Water: A Tale of Two Liquids

Chemical Reviews 116, 7463-7500

DOI: 10.1021/acs.chemrev.5b00750

Citation Report

#	Article	IF	CITATIONS
1	Aqueous Solutions and Water Polyamorphism. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2016, 26, 315-322.	0.1	0
2	The structural validity of various thermodynamical models of supercooled water. Journal of Chemical Physics, 2016, 145, 134507.	1.2	41
3	Two structural relaxations in protein hydration water and their dynamic crossovers. Journal of Chemical Physics, 2016, 145, 044503.	1.2	36
4	On the time required to freeze water. Journal of Chemical Physics, 2016, 145, 211922.	1.2	64
5	Pre-ordering of interfacial water in the pathway of heterogeneous ice nucleation does not lead to a two-step crystallization mechanism. Journal of Chemical Physics, 2016, 145, 211910.	1.2	57
6	Crystal nucleation as the ordering of multiple order parameters. Journal of Chemical Physics, 2016, 145, 211801.	1.2	91
7	Neural network molecular dynamics simulations of solid–liquid interfaces: water at low-index copper surfaces. Physical Chemistry Chemical Physics, 2016, 18, 28704-28725.	1.3	141
8	Sensitivity of Protein Glass Transition to the Choice of Water Model. Journal of Chemical Theory and Computation, 2016, 12, 5643-5655.	2.3	16
9	Liquid-liquid critical point in a simple analytical model of water. Physical Review E, 2016, 94, 042126.	0.8	14
10	Nonstationary nucleation (explosive crystallization) in layers of amorphous ice prepared by low-temperature condensation of supersonic molecular beams. International Journal of Heat and Mass Transfer, 2017, 108, 1292-1296.	2.5	4
11	Synthesis and properties of protic hydroxylic ionic liquids with two types of basic centers in their composition. Journal of Molecular Liquids, 2017, 235, 68-76.	2.3	10
12	On the existence of a scattering pre-peak in the mono-ols and diols. Chemical Physics Letters, 2017, 671, 37-43.	1.2	11
13	Anomalous propagation and scattering of sound in 2-propanol water solution near its singular point. Journal of Molecular Liquids, 2017, 235, 24-30.	2.3	13
14	Structural properties and fragile to strong transition in confined water. Journal of Chemical Physics, 2017, 146, 084505.	1.2	24
15	Spontaneous NaCl-doped ice at seawater conditions: focus on the mechanisms of ion inclusion. Physical Chemistry Chemical Physics, 2017, 19, 9566-9574.	1.3	53
16	MP4 Study of the Anharmonic Coupling of the Shared Proton Stretching Vibration of the Protonated Water Dimer in Equilibrium and Transition States. Journal of Physical Chemistry A, 2017, 121, 2151-2165.	1.1	8
17	Pressure dependence of viscosity in supercooled water and a unified approach for thermodynamic and dynamic anomalies of water. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4312-4317.	3.3	70
18	Microscopic origin of the fragile to strong crossover in supercooled water: The role of activated processes. Journal of Chemical Physics, 2017, 146, 084502.	1.2	38

