992.	2.6	19

#	Article	IF	CITATIONS
1166	Broad Tunability of Carrier Effective Masses in Two-Dimensional Halide Perovskites. ACS Energy Letters, 2020, 5, 3609-3616.	8.8	54
1167	Imidazolium Ionic Liquid as Organic Spacer for Tuning the Excitonic Structure of 2D Perovskite Materials. ACS Energy Letters, 2020, 5, 3617-3627.	8.8	24
1168	Conformational disorder of organic cations tunes the charge carrier mobility in two-dimensional organic-inorganic perovskites. Nature Communications, 2020, 11, 5481.	5.8	55
1169	Electron tunneling at the molecularly thin 2D perovskite and graphene van der Waals interface. Nature Communications, 2020, 11, 5483.	5.8	35
1170	Mixed bulky cations for efficient and stable Ruddlesdenâ^'Popper perovskite solar cells. APL Materials, 2020, 8, .	2.2	12
1171	Nearâ€Infraredâ€Transparent Perovskite Solar Cells and Perovskiteâ€Based Tandem Photovoltaics. Small Methods, 2020, 4, 2000395.	4.6	63
1172	Suppressing the Excessive Solvated Phase for Dion–Jacobson Perovskites with Improved Crystallinity and Vertical Orientation. Solar Rrl, 2020, 4, 2000371.	3.1	36
1173	Progress and Prospects of Solution-Processed Two-Dimensional Semiconductor Nanocrystals. Journal of Physical Chemistry C, 2020, 124, 21895-21908.	1.5	32
1174	Large Organic Cations in Quasi-2D Perovskites for High-Performance Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2020, 11, 8502-8510.	2.1	41
1175	5-Ammoniumvaleric acid stabilized mixed-dimensional perovskite submicron platelets with white light emission. Nanoscale Advances, 2020, 2, 4822-4829.	2.2	6
1176	Chemically Stable Black Phase CsPbl ₃ Inorganic Perovskites for Highâ€Efficiency Photovoltaics. Advanced Materials, 2020, 32, e2001025.	11.1	123
1177	TiO2 Nanotubes: An Advanced Electron Transport Material for Enhancing the Efficiency and Stability of Perovskite Solar Cells. Industrial & Engineering Chemistry Research, 2020, 59, 18549-18557.	1.8	25
1178	Design of 2D Templating Molecules for Mixed-Dimensional Perovskite Light-Emitting Diodes. Chemistry of Materials, 2020, 32, 8097-8105.	3.2	24
1179	Passivation of defects in perovskite solar cell: From a chemistry point of view. Nano Energy, 2020, 77, 105237.	8.2	92
1180	Doping in inorganic perovskite for photovoltaic application. Nano Energy, 2020, 78, 105354.	8.2	53
1181	Chemical vapor deposited polymer layer for efficient passivation of planar perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 20122-20132.	5.2	27
1182	Edge States Drive Exciton Dissociation in Ruddlesden–Popper Lead Halide Perovskite Thin Films. , 2020, 2, 1360-1367.		20
1183	Antisolvents in Perovskite Solar Cells: Importance, Issues, and Alternatives. Advanced Materials Interfaces, 2020, 7, 2000950.	1.9	94

	Сітаті	on Report	
#	Article	IF	CITATIONS
1184	Charge carrier dynamics in two-dimensional hybrid perovskites: Dion–Jacobson <i>vs.</i> Ruddlesden–Popper phases. Journal of Materials Chemistry A, 2020, 8, 22009-22022.	5.2	72
1185	3Dâ€ŧoâ€2D Dimensional Reduction for Exploiting a Multilayered Perovskite Ferroelectric toward Polarizedâ€Light Detection in the Solarâ€Blind Ultraviolet Region. Angewandte Chemie, 2020, 132, 21877-21881.	1.6	16
1186	Perovskite Quantum Dots. Springer Series in Materials Science, 2020, , .	0.4	4
1187	Fabrication and characterization of inkjet-printed 2D perovskite optoelectronic devices. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	6
1188	Interface passivation strategy improves the efficiency and stability of organic–inorganic hybrid metal halide perovskite solar cells. Journal of Materials Research, 2020, 35, 2166-2189.	1.2	4
1189	Optoelectronic Properties of a van der Waals WS ₂ Monolayer/2D Perovskite Vertical Heterostructure. ACS Applied Materials & Interfaces, 2020, 12, 45235-45242.	4.0	49
1190	5-Ammonium Valeric Acid Iodide to Stabilize MAPbI ₃ via a Mixed-Cation Perovskite with Reduced Dimension. Journal of Physical Chemistry Letters, 2020, 11, 8170-8176.	2.1	17
1191	Defect passivation strategies in perovskites for an enhanced photovoltaic performance. Energy and Environmental Science, 2020, 13, 4017-4056.	15.6	235
1192	2D layered all-inorganic halide perovskites: recent trends in their structure, synthesis and properties. Nanoscale, 2020, 12, 21094-21117.	2.8	45
1193	Stable Quasiâ€2D Perovskite Solar Cells with Efficiency over 18% Enabled by Heat–Light Coâ€Treatmen Advanced Functional Materials, 2020, 30, 2004188.	t. 7.8	54
1194	3D/2D Bilayerd Perovskite Solar Cells with an Enhanced Stability and Performance. Materials, 2020, 13, 3868.	1.3	25
1195	Layered hybrid lead perovskite single crystals: phase transformations and tunable optical properties. CrystEngComm, 2020, 22, 6310-6315.	1.3	9
1196	Concerted regulation on vertical orientation and film quality of two-dimensional ruddlesden-popper perovskite layer for efficient solar cells. Science China Chemistry, 2020, 63, 1675-1683.	4.2	9
1197	Poly(Ethylene Glycol) Diacrylate as the Passivation Layer for High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 45045-45055.	4.0	24
1198	Sky-Blue-Emissive Perovskite Light-Emitting Diodes: Crystal Growth and Interfacial Control Using Conjugated Polyelectrolytes as a Hole-Transporting Layer. ACS Nano, 2020, 14, 13246-13255.	7.3	38
1199	Molecular Design and Operational Stability: Toward Stable 3D/2D Perovskite Interlayers. Advanced Science, 2020, 7, 2001014.	5.6	43
1200	Multiexcitonic Broad-Band Emission Enhanced by Resonant Energy Transfer in a New Two-Dimensional Organic–Inorganic Perovskite: (C ₃ H ₈ N ₆)PbCl ₄ . Journal of Physical Chemistry C, 2020, 124, 20359-20366.	1.5	13
1201	Exploiting two-dimensional hybrid perovskites incorporating secondary amines for high-performance array photodetection. Journal of Materials Chemistry C, 2020, 8, 12848-12853.	2.7	9

#	Article	IF	CITATIONS
1202	Structural Evolution of Layered Hybrid Lead Iodide Perovskites in Colloidal Dispersions. ACS Nano, 2020, 14, 11294-11308.	7.3	18
1203	Photocorrosion at Irradiated Perovskite/Electrolyte Interfaces. Journal of the American Chemical Society, 2020, 142, 21595-21614.	6.6	32
1204	Recent Progress in Developing Monolithic Perovskite/Si Tandem Solar Cells. Frontiers in Chemistry, 2020, 8, 603375.	1.8	22
1205	Growth and Interlayer Engineering of 2D Layered Semiconductors for Future Electronics. ACS Nano, 2020, 14, 16266-16300.	7.3	30
1206	Nonlinear optical properties of halide perovskites and their applications. Applied Physics Reviews, 2020, 7, .	5.5	114
1207	Heat dissipation effects on the stability of planar perovskite solar cells. Energy and Environmental Science, 2020, 13, 5059-5067.	15.6	44
1208	Rashba band splitting in two-dimensional Ruddlesden–Popper halide perovskites. Journal of Applied Physics, 2020, 128, 175101.	1.1	11
1209	Accessing Highly Oriented Two-Dimensional Perovskite Films via Solvent-Vapor Annealing for Efficient and Stable Solar Cells. Nano Letters, 2020, 20, 8880-8889.	4.5	114
1210	A Critical Review on Crystal Growth Techniques for Scalable Deposition of Photovoltaic Perovskite Thin Films. Materials, 2020, 13, 4851.	1.3	38
1211	Alternative Organic Spacers for More Efficient Perovskite Solar Cells Containing Ruddlesden–Popper Phases. Journal of the American Chemical Society, 2020, 142, 19705-19714.	6.6	83
1212	Layered organic-inorganic hybrid materials based on ionic liquid and lead chloride: Insights into the structure and properties. Journal of Molecular Liquids, 2020, 307, 112947.	2.3	1
1213	Defect passivation and lattice distortion enhance solid-state photoluminescence of two-dimensional perovskites. 2D Materials, 2020, 7, 031008.	2.0	6
1214	[NH ₃ (CH ₂) ₆ NH ₃]PbI ₄ as Dion–Jacobson phase bifunctional capping layer for 2D/3D perovskite solar cells with high efficiency and excellent UV stability. Journal of Materials Chemistry A, 2020, 8, 10283-10290.	5.2	26
1215	All-inorganic 0D/3D Cs ₄ Pb(IBr) ₆ /CsPbI _{3â^'x} Br _x mixed-dimensional perovskite solar cells with enhanced efficiency and stability. Journal of Materials Chemistry C, 2020, 8, 6977-6987.	2.7	23
1216	Structured Perovskite Light Absorbers for Efficient and Stable Photovoltaics. Advanced Materials, 2020, 32, e1903937.	11.1	69
1217	Revealing the Role of Methylammonium Chloride for Improving the Performance of 2D Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 25980-25990.	4.0	47
1218	2D–3D Cs ₂ PbI ₂ Cl ₂ –CsPbI _{2.5} Br _{0.5} Mixed-Dimensional Films for All-Inorganic Perovskite Solar Cells with Enhanced Efficiency and Stability. Journal of Physical Chemistry Letters, 2020, 11, 4138-4146.	2.1	40
1219	Roomâ€Temperature Ferroelectric Material Composed of a Twoâ€Dimensional Metal Halide Double Perovskite for Xâ€ray Detection. Angewandte Chemie - International Edition, 2020, 59, 13879-13884.	7.2	116

#	Article	IF	CITATIONS
1220	Confinement-Driven Ferroelectricity in a Two-Dimensional Hybrid Lead Iodide Perovskite. Journal of the American Chemical Society, 2020, 142, 10212-10218.	6.6	113
1221	Roomâ€Temperature Ferroelectric Material Composed of a Twoâ€Dimensional Metal Halide Double Perovskite for Xâ€ray Detection. Angewandte Chemie, 2020, 132, 13983-13988.	1.6	31
1222	Nonâ€Conjugated Polymer Based on Polyethylene Backbone as Dopantâ€Free Holeâ€Transporting Material for Efficient and Stable Inverted Quasiâ€2D Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000184.	3.1	12
1223	Bilateral Interface Engineering for Efficient and Stable Perovskite Solar Cells Using Phenylethylammonium Iodide. ACS Applied Materials & Interfaces, 2020, 12, 24827-24836.	4.0	27
1224	Enhanced thermal stability of inverted perovskite solar cells by interface modification and additive strategy. RSC Advances, 2020, 10, 18400-18406.	1.7	15
1225	Identifying, understanding and controlling defects and traps in halide perovskites for optoelectronic devices: a review. Journal Physics D: Applied Physics, 2020, 53, 373001.	1.3	20
1226	Thiophene-Based Two-Dimensional Dion–Jacobson Perovskite Solar Cells with over 15% Efficiency. Journal of the American Chemical Society, 2020, 142, 11114-11122.	6.6	190
1227	Solution processed perovskite incorporated tandem photovoltaics: developments, manufacturing, and challenges. Journal of Materials Chemistry C, 2020, 8, 10641-10675.	2.7	11
1228	Moisture-Driven Formation and Growth of Quasi-2-D Organolead Halide Perovskite Crystallites. ACS Applied Energy Materials, 2020, 3, 6280-6290.	2.5	11
1229	Type-II Lateral Heterostructures of Monolayer Halide Double Perovskites for Optoelectronic Applications. ACS Energy Letters, 2020, 5, 2275-2282.	8.8	20
1230	A review of flexible halide perovskite solar cells towards scalable manufacturing and environmental sustainability. Journal of Semiconductors, 2020, 41, 041603.	2.0	20
1231	Energetics and Energy Loss in 2D Ruddlesden–Popper Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2000687.	10.2	68
1232	Electrogenerated Chemiluminescence and Spectroelectrochemistry Characteristics of Blue Photoluminescence Perovskite Quantum Dots. ACS Applied Materials & Interfaces, 2020, 12, 27443-27452.	4.0	10
1233	Quantum dots of two-dimensional Ruddlesden–Popper organic–inorganic hybrid perovskite with high optical limiting properties. AlP Advances, 2020, 10, .	0.6	16
1234	Dion-Jacobson 2D-3D perovskite solar cells with improved efficiency and stability. Nano Energy, 2020, 75, 104892.	8.2	99
1235	Determining In-Plane Carrier Diffusion in Two-Dimensional Perovskite Using Local Time-Resolved Photoluminescence. ACS Applied Materials & amp; Interfaces, 2020, 12, 26384-26390.	4.0	20
1236	In situ studies of the degradation mechanisms of perovskite solar cells. EcoMat, 2020, 2, e12025.	6.8	123
1237	Progress in Materials Development for the Rapid Efficiency Advancement of Perovskite Solar Cells. Small, 2020, 16, e1907531.	5.2	23

#	Article	IF	CITATIONS
1238	Defect suppression and passivation for perovskite solar cells: from the birth to the lifetime operation. EnergyChem, 2020, 2, 100032.	10.1	22
1239	Structure engineering of hierarchical layered perovskite interface for efficient and stable wide bandgap photovoltaics. Nano Energy, 2020, 75, 104917.	8.2	44
1240	Gas chromatography–mass spectrometry analyses of encapsulated stable perovskite solar cells. Science, 2020, 368, .	6.0	306
1241	Two-dimensional halide perovskites featuring semiconducting organic building blocks. Materials Chemistry Frontiers, 2020, 4, 3400-3418.	3.2	50
1242	Exciton-band tuning induced by the width of the cation in 2D lead iodide perovskite hybrids. Materials Chemistry Frontiers, 2020, 4, 2023-2028.	3.2	12
1243	Two-dimensional tin perovskite nanoplate for pure red light-emitting diodes. Journal Physics D: Applied Physics, 2020, 53, 414005.	1.3	25
1244	Structural Regulation for Highly Efficient and Stable Perovskite Solar Cells via Mixed-Vapor Deposition. ACS Applied Energy Materials, 2020, 3, 6544-6551.	2.5	10
1245	Direct assessment of structural order and evidence for stacking faults in layered hybrid perovskite films from X-ray scattering measurements. Journal of Materials Chemistry A, 2020, 8, 12790-12798.	5.2	13
1246	Photosupercapacitors: A perspective of planar and flexible dual functioning devices. Wiley Interdisciplinary Reviews: Energy and Environment, 2020, 9, e377.	1.9	4
1247	Making air-stable all-inorganic perovskite solar cells through dynamic hot-air. Nano Today, 2020, 33, 100880.	6.2	13
1248	Hydrophobic stabilizer-anchored fully inorganic perovskite quantum dots enhance moisture resistance and photovoltaic performance. Nano Energy, 2020, 75, 104985.	8.2	69
1249	Crystallisation control of drop-cast quasi-2D/3D perovskite layers for efficient solar cells. Communications Materials, 2020, 1, .	2.9	66
1250	Two-Dimensional Perovskite Capping Layer Simultaneously Improves the Charge Carriers' Lifetime and Stability of MAPbI ₃ Perovskite: A Time-Domain Ab Initio Study. Journal of Physical Chemistry Letters, 2020, 11, 5100-5107.	2.1	9
1251	Synthesis and Applications of Wide Bandgap 2D Layered Semiconductors Reaching the Green and Blue Wavelengths. ACS Applied Electronic Materials, 2020, 2, 1777-1814.	2.0	50
1252	Theoretical assessment of thermodynamic stability of 2D octane-1,8-diammonium lead halide perovskites. Mendeleev Communications, 2020, 30, 279-281.	0.6	14
1253	High-performance Photodetector Based on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><<mml:mrow><mml:mi>In</mml:mi><mml:mi>Se</mml:mi></mml:mrow><ml:mo>/ mathvariant="normal">I<ml:mn>2</ml:mn></ml:mo></mml:math 	o> <mml:m →<mml:mi></mml:mi></mml:m 	sub> <mml:n >Cl</mml:n

# 1256	ARTICLE Polymer ligands induced remarkable spectral shifts in all-inorganic lead halide perovskite nanocrystals. Journal of Materials Chemistry C, 2020, 8, 9968-9974.	IF 2.7	CITATIONS
1257	Layered perovskite materials: key solutions for highly efficient and stable perovskite solar cells. Reports on Progress in Physics, 2020, 83, 086502.	8.1	48
1258	2D Derivative Phase Induced Growth of 3D All Inorganic Perovskite Micro–Nanowire Array Based Photodetectors. Advanced Functional Materials, 2020, 30, 2002526.	7.8	26
1259	Design of Multifunctional Quinternary Metal-Halide Perovskite Compounds Based on Cation–Anion Co-Ordering. Chemistry of Materials, 2020, 32, 5949-5957.	3.2	10
1260	A tunable and unidirectional one-dimensional electronic system Nb2n+1SinTe4n+2. Npj Quantum Materials, 2020, 5, .	1.8	15
1261	Organic–inorganic hybrid perovskite electronics. Physical Chemistry Chemical Physics, 2020, 22, 13347-13357.	1.3	23
1262	2â€Thiopheneformamidiniumâ€Based 2D Ruddlesden–Popper Perovskite Solar Cells with Efficiency of 16.72% and Negligible Hysteresis. Advanced Energy Materials, 2020, 10, 2000694.	10.2	102
1263	Ultrafast charge carrier dynamics in quantum confined 2D perovskite. Journal of Chemical Physics, 2020, 152, 214705.	1.2	12
1264	PEA ₂ SnBr ₄ : a water-stable lead-free two-dimensional perovskite and demonstration of its use as a co-catalyst in hydrogen photogeneration and organic-dye degradation. Journal of Materials Chemistry C, 2020, 8, 9189-9194.	2.7	54
1265	Perovskite Materials: Recent Advancements and Challenges. , 2020, , .		3
1266	Vertical phase segregation suppression for efficient FA-based quasi-2D perovskite solar cells via HCl additive. Journal of Materials Science: Materials in Electronics, 2020, 31, 12301-12308.	1.1	11
1267	Understanding the Essential Role of PbI ₂ Films in a High-Performance Lead Halide Perovskite Photodetector. Journal of Physical Chemistry C, 2020, 124, 15107-15114.	1.5	17
1268	Dimensional Mixing Increases the Efficiency of 2D/3D Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2020, 11, 5115-5119.	2.1	34
1269	Impact of the Hole Transport Layer on the Charge Extraction of Ruddlesden–Popper Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 29505-29512.	4.0	4
1270	Emerging memory devices for artificial synapses. Journal of Materials Chemistry C, 2020, 8, 9163-9183.	2.7	48
1271	Directionally Selective Polyhalide Molecular Glue for Stable Inverted Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000244.	3.1	4
1272	Revealing photoinduced bulk polarization and spin-orbit coupling effects in high-efficiency 2D/3D Pb–Sn alloyed perovskite solar cells. Nano Energy, 2020, 76, 104999.	8.2	20
1273	Bandgap widening by pressure-induced disorder in two-dimensional lead halide perovskite. Applied Physics Letters, 2020, 116, 101901.	1.5	12

#	Article	IF	CITATIONS	
1274	Grain Growth of MAPbI ₃ via Diethylammonium Bromide Induced Grain Mergence. ACS Applied Materials & Interfaces, 2020, 12, 16707-16714.	4.0	10	
1275	Unraveling the Elastic Properties of (Quasi)Two-Dimensional Hybrid Perovskites: A Joint Experimental and Theoretical Study. ACS Applied Materials & Interfaces, 2020, 12, 17881-17892.	4.0	21	
1276	Low-temperature processed highly efficient hole transport layer free carbon-based planar perovskite solar cells with SnO2 quantum dot electron transport layer. Materials Today Physics, 2020, 13, 100204.	2.9	35	
1277	Structure–Electronic Property Relationships of 2D Ruddlesden–Popper Tin- and Lead-based Iodide Perovskites. ACS Applied Materials & Interfaces, 2020, 12, 15328-15337.	4.0	56	
1278	Chiral-perovskite optoelectronics. Nature Reviews Materials, 2020, 5, 423-439.	23.3	445	
1279	Large Optical Anisotropy in Two-Dimensional Perovskite [CH(NH ₂) ₂][C(NH ₂) ₃]PbI ₄ with Corrugated Inorganic Layers. Nano Letters, 2020, 20, 2339-2347.	4.5	40	
1280	Supramolecular Energy Materials. Advanced Materials, 2020, 32, e1907247.	11.1	101	
1281	Anisotropic Plasmonic Nanostructure Induced Polarization Photoresponse for MoS ₂ â€Based Photodetector. Advanced Materials Interfaces, 2020, 7, 1902179.	1.9	41	
1282	The role of carbon-based materials in enhancing the stability of perovskite solar cells. Energy and Environmental Science, 2020, 13, 1377-1407.	15.6	149	
1283	Minuteâ€Scale Rapid Crystallization of a Highly Dichroic 2D Hybrid Perovskite Crystal toward Efficient Polarizationâ€Sensitive Photodetector. Advanced Optical Materials, 2020, 8, 2000149.	3.6	31	
1284	A Series of Tetrathiafulvalene Bismuth Chlorides: Effects of Oxidation States of Cations on Structures and Electric Properties. Inorganic Chemistry, 2020, 59, 5161-5169.	1.9	13	
1285	Engineering 3D perovskites for photon interconversion applications. PLoS ONE, 2020, 15, e0230299.	1.1	10	
1286	Smart Textiles for Electricity Generation. Chemical Reviews, 2020, 120, 3668-3720.	23.0	644	
1287	Optoelectronic Properties of Two-Dimensional Bromide Perovskites: Influences of Spacer Cations. Journal of Physical Chemistry Letters, 2020, 11, 2955-2964.	2.1	50	
1288	Multi-component engineering to enable long-term operational stability of perovskite solar cells. JPhys Energy, 2020, 2, 024008.	2.3	13	
1289	Ultralow Thermal Conductivity of Two-Dimensional Metal Halide Perovskites. Nano Letters, 2020, 20, 3331-3337.	4.5	64	
1290	Reviewing and understanding the stability mechanism of halide perovskite solar cells. InformaÄnÃ- Materiály, 2020, 2, 1034-1056.	8.5	55	
1291	Parallel Evaluation of the Bil ₃ , BiOI, and Ag ₃ Bil ₆ Layered Photoabsorbers. Chemistry of Materials, 2020, 32, 3385-3395.	3.2	48	
		CITATION R	EPORT	
------	--	------------------------	-------	-----------
#	Article		IF	Citations
1292	From bulk to molecularly thin hybrid perovskites. Nature Reviews Materials, 2020, 5, 482-50)0.	23.3	164
1293	Vertically Aligned 2D/3D Pb–Sn Perovskites with Enhanced Charge Extraction and Suppre Segregation for Efficient Printable Solar Cells. ACS Energy Letters, 2020, 5, 1386-1395.	ssed Phase	8.8	111
1294	Phase Distribution and Carrier Dynamics in Multiple-Ring Aromatic Spacer-Based Two-Dimer Ruddlesden–Popper Perovskite Solar Cells. ACS Nano, 2020, 14, 4871-4881.	ısional	7.3	126
1295	Synthesis of air-stable two-dimensional nanoplatelets of Ruddlesden–Popper organic–in hybrid perovskites. Nanoscale, 2020, 12, 10072-10081.	norganic	2.8	10
1296	Mechanism of Crystal Formation in Ruddlesden–Popper Snâ€Based Perovskites. Advance Materials, 2020, 30, 2001294.	d Functional	7.8	91
1297	Methylammonium Lead Tribromide Single Crystal Detectors towards Robust Gammaâ€Ray I Sensing. Advanced Optical Materials, 2020, 8, 2000233.	Photon	3.6	18
1298	Spontaneously Selfâ€Assembly of a 2D/3D Heterostructure Enhances the Efficiency and Sta Printed Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2000173.	bility in	10.2	126
1299	Halide Double Perovskite Ferroelectrics. Angewandte Chemie - International Edition, 2020, 5 9305-9308.	59,	7.2	60
1300	Synergistic Reinforcement of Builtâ€In Electric Fields for Highly Efficient and Stable Perovsk Photovoltaics. Advanced Functional Materials, 2020, 30, 1909755.	ite	7.8	47
1301	Sensitized Molecular Triplet and Triplet Excimer Emission in Two-Dimensional Hybrid Perovs Journal of Physical Chemistry Letters, 2020, 11, 2247-2255.	kites.	2.1	33
1302	Widening the 2D/3D Perovskite Family for Efficient and Thermal-Resistant Solar Cells by the Secondary Ammonium Cations. ACS Energy Letters, 2020, 5, 1013-1021.	Use of	8.8	36
1303	Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer Nature Communications, 2020, 11, 1245.	design.	5.8	408
1304	Understanding of perovskite crystal growth and film formation in scalable deposition proces Chemical Society Reviews, 2020, 49, 1653-1687.	sses.	18.7	364
1305	Lowâ€Dimensionalâ€Networked Cesium Lead Halide Perovskites: Properties, Fabrication, ar Small Methods, 2020, 4, 2000303.	nd Applications.	4.6	38
1306	Revealing Excitonic Phonon Coupling in (PEA) ₂ (MA) _{<i>n</i>â~1} Pb _{<i>n</i>} I _{3<i>n</i>- Layered Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 5830-5835.}	+1 2D	2.1	47
1307	Direct Observation of Competition between Amplified Spontaneous Emission and Auger Rein in Quasi-Two-Dimensional Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 5734	combination 4-5740.	2.1	28
1308	2D Perovskite Seeding Layer for Efficient Airâ€Processable and Stable Planar Perovskite Sola Advanced Functional Materials, 2020, 30, 2003081.	ar Cells.	7.8	48
1309	In Situ Grazingâ€Incidence Wideâ€Angle Scattering Reveals Mechanisms for Phase Distribu Disorientation in 2D Halide Perovskite Films. Advanced Materials, 2020, 32, e2002812.	tion and	11.1	86

ARTICLE IF CITATIONS # Perovskite solar cells stability enhancement via analytical fabrication conditions. Synthetic Metals, 1310 2.1 5 2020, 267, 116443. Resolving in-plane and out-of-plane mobility using time resolved microwave conductivity. Journal of 2.7 Materials Chemistry C, 2020, 8, 10761-10766. Improved photoemission and stability of 2D organic-inorganic lead iodide perovskite films by polymer 1312 1.3 14 passivation. Nanotechnology, 2020, 31, 42LT01. Understanding the interplay of stability and efficiency in A-site engineered lead halide perovskites. APL Materials, 2020, 8, . Selfâ€Repairing Tinâ€Based Perovskite Solar Cells with a Breakthrough Efficiency Over 11%. Advanced 1314 11.1 179 Materials, 2020, 32, e1907623. Metalâ€Halide Perovskite Design for Nextâ€Generation Memories: Firstâ€Principles Screening and Experimental Verification. Advanced Science, 2020, 7, 2001367. 5.6 Easy Strategy to Enhance Thermal Stability of Planar PSCs by Perovskite Defect Passivation and 1316 4.0 28 Low-Temperature Carbon-Based Electrode. ACS Applied Materials & amp; Interfaces, 2020, 12, 32536-32547. Enhanced Stabilization and Easy Phase Transfer of CsPbBr₃ Perovskite Quantum Dots Promoted by High-Affinity Polyźwitterionic Ligands. Journal of the American Chemical Society, 2020, 6.6 109 142, 12669-12680. Controlling the preferred orientation of layered BiOI solar absorbers. Journal of Materials 1318 2.7 25 Chemistry C, 2020, 8, 10791-10797. Recent progress of twoâ€dimensional lead halide perovskite single crystals: Crystal growth, physical 6.8 properties, and device applications. EcoMat, 2020, 2, e12036. Compositional and Interface Engineering of Organic-Inorganic Lead Halide Perovskite Solar Cells. 1320 105 1.9 IScience, 2020, 23, 101359. Recent Developments of Mn(II)-Doped 2D-Layered and 2D Platelet Perovskite Nanostructures. Frontiers 1321 1.2 in Materials, 2020, 7, . Organicâ€Saltâ€Assisted Crystal Growth and Orientation of Quasiâ€2D Ruddlesden–Popper Perovskites for 1322 11.1 162 Solar Cells with Efficiency over 19%. Advanced Materials, 2020, 32, e2001470. Tunable exciton binding energy in 2D hybrid layered perovskites through donorâ \in "acceptor interactions within the organic layer. Nature Chemistry, 2020, 12, 672-682. 6.6 High performance two-dimensional perovskite solar cells based on solvent induced morphology 1324 1.2 10 control of perovskite layers. Chemical Physics Letters, 2020, 743, 137186. Molecular aspects of organic cations affecting the humidity stability of perovskites. Energy and 104 Environmental Science, 2020, 13, 805-820. Electric-field-induced phase transition in 2D layered perovskite (BA)2PbI4 microplate crystals. Applied 1326 1.54 Physics Letters, 2020, 116, . Multi-cation perovskites prevent carrier reflection from grain surfaces. Nature Materials, 2020, 19, 13.3 412-418.

\sim		-		
	ГЛТІ	121		DT
		1.1.1	- F O	

ARTICLE IF CITATIONS Quest for Lead-Free Perovskite-Based Solar Cells. , 2020, , . 0 1328 Interlayerâ€Sensitized Linear and Nonlinear Photoluminescence of Quasiâ€2D Hybrid Perovskites Using Aggregationâ€Induced Enhanced Emission Active Organic Cation Layers. Advanced Functional Materials, 1329 2020, 30, 1909375. Design of Lead-Free and Stable Two-Dimensional Dion–Jacobson-Type Chalcogenide Perovskite $A\hat{a}$ ∈ 2La2B3S10 ($A\hat{a}$ ∈ 2 = Ba/Sr/Ca; B = Hf/Zr) with Optimal Band Gap, Strong Optical Absorption, and High Efficiency for Photovoltaics. Chemistry of Materials, 2020, 32, 2450-2460. 1330 3.2 19 Influence of Functional Diamino Organic Cations on the Stability, Electronic Structure, and Carrier Transport Properties of Three-Dimensional Hybrid Halide Perovskite. Journal of Physical Chemistry C, 2020, 124, 6796-6810. The strain effects in 2D hybrid organic–inorganic perovskite microplates: bandgap, anisotropy and 1332 2.8 15 stability. Nanoscale, 2020, 12, 6644-6650. Passivation effect of halogenated benzylammonium as a second spacer cation for improved 1334 photovoltaic performance of quasi-2D perovskite solar cells. Journal of Materials Chemistry A, 2020, 5.2 26 8, 5900-5906. Intrinsic and environmental stability issues of perovskite photovoltaics. Progress in Energy, 2020, 2, 1335 4.6 33 022002. Advances in two-dimensional organic–inorganic hybrid perovskites. Energy and Environmental 1336 15.6 420 Science, 2020, 13, 1154-1186. 1337 Vacuum-Induced Degradation of 2D Perovskites. Frontiers in Chemistry, 2020, 8, 66. 1.8 19 Critical Role of Organic Spacers for Bright 2D Layered Perovskites Lightâ€Emitting Diodes. Advanced 5.6 39 Science, 2020, 7, 1903202. Imaging Carrier Dynamics and Transport in Hybrid Perovskites with Transient Absorption Microscopy. 1339 10.2 16 Advanced Energy Materials, 2020, 10, 1903781. Inkjet-Printed Organohalide 2D Layered Perovskites for High-Speed Photodetectors on Flexible 1340 4.0 Polyimide Substrates. ACS Applied Materials & amp; Interfaces, 2020, 12, 10809-10819. Two-Dimensional 111-Type In -Based Halide Perovskite Cs3In2X9(X=Cl,Br,I) with Optimal Band Gap for 1341 1.5 14 Photovoltaics and Defect-Insensitive Blue Emission. Physical Review Applied, 2020, 13, . Selfâ€Additive Lowâ€Dimensional Ruddlesden–Popper Perovskite by the Incorporation of Glycine Hydrochloride for Highâ€Performance and Stable Solar Cells. Advanced Functional Materials, 2020, 30, 1342 61 2000034. Interfacial Electromechanics Predicts Phase Behavior of 2D Hybrid Halide Perovskites. ACS Nano, 2020, 1343 7.3 11 14, 3353-3364. Stability of Perovskite Light Sources: Status and Challenges. Advanced Optical Materials, 2020, 8, 1344 54 1902012. Nonâ€Preheating Processed Quasiâ€2D Perovskites for Efficient and Stable Solar Cells. Small, 2020, 16, 1345 5.224 e1906997. Color‶unable Photoluminescence and Whispering Gallery Mode Lasing of Alloyed 1346 CsPbCl_{3(1–}<i>_x</i>_{>)}Br₃<i>_x</i> Microstructures. Advanced Materials Interfaces, 2020, 7, 1902126.

#	Article	IF	CITATIONS
1347	Excitons in 2D perovskites for ultrafast terahertz photonic devices. Science Advances, 2020, 6, eaax8821.	4.7	95
1348	Coordination Engineering of Singleâ€Crystal Precursor for Phase Control in Ruddlesden–Popper Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1904050.	10.2	56
1349	Lead-free perovskite [H ₃ NC ₆ H ₄ NH ₃]CuBr ₄ with both a bandgap of 1.43 eV and excellent stability. Journal of Materials Chemistry A, 2020, 8, 5484-5488.	5.2	20
1350	Recent progress of anion-based 2D perovskites with different halide substitutions. Journal of Materials Chemistry C, 2020, 8, 4294-4302.	2.7	20
1351	Highâ€Performance CsPbl <i>_x</i> Br _{3â€} <i>_x</i> Allâ€Inorganic Perovskite Solar Cells with Efficiency over 18% via Spontaneous Interfacial Manipulation. Advanced Functional Materials, 2020, 30, 2000457.	7.8	118
1352	An Effective Strategy for Photoelectric Performance Enhancement of 2D Perovskite via Halogenating Organic Cation: A Theoretical Prediction. Physica Status Solidi (B): Basic Research, 2020, 257, 1900599.	0.7	1
1353	Two-dimensional cyclohexane methylamine based perovskites as stable light absorbers for solar cells. Solar Energy, 2020, 201, 13-20.	2.9	7
1354	Excitation Dynamics in Layered Lead Halide Perovskite Crystal Slabs and Microcavities. ACS Photonics, 2020, 7, 845-852.	3.2	16
1355	Tetraethylenepent-MAPbI _{3–<i>x</i>} Cl _{<i>x</i>} Unsymmetrical Structure-Enhanced Stability and Power Conversion Efficiency in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 11224-11231.	4.0	16
1356	Inverted Planar Perovskite Solar Cells Based on NiO _x Nano Film with Enhanced Efficiency and Stability. Journal of Nanoscience and Nanotechnology, 2020, 20, 1892-1898.	0.9	5
1357	Linear and nonlinear optical probing of various excitons in 2D inorganic-organic hybrid structures. Scientific Reports, 2020, 10, 2615.	1.6	14
1358	Defect Passivation via the Incorporation of Tetrapropylammonium Cation Leading to Stability Enhancement in Lead Halide Perovskite. Advanced Functional Materials, 2020, 30, 1909737.	7.8	50
1359	Unveiling the Importance of Precursor Preparation for Highly Efficient and Stable Phenethylammoniumâ€Based Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900463.	3.1	2
1360	How far are we from attaining 10-year lifetime for metal halide perovskite solar cells?. Materials Science and Engineering Reports, 2020, 140, 100545.	14.8	67
1361	Layer-dependent optoelectronic property for all-inorganic two-dimensional mixed halide perovskite Cs2PbI2Cl2 with a Ruddlesden-Popper structure. Journal of Power Sources, 2020, 451, 227732.	4.0	55
1362	Cation Diffusion Guides Hybrid Halide Perovskite Crystallization during the Gel Stage. Angewandte Chemie, 2020, 132, 6035-6043.	1.6	22
1363	Lead Acetate Assisted Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2020, 12, 7186-7197.	4.0	20
1364	Multifunctional nanostructured materials for next generation photovoltaics. Nano Energy, 2020, 70, 104480.	8.2	52

#	Article	IF	CITATIONS
1365	In Situ Observation of Vapor-Assisted 2D–3D Heterostructure Formation for Stable and Efficient Perovskite Solar Cells. Nano Letters, 2020, 20, 1296-1304.	4.5	65
1366	Two-dimensional perovskites as sensitive strain sensors. Journal of Materials Chemistry C, 2020, 8, 3814-3820.	2.7	19
1367	Long-lived charge separation in two-dimensional ligand-perovskite heterostructures. Journal of Chemical Physics, 2020, 152, 044711.	1.2	28
1368	Engineering Multiphase Metal Halide Perovskites Thin Films for Stable and Efficient Solar Cells. Advanced Energy Materials, 2020, 10, 1903221.	10.2	16
1369	Templated growth of oriented layered hybrid perovskites on 3D-like perovskites. Nature Communications, 2020, 11, 582.	5.8	167
1370	Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites. Nature Communications, 2020, 11, 664.	5.8	167
1371	Alkali Cation Doping for Improving the Structural Stability of 2D Perovskite in 3D/2D PSCs. Nano Letters, 2020, 20, 1240-1251.	4.5	68
1372	Layeredâ€Perovskite Nanowires with Longâ€Range Orientational Order for Ultrasensitive Photodetectors. Advanced Materials, 2020, 32, e1905298.	11.1	49
1373	Cation Diffusion Guides Hybrid Halide Perovskite Crystallization during the Gel Stage. Angewandte Chemie - International Edition, 2020, 59, 5979-5987.	7.2	29
1374	Anisotropy of Excitons in Two-Dimensional Perovskite Crystals. ACS Nano, 2020, 14, 2156-2161.	7.3	52
1375	Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nature Energy, 2020, 5, 35-49.	19.8	797
1376	Understanding the Interplay of Binary Organic Spacer in Ruddlesden–Popper Perovskites toward Efficient and Stable Solar Cells. Advanced Functional Materials, 2020, 30, 1907759.	7.8	31
1377	Dimensionality-Controlled Surface Passivation for Enhancing Performance and Stability of Perovskite Solar Cells via Triethylenetetramine Vapor. ACS Applied Materials & Interfaces, 2020, 12, 6651-6661.	4.0	29
1378	Synergistic effect of additives on 2D perovskite film towards efficient and stable solar cell. Chemical Engineering Journal, 2020, 389, 124266.	6.6	50
1379	Grain Boundary Enhanced Photoluminescence Anisotropy in Twoâ€Đimensional Hybrid Perovskite Films. Advanced Optical Materials, 2020, 8, 1901780.	3.6	14
1380	Lowâ€dimensional metal halide perovskites and related optoelectronic applications. InformaÄnÃ- Materiály, 2020, 2, 341-378.	8.5	72
1381	A two-dimensional bilayered Dion–Jacobson-type perovskite hybrid with a narrow bandgap for broadband photodetection. Inorganic Chemistry Frontiers, 2020, 7, 1394-1399.	3.0	25
1382	Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature, 2020, 580, 614-620.	13.7	284

#	Article	IF	CITATIONS
1383	Intermolecular π–π Conjugation Selfâ€Assembly to Stabilize Surface Passivation of Highly Efficient Perovskite Solar Cells. Advanced Materials, 2020, 32, e1907396.	11.1	128
1384	Fluoroaromatic Cationâ€Assisted Planar Junction Perovskite Solar Cells with Improved <i>V</i> _{OC} and Stability: The Role of Fluorination Position. Solar Rrl, 2020, 4, 2000107.	3.1	68
1385	In Situ Analysis Reveals the Role of 2D Perovskite in Preventing Thermal-Induced Degradation in 2D/3D Perovskite Interfaces. Nano Letters, 2020, 20, 3992-3998.	4.5	95
1386	A Low-Cost and High-Efficiency Integrated Device toward Solar-Driven Water Splitting. ACS Nano, 2020, 14, 5426-5434.	7.3	36
1387	First-principles mechanism study on distinct optoelectronic properties of Cl-doped 2D hybrid tin iodide perovskite. Journal of Materials Chemistry C, 2020, 8, 9540-9548.	2.7	21
1388	Influence of oversized cations on electronic dimensionality of d-MAPbI ₃ crystals. Journal of Materials Chemistry C, 2020, 8, 7928-7934.	2.7	1
1389	Effects of Alkylammonium Choice on Stability and Performance of Quasi-2D Organolead Halide Perovskites. Journal of Physical Chemistry C, 2020, 124, 10887-10897.	1.5	7
1390	Role of PCBM in the Suppression of Hysteresis in Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1908920.	7.8	110
1391	Insulator as Efficient Hole Injection Layer in Perovskite Lightâ€Emitting Device via MIS Contact. Advanced Optical Materials, 2020, 8, 1902177.	3.6	12
1392	Graphdiyne: Bridging SnO ₂ and Perovskite in Planar Solar Cells. Angewandte Chemie, 2020, 132, 11670-11679.	1.6	17
1393	Graphdiyne: Bridging SnO ₂ and Perovskite in Planar Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 11573-11582.	7.2	171
1394	Enhanced photoconversion efficiency in cesium-antimony-halide perovskite derivatives by tuning crystallographic dimensionality. Applied Materials Today, 2020, 19, 100637.	2.3	32
1395	Mixed 2D/3D perovskite with fine phase control modulated by a novel cyclopentanamine hydrobromide for better stability in light-emitting diodes. Chemical Engineering Journal, 2020, 393, 124787.	6.6	7
1396	Controlled crystallinity and morphologies of 2D Ruddlesden-Popper perovskite films grown without anti-solvent for solar cells. Chemical Engineering Journal, 2020, 394, 124959.	6.6	33
1397	Low-dimensionality perovskites yield high electroluminescence. Science Bulletin, 2020, 65, 1057-1060.	4.3	15
1398	Understanding the Defect Properties of Quasi-2D Halide Perovskites for Photovoltaic Applications. Journal of Physical Chemistry Letters, 2020, 11, 3521-3528.	2.1	43
1399	Effects of Alkyl Chain Length on Crystal Growth and Oxidation Process of Two-Dimensional Tin Halide Perovskites. ACS Energy Letters, 2020, 5, 1422-1429.	8.8	112
1400	Water-Stable 1D Hybrid Tin(II) lodide Emits Broad Light with 36% Photoluminescence Quantum Efficiency. Journal of the American Chemical Society, 2020, 142, 9028-9038.	6.6	57

#	Article	IF	CITATIONS
1401	Reduced-dimensional perovskite photovoltaics with homogeneous energy landscape. Nature Communications, 2020, 11, 1672.	5.8	191
1402	Mixed-dimensional self-assembly organic–inorganic perovskite microcrystals for stable and efficient photodetectors. Journal of Materials Chemistry C, 2020, 8, 5399-5408.	2.7	13
1403	Two-dimensional Ruddlesden–Popper layered perovskite for light-emitting diodes. APL Materials, 2020, 8, 040901.	2.2	16
1404	A sensitive and robust thin-film x-ray detector using 2D layered perovskite diodes. Science Advances, 2020, 6, eaay0815.	4.7	153
1405	A general approach for hysteresis-free, operationally stable metal halide perovskite field-effect transistors. Science Advances, 2020, 6, eaaz4948.	4.7	129
1406	Development of Halide Perovskite Single Crystal for Radiation Detection Applications. Frontiers in Chemistry, 2020, 8, 268.	1.8	25
1407	Asymmetric alkyl diamine based Dion–Jacobson low-dimensional perovskite solar cells with efficiency exceeding 15%. Journal of Materials Chemistry A, 2020, 8, 9919-9926.	5.2	38
1408	Recent Progress on Interface Engineering for Highâ€Performance, Stable Perovskites Solar Cells. Advanced Materials Interfaces, 2020, 7, 2000118.	1.9	34
1409	The effect of ethylene-amine ligands enhancing performance and stability of perovskite solar cells. Journal of Power Sources, 2020, 463, 228210.	4.0	19
1410	Scaling Laws of Exciton Recombination Kinetics in Low Dimensional Halide Perovskite Nanostructures. Journal of the American Chemical Society, 2020, 142, 8871-8879.	6.6	26
1411	The adsorption of NO onto an Al-doped ZnO monolayer and the effects of applied electric fields: A DFT study. Computational and Theoretical Chemistry, 2020, 1180, 112829.	1.1	26
1412	Halide Double Perovskite Ferroelectrics. Angewandte Chemie, 2020, 132, 9391-9394.	1.6	17
1413	Additiveâ€Assisted Hotâ€Casting Free Fabrication of Dion–Jacobson 2D Perovskite Solar Cell with Efficiency Beyond 16%. Solar Rrl, 2020, 4, 2000087.	3.1	49
1414	Relaxing the Goldschmidt Tolerance Factor: Sizable Incorporation of the Guanidinium Cation into a Two-Dimensional Ruddlesden–Popper Perovskite. Chemistry of Materials, 2020, 32, 4024-4037.	3.2	28
1415	Selfâ€Assembled Ruddlesden–Popper/Perovskite Hybrid with Latticeâ€Oxygen Activation as a Superior Oxygen Evolution Electrocatalyst. Small, 2020, 16, e2001204.	5.2	61
1416	Enhancement of phosphate adsorption during mineral transformation of natural siderite induced by humic acid: Mechanism and application. Chemical Engineering Journal, 2020, 393, 124730.	6.6	43
1417	Persistent Spin-texture and Ferroelectric Polarization in 2D Hybrid Perovskite Benzylammonium Lead-halide. Journal of Physical Chemistry Letters, 2020, 11, 5177-5183.	2.1	34
1418	Electronic Structure and Trap States of Two-Dimensional Ruddlesden–Popper Perovskites with the Relaxed Goldschmidt Tolerance Factor. ACS Applied Electronic Materials, 2020, 2, 1402-1412.	2.0	19

#	Article	IF	CITATIONS
1419	Exploring the Factors Affecting the Mechanical Properties of 2D Hybrid Organic–Inorganic Perovskites. ACS Applied Materials & Interfaces, 2020, 12, 20440-20447.	4.0	47
1420	Self-trapping effect on the excitonic and polaronic properties of a single-layer 2D metal-halide perovskite. 2D Materials, 2020, 7, 035020.	2.0	6
1421	Interfacial charge transfer processes in 2D and 3D semiconducting hybrid perovskites: azobenzene as photoswitchable ligand. Beilstein Journal of Nanotechnology, 2020, 11, 466-479.	1.5	11
1422	Ligandâ€Modulated Excess PbI ₂ Nanosheets for Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2020, 32, e2000865.	11.1	136
1423	Directional Anisotropy of the Vibrational Modes in 2D-Layered Perovskites. ACS Nano, 2020, 14, 4689-4697.	7.3	69
1424	Organic Cation Alloying on Intralayer A and Interlayer A' sites in 2D Hybrid Dion–Jacobson Lead Bromide Perovskites (A')(A)Pb ₂ Br ₇ . Journal of the American Chemical Society, 2020, 142, 8342-8351.	6.6	64
1425	Twoâ€Dimensional Metalâ€Halide Perovskiteâ€based Optoelectronics: Synthesis, Structure, Properties and Applications. Energy and Environmental Materials, 2021, 4, 46-64.	7.3	34
1426	Molecular‣evel Insight into Correlation between Surface Defects and Stability of Methylammonium Lead Halide Perovskite Under Controlled Humidity. Small Methods, 2021, 5, e2000834.	4.6	30
1427	Improving Moisture/Thermal Stability and Efficiency of CH 3 NH 3 PbI 3 â€Based Perovskite Solar Cells via Gentle Butyl Acrylate Additive Strategy. Solar Rrl, 2021, 5, 2000621.	3.1	20
1428	Controlling cation migration and inter-diffusion across cathode/interlayer/electrolyte interfaces of solid oxide fuel cells: A review. Ceramics International, 2021, 47, 5839-5869.	2.3	55
1429	Fabrication of perovskite solar cells using novel <scp>2D</scp> / <scp>3D</scp> â€blended perovskite single crystals. International Journal of Energy Research, 2021, 45, 5555-5566.	2.2	11
1430	Two-dimensional materials for light emitting applications: Achievement, challenge and future perspectives. Nano Research, 2021, 14, 1912-1936.	5.8	34
1431	Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films. Nature Energy, 2021, 6, 38-45.	19.8	342
1432	Advanced Characterization Techniques for Overcoming Challenges of Perovskite Solar Cell Materials. Advanced Energy Materials, 2021, 11, 2001753.	10.2	29
1433	Highly Thermostable and Efficient Formamidiniumâ€Based Lowâ€Dimensional Perovskite Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 856-864.	7.2	75
1434	Enabling AC electroluminescence in quasi-2D perovskites by uniformly arranging different-n-value nanoplates to allow bidirectional charge transport. Nano Energy, 2021, 79, 105413.	8.2	8
1435	Interfacial engineering in lead-free tin-based perovskite solar cells. Journal of Energy Chemistry, 2021, 57, 147-168.	7.1	55
1436	2D Ruddlesden–Popper Perovskite Single Crystal Fieldâ€Effect Transistors. Advanced Functional Materials, 2021, 31, .	7.8	56

#	Article	IF	CITATIONS
1437	Observation of fault-free coherent layer during Ruddlesden–Popper faults generation in LaNiO3 thin films. Journal of the Korean Ceramic Society, 2021, 58, 169-177.	1.1	6
1438	Enhanced efficiency and stability of quasi-2D/3D perovskite solar cells by thermal assisted blade coating method. Chemical Engineering Journal, 2021, 405, 126992.	6.6	20
1439	Superior photovoltaics/optoelectronics of two-dimensional halide perovskites. Journal of Energy Chemistry, 2021, 57, 69-82.	7.1	20
1440	Highly Thermostable and Efficient Formamidiniumâ€Based Lowâ€Dimensional Perovskite Solar Cells. Angewandte Chemie, 2021, 133, 869-877.	1.6	12
1441	Surface structures and equilibrium shapes of layered 2D Ruddlesden-Popper perovskite crystals from density functional theory calculations. Materials Today Communications, 2021, 26, 101745.	0.9	5
1442	Defect Suppression in Oriented 2D Perovskite Solar Cells with Efficiency over 18% via Rerouting Crystallization Pathway. Advanced Energy Materials, 2021, 11, .	10.2	66
1443	Progress in Materials Development for Flexible Perovskite Solar Cells and Future Prospects. ChemSusChem, 2021, 14, 512-538.	3.6	38
1444	Recent progress in low dimensional (quasi-2D) and mixed dimensional (2D/3D) tin-based perovskite solar cells. Sustainable Energy and Fuels, 2021, 5, 34-51.	2.5	24
1445	Two-dimensional halide perovskite-based solar cells: Strategies for performance and stability enhancement. FlatChem, 2021, 25, 100213.	2.8	4
1446	Mn ²⁺ â€Doped Metal Halide Perovskites: Structure, Photoluminescence, and Application. Laser and Photonics Reviews, 2021, 15, .	4.4	167
1447	Efficient interlayer exciton transport in two-dimensional metal-halide perovskites. Materials Horizons, 2021, 8, 639-644.	6.4	15
1448	The metal halide structure and the extent of distortion control the photo-physical properties of luminescent zero dimensional organic-antimony(<scp>iii</scp>) halide hybrids. Journal of Materials Chemistry C, 2021, 9, 348-358.	2.7	42
1449	A Scalable H ₂ O–DMF–DMSO Solvent Synthesis of Highly Luminescent Inorganic Perovskiteâ€Related Cesium Lead Bromides. Advanced Optical Materials, 2021, 9, 2001435.	3.6	16
1450	A DFT study on enhanced adsorption of H2 on Be-decorated porous graphene nanosheet and the effects of applied electrical fields. International Journal of Hydrogen Energy, 2021, 46, 5891-5903.	3.8	15
1451	Eliminating the electric field response in a perovskite heterojunction solar cell to improve operational stability. Science Bulletin, 2021, 66, 536-544.	4.3	10
1452	Dielectric confinement for designing compositions and optoelectronic properties of 2D layered hybrid perovskites. Physical Chemistry Chemical Physics, 2021, 23, 82-93.	1.3	24
1453	The influence of Cd-alloying on the light-emission properties of 2D butylammonium lead chloride perovskite. Materials Letters, 2021, 282, 128847.	1.3	1
1454	Compositionally Designed 2D Ruddlesden–Popper Perovskites for Efficient and Stable Solar Cells. Solar Rrl, 2021, 5, 2000661.	3.1	8

#	Article	IF	CITATIONS
1455	Recent advances in resistive random access memory based on lead halide perovskite. InformaÄnÃ- Materiály, 2021, 3, 293-315.	8.5	70
1456	Inorganic Electron Transport Materials in Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2008300.	7.8	105
1457	Exotic Structural and Optoelectronic Properties of Layered Halide Double Perovskite Polymorphs. Advanced Functional Materials, 2021, 31, 2008620.	7.8	5
1458	2D Hybrid Halide Perovskites: Synthesis, Properties, and Applications. Solar Rrl, 2021, 5, .	3.1	20
1459	Progress in layered cathode and anode nanoarchitectures for charge storage devices: Challenges and future perspective. Energy Storage Materials, 2021, 35, 443-469.	9.5	42
1460	Mechanisms and Suppression of Photoinduced Degradation in Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2002326.	10.2	118
1461	Spin-Dependent Photovoltaic and Photogalvanic Responses of Optoelectronic Devices Based on Chiral Two-Dimensional Hybrid Organic–Inorganic Perovskites. ACS Nano, 2021, 15, 588-595.	7.3	85
1462	Impact of grain size on the optoelectronic performance of 2D Ruddlesden–Popper perovskite-based photodetectors. Journal of Materials Chemistry C, 2021, 9, 110-116.	2.7	26
1463	In Quest of Environmentally Stable Perovskite Solar Cells: A Perspective. Helvetica Chimica Acta, 2021, 104, .	1.0	15
1464	Recent progress in all-inorganic metal halide nanostructured perovskites: Materials design, optical properties, and application. Frontiers of Physics, 2021, 16, 1.	2.4	26
1465	Roles of Organic Molecules in Inorganic CsPbX ₃ Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, .	10.2	63
1466	Epitaxial halide perovskite-based materials for photoelectric energy conversion. Energy and Environmental Science, 2021, 14, 127-157.	15.6	37
1467	Scanning Kelvin Probe Microscopy Reveals That Ion Motion Varies with Dimensionality in 2D Halide Perovskites. ACS Energy Letters, 2021, 6, 100-108.	8.8	23
1468	Diamine tailored smooth and continuous perovskite single crystal with enhanced photoconductivity. Journal of Materials Chemistry C, 2021, 9, 1303-1309.	2.7	14
1469	The Physics of Interlayer Exciton Delocalization in Ruddlesden–Popper Lead Halide Perovskites. Nano Letters, 2021, 21, 405-413.	4.5	22
1470	Lowâ€Dimensional Metal Halide Perovskite Photodetectors. Advanced Materials, 2021, 33, e2003309.	11.1	319
1471	Band Alignment Engineering in Twoâ€Dimensional Transition Metal Dichalcogenideâ€Based Heterostructures for Photodetectors. Small Structures, 2021, 2, 2000136.	6.9	112
1472	Determination of Dielectric Functions and Exciton Oscillator Strength of Two-Dimensional Hybrid Perovskites. , 2021, 3, 148-159.		47

	C	tation Report	
#	Article	IF	Citations
1473	Wide-Bandgap Metal Halide Perovskites for Tandem Solar Cells. ACS Energy Letters, 2021, 6, 232-24	3. 8.8	89
1474	Elucidation of the Formation Mechanism of Highly Oriented Multiphase Ruddlesden–Popper Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 249-260.	8.8	34
1475	Formamidinium-incorporated Dion-Jacobson phase 2D perovskites for highly efficient and stable photovoltaics. Journal of Energy Chemistry, 2021, 57, 632-638.	7.1	18
1476	Layer Edge States Stabilized by Internal Electric Fields in Two-Dimensional Hybrid Perovskites. Nano Letters, 2021, 21, 182-188.	4.5	14
1477	Quasi three-dimensional lead iodide perovskite using pyridine-2,5-diamine and 4,4′-bipyridine with tunable electronic structure, carrier transport, optical absorption properties. Journal of Alloys and Compounds, 2021, 856, 157391.	2.8	1
1478	Half-metallic ferromagnetism in molybdenum doped methylammonium lead halides (MAPbX3, XÂ=ÂC system: First-principles study. Journal of Magnetism and Magnetic Materials, 2021, 519, 167463.	l, Br, I) 1.0	11
1479	Recent Advances in Carbon Nanotube Utilizations in Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2004765.	7.8	37
1480	Electronic, optical, and thermoelectric properties of perovskite variants <scp> A ₂ BX ₆ </scp> : Insight and design via firstâ€principles calculations. International Journal of Energy Research, 2021, 45, 4495-4507.	2.2	35
1481	Recent progress in the piezoelectricity of molecular ferroelectrics. Materials Chemistry Frontiers, 2021, 5, 44-59.	3.2	43
1482	A multiaxial lead-free two-dimensional organic-inorganic perovskite ferroelectric. National Science Review, 2021, 8, nwaa232.	4.6	57
1483	Amplified spontaneous emission in thin films of quasi-2D BA ₃ MA ₃ Pb ₅ Br ₁₆ lead halide perovskites. Nanos 2021, 13, 8893-8900.	cale, 2.8	8
1484	Excitonic Solar Cells Using 2D Perovskite of (BA) ₂ (FA) ₂ Pb ₃ 1 ₁₀ . Journal of Physical Chemistry 2021, 125, 2212-2219.	C, 1.5	17
1485	Origins of pressure-induced enhancement in thermal conductivity of hybrid inorganic–organic perovskites. Nanoscale, 2021, 13, 685-691.	2.8	3
1486	Research progress of metal halide perovskite nanometer optoelectronic materials. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 087303.	0.2	2
1487	A reduced-dimensional polar hybrid perovskite for self-powered broad-spectrum photodetection. Chemical Science, 2021, 12, 3050-3054.	3.7	20
1488	Improved performance of perovskite light-emitting diodes with a NaCl doped PEDOT:PSS hole transport layer. Journal of Materials Chemistry C, 2021, 9, 4344-4350.	2.7	28
1489	Enhanced Photocurrent of All-Inorganic Two-Dimensional Perovskite Cs ₂ Pbl ₂ Cl ₂ via Pressure-Regulated Excitonic Features. Journal the American Chemical Society, 2021, 143, 2545-2551.	of 6.6	79
1490	Stability of the CsPbI ₃ perovskite: from fundamentals to improvements. Journal of Materials Chemistry A, 2021, 9, 11124-11144.	5.2	78