		EPORT	
#	Article	IF	Citations
19	Liquid water changes its structure at 43 ${\hat {A}}^{\circ}$ C. Chemical Physics Letters, 2017, 679, 86-89.	1.2	12
20	Quantum effects in dynamics of water and other liquids of light molecules. European Physical Journal E, 2017, 40, 57.	0.7	11
21	Unveiling Molecular Changes in Water by Small Luminescent Nanoparticles. Small, 2017, 13, 1700968.	5.2	20
22	Harshâ€Environmentâ€Resistant OHâ€Vibrationsâ€Sensitive Midâ€Infrared Waterâ€Ice Photonic Sensor. Advai Materials Technologies, 2017, 2, 1700085.	nced 3.0	10
23	Two-structure thermodynamics for the TIP4P/2005 model of water covering supercooled and deeply stretched regions. Journal of Chemical Physics, 2017, 146, 034502.	1.2	107
24	From clusters to condensed phase – FT IR studies of water. Journal of Molecular Liquids, 2017, 235, 7-10.	2.3	20
25	THz dynamics of nanoconfined water by ultrafast optical spectroscopy. Measurement Science and Technology, 2017, 28, 014009.	1.4	5
26	Behavior of Supercritical Fluids across the "Frenkel Line― Journal of Physical Chemistry Letters, 2017, 8, 4995-5001.	2.1	45
27	Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice. Physical Review Letters, 2017, 119, 135701.	2.9	22
28	X-ray absorption of liquid water by advanced <i>ab initio</i> methods. Physical Review B, 2017, 96, .	1.1	11
29	2D IR spectroscopy of high-pressure phases of ice. Journal of Chemical Physics, 2017, 147, 144501.	1.2	14
30	Freezing Temperatures, Ice Nanotubes Structures, and Proton Ordering of TIP4P/ICE Water inside Single Wall Carbon Nanotubes. Journal of Physical Chemistry B, 2017, 121, 10371-10381.	1.2	28
31	Effect of solute nature on the polyamorphic transition in glassy polyol aqueous solutions. Journal of Chemical Physics, 2017, 147, 064511.	1.2	13
32	Heating- and pressure-induced transformations in amorphous and hexagonal ice: A computer simulation study using the TIP4P/2005 model. Journal of Chemical Physics, 2017, 147, 074505.	1.2	23
33	The isobaric heat capacity of liquid water at low temperatures and high pressures. Journal of Chemical Physics, 2017, 147, 084501.	1.2	8
34	A potential model for sodium chloride solutions based on the TIP4P/2005 water model. Journal of Chemical Physics, 2017, 147, 104501.	1.2	82
35	A theory for the effect of patch/non-patch attractions on the self-assembly of patchy colloids. Soft Matter, 2017, 13, 6506-6514.	1.2	2
36	Thermodynamic Anomalies in Stretched Water. Langmuir, 2017, 33, 11771-11778.	1.6	27

#	Article	IF	CITATIONS
37	Liquid part of the phase diagram and percolation line for two-dimensional Mercedes-Benz water. Physical Review E, 2017, 96, 032122.	0.8	13
38	Models of water, methanol, and ethanol and their applications in the design of miniature microwave heating reactors. International Journal of Thermal Sciences, 2017, 122, 53-73.	2.6	10
39	Role of Salt, Pressure, and Water Activity on Homogeneous Ice Nucleation. Journal of Physical Chemistry Letters, 2017, 8, 4486-4491. Glass Transitions, Semiconductor Metal Transitions, and Fragilities in symbols.	2.1	33
40	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:mrow> < mml:mi> Ge < /mml:mi> < mml:mtext> â^² < /mml:mtext> < mml:mi> V < mml: (< mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML") Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 5	ntext>â^'< 0 612 Td	:/mml:mtext: (display="inli
41	Identifying time scales for violation/preservation of Stokes-Einstein relation in supercooled water. Science Advances, 2017, 3, e1700399.	4.7	75
42	Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man's land. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13336-13344.	3.3	99
43	Friction at Ice-I _h /Water Interfaces Is Governed by Solid/Liquid Hydrogen-Bonding. Journal of Physical Chemistry C, 2017, 121, 26764-26776.	1.5	12
44	Perturbation theory for water with an associating reference fluid. Physical Review E, 2017, 96, 052602.	0.8	13
45	Core–Shell Engineering to Enhance the Spectral Stability of Heterogeneous Luminescent Nanofluids. Particle and Particle Systems Characterization, 2017, 34, 1700276.	1.2	9
46	Probing the OH Stretch in Different Local Environments in Liquid Water. Journal of Physical Chemistry Letters, 2017, 8, 5487-5491.	2.1	30
47	Temperature dependence of the Landau-Placzek ratio in liquid water. Physical Review E, 2017, 96, 042608.	0.8	4
48	Compressibility Anomalies in Stretched Water and Their Interplay with Density Anomalies. Journal of Physical Chemistry Letters, 2017, 8, 5519-5522.	2.1	58
49	Liquid–liquid phase transition in an ionic model of silica. Journal of Chemical Physics, 2017, 146, 234503.	1.2	29
50	Phase behaviour of a continuous shouldered well model fluid. A grand canonical Monte Carlo study. Journal of Molecular Liquids, 2017, 228, 4-10.	2.3	2
51	High precision determination of the melting points of water TIP4P/2005 and water TIP4P/Ice models by the direct coexistence technique. Journal of Chemical Physics, 2017, 147, 244506.	1.2	60
52	Supercooled water reveals its secrets. Science, 2017, 358, 1543-1544.	6.0	67
53	DESCRIPTION OF THE METASTABLE LIQUID REGION WITH QUINTIC AND QUASI-QUINTIC EQUATION OF STATES. Interfacial Phenomena and Heat Transfer, 2017, 5, 173-185.	0.3	4
54	Slow Dynamics and Structure of Supercooled Water in Confinement. Entropy, 2017, 19, 185.	1.1	5