		FORT	
#	Article	IF	Citations
1491	Pb in halide perovskites for photovoltaics: reasons for optimism. Materials Advances, 2021, 2, 6125-6135.	2.6	16
1492	Recent progress in meniscus coating for large-area perovskite solar cells and solar modules. Sustainable Energy and Fuels, 2021, 5, 1926-1951.	2.5	11
1493	Role of the spacer cation in the growth and crystal orientation of two-dimensional perovskites. Sustainable Energy and Fuels, 2021, 5, 1255-1279.	2.5	14
1494	Investigation of the linear and nonlinear optical properties of La _{2â^'<i>x</i>} Sr _{<i>x</i>} CoO ₄ (<i>x</i> = 0.5, 0.7, 0.9, 1.1, 1.3 and 1.5) nanoparticles. Journal of Materials Chemistry C, 2021, 9, 10443-10452.	2.7	14
1495	Abnormal spatial heterogeneity governing the charge-carrier mechanism in efficient Ruddlesden–Popper perovskite solar cells. Energy and Environmental Science, 2021, 14, 4915-4925.	15.6	24
1496	Enhanced photovoltage and stability of perovskite photovoltaics enabled by a cyclohexylmethylammonium iodide-based 2D perovskite passivation layer. Nanoscale, 2021, 13, 14915-14924.	2.8	16
1497	High-efficient <i>ab initio</i> Bayesian active learning method and applications in prediction of two-dimensional functional materials. Nanoscale, 2021, 13, 14694-14704.	2.8	9
1498	The 2D Halide Perovskite Rulebook: How the Spacer Influences Everything from the Structure to Optoelectronic Device Efficiency. Chemical Reviews, 2021, 121, 2230-2291.	23.0	506
1499	Substance and shadow of formamidinium lead triiodide based solar cells. Physical Chemistry Chemical Physics, 2021, 23, 9049-9060.	1.3	7
1500	Overcoming the carrier transport limitation in Ruddlesden–Popper perovskite films by using lamellar nickel oxide substrates. Journal of Materials Chemistry A, 2021, 9, 11741-11752.	5.2	28
1501	Perovskite photodetectors and their application in artificial photonic synapses. Chemical Communications, 2021, 57, 11429-11442.	2.2	27
1502	Revealing defective nanostructured surfaces and their impact on the intrinsic stability of hybrid perovskites. Energy and Environmental Science, 2021, 14, 1563-1572.	15.6	55
1503	Perovskite Nanoparticles. , 0, , .		1
1504	Self-passivation of low-dimensional hybrid halide perovskites guided by structural characteristics and degradation kinetics. Energy and Environmental Science, 2021, 14, 2357-2368.	15.6	12
1505	Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nature Energy, 2021, 6, 63-71.	19.8	365
1506	Organic–inorganic hybrid and inorganic halide perovskites: structural and chemical engineering, interfaces and optoelectronic properties. Journal Physics D: Applied Physics, 2021, 54, 133002.	1.3	27
1507	The effect of temperature and time on the properties of 2D Cs ₂ ZnBr ₄ perovskite nanocrystals and their application in a Schottky barrier device. Journal of Materials Chemistry C, 2021, 9, 6022-6033.	2.7	5
1509	Encapsulating third donors into D–A hybrid heterostructures to form three-component charge-transfer complexes for enhanced electrical properties. Dalton Transactions, 2021, 50, 13961-13967.	1.6	4

#	Article	IF	CITATIONS
1510	Two-dimensional halide perovskites: synthesis, optoelectronic properties, stability, and applications. Nanoscale, 2021, 13, 12394-12422.	2.8	38
1511	Dye-Sensitized and Perovskite Solar Cells: Theory and Applications. , 2021, , 558-594.		0
1512	Novel design strategies for perovskite materials with improved stability and suitable band gaps. Physical Chemistry Chemical Physics, 2021, 23, 20288-20297.	1.3	1
1513	Recent progress in tin-based perovskite solar cells. Energy and Environmental Science, 2021, 14, 1286-1325.	15.6	257
1514	Laurionite Competes with 2D Ruddlesden–Popper Perovskites During the Saturation Recrystallization Process. ACS Applied Materials & Interfaces, 2021, 13, 6505-6514.	4.0	4
1515	A Perspective on Perovskite Solar Cells. Energy, Environment, and Sustainability, 2021, , 55-151.	0.6	1
1516	A bromide-induced highly oriented low-dimensional Ruddlesden–Popper phase for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 15068-15075.	5.2	5
1517	Halide perovskites for light emission and artificial photosynthesis: Opportunities, challenges, and perspectives. EcoMat, 2021, 3, e12074.	6.8	29
1518	Characterization of the Ammonium Bending Vibrations in Two-Dimensional Hybrid Lead-Halide Perovskites from Raman Spectroscopy and First-Principles Calculations. Journal of Physical Chemistry C, 2021, 125, 223-236.	1.5	9
1519	On the adsorption mechanism of caffeine on MAPbI ₃ perovskite surfaces: a combined UMC-DFT study. Physical Chemistry Chemical Physics, 2021, 23, 10807-10813.	1.3	6
1520	Quasi-2D lead-free halide perovskite using superalkali cations for red-light-emitting diodes. Nanoscale, 2021, 13, 13152-13157.	2.8	4
1521	Wafer-sized 2D perovskite single crystal thin films for UV photodetectors. Journal of Materials Chemistry C, 2021, 9, 6498-6506.	2.7	26
1522	Lowâ€Dimensionalâ€Networked Perovskites with Aâ€Siteâ€Cation Engineering for Optoelectronic Devices. Small Methods, 2021, 5, e2001147.	4.6	27
1523	Research progress on two-dimensional (2D) halide organic–inorganic hybrid perovskites. Sustainable Energy and Fuels, 2021, 5, 3950-3978.	2.5	12
1524	Dynamic Motion of Organic Spacer Cations in Ruddlesden–Popper Lead Iodide Perovskites Probed by Solid-State NMR Spectroscopy. Chemistry of Materials, 2021, 33, 642-656.	3.2	33
1525	Facile Synthesis of Spherical TiO2 Hollow Nanospheres with a Diameter of 150 nm for High-Performance Mesoporous Perovskite Solar Cells. Materials, 2021, 14, 629.	1.3	8
1526	Highâ€Quality Ruddlesden–Popper Perovskite Film Formation for Highâ€Performance Perovskite Solar Cells. Advanced Materials, 2021, 33, e2002582.	11.1	182
1527	Tetrathiafulvalene-based double metal lead iodides: structures and electrical properties. Dalton Transactions, 2021, 50, 8120-8126.	1.6	1

#	Article	IF	CITATIONS
1528	Understanding liquefaction in halide perovskites upon methylamine gas exposure. RSC Advances, 2021, 11, 20423-20428.	1.7	1
1529	Continuous production of ultrathin organic–inorganic Ruddlesden–Popper perovskite nanoplatelets <i>via</i> a flow reactor. Nanoscale, 2021, 13, 13108-13115.	2.8	8
1530	Dion–Jacobson halide perovskites for photovoltaic and photodetection applications. Journal of Materials Chemistry C, 2021, 9, 6378-6394.	2.7	26
1531	Improved efficiency and air stability of two-dimensional p-i-n inverted perovskite solar cells by Cs doping. RSC Advances, 2021, 11, 20200-20206.	1.7	4
1532	Layer number dependent exciton dissociation and carrier recombination in 2D Ruddlesden–Popper halide perovskites. Journal of Materials Chemistry C, 2021, 9, 8966-8974.	2.7	18
1533	Crystallization of 2D Hybrid Organic–Inorganic Perovskites Templated by Conductive Substrates. Advanced Functional Materials, 2021, 31, 2009007.	7.8	14
1534	Perovskite solar cells. , 2021, , 249-281.		5
1535	Highly efficient photoelectric effect in halide perovskites for regenerative electron sources. Nature Communications, 2021, 12, 673.	5.8	13
1536	Using steric hindrance to manipulate and stabilize metal halide perovskites for optoelectronics. Chemical Science, 2021, 12, 7231-7247.	3.7	31
1537	The effect of dimensionality on the charge carrier mobility of halide perovskites. Journal of Materials Chemistry A, 2021, 9, 21551-21575.	5.2	49
1538	Towards superior X-ray detection performance of two-dimensional halide perovskite crystals by adjusting the anisotropic transport behavior. Journal of Materials Chemistry A, 2021, 9, 13209-13219.	5.2	34
1539	Insights into iodoplumbate complex evolution of precursor solutions for perovskite solar cells: from aging to degradation. Journal of Materials Chemistry A, 2021, 9, 6732-6748.	5.2	26
1540	Tuning the Interfacial Dipole Moment of Spacer Cations for Charge Extraction in Efficient and Ultrastable Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 1256-1268.	1.5	56
1541	Research Progress of Composition and Structure Design in Perovskites for High Performance Light-emitting Diodes. Acta Chimica Sinica, 2021, 79, 223.	0.5	4
1542	Combination of a large cation and coordinating additive improves carrier transport properties in quasi-2D perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 9175-9190.	5.2	10
1543	Tetrazine molecules as an efficient electronic diversion channel in 2D organic–inorganic perovskites. Materials Horizons, 2021, 8, 1547-1560.	6.4	24
1544	Performance and stability improvements in metal halide perovskite with intralayer incorporation of organic additives. Journal of Materials Chemistry A, 2021, 9, 16281-16338.	5.2	28
1545	Domainâ€Sizeâ€Dependent Residual Stress Governs the Phaseâ€Transition and Photoluminescence Behavior of Methylammonium Lead Iodide. Advanced Functional Materials, 2021, 31, 2008088.	7.8	8

#	Article	IF	CITATIONS
1546	Mechanistic Understanding of Efficient Photocatalytic H ₂ Evolution on Twoâ€Đimensional Layered Lead Iodide Hybrid Perovskites. Angewandte Chemie - International Edition, 2021, 60, 7376-7381.	7.2	48
1547	Efficient Two-Dimensional Perovskite Solar Cells Realized by Incorporation of Ti3C2Tx MXene as Nano-Dopants. Nano-Micro Letters, 2021, 13, 68.	14.4	44
1548	Strong Excitonic Magneto-Optic Effects in Two-Dimensional Organic–Inorganic Hybrid Perovskites. ACS Applied Materials & Interfaces, 2021, 13, 10279-10286.	4.0	11
1549	Europium ions doped WOx nanorods for dual interfacial modification facilitating high efficiency and stability of perovskite solar cells. Nano Energy, 2021, 80, 105564.	8.2	26
1550	Mechanistic Understanding of Efficient Photocatalytic H ₂ Evolution on Twoâ€Đimensional Layered Lead Iodide Hybrid Perovskites. Angewandte Chemie, 2021, 133, 7452-7457.	1.6	9
1551	Molecular Engineering for Two-Dimensional Perovskites with Photovoltaic Efficiency Exceeding 18%. Matter, 2021, 4, 582-599.	5.0	123
1552	Layer number dependent ferroelasticity in 2D Ruddlesden–Popper organic-inorganic hybrid perovskites. Nature Communications, 2021, 12, 1332.	5.8	28
1553	Enhancing the stability of cesium lead iodide perovskite nanocrystals: Recent progress, challenges and opportunities. Surfaces and Interfaces, 2021, 22, 100870.	1.5	4
1554	High-Quality All-Inorganic Perovskite CsPbBr ₃ Microsheet Crystals as Low-Loss Subwavelength Exciton–Polariton Waveguides. Nano Letters, 2021, 21, 1822-1830.	4.5	17
1555	Nonlinear Photonics Using Lowâ€Dimensional Metalâ€Halide Perovskites: Recent Advances and Future Challenges. Advanced Materials, 2021, 33, e2004446.	11.1	58
1556	Double Charge Transfer Dominates in Carrier Localization in Low Bandgap Sites of Heterogeneous Lead Halide Perovskites. Advanced Functional Materials, 2021, 31, 2010076.	7.8	17
1557	Highâ€Efficiency Quasiâ€⊋D Perovskite Solar Cells Incorporating 2,2′â€Biimidazolium Cation. Solar Rrl, 2021, 5, 2000700.	3.1	9
1558	Insight on the Stability of Thick Layers in 2D Ruddlesden–Popper and Dion–Jacobson Lead Iodide Perovskites. Journal of the American Chemical Society, 2021, 143, 2523-2536.	6.6	79
1559	Mechanochemical Synthesis, Optical and Magnetic Properties of Pb-Free Ruddlesden–Popper-Type Layered Rb ₂ CuCl ₂ Br ₂ Perovskite. Journal of Physical Chemistry C, 2021, 125, 4720-4729.	1.5	21
1560	Electroluminescence Principle and Performance Improvement of Metal Halide Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2021, 9, 2002167.	3.6	49
1561	Advances and Prospective in Metal Halide Ruddlesen–Popper Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2003907.	10.2	13
1562	Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations. Science, 2021, 371, 636-640.	6.0	184
1563	Effects of Cl and F Substitution in Phenylethylammonium Spacer Cations on Stability, Structure, and Optical Properties of 2D–3D Ruddlesden–Popper Perovskite Layers. ACS Applied Energy Materials, 2021, 4, 1860-1867.	2.5	11

#	Article	IF	CITATIONS
1564	From 1D to 3D: Perovskites within the System HSC(NH ₂) ₂ 1/CH ₃ NH ₃ 1/PbI ₂ with Maintenance of the Cubic Closest Packing. Inorganic Chemistry, 2021, 60, 3082-3093.	1.9	15
1565	Crystallinity-dependent device characteristics of polycrystalline 2D n = 4 Ruddlesden–Popper perovskite photodetectors. Nanotechnology, 2021, 32, 185203.	1.3	10
1566	Surface structure of quasi-2D perovskite PEA _{2m} MA _{nâ^'2m} Pb _n I _{3n} (n ≫ m). Applied Physics Express, 2021, 14, 031006.	1.1	0
1567	van der Waals Interaction-Induced Tunable Schottky Barriers in Metal–2D Perovskite Contacts. Journal of Physical Chemistry Letters, 2021, 12, 1718-1725.	2.1	11
1568	Tin Halide Perovskites Going Forward: Frost Diagrams Offer Hints. , 2021, 3, 299-307.		58
1569	Tuning the Excitonic Properties of the 2D (PEA) ₂ (MA) _{<i>n</i>â^`1} Pb _{<i>n</i>} I _{3<i>n</i>+1} Perovskite Family via Quantum Confinement. Journal of Physical Chemistry Letters, 2021, 12, 1638-1643.	2.1	49
1570	Recent progress in two-dimensional Ruddlesden–Popper perovskite based heterostructures. 2D Materials, 2021, 8, 022006.	2.0	19
1571	Halogen Functionalization in the 2D Material Flatland: Strategies, Properties, and Applications. Small, 2021, 17, e2005640.	5.2	20
1572	Tailored Designâ€ofâ€Experiments Approach for Device Performance Prediction and Optimization of Flashâ€Evaporated Organic–Inorganic Halide Perovskiteâ€Based Photodetectors. Advanced Materials Technologies, 2021, 6, 2001131.	3.0	5
1573	Chiralityâ€Dependent Circular Photogalvanic Effect in Enantiomorphic 2D Organic–Inorganic Hybrid Perovskites. Advanced Materials, 2021, 33, e2008611.	11.1	48
1574	Distinct Carrier Transport Properties Across Horizontally vs Vertically Oriented Heterostructures of 2D/3D Perovskites. Journal of the American Chemical Society, 2021, 143, 4969-4978.	6.6	52
1575	Anion Exchange of Ruddlesden–Popper Lead Halide Perovskites Produces Stable Lateral Heterostructures. Journal of the American Chemical Society, 2021, 143, 5212-5221.	6.6	37
1576	Signatures of Coherent Phonon Transport in Ultralow Thermal Conductivity Two-Dimensional Ruddlesden–Popper Phase Perovskites. ACS Nano, 2021, 15, 4165-4172.	7.3	21
1577	Remanent solvent management engineering of perovskite films for PEDOT: PSS-based inverted solar cells. Solar Energy, 2021, 216, 530-536.	2.9	6
1578	Engineering Bandâ€Type Alignment in CsPbBr ₃ Perovskiteâ€Based Artificial Multiple Quantum Wells. Advanced Materials, 2021, 33, e2005166.	11.1	12
1579	Distance Dependence of Förster Resonance Energy Transfer Rates in 2D Perovskite Quantum Wells via Control of Organic Spacer Length. Journal of the American Chemical Society, 2021, 143, 4244-4252.	6.6	54
1580	Emerging Lowâ€Dimensional Crystal Structure of Metal Halide Perovskite Optoelectronic Materials and Devices. Small Structures, 2021, 2, 2000133.	6.9	33
1581	Strategies for High-Performance Large-Area Perovskite Solar Cells toward Commercialization. Crystals, 2021, 11, 295.	1.0	23

#	Article	IF	CITATIONS
1582	The photophysics of Ruddlesden-Popper perovskites: A tale of energy, charges, and spins. Applied Physics Reviews, 2021, 8, .	5.5	34
1583	Light-Induced Photoluminescence Quenching and Degradation in Quasi 2D Perovskites Film of (C6H5C2H4NH3)2 (CH3NH3)2[Pb3I10]. Applied Sciences (Switzerland), 2021, 11, 2683.	1.3	7
1584	Low-dimensional materials for photovoltaic application. Journal of Semiconductors, 2021, 42, 031701.	2.0	17
1585	Grain Boundary Passivation with Dion–Jacobson Phase Perovskites for Highâ€Performance Pb–Sn Mixed Narrowâ€Bandgap Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000681.	3.1	22
1586	Auger-Assisted Electron Transfer between Adjacent Quantum Wells in Two-Dimensional Layered Perovskites. Journal of the American Chemical Society, 2021, 143, 4725-4731.	6.6	34
1587	Twoâ€Step Thermal Annealing: An Effective Route for 15 % Efficient Quasiâ€2D Perovskite Solar Cells. ChemPlusChem, 2021, 86, 1044-1048.	1.3	8
1588	A Universal Approach for Controllable Synthesis of <i>n</i> ‣pecific Layered 2D Perovskite Nanoplates. Angewandte Chemie - International Edition, 2021, 60, 7866-7872.	7.2	24
1589	Electronic and optical properties of vacancy ordered double perovskites A2BX6 (A = Rb, Cs; B =â€	‰Sn, Pd, P 1.6	۲;) ₇ 5j ETQql
1590	Origin of Efficiency and Stability Enhancement in Highâ€Performing Mixed Dimensional 2Dâ€3D Perovskite Solar Cells: A Review. Advanced Functional Materials, 2022, 32, 2009164.	7.8	96
1591	Investigation of Many-Body Exciton Recombination and Optical Anisotropy in Two-Dimensional Perovskites Having Different Layers with Alternating Cations in the Interlayer Space. Journal of Physical Chemistry C, 2021, 125, 7799-7807.	1.5	12
1592	Exciton–Phonon Interaction-Induced Large In-Plane Optical Anisotropy in Two-Dimensional All-Inorganic Perovskite Crystals. Journal of Physical Chemistry Letters, 2021, 12, 3387-3392.	2.1	15
1593	Interface Engineering of 2D/3D Perovskite Heterojunction Improves Photovoltaic Efficiency and Stability. Solar Rrl, 2021, 5, 2100072.	3.1	21
1594	A Universal Approach for Controllable Synthesis of n â€ S pecific Layered 2D Perovskite Nanoplates. Angewandte Chemie, 2021, 133, 7945-7951.	1.6	6
1595	Integrating n-type semiconductor for passivating the defects of electron transport layer in two-dimensional perovskite solar cells. Chemical Physics Letters, 2021, 767, 138364.	1.2	2
1596	Cooperative Nature of Ferroelectricity in Two-Dimensional Hybrid Organic–Inorganic Perovskites. Nano Letters, 2021, 21, 3170-3176.	4.5	20
1597	Cation Engineering for Resonant Energy Level Alignment in Two-Dimensional Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 2528-2535.	2.1	17
1598	Chemically tailored molecular surface modifiers for efficient and stable perovskite photovoltaics. SmartMat, 2021, 2, 33-37.	6.4	47
1599	Film Formation Control for High Performance Dion–Jacobson 2D Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2002733.	10.2	62

#	Article	IF	CITATIONS
1600	Stable Layered 2D Perovskite Solar Cells with an Efficiency of over 19% via Multifunctional Interfacial Engineering. Journal of the American Chemical Society, 2021, 143, 3911-3917.	6.6	114
1601	Organic Tetrabutylammonium Cation Intercalation to Heal Inorganic CsPbI ₃ Perovskite. Angewandte Chemie, 2021, 133, 12459-12463.	1.6	24
1602	Printing strategies for scaling-up perovskite solar cells. National Science Review, 2021, 8, nwab075.	4.6	48
1603	Synthesis of 0D Manganeseâ€Based Organic–Inorganic Hybrid Perovskite and Its Application in Leadâ€Free Red Lightâ€Emitting Diode. Advanced Functional Materials, 2021, 31, 2100855.	7.8	98
1604	Millimeterâ€Size Allâ€inorganic Perovskite Crystalline Thin Film Grown by Chemical Vapor Deposition. Advanced Functional Materials, 2021, 31, 2101058.	7.8	19
1605	Organic Tetrabutylammonium Cation Intercalation to Heal Inorganic CsPbl ₃ Perovskite. Angewandte Chemie - International Edition, 2021, 60, 12351-12355.	7.2	94
1606	Oriented inorganic perovskite absorbers processed by colloidal-phase fumigation. Science China Materials, 2021, 64, 2421-2429.	3.5	7
1607	Design of two-dimensional perovskite solar cells with superior efficiency and stability. Revista Facultad De IngenierÃa, 0, , .	0.5	0
1608	Perspective on the physics of two-dimensional perovskites in high magnetic field. Applied Physics Letters, 2021, 118, .	1.5	18
1609	Highly Efficient 1D/3D Ferroelectric Perovskite Solar Cell. Advanced Functional Materials, 2021, 31, 2100205.	7.8	24
1610	Local Energy Landscape Drives Long-Range Exciton Diffusion in Two-Dimensional Halide Perovskite Semiconductors. Journal of Physical Chemistry Letters, 2021, 12, 4003-4011.	2.1	14
1611	Two-dimensional nanomaterials with engineered bandgap: Synthesis, properties, applications. Nano Today, 2021, 37, 101059.	6.2	82
1612	Spacer Engineering Using Aromatic Formamidinium in 2D/3D Hybrid Perovskites for Highly Efficient Solar Cells. ACS Nano, 2021, 15, 7811-7820.	7.3	99
1613	A review of main characterization methods for identifying two-dimensional organic–inorganic halide perovskites. Journal of Materials Science, 2021, 56, 11656-11681.	1.7	15
1614	The More, the Better–Recent Advances in Construction of 2D Multiâ€Heterostructures. Advanced Functional Materials, 2021, 31, 2102049.	7.8	27
1615	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si63.svg"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mo stretchy="false"> (<mml:mi mathvariant="normal">BA</mml:mi> <mml:mo) 0.784314="" 1="" etqq1="" rgbt<="" td="" tj=""><td>/ðverlock</td><td>10 Tf 50 1</td></mml:mo)></mml:mo </mml:mrow></mml:msub></mml:mrow>	/ðverlock	10 Tf 50 1
1616	mathvariant="normal">MAGe <mml:mrow><mml:mr>2</mml:mr></mml:mrow> 2D organic single crystals: Synthesis, novel physics, high-performance optoelectronic devices and integration. Materials Today, 2021, 50, 442-475.	nsub≻≺mn 8.3	nl:msub> <r 32</r
1617	The influence of localized states on the optical absorption and carrier transport properties of acylamino hybrid perovskites with tunable electronic structures. Chinese Journal of Physics, 2021, 70, 240-250.	2.0	4

ARTICLE IF CITATIONS Organic Spacers in 2D Perovskites: General Trends and Structureâ€Property Relationships from 1618 1.0 6 Computational Studies. Helvetica Chimica Acta, 2021, 104, e2000232. Materials, photophysics and device engineering of perovskite light-emitting diodes. Reports on 8.1 Progress in Physics, 2021, 84, 046401 SnO2/2D-Bi2O2Se new hybrid electron transporting layer for efficient and stable perovskite solar 1620 6.6 32 cells. Chemical Engineering Journal, 2021, 410, 128436. Recent Progress on Electrical and Optical Manipulations of Perovskite Photodetectors. Advanced 118 Science, 2021, 8, e2100569. Twoâ€Dimensional Metal Halide Perovskite Nanosheets for Efficient Photocatalytic CO₂ 1622 3.1 36 Reduction. Solar Rrl, 2021, 5, 2100263. Thermal and Humidity Stability of Mixed Spacer Cations 2D Perovskite Solar Cells. Advanced Science, 5.6 2021, 8, 2004510. Polaron Plasma in Equilibrium with Bright Excitons in 2D and 3D Hybrid Perovskites. Advanced Optical 1624 3.6 14 Materials, 2021, 9, 2100295. Fluorinated Aromatic Formamidinium Spacers Boost Efficiency of Layered Ruddlesden–Popper 8.8 66 Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 2072-2080. Ferroelectric and Charge Transport Properties in Strain-Engineered Two-Dimensional Lead lodide 1626 3.2 10 Perovskites. Chemistry of Materials, 2021, 33, 4077-4088. Tailoring quasi-2D perovskite thin films via nanocrystals mediation for enhanced 6.6 electroluminescence. Chemical Engineering Journal, 2021, 411, 128511. A Review of Integrated Systems Based on Perovskite Solar Cells and Energy Storage Units: 1628 19 5.6 Fundamental, Progresses, Challenges, and Perspectives. Advanced Science, 2021, 8, 2100552. Defect Passivation in Leadâ€Halide Perovskite Nanocrystals and Thin Films: Toward Efficient LEDs and 1629 1.6 Solar Cells. Angewandte Chemie, 2021, 133, 21804-21828. Bromine-Substitution-Induced High-<i>T</i></sub>c</sub> Two-Dimensional Bilayered Perovskite 1630 6.6 40 Photoferroelectric. Journal of the American Chemical Society, 2021, 143, 7593-7598. 62â€3: Red Perovskite Emitters for Color Conversion and LEDs. Digest of Technical Papers SID 0.1 International Symposium, 2021, 52, 892-894. Simulations of Trions and Biexcitons in Layered Hybrid Organic-Inorganic Lead Halide Perovskites. 1632 9 2.9 Physical Review Letters, 2021, 126, 216402. Chiral 2D-Perovskite Nanowires for Stokes Photodetectors. Journal of the American Chemical Society, 2021, 143, 8437-8445. Mobile Media Promotes Orientation of 2D/3D Hybrid Lead Halide Perovskite for Efficient Solar Cells. 1634 7.3 20 ACS Nano, 2021, 15, 8350-8362. Spatiodynamics, Photodynamics, and Their Correlation in Hybrid Perovskites. Chemistry of Materials, 3.2 2021, 33, 3524-3533.

#	Article	IF	CITATIONS
1636	Aggregationâ€Induced Emission Luminogens Sensitized Quasiâ€2D Hybrid Perovskites with Unique Photoluminescence and High Stability for Fabricating White Lightâ€Emitting Diodes. Advanced Science, 2021, 8, e2100811.	5.6	16
1637	Origin of vertical slab orientation in blade-coated layered hybrid perovskite films revealed with in-situ synchrotron X-ray scattering. Nano Energy, 2021, 83, 105818.	8.2	11
1638	Recent advances in graphene and other 2D materials. Nano Materials Science, 2022, 4, 3-9.	3.9	97
1639	Improving Photovoltaic Performance of Pb‣ess Halide Perovskite Solar Cells by Incorporating Bulky Phenylethylammonium Cations. Energy Technology, 2021, 9, 2100176.	1.8	1
1640	Study of Surface and Bulk Recombination Kinetics of Two-Dimensional Inorganic–Organic Hybrid Semiconductors under Linear and Nonlinear Femtosecond Transient Absorption Analysis. Journal of Physical Chemistry C, 2021, 125, 12166-12174.	1.5	6
1641	Firstâ€Principles Optimization of Outâ€ofâ€Plane Charge Transport in Dion–Jacobson CsPbI ₃ Perovskites with Ï€â€Conjugated Aromatic Spacers. Advanced Functional Materials, 2021, 31, 2102330.	7.8	51
1642	<scp>Twoâ€dimensional</scp> halide perovskite <scp>quantumâ€well</scp> emitters: A critical review. EcoMat, 2021, 3, e12104.	6.8	45
1643	The Role of Dimensionality on the Optoelectronic Properties of Oxide and Halide Perovskites, and their Halide Derivatives. Advanced Energy Materials, 2022, 12, 2100499.	10.2	66
1644	Effective Phaseâ€Alignment for 2D Halide Perovskites Incorporating Symmetric Diammonium Ion for Photovoltaics. Advanced Science, 2021, 8, e2001433.	5.6	32
1645	Polarons and Charge Localization in Metalâ€Halide Semiconductors for Photovoltaic and Lightâ€Emitting Devices. Advanced Materials, 2021, 33, e2007057.	11.1	53
1646	Alternative Loneâ€Pair ns ² ationâ€Based Semiconductors beyond Lead Halide Perovskites for Optoelectronic Applications. Advanced Materials, 2021, 33, e2008574.	11.1	34
1647	3D/2D passivation as a secret to success for polycrystalline thin-film solar cells. Joule, 2021, 5, 1057-1073.	11.7	48
1648	Free Carriers versus Self-Trapped Excitons at Different Facets of Ruddlesden–Popper Two-Dimensional Lead Halide Perovskite Single Crystals. Journal of Physical Chemistry Letters, 2021, 12, 4965-4971.	2.1	27
1649	Layered Perovskites in Solar Cells: Structure, Optoelectronic Properties, and Device Design. Advanced Energy Materials, 2021, 11, 2003877.	10.2	49
1650	Defect Passivation in Leadâ€Halide Perovskite Nanocrystals and Thin Films: Toward Efficient LEDs and Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 21636-21660.	7.2	183
1651	The selection strategy of ammonium-group organic salts in vapor deposited perovskites: From dimension regulation to passivation. Nano Energy, 2021, 84, 105893.	8.2	19
1652	Multiple-Noncovalent-Interaction-Stabilized Layered Dion–Jacobson Perovskite for Efficient Solar Cells. Nano Letters, 2021, 21, 5788-5797.	4.5	59
1654	CH3NH3PbI3 Perovskite/Silver Nanowire Complex with Higher Absorption and Stability. Journal of Electronic Materials, 2021, 50, 5177.	1.0	4

# 1655	ARTICLE Spin–Orbit Coupling Is the Key to Promote Asynchronous Photoinduced Charge Transfer of	IF 3.6	Citations
1656	Role of Polyhedron Unit in Distinct Photophysics of Zero-Dimensional Organic–Inorganic Hybrid Tin Halide Compounds. Journal of Physical Chemistry Letters, 2021, 12, 5765-5773.	2.1	10
1657	Recent Advances in Synthesis, Properties, and Applications of Metal Halide Perovskite Nanocrystals/Polymer Nanocomposites. Advanced Materials, 2021, 33, e2005888.	11.1	108
1658	Electron Delocalization and Structure Coupling Promoted π-Conjugated Charge Transport in a Novel [Ga-Tpy ₂]PbI ₅ Perovskite-like Single Crystal. Journal of Physical Chemistry Letters, 2021, 12, 5571-5579.	2.1	7
1659	Carrier Diffusion and Recombination Anisotropy in the MAPbI ₃ Single Crystal. ACS Applied Materials & amp; Interfaces, 2021, 13, 29827-29834.	4.0	17
1660	Shedding Light on the Stability and Structure–Property Relationships of Two-Dimensional Hybrid Lead Bromide Perovskites. Chemistry of Materials, 2021, 33, 5085-5107.	3.2	29
1661	Effects of component on the photoelectric properties of two-dimensional van der Waals heterostructure Cs ₂ Pbl _{2(1+x)} Cl _{2(1â^²x)} /Pd ₂ Se ₃ with Ruddlesen–Popper structure. Journal Physics D: Applied Physics, 2021, 54, 355110.	1.3	4
1662	Lowâ€dimensional perovskite materials and their optoelectronics. InformaÄnÃ-Materiály, 2021, 3, 1039-106	59 8. 5	39
1663	Crown ether-induced supramolecular passivation and two-dimensional crystal interlayer formation in perovskite photovoltaics. Cell Reports Physical Science, 2021, 2, 100450.	2.8	6
1664	Inhomogeneous Broadening of Photoluminescence Spectra and Kinetics of Nanometer-Thick (Phenethylammonium) ₂ PbI ₄ Perovskite Thin Films: Implications for Optoelectronics. ACS Applied Nano Materials, 2021, 4, 6170-6177.	2.4	12
1665	Lowâ€Dimensional Inorganic Tin Perovskite Solar Cells Prepared by Templated Growth. Angewandte Chemie, 2021, 133, 16466-16472.	1.6	13
1666	Two-dimensional perovskites for photovoltaics. Materials Today Nano, 2021, 14, 100117.	2.3	27
1667	Emerging perovskite monolayers. Nature Materials, 2021, 20, 1325-1336.	13.3	124
1668	Reduced Defects and Enhanced Performance of (FAPbl ₃) _{0.97} (MAPbBr ₃) _{0.03} -Based Perovskite Solar Cells by Trimesic Acid Additives. ACS Omega, 2021, 6, 16151-16158.	1.6	7
1669	Theoretical study on defect properties of two-dimensional multilayer Ruddlesden-Popper lead iodine perovskite. Computational Materials Science, 2021, 194, 110457.	1.4	7
1670	Multimodal host–guest complexation for efficient and stable perovskite photovoltaics. Nature Communications, 2021, 12, 3383.	5.8	72
1671	Memory Seeds Enable High Structural Phase Purity in 2D Perovskite Films for Highâ€Efficiency Devices. Advanced Materials, 2021, 33, e2007176.	11.1	50
1672	Layered Hybrid Formamidinium Lead Iodide Perovskites: Challenges and Opportunities. Accounts of Chemical Research, 2021, 54, 2729-2740.	7.6	48

#	Article	IF	CITATIONS
1673	In-Plane Mechanical Properties of Two-Dimensional Hybrid Organic–Inorganic Perovskite Nanosheets: Structure–Property Relationships. ACS Applied Materials & Interfaces, 2021, 13, 31642-31649.	4.0	15
1674	High-performance quasi-2D perovskite solar cells with power conversion efficiency over 20% fabricated in humidity-controlled ambient air. Chemical Engineering Journal, 2022, 427, 130949.	6.6	28
1675	Twoâ€Step Thermal Annealing: An Effective Route for 15 % Efficient Quasiâ€2D Perovskite Solar Cells. ChemPlusChem, 2021, 86, 1040-1041.	1.3	1
1676	Stable blue perovskite light-emitting diodes achieved by optimization of crystal dimension through zinc bromide addition. Chemical Engineering Journal, 2021, 414, 128774.	6.6	39
1677	Lowâ€Dimensional Metal Halide Perovskite Crystal Materials: Structure Strategies and Luminescence Applications. Advanced Science, 2021, 8, e2004805.	5.6	116
1678	Progress towards l <scp>eadâ€free</scp> , efficient, and stable perovskite solar cells. Journal of Chemical Technology and Biotechnology, 2022, 97, 810-829.	1.6	19
1679	Lowâ€Ðimensional Inorganic Tin Perovskite Solar Cells Prepared by Templated Growth. Angewandte Chemie - International Edition, 2021, 60, 16330-16336.	7.2	48
1680	Incorporating Guanidinium as Perovskitizerâ€Cation of Twoâ€Dimensional Metal Halide for Crystalâ€Array Photodetectors. Chemistry - an Asian Journal, 2021, 16, 1925-1929.	1.7	7
1681	Cascade Electron Transfer Induces Slow Hot Carrier Relaxation in CsPbBr ₃ Asymmetric Quantum Wells. ACS Energy Letters, 2021, 6, 2602-2609.	8.8	13
1682	High carrier mobility and remarkable photovoltaic performance of two-dimensional Ruddlesden–Popper organic–inorganic metal halides (PA)2(MA)2M3I10 for perovskite solar cell applications. Materials Today, 2021, 47, 45-52.	8.3	12
1683	Unveiling Crystal Orientation in Quasiâ€2D Perovskite Films by In Situ GIWAXS for Highâ€Performance Photovoltaics. Small, 2021, 17, e2100972.	5.2	23
1684	An Organic–Inorganic Perovskitoid with Zwitterion Cysteamine Linker and its Crystal–Crystal Transformation to Ruddlesdenâ€Popper Phase. Angewandte Chemie, 2021, 133, 18898-18908.	1.6	0
1685	Ultrasensitive Photodetectors Promoted by Interfacial Charge Transfer from Layered Perovskites to Chemical Vapor Depositionâ€Grown MoS ₂ . Small, 2021, 17, e2102461.	5.2	14
1686	Water-Repellent Perovskites Induced by a Blend of Organic Halide Salts for Efficient and Stable Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 33172-33181.	4.0	7
1687	Broadband emission of corner-sharing halometalate templated by benzyltrimethylammonium. Inorganic Chemistry Communication, 2021, 129, 108622.	1.8	2
1688	Using automated serendipity to discover how trace water promotes and inhibits lead halide perovskite crystal formation. Applied Physics Letters, 2021, 119, .	1.5	12
1689	Bismuth/Silver-Based Two-Dimensional Iodide Double and One-Dimensional Bi Perovskites: Interplay between Structural and Electronic Dimensions. Chemistry of Materials, 2021, 33, 6206-6216.	3.2	27
1690	An Organic–Inorganic Perovskitoid with Zwitterion Cysteamine Linker and its Crystal–Crystal Transformation to Ruddlesdenâ€Popper Phase. Angewandte Chemie - International Edition, 2021, 60, 18750-18760.	7.2	11

#	Article	IF	CITATIONS
1691	Chiralityâ€Dependent Secondâ€Order Nonlinear Optical Effect in 1D Organic–Inorganic Hybrid Perovskite Bulk Single Crystal. Angewandte Chemie - International Edition, 2021, 60, 20021-20026.	7.2	100
1692	Solvent-Vapor Atmosphere Controls the in Situ Crystallization of Perovskites. , 2021, 3, 1172-1180.		7
1693	Oriented Halide Perovskite Nanostructures and Thin Films for Optoelectronics. Chemical Reviews, 2021, 121, 12112-12180.	23.0	70
1694	Ligand size effects in two-dimensional hybrid copper halide perovskites crystals. Communications Materials, 2021, 2, .	2.9	12
1695	2D Ruddlesden–Popper Perovskite with Ordered Phase Distribution for Highâ€Performance Selfâ€Powered Photodetectors. Advanced Materials, 2021, 33, e2101714.	11.1	48
1696	Spontaneous Formation of Upper Gradient 2D Structure for Efficient and Stable Quasiâ€⊉D Perovskites. Advanced Materials, 2021, 33, e2101823.	11.1	36
1697	Exciton–Photonics: From Fundamental Science to Applications. ACS Nano, 2021, 15, 12628-12654.	7.3	47
1698	Enhancement of photoluminescence and anomalous thermal quenching behavior of Er/Yb/Zr co-doped BaTiO3 ceramic. Ceramics International, 2021, 47, 18866-18874.	2.3	4
1699	Chiralityâ€Dependent Secondâ€Order Nonlinear Optical Effect in 1D Organic–Inorganic Hybrid Perovskite Bulk Single Crystal. Angewandte Chemie, 2021, 133, 20174-20179.	1.6	8
1700	ELECTRONIC AND OPTICAL MODIFICATION OF ORGANIC-HYBRID PEROVSKITES. Surface Review and Letters, 2021, 28, 2140010.	0.5	1
1701	Colloidal Synthesis of Single-Layer Quasi-Ruddlesden–Popper Phase Bismuth-Based Two-Dimensional Perovskite Nanosheets with Controllable Optoelectronic Properties. Chemistry of Materials, 2021, 33, 5917-5925.	3.2	6
1702	Unraveling the surface state of photovoltaic perovskite thin film. Matter, 2021, 4, 2417-2428.	5.0	22
1703	Enhancing Thermoelectric Power Factor of 2D Organometal Halide Perovskites by Suppressing 2D/3D Phase Separation. Advanced Materials, 2021, 33, e2102797.	11.1	19
1704	Defect Passivation of Perovskite Films for Highly Efficient and Stable Solar Cells. Solar Rrl, 2021, 5, 2100295.	3.1	58
1705	Solvent-Mediated Structural Evolution Mechanism from Cs4PbBr6 to CsPbBr3 Crystals. Nanomanufacturing, 2021, 1, 67-74.	1.8	6
1706	Zwitterionic Ionic Liquid Confer Defect Tolerance, High Conductivity, and Hydrophobicity toward Efficient Perovskite Solar Cells Exceeding 22% Efficiency. Solar Rrl, 2021, 5, 2100352.	3.1	35
1707	Layered metal halide perovskite solar cells: A review from structureâ€properties perspective towards maximization of their performance and stability. EcoMat, 2021, 3, e12124.	6.8	27
1708	Charge carrier mobility of halide perovskite single crystals for ionizing radiation detection. Applied Physics Letters, 2021, 119, .	1.5	17

#	Article	IF	CITATIONS
1709	Expanded Phase Distribution in Low Average Layerâ€Number 2D Perovskite Films: Toward Efficient Semitransparent Solar Cells. Advanced Functional Materials, 2021, 31, 2104868.	7.8	17
1710	Investigation of the S-Shaped Current–Voltage Curve in High Open-Circuit Voltage Ruddlesden–Popper Perovskite Solar Cells. Frontiers in Energy Research, 2021, 9, .	1.2	3
1711	Rational alloying of secondary and aromatic ammonium cations in a metal-halide perovskite toward crystal-array photodetection. Science China Materials, 2022, 65, 179-185.	3.5	11
1712	A Review on Emerging Barrier Materials and Encapsulation Strategies for Flexible Perovskite and Organic Photovoltaics. Advanced Energy Materials, 2021, 11, 2101383.	10.2	57
1713	Origin of anomalous band-gap bowing in two-dimensional tin-lead mixed perovskite alloys. Physical Review B, 2021, 104, .	1.1	9
1714	Stability of Perovskite Solar Cells: Degradation Mechanisms and Remedies. Frontiers in Electronics, 2021, 2, .	2.0	75
1715	Structural and Electronic Properties of Intertwined Defect in Ruddlesden–Popper 2D Perovskites Study Using Density Functional Theory Calculations. Multiscale Science and Engineering, 2021, 3, 205.	0.9	0
1716	Two-dimensional group-III nitrides and devices: a critical review. Reports on Progress in Physics, 2021, 84, 086501.	8.1	19
1717	Multilayered Ruddlesden–Popper perovskite hybrids with alternative organic spacers of 4-XC6H4C2H4NH2 (where X = H, Br, Cl) for solar cell applications. Journal of Materials Science, 2021, 56 17167-17177.	5, 1.7	4
1718	Light-Induced Charge Transfer in Two-Dimensional Hybrid Lead Halide Perovskites. Journal of Physical Chemistry C, 2021, 125, 18317-18327.	1.5	8
1719	Multipleâ€Ring Aromatic Spacer Cation Tailored Interlayer Interaction for Efficient and Airâ€Stable Ruddlesden–Popper Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100495.	3.1	6
1720	Electronic and Optical Properties of van der Waals Heterostructures Based on Two-Dimensional Perovskite (PEA) ₂ PbI ₄ and Black Phosphorus. ACS Omega, 2021, 6, 20877-20886.	1.6	9
1721	Synergistic passivation of MAPbI3 perovskite solar cells by compositional engineering using acetamidinium bromide additives. Journal of Energy Chemistry, 2021, 59, 755-762.	7.1	21
1722	<i>>m</i> -Phenylenediammonium as a New Spacer for Dion–Jacobson Two-Dimensional Perovskites. Journal of the American Chemical Society, 2021, 143, 12063-12073.	6.6	71
1723	Progress and perspective in Dion-Jacobson phase 2D layered perovskite optoelectronic applications. Nano Energy, 2021, 86, 106129.	8.2	50
1724	Dual Blue Emission in Ruddlesden–Popper Lead-Bromide Perovskites Induced by Photon Recycling. Journal of Physical Chemistry C, 2021, 125, 18308-18316.	1.5	10
1725	Inorganic Ruddlesden-Popper Faults in Cesium Lead Bromide Perovskite Nanocrystals for Enhanced Optoelectronic Performance. ACS Applied Materials & Interfaces, 2021, 13, 38579-38585.	4.0	6
1726	Control Perovskite Crystals Vertical Growth for Obtaining Highâ€Performance Monolithic Perovskite/Silicon Heterojunction Tandem Solar Cells with <i>V</i> _{OC} of 1.93 V. Solar Rrl, 2021, 5, 2100357.	3.1	15

#	Article	IF	CITATIONS
1727	Structural and Optoelectronic Properties of Two-Dimensional Ruddlesden–Popper Hybrid Perovskite CsSnBr3. Nanomaterials, 2021, 11, 2119.	1.9	7
1728	Surface Passivation Using N-Type Organic Semiconductor by One-Step Method in Two-Dimensional Perovskite Solar Cells. Crystals, 2021, 11, 933.	1.0	5
1729	Simulated development and optimized performance of narrow-bandgap CsSnI ₃ -based all-inorganic perovskite solar cells. Journal Physics D: Applied Physics, 2021, 54, 465104.	1.3	6
1730	Arene and functionalized arene based two dimensional <scp>organic–inorganic</scp> hybrid perovskites for photovoltaic applications. Journal of Computational Chemistry, 2021, 42, 1982-1990.	1.5	16
1731	Highly Stable Inorganic Lead Halide Perovskite toward Efficient Photovoltaics. Accounts of Chemical Research, 2021, 54, 3452-3461.	7.6	37
1732	Promoting Energy Transfer via Manipulation of Crystallization Kinetics of Quasiâ€2D Perovskites for Efficient Green Lightâ€Emitting Diodes. Advanced Materials, 2021, 33, e2102246.	11.1	88
1733	Dimension-controlled halide perovkites using templates. Nano Today, 2021, 39, 101181.	6.2	11
1734	Advance Optical Properties and Emerging Applications of 2D Materials. Frontiers in Materials, 2021, 8, .	1.2	22
1735	Defect passivation and crystallization control of perovskite films for photovoltaic application. Materials Today Nano, 2021, 15, 100118.	2.3	9
1736	2D/3D Halide Perovskites for Optoelectronic Devices. Frontiers in Chemistry, 2021, 9, 715157.	1.8	8
1737	Understanding the optical and bonding properties of hybrid metal-halide (C5H16NP) PbX4 (XÂ=ÂCl, Br, I) perovskite: A density-functional theory study. Inorganic Chemistry Communication, 2021, 130, 108721.	1.8	9
1738	Passivation Strategies through Surface Reconstruction toward Highly Efficient and Stable Perovskite Solar Cells on n-i-p Architecture. Energies, 2021, 14, 4836.	1.6	13
1500			
1739	Surface modulation of halide perovskite films for efficient and stable solar cells. Chinese Physics B, 2022, 31, 037303.	0.7	3
1739	Surface modulation of halide perovskite films for efficient and stable solar cells. Chinese Physics B, 2022, 31, 037303. Rollâ€toâ€Roll Processes for the Fabrication of Perovskite Solar Cells under Ambient Conditions. Solar Rrl, 2021, 5, 2100341.	0.7	3 22
1739 1740 1741	Surface modulation of halide perovskite films for efficient and stable solar cells. Chinese Physics B, 2022, 31, 037303. Rollâ€toâ€Roll Processes for the Fabrication of Perovskite Solar Cells under Ambient Conditions. Solar Rrl, 2021, 5, 2100341. Chlorides, other Halides, and Pseudoâ€Halides as Additives for the Fabrication of Efficient and Stable Perovskite Solar Cells. ChemSusChem, 2021, 14, 3665-3692.	0.7 3.1 3.6	3 22 14
1739 1740 1741 1742	Surface modulation of halide perovskite films for efficient and stable solar cells. Chinese Physics B, 2022, 31, 037303. Rollâ€toâ€Roll Processes for the Fabrication of Perovskite Solar Cells under Ambient Conditions. Solar Rrl, 2021, 5, 2100341. Chlorides, other Halides, and Pseudoâ€Halides as Additives for the Fabrication of Efficient and Stable Perovskite Solar Cells. ChemSusChem, 2021, 14, 3665-3692. Elastic Lattice and Excess Charge Carrier Manipulation in 1D–3D Perovskite Solar Cells for Exceptionally Longâ€ferm Operational Stability. Advanced Materials, 2021, 33, e2105170.	0.7 3.1 3.6 11.1	3 22 14 78
1739 1740 1741 1742 1743	Surface modulation of halide perovskite films for efficient and stable solar cells. Chinese Physics B, 2022, 31, 037303.Rollâ€toâ€Roll Processes for the Fabrication of Perovskite Solar Cells under Ambient Conditions. Solar Rrl, 2021, 5, 2100341.Chlorides, other Halides, and Pseudoâ€Halides as Additives for the Fabrication of Efficient and Stable Perovskite Solar Cells. ChemSusChem, 2021, 14, 3665-3692.Elastic Lattice and Excess Charge Carrier Manipulation in 1D–3D Perovskite Solar Cells for Exceptionally Longâ€Term Operational Stability. Advanced Materials, 2021, 33, e2105170.Hole-Transport-Underlayer-Induced Crystallization Management of Two-Dimensional Perovskites for High-Performance Inverted Solar Cells. ACS Applied Energy Materials, 2021, 4, 10574-10583.	0.7 3.1 3.6 11.1 2.5	3 22 14 78 9

#	Article	IF	CITATIONS
1745	2D Organic-Inorganic Hybrid Perovskite Light-Absorbing Layer in Solar Cells. , 0, , .		0
1746	High-Stability and High-Efficiency Photovoltaic Materials Based on Functional Diamino Organic Cation Halide Hybrid Perovskite Superlattice Structures. ACS Applied Energy Materials, 2021, 4, 8774-8790.	2.5	3
1747	Efficient and Stable FAPbBr ₃ Perovskite Solar Cells via Interface Modification by a Low-Dimensional Perovskite Layer. ACS Applied Energy Materials, 2021, 4, 9276-9282.	2.5	19
1748	SrIrO3 modified with laminar Sr2IrO4 as a robust bifunctional electrocatalyst for overall water splitting in acidic media. Chemical Engineering Journal, 2021, 419, 129604.	6.6	28
1749	A Perspective on the Commercial Viability of Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100401.	3.1	33
1750	Intermolecular Hydrogen-Bonding Correlated Structure Distortion and Broadband White-Light Emission in 5-Ammonium Valeric Acid Templated Lead Chloride Perovskites. Crystal Growth and Design, 2021, 21, 5731-5739.	1.4	13
1751	Observation of spatially resolved Rashba states on the surface of CH3NH3PbBr3 single crystals. Applied Physics Reviews, 2021, 8, .	5.5	12
1752	Advances in Tin(II)â€Based Perovskite Solar Cells: From Material Physics to Device Performance. Small Structures, 2022, 3, 2100102.	6.9	41
1753	Advances in Flexible Memristors with Hybrid Perovskites. Journal of Physical Chemistry Letters, 2021, 12, 8798-8825.	2.1	36
1754	Hydroxylâ€Rich <scp>d</scp> â€Sorbitol to Address Transport Layer/Perovskite Interfacial Issues toward Highly Efficient and Stable 2D/3D Tinâ€Based Perovskite Solar Cells. Advanced Optical Materials, 2021, 9, 2100755.	3.6	16
1755	Efficient and Stable Quasiâ€2D Perovskite Solar Cells Enabled by Thermalâ€Aged Precursor Solution. Advanced Functional Materials, 2021, 31, 2107675.	7.8	14
1756	Deciphering the Orientation of the Aromatic Spacer Cation in Bilayer Perovskite Solar Cells through Spectroscopic Techniques. ACS Applied Materials & Interfaces, 2021, 13, 48219-48227.	4.0	6
1757	Efficient and Stable 2D@3D/2D Perovskite Solar Cells Based on Dual Optimization of Grain Boundary and Interface. ACS Energy Letters, 2021, 6, 3614-3623.	8.8	113
1758	A review on two-dimensional (2D) and 2D-3D multidimensional perovskite solar cells: Perovskites structures, stability, and photovoltaic performances. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 48, 100405.	5.6	77
1759	Steric effect of amino-acids as additives for perovskite solar cells. Journal of Alloys and Compounds, 2021, 876, 160140.	2.8	19
1760	Highly Efficient Whiteâ€Light Emission Triggered by Sb ³⁺ Dopant in Indiumâ€Based Double Perovskites. Advanced Photonics Research, 2021, 2, 2100143.	1.7	15
1761	Additive engineering for stable halide perovskite solar cells. Journal of Energy Chemistry, 2021, 60, 599-634.	7.1	59
1762	Tailoring the mercaptan ligands for high performance inverted perovskite solar cells with efficiency exceeding 21%. Journal of Energy Chemistry, 2021, 60, 169-177.	7.1	17

щ			CITATIONS
#	ARTICLE	IF	CHATIONS
1763	CH3NH3PbI3 perovskite solar cells. Chemical Physics Letters, 2021, 784, 139094.	1.2	3
1764	Two-dimensional hybrid perovskite solar cells: a review. Environmental Chemistry Letters, 2022, 20, 189-210.	8.3	10
1765	Recent developments on hybrid perovskite materials for solar energy conversion and environmental protection. Current Opinion in Chemical Engineering, 2021, 33, 100708.	3.8	11
1766	Healing the Buried Cavities and Defects in Quasi-2D Perovskite Films by Self-Generated Methylamine Gas. ACS Energy Letters, 2021, 6, 3634-3642.	8.8	24
1767	Single-Particle Spectroscopy as a Versatile Tool to Explore Lower-Dimensional Structures of Inorganic Perovskites. ACS Energy Letters, 2021, 6, 3695-3708.	8.8	6
1768	A critical review on the moisture stability of halide perovskite films and solar cells. Chemical Engineering Journal, 2022, 430, 132701.	6.6	31
1769	Mixed 2D-3D Halide Perovskite Solar Cells. , 0, , .		0
1770	Selfâ€Patterned CsPbBr ₃ Nanocrystal Based Plasmonic Hotâ€Carrier Photodetector at Telecommunications Wavelengths. Advanced Optical Materials, 2021, 9, 2101474.	3.6	5
1771	High-performance and stable perovskite photodetector with mixed 2D/3D perovskite surface passivation layer. Semiconductor Science and Technology, 2021, 36, 12LT01.	1.0	8
1772	Role of Polycyclic Aromatic Alkylammonium Cations in Tuning the Electronic Properties and Band Alignment of Two-Dimensional Hybrid Perovskite Semiconductors. Journal of Physical Chemistry Letters, 2021, 12, 9754-9760.	2.1	8
1773	2D Hybrid Halide Perovskites: Structure, Properties, and Applications in Solar Cells. Small, 2021, 17, e2103514.	5.2	59
1774	Bright and stable light-emitting diodes made with perovskite nanocrystals stabilized in metal–organic frameworks. Nature Photonics, 2021, 15, 843-849.	15.6	117
1775	A new all-inorganic vacancy-ordered double perovskite Cs2CrI6 for high-performance photovoltaic cells and alpha-particle detection in space environment. Materials Today Physics, 2021, 20, 100446.	2.9	18
1776	The effect of alkylamines on the morphology and optical properties of organic perovskites. Solar Energy, 2021, 226, 483-488.	2.9	6
1777	Cs2Til6: A potential lead-free all-inorganic perovskite material for ultrahigh-performance photovoltaic cells and alpha-particle detection. Nano Research, 2022, 15, 2697-2705.	5.8	22
1778	Pressureâ€Induced Phase Transition, Jahnâ€Teller Suppression, Optical and Electronic Property Evolutions in Ruddlesdenâ€Popper Perovskites Rb ₂ CuCl _{4â€<i>x</i>} Br _{<i>x</i>} . Chemistry - an Asian Journal, 2021, 16, 3437-3443.	1.7	5
1779	A critical review of materials innovation and interface stabilization for efficient and stable perovskite photovoltaics. Nano Energy, 2021, 87, 106141.	8.2	28
1780	Ligand-Driven Grain Engineering of High Mobility Two-Dimensional Perovskite Thin-Film Transistors. Journal of the American Chemical Society, 2021, 143, 15215-15223.	6.6	55

#	Article	IF	Citations
1781	2D Organic–Inorganic Hybrid Perovskite Quantum Well Materials and Their Dramatical X-ray Optoelectronic Properties. Materials, 2021, 14, 5539.	1.3	4
1782	Atomically Resolved Quantum-Confined Electronic Structures at Organic–Inorganic Interfaces of Two-Dimensional Ruddlesden–Popper Halide Perovskites. Nano Letters, 2021, 21, 8066-8072.	4.5	8
1783	Phenylformamidinium-enabled quasi-2D Ruddlesden-Popper perovskite solar cells with improved stability. Journal of Energy Chemistry, 2022, 66, 680-688.	7.1	14
1784	Pressure-induced robust emission in a zero-dimensional hybrid metal halide (C9NH20)6Pb3Br12. Matter and Radiation at Extremes, 2021, 6, .	1.5	13
1785	Halide Perovskites for Memristive Data Storage and Artificial Synapses. Journal of Physical Chemistry Letters, 2021, 12, 8999-9010.	2.1	46
1786	First-Principles Characterization of Surface Phonons of Halide Perovskite CsPbI ₃ and Their Role in Stabilization. Journal of Physical Chemistry Letters, 2021, 12, 9253-9261.	2.1	4
1787	A highly responsive hybrid photodetector based on all-inorganic 2D heterojunction consisting of Cs2Pb(SCN)2Br2 and MoS2. Chemical Engineering Journal, 2021, 422, 130112.	6.6	12
1788	Advances in surface passivation of perovskites using organic halide salts for efficient and stable solar cells. Surfaces and Interfaces, 2021, 26, 101420.	1.5	10
1789	Advances in perovskite solar cells: Film morphology control and interface engineering. Journal of Cleaner Production, 2021, 317, 128368.	4.6	10
1790	Anion regulation engineering for efficient Ruddlesden-Popper inverted perovskite solar cells. Solar Energy Materials and Solar Cells, 2021, 232, 111345.	3.0	5
1791	Dion-Jacobson and Ruddlesden-Popper double-phase 2D perovskites for solar cells. Nano Energy, 2021, 88, 106249.	8.2	37
1792	A levelized cost of energy approach to select and optimise emerging PV technologies: The relative impact of degradation, cost and initial efficiency. Applied Energy, 2021, 299, 117302.	5.1	13
1793	Toward high efficiency for long-term stable Cesium doped hybrid perovskite solar cells via effective light management strategy. Journal of Power Sources, 2021, 510, 230410.	4.0	4
1794	A review of low-dimensional metal halide perovskites for blue light emitting diodes. Journal of Alloys and Compounds, 2021, 883, 160727.	2.8	29
1795	Comprehensive passivation strategy for achieving inverted perovskite solar cells with efficiency exceeding 23% by trap passivation and ion constraint. Nano Energy, 2021, 89, 106370.	8.2	63
1796	Pristine inorganic nickel oxide as desirable hole transporting material for efficient quasi two-dimensional perovskite solar cells. Journal of Power Sources, 2021, 512, 230452.	4.0	9
1797	Materials, methods and strategies for encapsulation of perovskite solar cells: From past to present. Renewable and Sustainable Energy Reviews, 2021, 151, 111608.	8.2	45
1798	Visualizing band alignment across 2D/3D perovskite heterointerfaces of solar cells with light-modulated scanning tunneling microscopy. Nano Energy, 2021, 89, 106362.	8.2	13

#	Article	IF	CITATIONS
1799	Methylammonium- and bromide-free perovskites enable efficient and stable photovoltaics. Journal of Energy Chemistry, 2021, 63, 12-24.	7.1	1
1800	Recent strategies to improve moisture stability in metal halide perovskites materials and devices. Journal of Energy Chemistry, 2022, 65, 219-235.	7.1	23
1801	Tuning crystal orientation and charge transport of quasi-2D perovskites via halogen-substituted benzylammonium for efficient solar cells. Journal of Energy Chemistry, 2022, 66, 205-209.	7.1	10
1802	Performance improvement of inverted two-dimensional perovskite solar cells using a non-fullerene acceptor as the trap passivator. Sustainable Energy and Fuels, 2021, 5, 2354-2361.	2.5	3
1803	Metal Halide Perovskite/2D Material Heterostructures: Syntheses and Applications. Small Methods, 2021, 5, e2000937.	4.6	24
1804	Temperature-responsive emission and elastic properties of a new 2D lead halide perovskite. Dalton Transactions, 2021, 50, 2648-2653.	1.6	18
1805	Large-Area Synthesis and Patterning of All-Inorganic Lead Halide Perovskite Thin Films and Heterostructures. Nano Letters, 2021, 21, 1454-1460.	4.5	27
1806	Photophysics of 2D Organic–Inorganic Hybrid Lead Halide Perovskites: Progress, Debates, and Challenges. Advanced Science, 2021, 8, 2001843.	5.6	59
1807	Lead‣ess Halide Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000616.	3.1	25
1808	Recent advances and challenges of inverted lead-free tin-based perovskite solar cells. Energy and Environmental Science, 0, , .	15.6	62
1809	Enhancing the efficiency and stability of two-dimensional Dion–Jacobson perovskite solar cells using a fluorinated diammonium spacer. Journal of Materials Chemistry A, 2021, 9, 11778-11786.	5.2	27
1810	Spacer Cation Alloying of a Homoconformational Carboxylate <i>trans</i> Isomer to Boost in-Plane Ferroelectricity in a 2D Hybrid Perovskite. Journal of the American Chemical Society, 2021, 143, 2130-2137.	6.6	106
1811	Nanoscale Phase Segregation in Supramolecular π-Templating for Hybrid Perovskite Photovoltaics from NMR Crystallography. Journal of the American Chemical Society, 2021, 143, 1529-1538.	6.6	55
1812	A sandwich-like structural model revealed for quasi-2D perovskite films. Journal of Materials Chemistry C, 2021, 9, 5362-5372.	2.7	14
1813	Energy transfer in (PEA) ₂ FA _{nâ^'1} Pb _n Br _{3n+1} quasi-2D perovskites. Journal of Materials Chemistry C, 2021, 9, 4782-4791.	2.7	6
1814	B-site W ion-doped La _{0.5} Sr _{0.5} Co _{1â^'x} W _x O _{3â^'Î} perovskite nanofibers with defects as bifunctional oxygen catalysts for rechargeable zinc-air batteries. Sustainable Energy and Fuels, 2021, 5, 3818-3824	2.5	3
1815	Electron-transport-layer-free two-dimensional perovskite solar cells based on a flexible poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) cathode. Sustainable Energy and Fuels, 2021, 5, 2595-2601.	2.5	2
1816	Merged interface construction toward ultra-low <i>V</i> _{oc} loss in inverted two-dimensional Dion–Jacobson perovskite solar cells with efficiency over 18%. Journal of Materials Chemistry A, 2021, 9, 12566-12573.	5.2	32

#	Article	IF	CITATIONS
1817	Para–ferroelectric phase transition induces an excellent second harmonic generation response and a prominent switchable dielectric constant change based on a metal-free ionic crystal. CrystEngComm, 2021, 23, 5306-5313.	1.3	9
1818	Solvent-assisted crystallization of two-dimensional Ruddlesden–Popper perovskite. Chemical Communications, 2021, 57, 10552-10555.	2.2	4
1819	Periodic nanostructures: preparation, properties and applications. Chemical Society Reviews, 2021, 50, 6423-6482.	18.7	34
1820	Engineering polymer solar cells: advancement in active layer thickness and morphology. Journal of Materials Chemistry C, 0, , .	2.7	15
1821	Application of two-dimensional materials in perovskite solar cells: recent progress, challenges, and prospective solutions. Journal of Materials Chemistry C, 2021, 9, 14065-14092.	2.7	24
1822	Morphology control of SnO2 layer by solvent engineering for efficient perovskite solar cells. Solar Energy, 2021, 214, 280-287.	2.9	29
1823	Textile triboelectric nanogenerators for self-powered biomonitoring. Journal of Materials Chemistry A, 2021, 9, 19149-19178.	5.2	55
1824	Mechanism of ultrafast energy transfer between the organic–inorganic layers in multiple-ring aromatic spacers for 2D perovskites. Nanoscale, 2021, 13, 15668-15676.	2.8	9
1825	Photo-response of Two-Dimensional Ruddlesden-Popper Perovskite Films for Photovoltaics. E3S Web of Conferences, 2021, 257, 03020.	0.2	0
1826	Progress of Leadâ€Free Halide Perovskites: From Material Synthesis to Photodetector Application. Advanced Functional Materials, 2021, 31, 2008275.	7.8	52
1827	Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering. Advanced Materials, 2018, 30, e1800455.	11.1	332
1828	Graded 2D/3D Perovskite Heterostructure for Efficient and Operationally Stable MAâ€Free Perovskite Solar Cells. Advanced Materials, 2020, 32, e2000571.	11.1	166
1829	Perovskite Quantum Wells Formation Mechanism for Stable Efficient Perovskite Photovoltaics—A Realâ€Time Phaseâ€Transition Study. Advanced Materials, 2021, 33, e2006238.	11.1	30
1830	Effect of the Device Architecture on the Performance of FA _{0.85} MA _{0.15} PbBr _{0.45} I _{2.55} Planar Perovskite Solar Cells. Advanced Materials Interfaces, 2019, 6, 1801667.	1.9	15
1831	Electronâ€Beamâ€Evaporated Nickel Oxide Hole Transport Layers for Perovskiteâ€Based Photovoltaics. Advanced Energy Materials, 2019, 9, 1802995.	10.2	122
1832	Efficient Slantwise Aligned Dion–Jacobson Phase Perovskite Solar Cells Based on Transâ€1,4â€Cyclohexanediamine. Small, 2020, 16, e2003098.	5.2	33
1833	Perovskite Photovoltaics: From Laboratory to Industry. Springer Series in Optical Sciences, 2020, , 219-255.	0.5	9
1834	2D-Quasi-2D-3D Hierarchy Structure for Tin Perovskite Solar Cells with Enhanced Efficiency and Stability. Joule, 2018, 2, 2732-2743.	11.7	343

#	Article	IF	CITATIONS
1835	Bottom-up passivation effects by using 3D/2D mix structure for high performance p-i-n perovskite solar cells. Solar Energy, 2020, 205, 44-50.	2.9	26
1836	Enhanced fatigue resistance of suppressed hysteresis in perovskite solar cells by an organic crosslinker. Solar Energy Materials and Solar Cells, 2018, 176, 30-35.	3.0	16
1837	Spontaneous Formation of 2D/3D Heterostructures on the Edges of 2D Ruddlesden–Popper Hybrid Perovskite Crystals. Chemistry of Materials, 2020, 32, 5009-5015.	3.2	45
1838	Layer-by-Layer Structural Identification of 2D Ruddlesden–Popper Hybrid Lead Iodide Perovskites by Solid-State NMR Spectroscopy. Chemistry of Materials, 2021, 33, 370-377.	3.2	44
1839	Lead Free Two-Dimensional Mixed Tin and Germanium Halide Perovskites for Photovoltaic Applications. Journal of Physical Chemistry C, 2021, 125, 74-81.	1.5	29
1840	Tuning the Structural Rigidity of Two-Dimensional Ruddlesden–Popper Perovskites through the Organic Cation. Journal of Physical Chemistry C, 2020, 124, 28201-28209.	1.5	9
1841	Boosting the Graded Structure of 2D Perovskite Solar Cell Based on BA2MAn–1PbnI3n+1 by Noninteger n Values. ACS Applied Energy Materials, 2021, 4, 394-403.	2.5	7
1842	Composite Encapsulation Enabled Superior Comprehensive Stability of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 27277-27285.	4.0	54
1843	Perovskite Multiple Quantum Wells on Layered Materials toward Narrow-Band Green Emission for Backlight Display Applications. ACS Applied Materials & Interfaces, 2020, 12, 27386-27393.	4.0	14
1844	Bifunctional Silver-Doped ZnO for Reliable and Stable Organic–Inorganic Hybrid Perovskite Memory. ACS Applied Materials & Interfaces, 2021, 13, 1021-1026.	4.0	14
1845	Unravelling the Behavior of Dion–Jacobson Layered Hybrid Perovskites in Humid Environments. ACS Energy Letters, 2021, 6, 337-344.	8.8	44
1846	Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9, .	2.2	102
1847	Nanotechnology for catalysis and solar energy conversion. Nanotechnology, 2021, 32, 042003.	1.3	44
1848	Theoretical investigation of halide perovskites for solar cell and optoelectronic applications*. Chinese Physics B, 2020, 29, 108401.	0.7	15
1849	Recent progress in developing efficient monolithic all-perovskite tandem solar cells. Journal of Semiconductors, 2020, 41, 051201.	2.0	19
1850	The strategies for preparing blue perovskite light-emitting diodes. Journal of Semiconductors, 2020, 41, 051203.	2.0	18
1851	Physical properties of bulk, defective, 2D and 0D metal halide perovskite semiconductors from a symmetry perspective. JPhys Materials, 2020, 3, 042001.	1.8	29
1852	Influence of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Ï€</mml:mi> -conjugated cations and halogen substitution on the optoelectronic and excitonic properties of layered hybrid perovskites. Physical Review Materials. 2018. 2</mml:math 	0.9	24

#	Article	IF	CITATIONS
1853	Band gap evolution in Ruddlesden-Popper phases. Physical Review Materials, 2019, 3, .	0.9	26
1854	Tuning the electronic levels of NiO with alkali halides surface modifiers for perovskite solar cells. Physical Review Materials, 2020, 4, .	0.9	9
1855	Oxide hole blocking selective contacts in perovskite solar cells. , 2018, , .		2
1856	X-ray luminescence in undoped and bismuth-doped single crystal hybrid lead halide perovskites. , 2019, ,		3
1857	Controllable Two-dimensional Perovskite Crystallization via Water Additive for High-performance Solar Cells. Nanoscale Research Letters, 2020, 15, 108.	3.1	9
1858	Stable High-Efficiency Two-Dimensional Perovskite Solar Cells Via Bromine Incorporation. Nanoscale Research Letters, 2020, 15, 194.	3.1	12
1859	Cavity engineering of two-dimensional perovskites and inherent light-matter interaction. Photonics Research, 2020, 8, A72.	3.4	18
1860	2D materials integrated with metallic nanostructures: fundamentals and optoelectronic applications. Nanophotonics, 2020, 9, 1877-1900.	2.9	36
1861	Lead-free metal-halide double perovskites: from optoelectronic properties to applications. Nanophotonics, 2021, 10, 2181-2219.	2.9	33
1862	Lead-free halide perovskite photodetectors spanning from near-infrared to X-ray range: a review. Nanophotonics, 2021, 10, 2221-2247.	2.9	30
1863	Two-dimensional perovskites with alternating cations in the interlayer space for stable light-emitting diodes. Nanophotonics, 2021, 10, 2145-2156.	2.9	17
1864	Advances in Dion-Jacobson phase two-dimensional metal halide perovskite solar cells. Nanophotonics, 2021, 10, 2069-2102.	2.9	38
1865	Supramolecular [Na(15-crown-5)] ⁺ cations anchored to face-sharing octahedral lead bromide chains featuring a rotor-like one-dimensional perovskite with a reversible isostructural phase transition near room temperature. CrystEngComm, 2021, 23, 7787-7793.	1.3	4
1866	Formation of cubic perovskite alloy containing the ammonium cation of 2D perovskite for high performance solar cells with improved stability. RSC Advances, 2021, 11, 32590-32603.	1.7	4
1867	Thickness dependent properties of ultrathin perovskite nanosheets with Ruddlesden–Popper-like atomic stackings. Nanoscale, 2021, 13, 18961-18966.	2.8	0
1868	Ionic Liquid for Perovskite Solar Cells: An Emerging Solvent Engineering Technology. Accounts of Materials Research, 2021, 2, 1059-1070.	5.9	31
1869	Effect of Coâ€Solvents on the Crystallization and Phase Distribution of Mixedâ€Dimensional Perovskites. Advanced Energy Materials, 2021, 11, 2102144.	10.2	25
1870	Chargeâ€Carrier Transport in Quasiâ€2D Ruddlesden–Popper Perovskite Solar Cells. Advanced Materials, 2022, 34, e2106822.	11.1	74

#	Article	IF	CITATIONS
1871	A Synergy Effect of Coadditives for Vertical Orientation of Two-Dimensional Perovskite Solar Cells Based on Butylammonium Iodide with Improved Efficiency. ACS Applied Energy Materials, 2021, 4, 13216-13225.	2.5	7
1872	Highly Efficient and Stable Dionâ^'Jacobson Perovskite Solar Cells Enabled by Extended Ï€â€Conjugation of Organic Spacer. Advanced Materials, 2021, 33, e2105083.	11.1	92
1873	Organic additives in all-inorganic perovskite solar cells and modules: from moisture endurance to enhanced efficiency and operational stability. Journal of Energy Chemistry, 2022, 67, 361-390.	7.1	21
1874	Ultrathin 2D NbWO ₆ Perovskite Semiconductor Based Gas Sensors with Ultrahigh Selectivity under Low Working Temperature. Advanced Materials, 2022, 34, e2104958.	11.1	46
1875	Ultraâ€Stable and Robust Response to Xâ€Rays in 2D Layered Perovskite Microâ€Crystalline Films Directly Deposited on Flexible Substrate. Advanced Optical Materials, 2022, 10, 2101145.	3.6	26
1876	Metal Halide Perovskites as Emerging Thermoelectric Materials. ACS Energy Letters, 2021, 6, 3882-3905.	8.8	40
1877	Recent progress of efficient flexible solar cells based on nanostructures. Journal of Semiconductors, 2021, 42, 101604.	2.0	7
1878	Upscaling Solutionâ€Processed Perovskite Photovoltaics. Advanced Energy Materials, 2021, 11, 2101973.	10.2	46
1879	In situ growth of ultra-thin perovskitoid layer to stabilize and passivate MAPbI3 for efficient and stable photovoltaics. EScience, 2021, 1, 91-97.	25.0	79
1880	Two-/Three-Dimensional Perovskite Bilayer Thin Films Post-Treated with Solvent Vapor for High-Performance Perovskite Photovoltaics. ACS Applied Materials & Interfaces, 2021, 13, 49104-49113.	4.0	12
1881	High-phase purity two-dimensional perovskites with 17.3% efficiency enabled by interface engineering of hole transport layer. Cell Reports Physical Science, 2021, 2, 100601.	2.8	17
1882	Strong Optical, Electrical, and Raman in-Plane Anisotropy in Corrugated Two-Dimensional Perovskite. Journal of Physical Chemistry C, 2021, 125, 22630-22642.	1.5	4
1883	Numerical simulation design of all-inorganic hole-transport-layer-free CsSnI ₃ (Sn-rich)/CsSnI ₃ perovskite efficient solar cells. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 3754.	0.9	3
1884	Structureâ€Property Relationships and Idiosyncrasies of Bulk, 2D Hybrid Lead Bromide Perovskites. Israel Journal of Chemistry, 0, , .	1.0	9
1885	Insights into Accelerated Degradation of Perovskite Solar Cells under Continuous Illumination Driven by Thermal Stress and Interfacial Junction. ACS Applied Energy Materials, 2021, 4, 11121-11132.	2.5	29
1886	A Systematic Review of Metal Halide Perovskite Crystallization and Film Formation Mechanism Unveiled by In Situ GIWAXS. Advanced Materials, 2021, 33, e2105290.	11.1	104
1887	A-site phase segregation in mixed cation perovskite. Materials Reports Energy, 2021, 1, 100064.	1.7	19
1888	First-Principles Study on the Stability and Electronic Properties of Dion–Jacobson Halide A′(MA) _{<i>n</i>â^î1} B _{<i>n</i>} X _{3<i>n</i>+1} Perovskites. Journal of Physical Chemistry C, 2021, 125, 24096-24104.	1.5	14

#	Article	IF	CITATIONS
1889	Optical-Frequency Magnetic Polarizability in a Layered Semiconductor. Physical Review Letters, 2021, 127, 173604.	2.9	2
1890	Over 21% Efficiency Stable 2D Perovskite Solar Cells. Advanced Materials, 2022, 34, e2107211.	11.1	160
1891	Third Harmonic Upconversion and Self-Trapped Excitonic Emission in 1D Pyridinium Lead Iodide. Journal of Physical Chemistry C, 2021, 125, 22674-22683.	1.5	10
1892	Advancing 2D Perovskites for Efficient and Stable Solar Cells: Challenges and Opportunities. Advanced Materials, 2022, 34, e2105849.	11.1	104
1893	Quasi-Two-Dimensional Perovskite Nanosheets Based on the Triplet Energy Acceptor Molecule with Pure Green Emission Light. Journal of Physical Chemistry C, 2021, 125, 23889-23894.	1.5	5
1894	Controlling Quantum-Well Width Distribution and Crystal Orientation in Two-Dimensional Tin Halide Perovskites via a Strong Interlayer Electrostatic Interaction. ACS Applied Materials & Interfaces, 2021, 13, 49907-49915.	4.0	13
1895	Orbitalâ^'energy splitting in Ruddlesdenâ´'Popper layered halide perovskites for tunable optoelectronic properties. Journal of Power Sources, 2021, 514, 230546.	4.0	5
1896	Intramolecular triplet energy transfer in two-dimensional hybrid perovskite nanosheets. Chemical Physics Letters, 2021, 785, 139132.	1.2	3
1898	Perovskite solar cells passivated by distorted two-dimensional structure. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158802.	0.2	1
1899	Research progress of interface passivation of n-i-p perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158803.	0.2	1
1900	Recent progress of ion migration in organometal halide perovskite. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 158801.	0.2	11
1901	Giant and Tunable Optical Nonlinearity in Single-Crystalline 2D Perovskites due to Excitonic and Plasma Effects. , 2019, , .		0
1902	Durability and Stability of Perovskite Solar Cells. , 2019, , 77-92.		0
1903	Ultrafast photophysics of metal halide perovskite multiple quantum wells: device implications and reconciling band alignment. , 2019, , .		0
1904	Sustainable Photovoltaics. Lecture Notes in Energy, 2020, , 25-85.	0.2	0
1905	Orientation Regulation of 2D Perovskite Solar Cells with Improving Efficiency. , 2020, , .		0
1906	Additive assisted hot-casting free fabrication of Dion-Jacobson 2D perovskite solar cell with efficiency beyond 16%. , 2020, , .		0
1907	The Second Spacer Cation Assisted Growth of 2D Perovskite Film with Oriented Large Grain for Highly Efficient and Stable Solar Cells. , 2020, , .		0

#	Article	IF	CITATIONS
1908	Organic Salt-Assisted Growth and Orientation of Two-Dimensional Ruddlesden-Popper Perovskites for Efficient Solar Cells. , 2020, , .		0
1909	Narrow and broadband light emission in layered organic lead halide perovskites: interplay between weak electron-lattice interactions and defect-related effects. , 2020, , .		1
1910	Interlayer Triplet-Sensitized Luminescence in Layered Two-Dimensional Hybrid Metal-Halide Perovskites. ACS Energy Letters, 2021, 6, 4079-4096.	8.8	22
1913	Spacer Engineering of Diammoniumâ€Based 2D Perovskites toward Efficient and Stable 2D/3D Heterostructure Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, 2102973.	10.2	63
1914	Azetidinium Lead Halide Ruddlesden–Popper Phases. Molecules, 2021, 26, 6474.	1.7	0
1915	Suppressing the defects in cesium-based perovskites <i>via</i> polymeric interlayer assisted crystallization control. Journal of Materials Chemistry A, 2021, 9, 26149-26158.	5.2	6
1916	Development of encapsulation strategies towards the commercialization of perovskite solar cells. Energy and Environmental Science, 2022, 15, 13-55.	15.6	158
1917	A theoretical study of the controversial surface states of the 2D lead halide perovskites. Applied Surface Science, 2022, 572, 151485.	3.1	4
1918	Enhancing the stability of perovskite quantum dots CsPbX3 (X=Cl, Br, I) by encapsulation in porous Y2O3 nanoparticles for WLED applications. Materials Research Bulletin, 2022, 146, 111592.	2.7	12
1919	Improving inter-phase charge transfer via defect passivation for efficient Quasi-2D (BA)2(FA)8Pb9I28 perovskite solar cells. Materials Science in Semiconductor Processing, 2022, 138, 106296.	1.9	2
1920	Effect of the decrease of Pb concentration on the properties of pentarnary mixed-halide perovskites CsPb8-xSnxIBr2 and CsPb8-xSnxI2Br (1≤≤) for solar-cell applications: A DFT study. Journal of Physics and Chemistry of Solids, 2022, 161, 110429.	1.9	3
1921	Room-temperature phosphorescence of manganese-based metal halides. Dalton Transactions, 2021, 50, 17275-17280.	1.6	7
1922	A tailored spacer molecule in 2D/3D heterojunction for ultralow-voltage-loss and stable perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 26829-26838.	5.2	10
1923	Perovskite Quantum Dots Based Light-Emitting Diodes. Springer Series in Materials Science, 2020, , 107-138.	0.4	0
1924	Ion Migration in Metal Halide Perovskites Solar Cells. , 2020, , 1-32.		2
1925	Thin film transistor based on two-dimensional organic-inorganic hybrid perovskite. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 198102.	0.2	0
1926	Perovskite Materials in Biomedical Applications. Materials Horizons, 2020, , 95-116.	0.3	5
1927	Direct-band gap, solution-processed 2D layered perovskites for flexible photodetectors. , 2021, , .		0

#	Article	IF	CITATIONS
1928	Sn-based quasi-two-dimensional organic–inorganic hybrid halide perovskite for high-performance photodetectors. Applied Physics Letters, 2021, 119, .	1.5	11
1929	Interface and Grain Boundary Passivation by PEA-SCN Double Ions via One-Step Crystal Engineering for All Air-Processed, Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 12290-12297.	2.5	6
1930	Tunable bandgap and luminescence characters in single-phase two-dimensional perovskite AVA2PbCl Br4- alloys. Journal of Materials Research and Technology, 2021, 15, 5353-5359.	2.6	3
1931	The influence of crystal structure and formation path of precursor on phosphate adsorption during oxidation-hydrolysis phase transition of siderite. Chemical Engineering Journal, 2022, 431, 133358.	6.6	8
1932	Tailoring Interlayer Spacers for Efficient and Stable Formamidiniumâ€Based Lowâ€Dimensional Perovskite Solar Cells. Advanced Materials, 2022, 34, e2106380.	11.1	42
1933	Ultrafast and High-Yield Polaronic Exciton Dissociation in Two-Dimensional Perovskites. Journal of the American Chemical Society, 2021, 143, 19128-19136.	6.6	43
1935	Formation of a Fast Charge Transfer Channel in Quasi-2D Perovskite Solar Cells through External Electric Field Modulation. Energies, 2021, 14, 7402.	1.6	1
1938	Band alignment engineering of a Ruddlesden–Popper perovskite-based heterostructure constructed using Cs2SnI2Cl2 and α-In2Se3: The effects of ferroelectric polarization switching and electric fields. Applied Physics Letters, 2021, 119, 182903.	1.5	10
1939	Energy Funneling in Quasiâ€2D Ruddlesden–Popper Perovskites: Charge Transfer versus Resonant Energy Transfer. Advanced Photonics Research, 2022, 3, 2100283.	1.7	8
1940	Recent Progress in Perovskiteâ€Based Reversible Photon–Electricity Conversion Devices. Advanced Functional Materials, 2022, 32, 2108926.	7.8	18
1941	Impact of structural disorder on excitonic behaviors and dynamics in 2D organic-inorganic hybrid perovskites. Chinese Journal of Chemical Physics, 2020, 33, 561-568.	0.6	0
1942	Women Entrepreneurs and Agricultural Start-Ups. Advances in Business Strategy and Competitive Advantage Book Series, 2022, , 191-212.	0.2	0
1943	Stable two-dimensional lead iodide hybrid materials for light detection and broadband photoluminescence. Materials Chemistry Frontiers, 2021, 6, 71-77.	3.2	1
1944	Chiral 1D perovskite microwire arrays for circularly polarized light detection. Giant, 2022, 9, 100086.	2.5	15
1945	Top Thermal Annealing of 2D/3D Lead Halide Perovskites: Anisotropic Photoconductivity and Vertical Gradient of Dimensionality. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2021, 34, 263-269.	0.1	3
1946	Improved Performance and Stability of Perovskite Solar Modules by Regulating Interfacial Ion Diffusion with Nonionic Crossâ€Linked 1D Leadâ€lodide. Advanced Energy Materials, 2022, 12, .	10.2	24
1947	CH3NH3PbI3 Perovskite with Enhanced Absorption and Stability Using Silver Nanowires and the Anatase Structure of TiO2 Nanowires. Journal of Electronic Materials, 2022, 51, 778-784.	1.0	1
1948	Chemistry, Functionalization, and Applications of Recent Monoelemental Two-Dimensional Materials and Their Heterostructures. Chemical Reviews, 2022, 122, 1127-1207.	23.0	103
#	Article	IF	CITATIONS
------	--	---	-------------------------------
1949	Tuning the Band Gaps of Oxide and Halide Perovskite Compounds via Biaxial Strain in All Directions. Journal of Physical Chemistry C, 2021, 125, 25951-25958.	1.5	6
1950	Structural modulation and assembling of metal halide perovskites for solar cells and lightâ€emitting diodes. InformaÄnÃ-Materiály, 2021, 3, 1218-1250.	8.5	7
1952	Temperature-induced strain management in MAPbI3-xClx hybrid perovskite films. Physica B: Condensed Matter, 2022, 628, 413566.	1.3	6
1953	Diammonium Molecular Configurationâ€Induced Regulation of Crystal Orientation and Carrier Dynamics for Highly Efficient and Stable 2D/3D Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	68
1954	Lead-Sealed Stretchable Underwater Perovskite-Based Optoelectronics <i>via</i> Self-Recovering Polymeric Nanomaterials. ACS Nano, 2021, 15, 20127-20135.	7.3	8
1955	Layered 2D Halide Perovskites beyond the Ruddlesden–Popper Phase: Tailored Interlayer Chemistries for Highâ€Performance Solar Cells. Angewandte Chemie, 2022, 134, e202112022.	1.6	6
1956	Effects of Halogen Substitution on the Optoelectronic Properties of Two-Dimensional All-Inorganic Double Perovskite <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:msub><mml:mi>Cs</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mrow><mml:< td=""><td>:mi>Ag<td>ıml:mi><mml:< td=""></mml:<></td></td></mml:<></mml:mrow></mml:math>	:mi>Ag <td>ıml:mi><mml:< td=""></mml:<></td>	ıml:mi> <mml:< td=""></mml:<>

#	Article	IF	CITATIONS
1969	Small molecule interfacial cross-linker for highly efficient two-dimensional perovskite solar cells. Journal of Energy Chemistry, 2022, 68, 35-41.	7.1	10
1970	Degradation mechanism and addressing techniques of thermal instability in halide perovskite solar cells. Solar Energy, 2021, 230, 954-978.	2.9	19
1971	The evolution and future of metal halide perovskite-based optoelectronic devices. Matter, 2021, 4, 3814-3834.	5.0	35
1972	Intercalating-Organic-Cation-Induced Stability Bowing in Quasi-2D Metal-Halide Perovskites. ACS Energy Letters, 2022, 7, 70-77.	8.8	26
1973	Broadband light emitting zero-dimensional antimony and bismuth-based hybrid halides with diverse structures. Journal of Materials Chemistry C, 2021, 9, 15942-15948.	2.7	18
1974	Exploring the Ruddlesden–Popper layered organic–inorganic hybrid semiconducting perovskite for visible-blind ultraviolet photodetection. CrystEngComm, 2022, 24, 2258-2263.	1.3	2
1975	Developing sustainable, high-performance perovskites in photocatalysis: design strategies and applications. Chemical Society Reviews, 2021, 50, 13692-13729.	18.7	97
1976	A self-assembled hierarchical structure to keep the 3D crystal dimensionality in <i>n</i> -butylammonium cation-capped Pb–Sn perovskites. Journal of Materials Chemistry A, 2021, 9, 27541-27550.	5.2	5
1977	Cage-incorporation of secondary amine in Ruddlesden–Popper 2D hybrid perovskite with strong photoconductivity and polarization response. Journal of Materials Chemistry C, 2021, 9, 17349-17356.	2.7	12
1978	Crystallization kinetics modulation and defect suppression of all-inorganic CsPbX ₃ perovskite films. Energy and Environmental Science, 2022, 15, 413-438.	15.6	53
1979	Strong Edge Stress in Molecularly Thin Organic–Inorganic Hybrid Ruddlesden–Popper Perovskites and Modulations of Their Edge Electronic Properties. ACS Nano, 2022, 16, 261-270.	7.3	7
1980	Shedding light on the energy applications of emerging 2D hybrid organic-inorganic halide perovskites. IScience, 2022, 25, 103753.	1.9	9
1981	Investigation of Metastable Low Dimensional Halometallates. Molecules, 2022, 27, 280.	1.7	2
1982	Enhanced and angle dependent blue fluorescence of perovskite nanocrystals on three typical photonic crystals. Optik, 2022, 252, 168517.	1.4	0
1983	Role of bi-layered CuSCN based hole transport films to realize highly efficient and stable perovskite solar cells. Surfaces and Interfaces, 2022, 28, 101657.	1.5	2
1984	Donor-acceptor-donor type organic spacer for regulating the quantum wells of Dion-Jacobson 2D perovskites. Nano Energy, 2022, 93, 106800.	8.2	20
1985	Uncovering synergistic effect of chloride additives for efficient quasi-2D perovskite solar cells. Chemical Engineering Journal, 2022, 432, 134367.	6.6	26
1986	A MSM 2D Ruddlesden Popper perovskite photodetector for visible light communication. , 2020, , .		1

#	Article	IF	CITATIONS
1987	A novel and facile synthesis strategy for highly stable cesium lead halide nanowires. RSC Advances, 2021, 11, 28716-28722.	1.7	6
1988	Optimizing the Lifespan of Perovskite Solar Cells with Polycarbonate Polymer Encapsulation. International Journal of Optics and Photonics, 2021, 15, 55-64.	0.2	0
1989	Surface Passivation Toward Efficient and Stable Perovskite Solar Cells. Energy and Environmental Materials, 2023, 6, .	7.3	46
1990	Quasi-Two-Dimensional Perovskite Solar Cells with Efficiency Exceeding 22%. ACS Energy Letters, 2022, 7, 757-765.	8.8	114
1991	Controlling the Grain Size of Dion–Jacobson-Phase Two-Dimensional Layered Perovskite for Memory Application. ACS Applied Materials & Interfaces, 2022, 14, 4371-4377.	4.0	15
1992	A universal co-solvent dilution strategy enables facile and cost-effective fabrication of perovskite photovoltaics. Nature Communications, 2022, 13, 89.	5.8	77
1993	Metal Halide Perovskite-Based Phosphors and Their Applications in LEDs. Engineering Materials, 2022, , 3-49.	0.3	1
1994	Dynamic Exciton Polaron in Two-Dimensional Lead Halide Perovskites and Implications for Optoelectronic Applications. Accounts of Chemical Research, 2022, 55, 345-353.	7.6	36
1995	Longâ€Rangeâ€Ordered Assembly of Micro…Nanostructures at Superwetting Interfaces. Advanced Materials, 2022, 34, e2106857.	11.1	21
1996	Two-Dimensional Dion–Jacobson Perovskite (NH ₃ C ₄ H ₈ NH ₃)CsPb ₂ Br ₇ with High X-ray Sensitivity and Peak Discrimination of α-Particles. Journal of Physical Chemistry Letters, 2022, 13, 1187-1193.	2.1	13
1997	A finely regulated quantum well structure in quasi-2D Ruddlesden–Popper perovskite solar cells with efficiency exceeding 20%. Energy and Environmental Science, 2022, 15, 296-310.	15.6	54
1998	Unlocking surface octahedral tilt in two-dimensional Ruddlesden-Popper perovskites. Nature Communications, 2022, 13, 138.	5.8	42
1999	Controlled crystal orientation of two-dimensional Ruddlesden—Popper halide perovskite films for solar cells. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 49-58.	2.4	17
2000	Manipulation of charge carrier flow in Bi ₄ NbO ₈ Cl nanoplate photocatalyst with metal loading. Chemical Science, 2022, 13, 3118-3128.	3.7	17
2001	Film formation mechanisms in mixed-dimensional 2D/3D halide perovskite films revealed by in situ grazing-incidence wide-angle X-ray scattering. CheM, 2022, 8, 1067-1082.	5.8	16
2002	Ultrasensitive Photodetectors Based on Strongly Interacted Layered-Perovskite Nanowires. ACS Applied Materials & Interfaces, 2022, 14, 1601-1608.	4.0	8
2003	Synergistic electronic coupling/cross-talk between the isolated metal halide units of zero dimensional heterometallic (Sb, Mn) halide hybrid with enhanced emission. Journal of Materials Chemistry C, 2021, 10, 360-370.	2.7	8
2004	Highâ€Performance Ternary Perovskite–Organic Solar Cells. Advanced Materials, 2022, 34, e2109348.	11.1	34

#	Article	IF	CITATIONS
2005	Orientation Control of 2D Perovskite in 2D/3D Heterostructure by Templated Growth on 3D Perovskite. , 2022, 4, 378-384.		15
2006	Rare earth–based compounds for solar cells. , 2022, , 365-393.		1
2007	Investigation of Double-Layered Pb-Sn Perovskite Absorbers: Formation, Structure, Band Alignment, and Stability. Journal of Physical Chemistry C, 2022, 126, 1623-1634.	1.5	3
2008	Tunable engineering of photo- and electro-induced carrier dynamics in perovskite photoelectronic devices. Science China Materials, 2022, 65, 855-875.	3.5	9
2009	Enhanced phase separation in PEDOT:PSS hole transport layer by introducing phenylethylammonium iodide for efficient perovskite solar cells. Journal of Renewable and Sustainable Energy, 2022, 14, 013502.	0.8	3
2010	All-Inorganic Perovskite Solar Cells with Tetrabutylammonium Acetate as the Buffer Layer between the SnO ₂ Electron Transport Film and CsPbl ₃ . ACS Applied Materials & Interfaces, 2022, 14, 5183-5193.	4.0	20
2011	Surface Passivation Using 2D Perovskites toward Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2022, 34, e2105635.	11.1	221
2012	Defects and passivation in perovskite solar cells. Surface Innovations, 2022, 10, 3-20.	1.4	18
2013	Morphological Control of 2D Hybrid Organic–Inorganic Semiconductor AgSePh. ACS Nano, 2022, 16, 2054-2065.	7.3	13
2014	Emerging Lead-Halide Perovskite Semiconductor for Solid-State Detectors. , 2022, , 35-58.		1
2015	Fabrication of 2D perovskite (PMA)2PbI4 crystal and Cu ion implantation improved x-ray detector. Applied Physics Letters, 2022, 120, .	1.5	23
2016	Effect of ligand groups on photoexcited charge carrier dynamics at the perovskite/TiO ₂ interface. RSC Advances, 2021, 12, 78-87.	1.7	1
2017	Emerging doping strategies in two-dimensional hybrid perovskite semiconductors for cutting edge optoelectronics applications. Nanoscale Advances, 2022, 4, 995-1025.	2.2	14
2018	Organic spacer engineering in 2D/3D hybrid perovskites for efficient and stable solar cells. New Journal of Chemistry, 2022, 46, 2837-2845.	1.4	6
2019	Reversible Phase Transitions of all Inorganic Copper-Based Perovskites: Water-Triggered Fluorochromism for Advanced Anticounterfeiting Applications. ACS Applied Electronic Materials, 2022, 4, 225-232.	2.0	15
2020	Site-controlled interlayer coupling in WSe2/2D perovskite heterostructure. Science China Materials, 2022, 65, 1337-1344.	3.5	8
2021	Electronic and optical properties of inorganic lead-free perovskite Cs ₃ Bi ₂ I ₉ . Wuli Xuebao/Acta Physica Sinica, 2022, 71, 017101.	0.2	1
2022	Tailoring the EnergyÂManifold of Quasiâ€Twoâ€Dimensional Perovskites for Efficient Carrier Extraction. Advanced Energy Materials, 2022, 12, .	10.2	15

#	Article	IF	CITATIONS
2023	Hybrid Organic Lead Iodides: Role of Organic Cation Structure in Obtaining 1D Chains of Face-Sharing Octahedra vs 2D Perovskites. Chemistry of Materials, 2022, 34, 935-946.	3.2	7
2024	Amplified Spontaneous Emission with a Low Threshold from Quasiâ€2D Perovskite Films via Phase Engineering and Surface Passivation. Advanced Optical Materials, 2022, 10, .	3.6	15
2025	Review on Organic–Inorganic Two-Dimensional Perovskite-Based Optoelectronic Devices. ACS Applied Electronic Materials, 2022, 4, 547-567.	2.0	35
2026	Quasiâ€2D Perovskite Crystalline Layers for Printable Direct Conversion Xâ€Ray Imaging. Advanced Materials, 2022, 34, e2106498.	11.1	37
2027	Insight into the Enhanced Charge Transport in Quasi-2D Perovskite via Fluorination of Ammonium Cations for Photovoltaic Applications. ACS Applied Materials & amp; Interfaces, 2022, 14, 7917-7925.	4.0	9
2028	A cascade bilayer electron transport layer toward efficient and stable <scp>Ruddlesdenâ€Popper</scp> perovskite solar cells. International Journal of Energy Research, 2022, 46, 8229-8239.	2.2	9
2029	Recent progress of halide perovskites for thermoelectric application. Nano Energy, 2022, 94, 106949.	8.2	18
2030	Emission properties of sequentially deposited ultrathin CH3NH3PbI3/MoS2 heterostructures. Current Applied Physics, 2022, 36, 27-33.	1.1	8
2031	Two-dimensional perovskites: Impacts of species, components, and properties of organic spacers on solar cells. Nano Today, 2022, 43, 101394.	6.2	58
2032	The thermodynamical and optical properties of surface bromine vacancy in two-dimensional CsPbBr3: A first principles study. Applied Surface Science, 2022, 584, 152626.	3.1	3
2034	Doping of Sn-Based Two-Dimensional Perovskite Semiconductor for High-Performance Field-Effect Transistors and Thermoelectric Devices. SSRN Electronic Journal, 0, , .	0.4	0
2036	Predicting the photon energy of quasi-2D lead halide perovskites from the precursor composition through machine learning. Nanoscale Advances, 2022, 4, 1632-1638.	2.2	6
2037	Determined Ag + and Hg 2+ by ethylenediamine perovskite or ethylenediamine perovskite/graphene oxide composite modified glassy carbon electrodes. Journal of the Chinese Chemical Society, 0, , .	0.8	0
2038	Ordered Element Distributed C ₃ N Quantum Dots Manipulated Crystallization Kinetics for 2D CsPbl ₃ Solar Cells with Ultraâ€High Performance. Small, 2022, 18, e2108090.	5.2	5
2039	Managing Phase Orientation and Crystallinity of Printed Dion–Jacobson 2D Perovskite Layers via Controlling Crystallization Kinetics. Advanced Functional Materials, 2022, 32, .	7.8	33
2040	Long carrier diffusion length in two-dimensional lead halide perovskite single crystals. CheM, 2022, 8, 1107-1120.	5.8	29
2041	Multifunctional Heterocyclic-Based Spacer Cation for Efficient and Stable 2D/3D Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2022, 14, 9183-9191.	4.0	12
2042	Brownian Treeâ€Shaped Dendrites in Quasiâ€2D Perovskite Films and Their Impact on Photovoltaic Performance. Advanced Materials Interfaces, 0, , 2102231.	1.9	4

#	Article	IF	Citations
2043	Near-unity photoluminescence quantum yield Mn-doped two-dimensional halide perovskite platelets via hydrobromic acid-assisted synthesis. Journal of Luminescence, 2022, 245, 118790.	1.5	6
2044	Mobility driven thermoelectric and optical properties of two-dimensional halide-based hybrid perovskites: impact of organic cation rotation. Physical Chemistry Chemical Physics, 2022, 24, 8867-8880.	1.3	7
2045	Deep level defects passivated by small molecules for the enhanced efficiency and stability of inverted perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 5922-5928.	2.7	14
2046	Improved highly efficient Dion–Jacobson type perovskite light-emitting diodes by effective surface polarization architecture. Physical Chemistry Chemical Physics, 2022, 24, 7969-7977.	1.3	3
2047	Highly Efficient Inverted Planar Solar Cell Using Formamidinium-Based Quasi-Two Dimensional Perovskites. SSRN Electronic Journal, 0, , .	0.4	0
2049	Realization of Inâ€Plane Polarized Light Detection Based on Bulk Photovoltaic Effect in A Polar Van Der Waals Crystal. Small, 2022, 18, e2200011.	5.2	12
2050	Rethinking the A cation in halide perovskites. Science, 2022, 375, eabj1186.	6.0	207
2051	Direct Observation of Fast Carriers Transport along Out-of-Plane Direction in a Dion–Jacobson Layered Perovskite. ACS Energy Letters, 2022, 7, 984-987.	8.8	24
2052	Recent Progress in Halide Perovskite Radiation Detectors for Gamma-Ray Spectroscopy. ACS Energy Letters, 2022, 7, 1066-1085.	8.8	47
2053	Recent Progress on Perovskite Photodetectors for Narrowband Detection. Advanced Photonics Research, 2022, 3, .	1.7	21
2054	Formamidinium Perovskitizers and Aromatic Spacers Synergistically Building Bilayer Dion–Jacobson Perovskite Photoelectric Bulk Crystals. ACS Applied Materials & Interfaces, 2022, 14, 11690-11698.	4.0	20
2055	Unveiling the Effect of Solvents on Crystallization and Morphology of 2D Perovskite in Solvent-Assisted Method. Molecules, 2022, 27, 1828.	1.7	1
2056	Lowâ€Temperatureâ€Processed Stable Perovskite Solar Cells and Modules: A Comprehensive Review. Advanced Energy Materials, 2022, 12, .	10.2	38
2057	Hybrid organic, inorganic two-dimensional layered materials for photodetectors and photovoltaics. , 2022, , .		0
2058	Direct investigation of the reorientational dynamics of A-site cations in 2D organic-inorganic hybrid perovskite by solid-state NMR. Nature Communications, 2022, 13, 1513.	5.8	6
2059	Evaluation of performance of machine learning methods in mining structure–property data of halide perovskite materials. Chinese Physics B, 2022, 31, 056302.	0.7	8
2060	Halide perovskite dynamics at work: Large cations at 2D-on-3D interfaces are mobile. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114740119.	3.3	19
2061	Assessment of Leadâ€Free Tin Halide Perovskite Solar Cells Using <i>J–V</i> Hysteresis. Physica Status Solidi (A) Applications and Materials Science, 2022, 219,	0.8	19

#	Article	IF	CITATIONS
2062	How Does Location Determine the Economic Competitiveness of Gridâ€Scale Emerging Photovoltaics?. Energy Technology, 2022, 10, .	1.8	1
2063	Imaging the Moisture-Induced Degradation Process of 2D Organolead Halide Perovskites. ACS Omega, 2022, 7, 10365-10371.	1.6	10
2064	Using Ligand Engineering to Produce Efficient and Stable Pb–Sn Perovskite Solar Cells with Antioxidative 2D Capping Layers. ACS Applied Materials & Interfaces, 2022, 14, 14729-14738.	4.0	8
2065	Suppressing the Formation of High <i>n</i> -Phase and 3D Perovskites in the Fabrication of Ruddlesden–Popper Perovskite Thin Films by Bulky Organic Cation Engineering. Chemistry of Materials, 2022, 34, 3076-3088.	3.2	13
2066	Nearâ€Infrared and Visibleâ€Range Optoelectronics in 2D Hybrid Perovskite/Transition Metal Dichalcogenide Heterostructures. Advanced Materials Interfaces, 2022, 9, .	1.9	6
2067	Efficient and stable TiO2 nanorod array structured perovskite solar cells in air: Co-passivation and synergistic mechanism. Ceramics International, 2022, 48, 17950-17959.	2.3	9
2068	Scalable and Blue Photoluminescence Emissions of (C4H9NH3)2PbBr4 2D Perovskite Fabricated by the Dip-Coating Method Using a Co-Solvent System. Crystals, 2022, 12, 418.	1.0	0
2069	Utilizing Nonpolar Organic Solvents for the Deposition of Metal-Halide Perovskite Films and the Realization of Organic Semiconductor/Perovskite Composite Photovoltaics. ACS Energy Letters, 2022, 7, 1246-1254.	8.8	12
2070	Design of Active Defects in Semiconductors: 3D Electron Diffraction Revealed Novel Organometallic Lead Bromide Phases Containing Ferrocene as Redox Switches. Advanced Functional Materials, 0, , 2201126.	7.8	2
2072	Insights from scalable fabrication to operational stability and industrial opportunities for perovskite solar cells and modules. Cell Reports Physical Science, 2022, 3, 100827.	2.8	16
2073	Spacer Organic Cation Engineering for Quasiâ€2D Metal Halide Perovskites and the Optoelectronic Application. Small Structures, 2022, 3, .	6.9	26
2074	A Ferroelectric p–i–n Heterostructure for Highly Enhanced Short ircuit Current Density and Selfâ€Powered Photodetection. Advanced Electronic Materials, 2022, 8, .	2.6	17
2075	Understanding of Layer-Dependent Stability and Rashba Spin Splitting of Two-Dimensional Organic–Inorganic Halide Perovskites α-FABX ₃ (B = Ge, Sn, and Pb; X = Cl, Br, and I). Journal of Physical Chemistry C, 2022, 126, 6448-6455.	1.5	1
2076	Recent Progress in Understanding the Structural, Optoelectronic, and Photophysical Properties of Lead Based Dion–Jacobson Perovskites as Well as Their Application in Solar Cells. , 2022, 4, 891-917.		9
2077	Timeâ€Resolved Orientation and Phase Analysis of Lead Halide Perovskite Film Annealing Probed by In Situ GIWAXS. Advanced Optical Materials, 2022, 10, .	3.6	22
2078	Progress and challenges in layered two-dimensional hybrid perovskites. Nanotechnology, 2022, 33, 292501.	1.3	11
2079	The challenges and promises of layered 2D perovskites. CheM, 2022, 8, 890-891.	5.8	2
2080	Doping of Sn-based two-dimensional perovskite semiconductor for high-performance field-effect transistors and thermoelectric devices. IScience, 2022, 25, 104109.	1.9	15

#	Article	IF	CITATIONS
2081	Thick-Layer Lead Iodide Perovskites with Bifunctional Organic Spacers Allylammonium and Iodopropylammonium Exhibiting Trap-State Emission. Journal of the American Chemical Society, 2022, 144, 6390-6409.	6.6	13
2082	Hydrophobic long alkyl chain organic cations induced 2D/3D heterojunction for efficient and stable perovskite solar cells. Journal of Materials Science and Technology, 2022, 124, 243-251.	5.6	18
2083	Stable and efficient perovskite solar cells by discrete two-dimensional perovskites capped on the three-dimensional perovskites bilayer thin film. Nano Energy, 2022, 96, 107126.	8.2	14
2084	Passivating buried interface with multifunctional novel ionic liquid containing simultaneously fluorinated anion and cation yielding stable perovskite solar cells over 23% efficiency. Journal of Energy Chemistry, 2022, 69, 659-666.	7.1	52
2085	The immersion cooling technology: Current and future development in energy saving. AEJ - Alexandria Engineering Journal, 2022, 61, 9509-9527.	3.4	36
2086	L ₂ [GA _{<i>x</i>} FA _{1–<i>x</i>} PbI ₃]PbI ₄ (0 â‰≱ ACS Applied Nano Materials, 2022, 5, 1078-1085.	Tj ETQq1 2.4	1 0.784314 5
2087	Aiming at the industrialization of perovskite solar cells: Coping with stability challenge. Applied Physics Letters, 2021, 119, .	1.5	3
2088	Structural Disorder in Layered Hybrid Halide Perovskites: Types of Stacking Faults, Influence on Optical Properties and Their Suppression by Crystallization Engineering. Nanomaterials, 2021, 11, 3333.	1.9	5
2089	Pressure-Enhanced Vertical Orientation and Compositional Control of Ruddlesden–Popper Perovskites for Efficient and Stable Solar Cells and Self-Powered Photodetectors. ACS Applied Materials & Interfaces, 2022, 14, 1526-1536.	4.0	13
2090	Hydroxyl Functional Groups in Two-Dimensional Dion–Jacobson Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 217-225.	8.8	20
2091	Zwitterion-Assisted Crystal Growth of 2D Perovskites with Unfavorable Phase Suppression for High-Performance Solar Cells. ACS Applied Materials & amp; Interfaces, 2022, 14, 814-825.	4.0	7
2092	Defect-Induced Inhomogeneous Phase Transition in 2D Perovskite Single Crystals at Low Temperatures. ACS Omega, 2021, 6, 35427-35432.	1.6	1
2093	Machine learning prediction of 2D perovskite photovoltaics and interaction with energetic ion implantation. Applied Physics Letters, 2021, 119, .	1.5	12
2094	A 3D Lead Iodide Hybrid Based on a 2D Perovskite Subnetwork. Crystals, 2021, 11, 1570.	1.0	2
2095	Hot-Casting and Anti-solvent Free Fabrication of Efficient and Stable Two-Dimensional Ruddlesden–Popper Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 61039-61046.	4.0	8
2096	Pressure-Induced Structural and Optical Transitions in Luminescent Bulk Cs ₄ PbBr ₆ . Journal of Physical Chemistry C, 2022, 126, 541-550.	1.5	6
2097	Fabrication Strategies and Optoelectronic Applications of Perovskite Heterostructures. Advanced Optical Materials, 2022, 10, .	3.6	15
2098	Stable Formamidiniumâ€Based Centimeter Long Twoâ€Dimensional Lead Halide Perovskite Singleâ€Crystal for Longâ€Live Optoelectronic Applications. Advanced Functional Materials, 0, , 2112277.	7.8	8

#	Article	IF	CITATIONS
2099	Nanosegregation in arene-perfluoroarene π-systems for hybrid layered Dion–Jacobson perovskites. Nanoscale, 2022, 14, 6771-6776.	2.8	7
2100	Correlated Dynamics of Free and Selfâ€Trapped Excitons and Broadband Photodetection in BEA ₂ PbBr ₄ Layered Crystals. Advanced Optical Materials, 2022, 10, .	3.6	5
2101	Highly Orientational Order Perovskite Induced by In situâ€generated 1D Perovskitoid for Efficient and Stable Printable Photovoltaics. Small, 2022, 18, e2200130.	5.2	10
2102	Solution-Processed Ternary Perovskite-Organic Broadband Photodetectors with Ultrahigh Detectivity. ACS Applied Materials & Interfaces, 2022, 14, 18744-18750.	4.0	17
2103	Optimization of multilayered Ruddlesden–Popper perovskite with 4-bromophenylethylamine by ionic liquid for solar cell applications. Journal of Materials Science, 0, , .	1.7	2
2107	Hetero-perovskite engineering for stable and efficient perovskite solar cells. Sustainable Energy and Fuels, 2022, 6, 3304-3323.	2.5	3
2108	Interlayer excitons in MoSe ₂ /2D perovskite hybrid heterostructures – the interplay between charge and energy transfer. Nanoscale, 2022, 14, 8085-8095.	2.8	11
2109	Quasi-2D halide perovskite crystals and their optoelectronic applications. Journal of Materials Chemistry A, 2022, 10, 19169-19183.	5.2	16
2110	Efficient and Stable FAâ€Rich Perovskite Photovoltaics: From Material Properties to Device Optimization. Advanced Energy Materials, 2022, 12, .	10.2	16
2111	Sub-angstrom noninvasive imaging of atomic arrangement in 2D hybrid perovskites. Science Advances, 2022, 8, eabj0395.	4.7	5
2112	Discovery of Pb-free hybrid organic–inorganic 2D perovskites using a stepwise optimization strategy. Npj Computational Materials, 2022, 8, .	3.5	9
2113	Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics. Chinese Physics B, 2022, 31, 117803.	0.7	0
2114	Rashba and Dresselhaus effects in two-dimensional Pb-I-based perovskites. Physical Review B, 2022, 105, .	1.1	7
2115	Synthesis, Structure, and Tunability of Zero-Dimensional Organic–Inorganic Metal Halides Utilizing the <i>m</i> -Xylylenediammonium Cation: MXD ₂ Pbl ₆ , MXDBil ₅ , and MXD ₃ Bi ₂ Br ₁₂ ·2H ₂ 0. Crystal Growth and Design, 2022, 22, 3815-3823	1.4	4
2116	Efficient Yellow Self-Trapped Exciton Emission in Sb ³⁺ -Doped RbCdCl ₃ Metal Halides. Inorganic Chemistry, 2022, 61, 7143-7152.	1.9	34
2117	Pseudohalide-Assisted Growth of Oriented Large Grains for High-Performance and Stable 2D Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 1842-1849.	8.8	29
2118	Progress on Emerging Ferroelectric Materials for Energy Harvesting, Storage and Conversion. Advanced Energy Materials, 2022, 12, .	10.2	45
2119	Time-resolved vibrational-pump visible-probe spectroscopy for thermal conductivity measurement of metal-halide perovskites. Review of Scientific Instruments, 2022, 93, .	0.6	5

#	Article	IF	CITATIONS
2120	4â€Hydrazinobenzoicâ€Acid Antioxidant for Highâ€Efficiency Sn–Pb Alloyed Perovskite Solar Cells. Energy Technology, 2022, 10, .	1.8	10
2121	Exciton–Phonon Coupling of Chiral One-Dimensional Lead-Free Hybrid Metal Halides at Room Temperature. Journal of Physical Chemistry Letters, 2022, 13, 4073-4081.	2.1	10
2122	Multicolor Biexciton Lasers Based on 2D Perovskite Single Crystalline Flakes. Advanced Optical Materials, 2022, 10, .	3.6	7
2123	Recent progress in quasi-two-dimensional and quantum dot perovskite light-emitting diodes harnessing the diverse effects of ligands: A review. Nano Research, 2022, 15, 6449-6465.	5.8	12
2124	Enantiomorphic Single Crystals of Linear Lead(II) Bromide Perovskitoids with White Circularly Polarized Emission. Angewandte Chemie, 0, , .	1.6	3
2125	Designable Layer Edge States in Quasiâ€2D Perovskites Induced by Femtosecond Pulse Laser. Advanced Science, 2022, 9, e2201046.	5.6	6
2126	Optimization of the carrier recombination and transmission properties in perovskite LEDs by doping poly (4-vinylpyridine) and graphene quantum dots made of chitin. Chemical Engineering Journal, 2022, 444, 136518.	6.6	8
2127	Recent development in MOFs for perovskite-based solar cells. , 2022, , 507-534.		1
2128	Recent advancements in batteries and photo-batteries using metal halide perovskites. APL Materials, 2022, 10, .	2.2	17
2129	Enantiomorphic Single Crystals of Linear Lead(II) Bromide Perovskitoids with White Circularly Polarized Emission. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
2130	Critical phonon frequency renormalization and dual phonon coexistence in layered Ruddlesden-Popper inorganic perovskites. Physical Review B, 2022, 105, .	1.1	16
	2D Homologous Series SrFM _{<i>n</i>} BiS _{<i>n</i>+2} (M = Pb,) Tj ETQq1 1 0.784314 rgB	3T /Overloo	ck 10 Tf 50 3
2131	Sr ₂ F ₂ Bi _{2/3} S ₂ . Inorganic Chemistry, 2022, 61, 8233-8240.	1.9	2
2132	Tin-based halide perovskite materials: properties and applications. Chemical Science, 2022, 13, 6766-6781.	3.7	31
2133	Electrophoreticâ€Driven In Situ Polymerization Depositing Highâ€Quality Perovskite Films for Photodetectors. Advanced Optical Materials, 2022, 10, .	3.6	4
2134	Effect of anti-solvents on the performance of solar cells based on two-dimensional Ruddlesden–Popper-phase perovskite films. Journal Physics D: Applied Physics, 2022, 55, 354004.	1.3	2
2135	Ruddlesden–Popper 2D Chiral Perovskiteâ€Based Solar Cells. Small Structures, 2022, 3, .	6.9	4
2136	Anomalous and colossal thermal expansion, photoluminescence, and dielectric properties in lead halide-layered perovskites with cyclohexylammonium and cyclopentylammonium cations. IScience, 2022, 25, 104450.	1.9	3
2137	X-ray diffraction of photovoltaic perovskites: Principles and applications. Applied Physics Reviews, 2022, 9, .	5.5	28

#	Article	IF	CITATIONS
2138	Origin and physical effects of edge states in two-dimensional Ruddlesden-Popper perovskites. IScience, 2022, 25, 104420.	1.9	8
2139	Machine learning enabled development of unexplored perovskite solar cells with high efficiency. Nano Energy, 2022, 99, 107394.	8.2	27
2140	Improving the Performance of 2d Perovskite Solar Cells by Carrier Trappings and Minifying the Grain Boundaries. SSRN Electronic Journal, 0, , .	0.4	0
2141	Crystallization regulation of solution-processed two-dimensional perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 13625-13650.	5.2	11
2142	Electronic structure of oxide and halide perovskites. , 2022, , .		0
2143	Relative distance from the center of mass – A new structural descriptor linking the structure of organic cations with inorganic framework distortions in layered hybrid halide perovskites. Mendeleev Communications, 2022, 32, 315-316.	0.6	2
2144	Device simulation of quasi two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency. Chinese Physics B, 0, , .	0.7	0
2145	Investigation of Various Solar Photovoltaic Cells and its limitation. , 2022, 1, 22-29.		5
2146	Single‣ayer Sheets of Alkylammonium Lead Iodide Perovskites with Tunable and Stable Green Emission for White Lightâ€Emitting Devices. Advanced Optical Materials, 2022, 10, .	3.6	2
2147	Accelerated Formation of 2D Ruddlesden—Popper Perovskite Thin Films by Lewis Bases for High Efficiency Solar Cell Applications. Nanomaterials, 2022, 12, 1816.	1.9	5
2148	Dual Organic Spacer Cation Quasiâ€2D Sn–Pb Perovskite for Solar Cells and Nearâ€Infrared Photodetectors Application. Advanced Photonics Research, 2022, 3, .	1.7	5
2149	Reversible phase transition for switchable second harmonic generation in 2D perovskite microwires. SmartMat, 2022, 3, 657-667.	6.4	8
2150	2D lead free Ruddlesden-Popper phase perovskites as efficient photovoltaic materials: A first-principles investigation. Computational Materials Science, 2022, 211, 111545.	1.4	6
2151	Two-dimensional Dion-Jacobson halide perovskites as new-generation light absorbers for perovskite solar cells. Renewable and Sustainable Energy Reviews, 2022, 166, 112614.	8.2	39
2152	Understanding the thermodynamic, dynamic, bonding, and electrocatalytic properties of low-dimensional MgPSe ₃ . Dalton Transactions, 2022, 51, 9689-9698.	1.6	8
2153	Theoretical investigation on structure and optoelectronic performance of two-dimensional fluorbenzidine perovskites. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 208801.	0.2	2
2154	Interlayer cation engineering to regulate the photoelectric properties of lead bromide Dion–Jacobson hybrid perovskites. Journal of Materials Chemistry C, 2022, 10, 9613-9620.	2.7	5
2155	A vertically oriented two-dimensional Ruddlesden–Popper phase perovskite passivation layer for efficient and stable inverted perovskite solar cells. Energy and Environmental Science, 2022, 15, 3369-3378.	15.6	50

#	Article	IF	CITATIONS
2156	The high open-circuit voltage of perovskite solar cells: a review. Energy and Environmental Science, 2022, 15, 3171-3222.	15.6	181
2157	High-performance Ruddlesden–Popper two-dimensional perovskite solar cells <i>via</i> solution processed inorganic charge transport layers. Physical Chemistry Chemical Physics, 2022, 24, 15912-15919.	1.3	6
2158	Imidazole additives in 2D halide perovskites: impacts of –CN <i>versus</i> –CH ₃ substituents reveal the mediation of crystal growth by phase buffering. Energy and Environmental Science, 2022, 15, 3321-3330.	15.6	25
2159	Processing of Lead Halide Perovskite Thin Films Studied with In-Situ Real-Time X-ray Scattering. ACS Applied Materials & Interfaces, 2022, 14, 26315-26326.	4.0	5
2160	Tailoring Phase Alignment and Interfaces via Polyelectrolyte Anchoring Enables Largeâ€Area 2D Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
2161	Tailoring Phase Alignment and Interfaces via Polyelectrolyte Anchoring Enables Largeâ€Area 2D Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	2
2162	Defects Passivation Strategy for Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	13
2164	Enhanced electronic and optical properties of multi-layer Arsenic via strain engineering. Nanotechnology, 0, , .	1.3	0
2165	Probing Lattice Dynamics in Two-Dimensional Inorganic Pseudohalide Perovskites with Ultrafast Infrared Spectroscopy. Journal of Physical Chemistry C, 2022, 126, 10145-10158.	1.5	4
2166	Pb-free halide perovskites for solar cells, light-emitting diodes, and photocatalysts. APL Materials, 2022, 10, .	2.2	11
2167	Universal Bifacial Stamping Approach Enabling Reverseâ€Graded Ruddlesdenâ€Popper 2D Perovskite Solar Cells. Small, 2022, 18, .	5.2	6
2168	Recent Progress in Lanthanide-Doped Inorganic Perovskite Nanocrystals and Nanoheterostructures: A Future Vision of Bioimaging. Nanomaterials, 2022, 12, 2130.	1.9	8
2169	Theoretical investigation on twoâ€dimensional monofluorinated phenylethylammonium perovskite. International Journal of Quantum Chemistry, 2022, 122, .	1.0	2
2171	Synthesis of upconverting nanosheets derived from Er-Yb and Tm-Yb Co-doped layered perovskites and their layer-by-layer assembled films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 649, 129502.	2.3	3
2172	Investigation of dielectric, linear, and nonlinear optical properties of synthesized 2D Ruddlesden-Popper-type halide perovskite. Optics and Laser Technology, 2022, 155, 108352.	2.2	10
2173	Suppression of Sn ²⁺ oxidation and formation of large-size crystal grains with multifunctional chloride salt for perovskite solar cell applications. Journal of Materials Chemistry C, O, , .	2.7	5
2174	Vertically-aligned quasi-2D cesium lead halide perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 10964-10972.	2.7	7
2175	Molecular Engineering of Peripheral Substitutions to Construct Efficient Acridine Core Based Hole Transport Materials for Perovskite Solar Cell. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	Citations
2176	Sum frequency generation vibrational spectra of perovskite nanocrystals at the single-nanocrystal and ensemble levels. Chinese Journal of Chemical Physics, 2022, 35, 738-746.	0.6	6
2177	Enhanced Charge Transport <i>via</i> Mixed-Dimensional Heterostructures in 2D–3D Perovskites and Their Relevance to Solar Cells. ACS Applied Energy Materials, 2022, 5, 7965-7976.	2.5	7
2178	Progress, Challenges, and Prospects of Soft Robotics for Space Applications. Advanced Intelligent Systems, 2023, 5, .	3.3	31
2179	PEDOT:PSS/CuCl Composite Hole Transporting Layer for Enhancing the Performance of 2D Ruddlesden–Popper Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2022, 13, 6101-6109.	2.1	11
2180	Synthesis and Characterization of (FA) ₃ (HEA) ₂ Pb ₃ I ₁₁ : A Rare Example of <1 1 0>-Oriented Multilayered Halide Perovskites. Chemistry of Materials, 2022, 34, 5780-5790.	3.2	2
2181	Phonon-Assisted Nonradiative Recombination Tuned by Organic Cations in Ruddlesden-Popper Hybrid Perovskites. Physical Review Applied, 2022, 17, .	1.5	4
2182	Long Carrier Diffusion Length and Efficient Charge Transport in Thick Quasi-Two-Dimensional Perovskite Solar Cells Enabled by Modulating Crystal Orientation and Phase Distribution. ACS Applied Energy Materials, 2022, 5, 8930-8939.	2.5	7
2183	Excellent Longâ€Range Chargeâ€Carrier Mobility in 2D Perovskites. Advanced Functional Materials, 2022, 32, .	7.8	20
2184	Ink Engineering in Bladeâ€Coating Largeâ€Area Perovskite Solar Cells. Advanced Energy Materials, 2022, 12,	10.2	39
2185	Highâ€performance flexible perovskite photodetectors based on singleâ€crystalâ€like twoâ€dimensional Ruddlesden–Popper thin films. , 2023, 5, .		23
2186	Two-dimensional Ruddlesden-Popper halide perovskite solar absorbers with short-chain interlayer spacers. Physical Review Materials, 2022, 6, .	0.9	5
2187	Physics of defects in metal halide perovskites. Reports on Progress in Physics, 2022, 85, 096501.	8.1	13
2188	Impact of Strain Relaxation on 2D Ruddlesden–Popper Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	35
2189	Impact of Strain Relaxation on 2D Ruddlesden–Popper Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	2
2190	Roles of Organic Ligands in Ambient Stability of Layered Halide Perovskites. ACS Applied Materials & Interfaces, 2022, 14, 33085-33093.	4.0	2
2191	Stability of perovskite materials and devices. Materials Today, 2022, 58, 275-296.	8.3	35
2192	Thiocyanate-Mediated Dimensionality Transformation of Low-Dimensional Perovskites for Photovoltaics. Chemistry of Materials, 2022, 34, 6331-6338.	3.2	5
2193	Ruddlesden–Popper Perovskites with Narrow Phase Distribution for Airâ€Stable Solar Cells. Solar Rrl, 2022, 6, .	3.1	4

#	Article	IF	CITATIONS
2194	A charge transfer framework that describes supramolecular interactions governing structure and properties of 2D perovskites. Nature Communications, 2022, 13, .	5.8	16
2195	Energyâ€Transfer Photocatalysis Using Lead Halide Perovskite Nanocrystals: Sensitizing Molecular Isomerization and Cycloaddition. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
2196	Energyâ€Transfer Photocatalysis Using Lead Halide Perovskite Nanocrystals: Sensitizing Molecular Isomerization and Cycloaddition. Angewandte Chemie, 2022, 134, .	1.6	5
2197	Asymmetrical Single Crystals Containing Tilted Ruddlesden–Popper Phases for Efficient Perovskite Solar Cells. Solar Rrl, 0, , 2200562.	3.1	2
2198	Metal-cation-mixed lead-less two-dimensional hybrid perovskites with high carrier mobility and promoted light adsorption. Materials Today Physics, 2022, 27, 100769.	2.9	3
2199	Highly efficient inverted planar solar cell using formamidinium-based quasi-two dimensional perovskites. Journal of Alloys and Compounds, 2022, 921, 166139.	2.8	6
2200	Inkjet Printing of Quasiâ€2D Perovskite Layers with Optimized Drying Protocol for Efficient Solar Cells. Advanced Materials Technologies, 2022, 7, .	3.0	10
2202	The effect of multiple ion substitutions on halide ion migration in perovskite solar cells. Materials Advances, 2022, 3, 7918-7924.	2.6	9
2203	Rapidly expanding spin-polarized exciton halo in a two-dimensional halide perovskite at room temperature. Science Advances, 2022, 8, .	4.7	6
2204	Recent Advances in Nanostructured Inorganic Hole-Transporting Materials for Perovskite Solar Cells. Nanomaterials, 2022, 12, 2592.	1.9	11
2205	Long-range charge carrier mobility in metal halide perovskite thin-films and single crystals via transient photo-conductivity. Nature Communications, 2022, 13, .	5.8	21
2206	Novel self-assembled two-dimensional layered oxide structure incorporated with Au nanoinclusions towards multifunctionalities. Nano Research, 2023, 16, 1465-1472.	5.8	5
2207	Photoâ€Induced Degradation of 2D Dionâ^Jacobson Perovskites under Continuous Light Illumination. Solar Rrl, 0, , 2200359.	3.1	3
2208	Electronic Disorder Dominates the Charge-Carrier Dynamics in Two-Dimensional/Three-Dimensional Organic–Inorganic Perovskite Heterostructure. Journal of Physical Chemistry C, 2022, 126, 12689-12695.	1.5	7
2209	Perovskite Solar Cells: A Review of the Recent Advances. Coatings, 2022, 12, 1089.	1.2	49
2210	Stabilization and Performance Enhancement Strategies for Halide Perovskite Photocatalysts. Advanced Materials, 2023, 35, .	11.1	31
2211	Phenethylammonium Iodide Passivation Layers for Flexible Planar Perovskite Solar Cells. Energy Technology, 2022, 10, .	1.8	5
2212	Enhanced efficiency and stability of Dion–Jacobson quasi-two-dimensional perovskite solar cells by additive. Journal Physics D: Applied Physics, 2022, 55, 414002.	1.3	2

#	Article	IF	Citations
2213	Layered Hybrid Lead Iodide Perovskites with Short Interlayer Distances. ACS Energy Letters, 2022, 7, 2801-2806.	8.8	8
2214	Influence of the Alkyl Chain Length of (Pentafluorophenylalkyl) Ammonium Salts on Inverted Perovskite Solar Cell Performance. ACS Applied Materials & Interfaces, 0, , .	4.0	3
2215	Two-Dimensional Hybrid Perovskitoid Micro/nanosheets: Colorful Ultralong Phosphorescence, Delayed Fluorescence, and Anisotropic Optical Waveguide. ACS Applied Materials & Interfaces, 2022, 14, 40223-40231.	4.0	11
2216	Tuning Selfâ€Trapped Exciton States via Trivalentâ€Metal Alloying in Leadâ€Free 2D Doubleâ€Perovskites. Laser and Photonics Reviews, 2022, 16, .	4.4	10
2217	Controlling Crystallization of Quasiâ€2D Perovskite Solar Cells: Incorporating Bulky Conjugated Ligands. Advanced Energy Materials, 2023, 13, .	10.2	12
2218	Spaceâ€Resolved Photoresponse in Quasiâ€Twoâ€Dimensional Ruddlesden–Popper Perovskites. Advanced Optical Materials, 2022, 10, .	3.6	4
2219	Perovskite or Not Perovskite? A Deepâ€Learning Approach to Automatically Identify New Hybrid Perovskites from Xâ€ray Diffraction Patterns. Advanced Materials, 2022, 34, .	11.1	18
2221	Regulation of Quantum Wells Width Distribution in 2D Perovskite Films for Photovoltaic Application. Advanced Functional Materials, 2022, 32, .	7.8	29
2222	Electron Transport Layer-Free Ruddlesden–Popper Two-Dimensional Perovskite Solar Cells Enabled by Tuning the Work Function of Fluorine-Doped Tin Oxide Electrodes. Crystals, 2022, 12, 1090.	1.0	0
2223	Interfacial Embedding for Highâ€Efficiency and Stable Methylammoniumâ€Free Perovskite Solar Cells with Fluoroarene Hydrazine. Advanced Energy Materials, 2022, 12, .	10.2	30
2224	Chiral Lead-Free Double Perovskite Single-Crystalline Microwire Arrays for Anisotropic Second-Harmonic Generation. ACS Applied Materials & Interfaces, 2022, 14, 39451-39458.	4.0	18
2225	Exploring the Steric Hindrance of Alkylammonium Cations in the Structural Reconfiguration of Quasiâ€2D Perovskite Materials Using a Highâ€throughput Experimental Platform. Advanced Functional Materials, 2022, 32, .	7.8	12
2226	Monolithic Integration of Perovskite Photoabsorbers with IGZO Thinâ€Film Transistor Backplane for Phototransistorâ€Based Image Sensor. Advanced Materials Technologies, 2023, 8, .	3.0	10
2227	Multidimensional Perovskites for High Detectivity Photodiodes. Advanced Materials, 2022, 34, .	11.1	12
2228	Charge Transfer Dynamics of Two-Dimensional Ruddlesden Popper Perovskite in the Presence of Short-Chain Aromatic Thiol Ligands. Journal of Physical Chemistry C, 2022, 126, 14590-14597.	1.5	6
2229	Perovskite superlattices with efficient carrier dynamics. Nature, 2022, 608, 317-323.	13.7	66
2230	Low-dimensional Sn-based perovskites: Evolution and future prospects of solar cells. CheM, 2022, 8, 2939-2960.	5.8	20
2231	Performance and stability enhancement of mixed dimensional bilayer inverted perovskite (BA2PbI4/MAPbI3) solar cell using drift-diffusion model. Sustainable Chemistry and Pharmacy, 2022, 29, 100807.	1.6	4

#	Article	IF	CITATIONS
2232	One-step constructed dual interfacial layers for stable perovskite solar cells. Materials Today Physics, 2022, 27, 100796.	2.9	3
2233	Improving the performance of 2D perovskite solar cells by carrier trappings and minifying the grain boundaries. Nano Energy, 2022, 102, 107673.	8.2	9
2234	Dion-Jacobson phase lead-free halide (PDA)MX4 (M=Sn/Ge; X=I/Br/Cl) perovskites: A first-principles theory. Journal of Solid State Chemistry, 2022, 315, 123449.	1.4	2
2235	Systematic study of optoelectronic and thermoelectric properties of new lead-free halide double perovskites A2KGal6(AÂ=ÂCs, Rb) for solar cell applications via ab-initio calculations. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 285, 115957.	1.7	8
2236	A new strategy for improving quantitative detection of SERS: Using CH3NH3PbBr3 as a substrate to narrow the FWHM of adsorbed molecular spectrum. Applied Surface Science, 2022, 603, 154424.	3.1	0
2237	Constructing 2D passivation layer on perovskites based on 3-chlorobenzylamine enables efficient and stable perovskite solar cells. Journal of Alloys and Compounds, 2022, 926, 166891.	2.8	10
2238	Methylamineâ€Assisted Preparation of Ruddlesdenâ€Popper Perovskites for Stable Detection and Imaging of Xâ€Rays. Advanced Optical Materials, 2022, 10, .	3.6	14
2239	Heterojunction <i>In Situ</i> Constructed by a Novel Amino Acid-Based Organic Spacer for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 40902-40912.	4.0	7
2240	The effect of spacer cations on optoelectronic properties of two-dimensional perovskite based on first-principles calculations. Surfaces and Interfaces, 2022, 34, 102343.	1.5	3
2241	Two-dimensional hybrid double perovskite (PA)4AgBiBr8 single crystals for X-ray detection. Optical Materials, 2022, 133, 112972.	1.7	7
2242	Cesium-doped Dion-Jacobson 2D perovskites for highly stable photovoltaics with an 18.3% efficiency. Nano Energy, 2022, 103, 107822.	8.2	10
2243	Structural and optoelectronic properties of Ge- and Si -based inorganic two dimensional Ruddlesden Popper halide perovskites. Materials Today Communications, 2022, 33, 104368.	0.9	1
2244	Phase control of quasi-2D perovskite thin films by adding MAPbI ₃ in the precursor solution. Dalton Transactions, 2022, 51, 13919-13927.	1.6	0
2245	Dimensional Tailoring Endows Tin Halide Perovskite Solar Cells with High Efficiency and Stability. , 0, 1, .		2
2246	Reversible thermochromism, temperature-dependent conductivity and high stability for a laminated bismuth(<scp>iii</scp>)–silver(<scp>i</scp>) hybrid double perovskite. Journal of Materials Chemistry C, 2022, 10, 12574-12581.	2.7	5
2247	Enhancing two-dimensional perovskite photodetector performance through balancing carrier density and directional transport. Journal of Materials Chemistry A, 2022, 10, 21044-21052.	5.2	8
2248	Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives. , 2022, 1, 220006-220006.		17
2249	A powder XRD, solid state NMR and calorimetric study of the phase evolution in mechanochemically synthesized dual cation (Cs _{<i>x</i>} (CH ₃ NH ₃) _{1â[^]<i>x</i>})PbX ₃ lead halide perovskite systems. Physical Chemistry Chemical Physics. 2022. 24. 18004-18021.	1.3	2

ARTICLE IF CITATIONS Femtosecond induced third-order optical nonlinearity in guasi 2D Ruddlesden–Popper perovskite film 2250 2.6 8 deciphered using Z-scan. Materials Advances, 2022, 3, 8211-8219. Governing PbI₆octahedral frameworks for high-stability perovskite solar modules. 15.6 Energy and Environmental Science, 2022, 15, 4404-4413. Structural and compositional properties of 2D CH₃NH₃Pbl₃ 2252 1.7 11 hybrid halide perovskite: a DFT study. RSC Advances, 2022, 12, 25924-25931. Organic-Inorganic Hybrid Quasi-2d Perovskites Incorporated with Fluorinated Additive for Efficient 0.4 and Stable Four-Terminal Tandem Solar Cells. SSRN Electronic Journal, 0, , . Decreasing toxicity and increasing photoconversion efficiency by Sn-substitution of Pb in 5-ammonium valeric acid-based two-dimensional hybrid perovskite materials. Physical Chemistry Chemical Physics, 2254 1.33 2022, 24, 23226-23235. Facet Engineering for Stable, Efficient Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 3120-3128. 8.8 Configurable Organic Charge Carriers toward Stable Perovskite Photovoltaics. Chemical Reviews, 2256 23.0 26 2022, 122, 14954-14986. Effect of Dimensionality on Photoluminescence and Dielectric Properties of Imidazolium Lead 1.9 Bromides. Inorganic Chemistry, 2022, 61, 15225-15238. High Efficiency Quasiâ€2D Ruddlesden–Popper Perovskite Solar Cells. Advanced Energy Materials, 2022, 2258 10.2 19 12,. In Situ Observing and Tuning the Crystal Orientation of Two-Dimensional Layered Perovskite via the 2259 4.5 Chlorine Additive. Nano Letters, 2022, 22, 7826-7833. Spacer Engineering for 2D Ruddlesden–Popper Perovskites with an Ultralong Carrier Lifetime of Over 2260 17 8.8 18 Î¹/4s Enable Efficient Solar Cells. ACS Energy Letters, 2022, 7, 3656-3665. Molecular Engineering of Peripheral Substitutions to Construct Efficient Acridine Core-Based Hole Transport Materials for Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2022, 14, 4.0 44450-44459. 2262 Recent Development of Lead-Free Perovskite Solar Cells., 0, , . 0 Quantum Tunneling Effect in CsPbBr₃ Multiple Quantum Wells. Nano Letters, 2022, 22, 2263 4.5 7936-7943. Deciphering modes of long-range energy transfer in perovskite crystals using confocal excitation and 2264 1.1 0 wide-field fluorescence spectral imaging. Methods and Applications in Fluorescence, 2022, 10, 044013. Inhibiting the Growth of 1D Intermediates in Quasiâ€2D Ruddlesdenâ''Popper Perovskites. Advanced Functional Materials, 2022, 32, . Band Alignment Boosts over 17% Efficiency Quasi-2D Perovskite Solar Cells via Bottom-Side Phase 2266 8.8 17 Manipulation. ACS Energy Letters, 2022, 7, 3187-3196. Poly(diarylfluorene) Deep-Blue Polymer Light-Emitting Diodes Based on Submicrometer-Scale 2.2 Morphological Films Induced by Trace Î²-Conformation. Macromolecules, 2022, 55, 8084-8094.

#	Article	IF	CITATIONS
2268	A Multifunctional Selfâ€Assembled Monolayer for Highly Luminescent Pureâ€Blue Quasiâ€2D Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	3.6	9
2269	Assessing the Drawbacks and Benefits of Ion Migration in Lead Halide Perovskites. ACS Energy Letters, 2022, 7, 3401-3414.	8.8	46
2270	Patterned 2D Perovskite Film with a Preferably Orientated 3D-Like Phase for Efficient Perovskite Solar Cells. Chemistry of Materials, 2022, 34, 8446-8455.	3.2	2
2271	Quasiâ€2D Ruddlesden–Popper Perovskites with Low Trapâ€States for High Performance Flexible Selfâ€Powered Ultraviolet Photodetectors. Advanced Optical Materials, 2022, 10, .	3.6	7
2272	Thermally Regulated Energy Loss in Dion–Jacobson Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	5
2273	Perovskites for Photoabsorbers and Solar Cells and Comparison with 3D MAPbI3. Solar, 2022, 2, 385-400.	0.9	5
2274	Intrinsic Halide Immiscibility in 2D Mixed-Halide Ruddlesden–Popper Perovskites. ACS Energy Letters, 2022, 7, 3423-3431.	8.8	13
2275	Direct Characterization of Typeâ€I Band Alignment in 2D Ruddlesden–Popper Perovskites. Advanced Energy Materials, 2022, 12, .	10.2	12
2276	Influence of Inorganic Layer Thickness on Methylammonium Dynamics in Hybrid Perovskite Derivatives. Chemistry of Materials, 2022, 34, 8316-8323.	3.2	4
2277	Enhancing the Stability and Performance of Two-Dimensional Perovskite Solar Cells via Double-Step Homogeneous Precursor Mixing. ACS Applied Energy Materials, 2022, 5, 12415-12426.	2.5	1
2278	Visible-light irradiation improved resistive switching characteristics of a 2D Cs2Pb(SCN)2l2-Based memristor device. Ceramics International, 2023, 49, 4909-4918.	2.3	1
2279	Layer-number tailoring and template-induced orientation control of 2D perovskites on 3D perovskites by adopting the Dion–Jacobson phase. Applied Physics Express, 2022, 15, 111002.	1.1	2
2280	Organic Additive Engineering to Grow Highâ€Quality Inorganic CsPbX ₃ Perovskite Films for Efficient and Stable Solar Cells. Solar Rrl, 2022, 6, .	3.1	7
2281	Structural, Electronic, and Optical Properties of Cs ₂ SnX ₄ (X = Cl, Br, and I) Multilayers: A Density Functional Theory Study. Physica Status Solidi (B): Basic Research, 2023, 260, .	0.7	2
2282	Mixed 2D-Dion—Jacobson/3D Sn-Pb alloyed perovskites for efficient photovoltaic solar devices. Nano Research, 2023, 16, 3142-3148.	5.8	7
2283	Vertically oriented 2D layered perovskite-based resistive random access memory (ReRAM) crossbar arrays. Current Applied Physics, 2022, 44, 46-54.	1.1	1
2284	Fluorinated spacers: an effective strategy to tailor the optoelectronic properties and stability of metal-halide perovskites for photovoltaic applications. Journal of Materials Chemistry C, 2022, 10, 16949-16982.	2.7	3
2285	Centimeter-size single crystal of a lead-free double perovskite for broad-spectrum polarization-sensitive detection. Journal of Materials Chemistry C, 2022, 10, 18063-18068.	2.7	4

#	Article	IF	CITATIONS
2286	From 3.8% to over 23.8% Power Conversion Efficiency: Commercial Perovskite Solar Cells, Significant Manufacturing Techniques, and Future Prospects. , 2022, , .		1
2287	Centimeter-sized single crystals of 2D hybrid perovskites toward ultraviolet photodetection with anisotropic photoresponse. Materials Chemistry Frontiers, 2022, 6, 3598-3604.	3.2	5
2288	Tailoring the Quantum Well Structure and Distribution of Reduced-Dimensional Perovskites for Charge Dynamics Optimization. ACS Energy Letters, 2022, 7, 3917-3926.	8.8	2
2289	Effects of Ammonium and Alkali Metal Additives on Anisotropic Photoconductivities and Solar Cell Efficiencies of Two-Dimensional Lead Halide Perovskites. Journal of Physical Chemistry C, 2022, 126, 17894-17903.	1.5	2
2290	UV-Assisted Conversion of 2D Ruddlesden–Popper Iodide Perovskite Nanoplates into Stable 3D MAPbI ₃ Nanorods. Journal of Physical Chemistry C, 2022, 126, 18057-18066.	1.5	5
2291	Graphene/Cs ₂ PbI ₂ Cl ₂ van der Waals heterostructure with tunable Schottky barriers and contact types. Journal of Applied Physics, 2022, 132, 165101.	1.1	0
2292	Terahertz Modulation and Ultrafast Characteristic of Two-Dimensional Lead Halide Perovskites. Nanomaterials, 2022, 12, 3559.	1.9	3
2293	A-site cation engineering enables oriented Ruddlesden-Popper perovskites towards efficient solar cells. Science China Chemistry, 2022, 65, 2468-2475.	4.2	11
2294	Excitons at the Phase Transition of 2D Hybrid Perovskites. ACS Photonics, 2022, 9, 3609-3616.	3.2	16
2295	Direct observation of photoinduced carrier blocking in mixed-dimensional 2D/3D perovskites and the origin. Nature Communications, 2022, 13, .	5.8	16
2296	Elucidating the Origins of High Preferential Crystal Orientation in Quasiâ€2D Perovskite Solar Cells. Advanced Materials, 2023, 35, .	11.1	8
2297	Ultrafast Excitonic Response in Two-Dimensional Hybrid Perovskites Driven by Intense Midinfrared Pulses. Physical Review Letters, 2022, 129, .	2.9	5
2298	Oriented Lowâ€n Ruddlesdenâ€Popper Formamidiniumâ€Based Perovskite for Efficient and Air Stable Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	25
2299	Using the Diamagnetic Coefficients to Estimate the Reduced Effective Mass in 2D Layered Perovskites: New Insight from High Magnetic Field Spectroscopy. International Journal of Molecular Sciences, 2022, 23, 12531.	1.8	0
2300	Structural Dimensionality Dependence of the Band Gap in A _{<i>n</i>+1} B _{<i>n</i>} X _{3<i>n</i>+1} Ruddlesden–Popper Perovskites: A Global Picture. Journal of Physical Chemistry Letters, 2022, 13, 9632-9641.	2.1	2
2301	Two-dimensional halide perovskites: A review on their orientations. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	2.0	4
2302	Chlorine-Rich Substitution Enabled 2D3D Hybrid Perovskites for High Efficiency and Stability in Sn-Based Fiber-Shaped Perovskite Solar Cells. Advanced Fiber Materials, 2023, 5, 296-311.	7.9	7
2303	Additive Engineering for Highâ€Performance Twoâ€Đimensional Dion–Jacobson Pb–Sn Alloyed Perovskite Solar Cells. Energy Technology, 2022, 10, .	1.8	3

\sim			<u> </u>	
	ITAT	ION	REPORT	

#	Article	IF	CITATIONS
2304	Patterned 2D Ferroelectric Perovskite Single-Crystal Arrays for Self-Powered UV Photodetector Boosted by Combining Ferro-Pyro-Phototronic and Piezo-Phototronic Effects. Nano Letters, 2022, 22, 8241-8249.	4.5	16
2305	Sulfonium ationsâ€Assisted Intermediate Engineering for Quasiâ€2D Perovskite Solar Cells. Advanced Materials, 2023, 35, .	11.1	11
2306	Are Mixed-Halide Ruddlesden–Popper Perovskites Really Mixed?. ACS Energy Letters, 2022, 7, 4242-4247.	8.8	13
2307	Fast and Highly Sensitive Photodetectors Based on Pbâ€Free Snâ€Based Perovskite with Additive Engineering. Advanced Optical Materials, 2023, 11, .	3.6	13
2308	A high-performance and broadband two-dimensional perovskite-based photodetector via van der Waals integration. Applied Physics Letters, 2022, 121, .	1.5	3
2309	Short Aromatic Diammonium Ions Modulate Distortions in 2D Lead Bromide Perovskites for Tunable White-Light Emission. Chemistry of Materials, 2022, 34, 9685-9698.	3.2	11
2310	Orbital Interactions between the Organic Semiconductor Spacer and the Inorganic Layer in Dion–Jacobson Perovskites Enable Efficient Solar Cells. Advanced Materials, 2023, 35, .	11.1	25
2311	Tunable photoluminescence and enhanced stability in two-dimensional (C3H7NH3)2(MA)n-1PbnBr3n+1 perovskite colloidal nanocrystals. Optical Materials, 2022, 133, 113072.	1.7	1
2312	Design of two-dimensional hybrid organic–inorganic perovskite for solar cell. Energy Reports, 2022, 8, 538-544.	2.5	3
2313	Nondestructive Post-Treatment Enabled by <i>In Situ</i> Generated 2D Perovskites Derived from Multi-ammonium Molecule Vapor for High-Performance 2D/3D Bilayer Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 51053-51065.	4.0	3
2314	Fabric computing: Concepts, opportunities, and challenges. Innovation(China), 2022, 3, 100340.	5.2	12
2315	Recent progress and future prospects on halide perovskite nanocrystals for optoelectronics and beyond. IScience, 2022, 25, 105371.	1.9	10
2316	Photo-dynamics in 2D materials: Processes, tunability and device applications. Physics Reports, 2022, 993, 1-70.	10.3	4
2317	Organic spacer engineering of Ruddlesden-Popper perovskite materials toward efficient and stable solar cells. Chemical Engineering Journal, 2023, 453, 139790.	6.6	5
2318	Crystallization and defects regulation of efficient inverted perovskite solar cells via glycine ethyl ester hydrochloride. Applied Surface Science, 2023, 608, 155269.	3.1	3
2319	Two birds with one stone: Simultaneous realization of constructed 3D/2D heterojunction and p-doping of hole transport layer for highly efficient and stable perovskite solar cells. Chemical Engineering Journal, 2023, 453, 139721.	6.6	12
2320	Methylammonium chloride or guanidinium chloride as an additive to improve performance of 2D alternating cation perovskite solar cells: A direct comparison. Journal of Alloys and Compounds, 2023, 933, 167671.	2.8	3
2321	Spatially Resolved Local Electronic Properties of 2D Lead Halide Perovskite Single Crystals Studied by Xâ€Ray Photoemission Electron Microscopy. Solar Rrl, 2023, 7, .	3.1	2

#	Article	IF	CITATIONS
2322	Amplifying the Performance and Stability of Perovskite Solar Cells Using Fluorinated Salt as the Surface Passivator. Energy Technology, 2023, 11, .	1.8	4
2323	Dopant-Induced Slow Spin Relaxation in CsPbBr ₃ Perovskite Nanocrystals. ACS Energy Letters, 2022, 7, 4325-4332.	8.8	5
2324	Stable and broadband photodetectors based on 3D/2D perovskite heterostructures with surface passivation. Applied Physics Letters, 2022, 121, .	1.5	8
2325	Ground-state structures, electronic structure, transport properties and optical properties of Ca-based anti-Ruddlesden-Popper phase oxide perovskites. Physical Review Materials, 2022, 6, .	0.9	3
2326	Solvent Engineering of Ionic Liquids for Stable and Efficient Perovskite Solar Cells. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	4
2327	<i>n</i> â€Involved Optimization of Outâ€ofâ€Plane Optoelectronic Performances in Nanoscale Ruddlesden–Popper Perovskite. Advanced Electronic Materials, 0, , 2200893.	2.6	1
2328	Two-dimensional perovskite SrNbO2N with Zr doping for accelerating photoelectrochemical water splitting. Journal of Materials Science and Technology, 2023, 142, 176-184.	5.6	3
2329	Surface Decoration of Peptide Nanoparticles Enables Efficient Therapy toward Osteoporosis and Diabetes. Advanced Functional Materials, 0, , 2210627.	7.8	1
2330	"€-Conjugated Carbazole Cations Enable Wet-Stable Quasi-2D Perovskite Photovoltaics. ACS Energy Letters, 2022, 7, 4451-4458.	8.8	15
2331	Rationally Designed Cu-Ion Implantation-Improved 2D Perovskite BDAPbI ₄ Photodetector. Journal of Physical Chemistry C, 2022, 126, 19056-19064.	1.5	3
2332	Dimethylammonium Cation-Induced 1D/3D Heterostructure for Efficient and Stable Perovskite Solar Cells. Molecules, 2022, 27, 7566.	1.7	1
2333	Spontaneous Formation of a Ligand-Based 2D Capping Layer on the Surface of Quasi-2D Perovskite Films. ACS Applied Materials & Interfaces, 2022, 14, 51910-51920.	4.0	2
2334	The Electronic Properties of a 2D Ruddlesdenâ€Popper Perovskite and its Energy Level Alignment with a 3D Perovskite Enable Interfacial Energy Transfer. Advanced Functional Materials, 2023, 33, .	7.8	14
2335	High performance flexible photodetector based on 0D-2D perovskite heterostructure. , 2023, 2, 100032.		0
2336	Onset of vacancy-mediated high activation energy leads to large ionic conductivity in two-dimensional layered <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi>Cs</mml:mi> <mml:m Ruddlesden-Popper halide perovskite. Physical Review Materials, 2022, 6, .</mml:m </mml:msub></mml:mrow></mml:math 	ın>29/mm	l:mn>
2337	Mapping structure heterogeneities and visualizing moisture degradation of perovskite films with nano-focus WAXS. Nature Communications, 2022, 13, .	5.8	10
2338	Epitaxial growth of the first two members of the Ba <i>n</i> +1In <i>n</i> O2.5 <i>n</i> +1 Ruddlesden–Popper homologous series. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	0.9	5
2339	Efficient vertical charge transport in polycrystalline halide perovskites revealed by four-dimensional tracking of charge carriers. Nature Materials, 2022, 21, 1388-1395.	13.3	17

#	Article	IF	CITATIONS
2340	Efficient Solar Cell Based on Semitransparent Film of Two-Dimensional Alternating Cation Perovskite. IEEE Journal of Photovoltaics, 2023, 13, 70-76.	1.5	1
2341	Finite perovskite hierarchical structures <i>via</i> ligand confinement leading to efficient inverted perovskite solar cells. Energy and Environmental Science, 2023, 16, 557-564.	15.6	20
2342	Non-preheating fabricated semitransparent quasi-2D perovskite solar cells. Chemical Communications, 0, , .	2.2	1
2343	The race between complicated multiple cation/anion compositions and stabilization of FAPbI ₃ for halide perovskite solar cells. Journal of Materials Chemistry C, 2023, 11, 2449-2468.	2.7	3
2344	Ultrarapid crystallization of low-dimensional perovskite with excellent stability for future high-throughput fabrication. Journal of Power Sources, 2023, 556, 232475.	4.0	3
2345	Improved mobility and photovoltaic performance of two-dimensional Ruddlesdenâ^Popper (ThMA)2(MA)2M3I10 perovskites applied in perovskite solar cells. Journal of Alloys and Compounds, 2023, 937, 168464.	2.8	3
2346	Lead-free Dion–Jacobson halide perovskites CsMX2Y2 (M = Sb, Bi and X, Y = Cl, Br, I) used for optoelectronic applications via first principle calculations. Journal of Physics and Chemistry of Solids, 2023, 174, 111157.	1.9	8
2347	Efficient photosensitized singlet oxygen generation in two-dimensional perovskite nanosheets via energy transfer. Applied Surface Science, 2023, 613, 155991.	3.1	4
2348	On current technology for light absorber materials used in highly efficient industrial solar cells. Renewable and Sustainable Energy Reviews, 2023, 173, 113027.	8.2	9
2349	2D Materials for Photovoltaics. , 2022, , 1-51.		0
2350	Supramolecular control in hybrid perovskite photovoltaics. Photochemistry, 2022, , 346-370.	0.2	0
2351	Secondary Antiâ€ S olvent Treatment for Efficient 2D Dion–Jacobson Perovskite Solar Cells. Small, 2023, 19, .	5.2	8
2352	Improving intrinsic stability for perovskite/silicon tandem solar cells. Science China: Physics, Mechanics and Astronomy, 2023, 66, .	2.0	7
2353	Halogen's effect on the photoelectric properties of two-dimensional organic–inorganic hybrid perovskite (MTEA)2MAPb2X7 (X = Cl, Br, l) with a Ruddlesden–Popper structure. Applied Physics Letters, 2022, 121, .	1.5	5
2354	Quasi-One-Dimensional Metallicity in Compressed CsSnI ₃ . Journal of the American Chemical Society, 2022, 144, 23595-23602.	6.6	2
2355	Thermal evaporation and hybrid deposition of perovskite solar cells and mini-modules. Joule, 2022, 6, 2692-2734.	11.7	22
2356	Fabrication of Highâ€Performance Devices on Waterâ€Soluble Lead Halide Perovskites Using Waterâ€Based Photolithography. Advanced Materials Interfaces, 0, , 2201749.	1.9	1
2357	Pure Tin Halide Perovskite Solar Cells: Focusing on Preparation and Strategies. Advanced Energy Materials, 2023, 13, .	10.2	16

#	Article	IF	Citations
2358	Thin Film Solution Processable Perovskite Solar Cell. , 0, , .		1
2359	Recent progress in perovskite solar cells: material science. Science China Chemistry, 2023, 66, 10-64.	4.2	53
2360	Super hydrophilic, ultra bubble repellent substrate for pinhole free Dion–Jacobson perovskite solar cells. Applied Physics Letters, 2022, 121, .	1.5	5
2361	Tailoring Two-Dimensional Ruddlesden–Popper Perovskite via 1D Perovskitoid Enables Efficient and Stable Solar Cells. ACS Energy Letters, 2023, 8, 637-646.	8.8	7
2362	Illustrating the Key Role of Hydrogen Bonds in Fabricating Pure-Phase Two-Dimensional Perovskites. Journal of Physical Chemistry C, 2022, 126, 21857-21863.	1.5	0
2363	Inorganic lead-based halide perovskites: From fundamental properties to photovoltaic applications. Materials Today, 2022, 61, 191-217.	8.3	25
2364	Photothermally induced, reversible phase transition in methylammonium lead triiodide. Matter, 2023, 6, 460-474.	5.0	3
2365	Holy Water: Photoâ€Brightening in Quasiâ€2D Perovskite Films under Ambient Enables Highly Performing Lightâ€Emitting Diodes. Advanced Functional Materials, 2023, 33, .	7.8	3
2366	Composition Engineering of Perovskite Single Crystals for Highâ€Performance Optoelectronics. Advanced Functional Materials, 2023, 33, .	7.8	17
2367	Transient X-ray Diffraction Reveals Nonequilibrium Phase Transition in Thin Films of CH ₃ NH ₃ PbI ₃ Perovskite. ACS Energy Letters, 2023, 8, 691-698.	8.8	1
2368	Two-Dimensional Halide Perovskite Materials Featuring 2-(Methylthio)ethylamine Organic Spacers for Efficient Solar and Thermal Energy Harvesting. Journal of Physical Chemistry C, 2022, 126, 21518-21526.	1.5	1
2369	Reduced <i>E</i> _{loss} of Planar-Structured Carbon Counter Electrode-Based CsPbI ₃ Solar Cells with Tetrabutylammonium Halide-Modified SnO ₂ . ACS Applied Energy Materials, 0, , .	2.5	0
2370	Challenges and strategies toward long-term stability of lead-free tin-based perovskite solar cells. Communications Materials, 2022, 3, .	2.9	36
2371	Metal Halide Perovskite Alloy: Fundamental, Optoelectronic Properties and Applications. Advanced Photonics Research, 2023, 4, .	1.7	4
2372	Rapid crystallization-driven high-efficiency phase-pure deep-blue Ruddlesden–Popper perovskite light-emitting diodes. Advanced Photonics, 2023, 5, .	6.2	8
2373	Biomolecules incorporated in halide perovskite nanocrystals: synthesis, optical properties, and applications. Nanoscale, 2023, 15, 2997-3031.	2.8	2
2374	Phaseâ€Modulated Multidimensional Perovskites for Highâ€&ensitivity Selfâ€Powered UV Photodetectors. Small, 2023, 19, .	5.2	19
2375	Thermodynamic Origin of the Photostability of the Two-Dimensional Perovskite PEA ₂ Pb(I _{1–<i>x</i>} Br _{<i>x</i>}) ₄ . ACS Energy Letters, 2023, 8, 943-949.	8.8	9

#	Article	IF	CITATIONS
2376	Multi-functional application potential of Ruddlesden-Popper perovskite-based heterostructure PtSe2/Cs2PbI4 with tunable electronic properties. Journal of Physics Condensed Matter, 0, , .	0.7	0
2377	Highly Efficient Perovskite Solar Cells with Light Management of Surface Antireflection. Bulletin of the Chemical Society of Japan, 2023, 96, 148-155.	2.0	2
2378	Two-dimensional organic–inorganic hybrid perovskite ferroelastics: (PEA) ₂ [CdCl ₄], (3-FPEA) ₂ [CdCl ₄], and (4-FPEA) ₂ [CdCl ₄]. CrystEngComm, 2023, 25, 1270-1275.	1.3	8
2379	(C ₅ N ₂ H ₁₄)GeBr ₄ : A 2D Organic Germanium Bromide Perovskite with Strong Orange Photoluminescence Properties. Inorganic Chemistry, 2023, 62, 823-829.	1.9	7
2380	The interplay of organic spacer and small cation for efficient Dionâ€Jacobson perovskite solar cells. Solar Rrl, 0, , .	3.1	4
2381	Upscaling of Carbon-Based Perovskite Solar Module. Nanomaterials, 2023, 13, 313.	1.9	9
2382	Stabile fluoro-benzene-based spacer for lead-free Dion–Jacobson perovskites. RSC Advances, 2023, 13, 1185-1193.	1.7	3
2383	High-member low-dimensional Sn-based perovskite solar cells. Science China Chemistry, 2023, 66, 459-465.	4.2	22
2384	Room temperature two-dimensional lead halide perovskite thin-film transistors with high stability. Cell Reports Physical Science, 2023, 4, 101217.	2.8	4
2385	Light-Induced Structural Dynamics and Charge Transport in Layered Halide Perovskite Thin Films. Nano Letters, 2023, 23, 429-436.	4.5	5
2387	Spinel ferrites/metal oxide nanocomposites for waste water treatment. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	13
2388	Ultrathin Light-Emitting Diodes with External Efficiency over 26% Based on Resurfaced Perovskite Nanocrystals. ACS Energy Letters, 2023, 8, 927-934.	8.8	36
2389	Stability challenges for the commercialization of perovskite–silicon tandem solar cells. Nature Reviews Materials, 2023, 8, 261-281.	23.3	77
2390	Critical Influence of Organic A′‣ite Ligand Structure on 2D Perovskite Crystallization. Small, 2023, 19, .	5.2	9
2391	Two-dimensional H– and F–BX (X = O, S, Se, and Te) photocatalysts with ultrawide bandgap and enhanced photocatalytic performance for water splitting. RSC Advances, 2023, 13, 2301-2310.	1.7	0
2392	Incorporating formamidinium into 4-fluoro-phenethylammonium based quasi-2D perovskite films and their application in n-i-p perovskite solar cells. Optical Materials, 2023, 136, 113453.	1.7	2
2393	Humidityâ€Insensitive, Largeâ€Areaâ€Applicable, Hotâ€Airâ€Assisted Ambient Fabrication of 2D Perovskite Solar Cells. Advanced Materials, 2023, 35, .	11.1	5
2394	Intermolecular Interactions of A-Site Cations Modulate Stability of 2D Metal Halide Perovskites. ACS Energy Letters, 2023, 8, 748-752.	8.8	10

#	Article	IF	CITATIONS
2395	Regulating Radial Morphology in Hot-Casting Two-Dimensional Ruddlesden–Popper Perovskite Film Growth for High-Efficient Photovoltaics. ACS Applied Energy Materials, 2023, 6, 1585-1594.	2.5	3
2396	Dimensional Tuning in Leadâ€Free Tin Halide Perovskite for Solar Cells. Advanced Energy Materials, 2023, 13, .	10.2	21
2397	Mixed valence Sn doped (CH ₃ NH ₃) ₃ Bi ₂ Br ₉ produced by mechanochemical synthesis. Physical Chemistry Chemical Physics, 2023, 25, 4563-4569.	1.3	0
2398	Nano-inks for photovoltaics. , 2023, , 413-426.		0
2399	Recent progress in layered metal halide perovskites for solar cells, photodetectors, and field-effect transistors. Nanoscale, 2023, 15, 4219-4235.	2.8	8
2400	Challenges and future prospects. , 2023, , 447-484.		1
2401	Ultrafast relaxation of lattice distortion in two-dimensional perovskites. Nature Physics, 2023, 19, 545-550.	6.5	19
2402	Cs ₂ XI ₂ Cl ₂ (<i>X</i> = Pb, Sn) Allâ€Inorganic Layered Ruddlesden–Popper Mixed Halide Perovskite Single Junction and Tandem Solar Cells: Ultraâ€High Carrier Mobility and Excellent Power Conversion Efficiency. Energy Technology, 2023, 11, .	1.8	3
2403	Organic–Inorganic Hybrid Alkali Copper lodides for Bright Emission across the Visible Spectrum. Chemistry of Materials, 2023, 35, 1318-1324.	3.2	6
2404	An Ultrasensitive Sandwiched Heterostructure Planar Photodetector with Gradient Quasiâ€⊉D Perovskite. Advanced Electronic Materials, 2023, 9, .	2.6	1
2405	ls Cu _{3–<i>x</i>} P a Semiconductor, a Metal, or a Semimetal?. Chemistry of Materials, 2023, 35, 1259-1272.	3.2	6
2406	The Influence of Different Recombination Pathways on Hysteresis in Perovskite Solar Cells with Ion Migration. Inorganics, 2023, 11, 52.	1.2	0
2407	Impact of AlO _{<i>x</i>} Dielectric Layer on Performance in Two-Dimensional Perovskite Photovoltaic Devices. ACS Applied Energy Materials, 2023, 6, 1208-1217.	2.5	0
2408	Structural effects on halide perovskite properties. , 2023, , 57-89.		0
2409	Dredging the Chargeâ€Carrier Transfer Pathway for Efficient Lowâ€Dimensional Ruddlesdenâ€Popper Perovskite Solar Cells. Angewandte Chemie, 2023, 135, .	1.6	3
2410	Dredging the Chargeâ€Carrier Transfer Pathway for Efficient Lowâ€Dimensional Ruddlesdenâ€Popper Perovskite Solar Cells. Angewandte Chemie - International Edition, 2023, 62, .	7.2	17
2411	Lead-free halide perovskites. , 2023, , 187-237.		0
2412	Pressure-induced distinct excitonic properties of 2D perovskites with isomeric organic molecules for spacer cations. Nanoscale, 2023, 15, 6234-6242.	2.8	2

#	Article	IF	CITATIONS
2413	All-inorganic 2D/3D Cs _{<i>x</i>+2} Pb _{<i>x</i>+1} (SCN) ₂ (I/Br) _{3<i>x</i>+2} perovskites. New Journal of Chemistry, 2023, 47, 6639-6644.	1.4	0
2414	Lead-free 2D MASnBr ₃ and Ruddlesden–Popper BA ₂ MASn ₂ Br ₇ as light harvesting materials. RSC Advances, 2023, 13, 7939-7951.	1.7	1
2415	Tuning Octahedral Tilting by Doping to Prevent Detrimental Phase Transition and Extend Carrier Lifetime in Organometallic Perovskites. Journal of the American Chemical Society, 2023, 145, 5393-5399.	6.6	10
2416	Excitation-Wavelength-Dependent Emission Behavior in (NH ₄) ₂ SnCl ₆ via Sb ³⁺ Dopant. Journal of Physical Chemistry Letters, 2023, 14, 1460-1469.	2.1	16
2417	Two-dimensional materials for boosting the performance of perovskite solar cells: Fundamentals, materials and devices. Materials Science and Engineering Reports, 2023, 153, 100727.	14.8	5
2418	Controllable conduction band-edge reconfiguration in quasi-2D perovskites enabled by dimensional engineering for encouraging electron-hole separation. Chemical Engineering Journal, 2023, 465, 142866.	6.6	3
2419	Long-chain alkylammonium organic–inorganic hybrid perovskite for high performance rechargeable aluminon-ion battery. Nano Energy, 2023, 110, 108273.	8.2	1
2420	Optical properties and mechanical induced phase transition of CsPb2Br5 and CsPbBr3 nanocrystals. Journal of Alloys and Compounds, 2023, 947, 169439.	2.8	1
2421	Low-dimensional perovskite modified 3D structures for higher-performance solar cells. Journal of Energy Chemistry, 2023, 81, 389-403.	7.1	8
2422	Broadband Nonlinear Optical Modulator With 2D Organic-Inorganic Hybrid Perovskite Nanocrystals. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-8.	1.9	3
2423	The role of hydrophobic molecules in the optoelectronical attributes of triple-cation perovskite solar cells. Synthetic Metals, 2023, 295, 117323.	2.1	4
2424	Three- and two-dimensional mixed metal halide perovskites for high-performance photovoltaics. Organic Electronics, 2023, 118, 106796.	1.4	0
2425	Enhanced stability of carbon-based perovskite solar cells by using n-butylamine to assemble 2D capping layer. Organic Electronics, 2023, 115, 106757.	1.4	1
2426	Dual-functional electrostatic self-assembly nanoparticles enable suppressed defects and improved charge transport in perovskite optoelectronic devices. Chemical Engineering Journal, 2023, 459, 141559.	6.6	4
2427	Instability of solution-processed perovskite films: origin and mitigation strategies. Materials Futures, 2023, 2, 012102.	3.1	11
2428	Intermediate phase assisted sequential deposition of reverseâ€graded quasiâ€ <scp>2D</scp> alternating cation perovskites for <scp>MAâ€free</scp> perovskite solar cells. InformaÄnÃ-Materiály, 2023, 5, .	8.5	5
2429	Highly Efficient and Stable FAâ€Based Quasiâ€2D Ruddlesden–Popper Perovskite Solar Cells by the Incorporation of βâ€Fluorophenylethanamine Cations. Advanced Materials, 2023, 35, .	11.1	23
2430	Graded 2D/3D Perovskite Hetero-Structured Films with Suppressed Interfacial Recombination for Efficient and Stable Solar Cells via DABr Treatment. Molecules, 2023, 28, 1592.	1.7	2

#	Article	IF	CITATIONS
2431	Recent advances on two-dimensional metal halide perovskite x-ray detectors. Materials Futures, 2023, 2, 012104.	3.1	13
2432	Synthesis of Cs ⁺ -Tuned (PEA) ₂ PbI ₄ Perovskite Thin Films by One-Step Spin Coating. ECS Journal of Solid State Science and Technology, 2023, 12, 026003.	0.9	0
2433	Tuning charge carrier dynamics through spacer cation functionalization in layered halide perovskites: an <i>ab initio</i> quantum dynamics study. Journal of Materials Chemistry C, 2023, 11, 3521-3532.	2.7	0
2434	Antiâ€Dissociation Passivation via Bidentate Anchoring for Efficient Carbonâ€Based CsPbI _{2.6} Br _{0.4} Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	8
2435	Enhanced stability of two-dimensional halide perovskites under an electric field for photocatalytic HI splitting. Journal of Materials Chemistry A, 2023, 11, 6311-6320.	5.2	2
2436	Review on Enhancement of Stability and Efficiency of Perovskite Solar Cell. Journal of Physics: Conference Series, 2023, 2426, 012015.	0.3	0
2437	Emergence of Rashba-/Dresselhaus effects in Ruddlesden–Popper halide perovskites with octahedral rotations. Journal of Physics Condensed Matter, 2023, 35, 174001.	0.7	6
2438	Orientation control of two-dimensional perovskite (CH ₃ (CH ₂) ₃ NH ₃) ₂ NH _{3 nâ^'1} Pb _n I _{3n+1} (n = 2) thin films by thermal annealing. Japanese Journal of Applied Physics. 2023. 62. SK1007.	3)<	sub>
2439	Mobile Trions in Electrically Tunable 2D Hybrid Perovskites. Advanced Materials, 2023, 35, .	11.1	1
2440	Strong Photocurrent from Solutionâ€Processed Ruddlesden–Popper 2D Perovskite–MoS ₂ Hybrid Heterojunctions. Advanced Materials Interfaces, 2023, 10, .	1.9	7
2441	Exciton Ground State Fine Structure and Excited States Landscape in Layered Halide Perovskites from Combined BSE Simulations and Symmetry Analysis. Advanced Optical Materials, 0, , .	3.6	7
2442	Enhanced Circularly Polarized Photoluminescence of Chiral Perovskite Films by Surface Passivation with Chiral Amines. Journal of Physical Chemistry Letters, 2023, 14, 2317-2322.	2.1	3
2443	Lead free perovskite based heterojunction photodetectors: A mini review. Applied Surface Science Advances, 2023, 14, 100393.	2.9	2
2444	Controllable extrinsic ion transport in two-dimensional perovskite films for reproducible, low-voltage resistive switching. Science China Materials, 2023, 66, 2383-2392.	3.5	5
2445	Precise modulation strategies of 2D/3D perovskite heterojunctions in efficient and stable solar cells. Chemical Communications, 2023, 59, 4128-4141.	2.2	9
2446	Rational Regulation of Organic Spacer Cations for Quasiâ€⊋D Perovskite Solar Cells. Solar Rrl, 2023, 7, .	3.1	2
2447	Atomic Lattice Resolved Electron Tomography of a 3D Selfâ€Assembled Mesocrystal. Advanced Functional Materials, 2023, 33, .	7.8	1
2448	In-Situ Interfacial Reaction Induced Amino-Rich Oxide Surface to Grow High-Quality FAPbBr ₃ Crystals for Efficient Inverted Light-Emitting Diodes. , 2023, 5, 1179-1187.		2

#	Article	IF	CITATIONS
2449	Revealing the impact of organic spacers and cavity cations on quasi-2D perovskites via computational simulations. Scientific Reports, 2023, 13, .	1.6	0
2451	Fast Solidification and Slow Growth Strategy for Highâ€Performance Quasiâ€2D Perovskite Solar Cells. Advanced Energy Materials, 2023, 13, .	10.2	4
2452	<i>N</i> â€Heterocyclic Olefin Type Ionic Liquid with Innate Soft Lewisâ€Base Character as an Effective Additive for Hybrid Quasiâ€2D and 3D Perovskite Solar Cells. Small, 2023, 19, .	5.2	1
2453	Optical properties of two-dimensional perovskites. Frontiers of Physics, 2023, 18, .	2.4	2
2454	Effect of Electron–Phonon Coupling on the Color Purity of Two-Dimensional Ruddlesden–Popper Hybrid Lead Iodide Perovskites. Journal of Physical Chemistry C, 2023, 127, 6380-6388.	1.5	2
2455	Strain-Induced Modification of Photoluminescence in Quasi-2D Perovskite Thin Films. Journal of Physical Chemistry C, 2023, 127, 6371-6379.	1.5	1
2456	Examining a Year-Long Chemical Degradation Process and Reaction Kinetics in Pristine and Defect-Passivated Lead Halide Perovskites. Chemistry of Materials, 2023, 35, 2904-2917.	3.2	3
2457	Steric Effects in Ruddlesden–Popper Blue Perovskites for High Quantum Efficiency. Advanced Optical Materials, 2023, 11, .	3.6	1
2458	Halide Containing Short Organic Monocations in <i>n</i> = 1–4 2D Multilayered Halide Perovskite Thin Films and Crystals. Chemistry of Materials, 2023, 35, 2873-2883.	3.2	1
2459	Ionic Liquid Assisted Imprint for Efficient and Stable Quasi-2D Perovskite Solar Cells with Controlled Phase Distribution. Nano-Micro Letters, 2023, 15, .	14.4	5
2460	Ammonium Salt Assisted Crystallization for High Performance Two-Dimensional Lead-Free Perovskite Photodetector. ACS Applied Electronic Materials, 2023, 5, 2169-2177.	2.0	1
2461	Thiophene-Based Polyelectrolyte Boosts High-Performance Quasi-2D Perovskite Solar Cells with Ultralow Energy Loss. , 2023, 5, 1384-1394.		8
2462	Stereopsisâ€Inspired 3D Visual Imaging System Based on 2D Ruddlesden–Popper Perovskite. Small, 2023, 19,	5.2	4
2463	Importance of Hybrid 2D and 3D Nanomaterials for Energy Harvesting. , 2023, , 1-28.		0
2464	Revealing stability origin of Dion-Jacobson 2D perovskites with different-rigidity organic cations. Joule, 2023, 7, 1016-1032.	11.7	17
2465	Impact of organic–inorganic wavefunction delocalization on the electronic and optical properties of one-dimensional hybrid perovskites. Journal of Materials Chemistry C, 0, , .	2.7	0
2466	MXene-based metal halide perovskite vertical field-effect transistors: Toward high current-density and high photodetection performance. Applied Physics Letters, 2023, 122, .	1.5	3
2467	2D/3D perovskite heterostructure solar cell with orientation-controlled Dion–Jacobson 2D phase. Applied Physics Express, 2023, 16, 041005.	1.1	1

#	Article	IF	CITATIONS
2468	Recent advances in the mechanics of 2D materials. International Journal of Extreme Manufacturing, 2023, 5, 032002.	6.3	9
2469	Controllable Synthesis of Centimeter-Sized 2D Ruddlesden–Popper Perovskite Single Crystals through Intermediate-Phase Engineering. Crystal Growth and Design, 0, , .	1.4	1
2470	Uncovering the Role of Electronic Doping in Leadâ€free Perovskite (CH ₃ NH ₃) ₂ CuCl _{4â€<i>x</i>} Br _{<i>x</i>} and Solar Cells Fabrication. ChemSusChem, 2023, 16, .	3.6	4
2471	Highâ€Quality Lead Acetate–Based Ruddlesden–Popper Perovskite Films for Efficient Solar Cells. Solar Rrl, 2023, 7, .	3.1	1
2472	Perovskite Thin Film Growth Techniques. , 2023, , 17-25.		0
2473	Comparing between steady-state excitonic transitions and ultrafast polaronic photoexcitations in layered perovskites: the role of electron–phonon interaction. Nanophotonics, 2023, 12, 1965-1977.	2.9	3
2499	Perovskite-based LEDs and lasers. , 2023, , 519-548.		0
2513	Phase-pure two-dimensional layered perovskite thin films. Nature Reviews Materials, 2023, 8, 533-551.	23.3	25
2517	Proton-Mediated Structural and Optical Recovery of a UV-Degraded Colloidal Ruddlesden–Popper Perovskite Nanoplate for Prolonged Application. ACS Applied Nano Materials, 2023, 6, 9130-9136.	2.4	0
2531	Recent Progress of Layered Perovskite Solar Cells Incorporating Aromatic Spacers. Nano-Micro Letters, 2023, 15, .	14.4	5
2535	Synergy of 3D and 2D Perovskites for Durable, Efficient Solar Cells and Beyond. Chemical Reviews, 2023, 123, 9565-9652.	23.0	21
2547	Organic-inorganic hybrid perovskite material and its application for transistor. Materials Chemistry Frontiers, 0, , .	3.2	0
2560	Frequency upconversion lasers using low-dimensional perovskites. , 2023, , 371-408.		0
2561	Metal halide perovskite photodetectors. , 2023, , 75-115.		0
2562	Multifunctional Perovskite Photodetectors: From Molecular-Scale Crystal Structure Design to Micro/Nano-scale Morphology Manipulation. Nano-Micro Letters, 2023, 15, .	14.4	4
2573	Critical role of 1D materials in realizing efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2023, 11, 18592-18604.	5.2	4
2581	Cross-linking polymerization boosts the performance of perovskite solar cells: from material design to performance regulation. Energy and Environmental Science, 2023, 16, 4251-4279.	15.6	1
2584	Three-dimensional lead iodide perovskites based on complex ions. Materials Advances, 0, , .	2.6	0

#	Article	IF	CITATIONS
2585	Modulating the Schottky barriers of metal–2D perovskite junctions through molecular engineering of spacer ligands. Nanoscale, 2023, 15, 15146-15152.	2.8	0
2588	Rational design and recent advancements of addictives engineering in ASnI ₃ tin-based perovskite solar cells: insights from experiments and computational. Sustainable Energy and Fuels, 2023, 7, 5198-5223.	2.5	0
2605	Recent advances in synthesis of water-stable metal halide perovskites and photocatalytic applications. Journal of Materials Chemistry A, 2023, 11, 22656-22687.	5.2	4
2631	Recent developments in noble metal–based hybrid electrocatalysts for overall water splitting. Ionics, 2024, 30, 61-84.	1.2	0
2651	Cross-linking strategies for efficient and highly stable perovskite solar cells. Journal of Materials Chemistry C, 0, , .	2.7	0
2658	Dimensional Engineering of 2D/3D Perovskite Halides for Efficient and Stable Solar Cells. Indian Institute of Metals Series, 2024, , 431-456.	0.2	0
2660	Reinforcing built-in electric field to enable efficient carrier extraction for high-performance perovskite solar cells. Materials Chemistry Frontiers, 2024, 8, 956-985.	3.2	0
2664	Perovskite and Layered Perovskite Oxynitrides for Efficient Sunlight-driven Artificial Synthesis. Materials Chemistry Frontiers, 0, , .	3.2	0
2666	Comparative Analysis of White-Light Absorption Efficiency in Multi-Dimensional Perovskites. , 2023, , .		1
2698	Breaking the bottleneck of lead-free perovskite solar cells through dimensionality modulation. Chemical Society Reviews, 2024, 53, 1769-1788.	18.7	0
2703	Dimensional diversity (0D, 1D, 2D, and 3D) in perovskite solar cells: exploring the potential of mixed-dimensional integrations. Journal of Materials Chemistry A, 2024, 12, 4421-4440.	5.2	11
2713	MAGel3-Based Multi-Dimensional Perovskite Solar Cells for Superior Stability and Efficiency. , 0, , .		0
2721	Two-dimensional complex metal halides: influence of restricted dimensionality on functional properties. Journal of Materials Chemistry A, 2024, 12, 5055-5079.	5.2	0
2729	The impact of moisture on the stability and degradation of perovskites in solar cells. Materials Advances, 2024, 5, 2200-2217.	2.6	0