#	Article	IF	CITATIONS
55	Surface, Density, and Temperature Effects on the Water Diffusion and Structure Inside Narrow Nanotubes. Journal of Physical Chemistry C, 2018, 122, 6684-6690.	1.5	22
56	A liquid-liquid transition in supercooled aqueous solution related to the HDA-LDA transition. Science, 2018, 359, 1127-1131.	6.0	81
57	Magnetic properties and core electron binding energies of liquid water. Journal of Chemical Physics, 2018, 148, 044510.	1.2	3
58	Relationship between x-ray emission and absorption spectroscopy and the local H-bond environment in water. Journal of Chemical Physics, 2018, 148, 144507.	1.2	37
59	Potential energy landscape of TIP4P/2005 water. Journal of Chemical Physics, 2018, 148, 134505.	1.2	32
60	Doping-induced disappearance of ice II from water's phase diagram. Nature Physics, 2018, 14, 569-572.	6.5	23
61	Molecular dynamics simulations of freezing-point depression of TIP4P/2005 water in solution with NaCl. Journal of Molecular Liquids, 2018, 261, 513-519.	2.3	43
62	Structure of supercooled water: Polarizable BK3 model versus non-polarizable models. Journal of Molecular Liquids, 2018, 261, 303-318.	2.3	4
63	Experimental evidence of low-density liquid water upon rapid decompression. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2010-2015.	3.3	39
64	Raman spectroscopic and theoretical study of liquid and solid water within the spectral region 1600–2300 cm â~'1. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 196, 406-412.	2.0	21
65	Physico-chemical properties of aqueous drug solutions: From the basic thermodynamics to the advanced experimental and simulation results. International Journal of Pharmaceutics, 2018, 540, 65-77.	2.6	3
66	Kinetic boundaries and phase transformations of ice <scp>i</scp> at high pressure. Journal of Chemical Physics, 2018, 148, 044508.	1.2	11
67	Driving water cavitation in a hydrogel cavity. Soft Matter, 2018, 14, 2310-2321.	1.2	14
68	Structure and hydrogen bonding at the limits of liquid water stability. Scientific Reports, 2018, 8, 1718.	1.6	22
69	Hydration Behavior along the Folding Pathways of Trpzip4, Trpzip5 and Trpzip6. Journal of Physical Chemistry B, 2018, 122, 1560-1572.	1.2	6
70	Calorimetric study of water's two glass transitions in the presence of LiCl. Physical Chemistry Chemical Physics, 2018, 20, 6401-6408.	1.3	17
71	Evaporating laminar microjets for studies of rapidly evolving structural transformations in supercooled liquids. Advances in Physics: X, 2018, 3, 1418183.	1.5	5
72	Anomalous Features in the Potential Energy Landscape of a Waterlike Monatomic Model with Liquid and Glass Polymorphism. Physical Review Letters, 2018, 120, 035701.	2.9	6

#	Article	IF	CITATIONS
73	Dynamic Anomalies in Confined Supercooled Water and Bulk Fluids. Springer Proceedings in Physics, 2018, , 253-290.	0.1	2
74	Thermodynamics of Fluid Polyamorphism. Physical Review X, 2018, 8, .	2.8	61
75	Shrinking of Rapidly Evaporating Water Microdroplets Reveals their Extreme Supercooling. Physical Review Letters, 2018, 120, 015501.	2.9	49
76	Connecting thermodynamic and dynamical anomalies of water-like liquid-liquid phase transition in the Fermi–Jagla model. Journal of Chemical Physics, 2018, 148, .	1.2	13
77	Effects of the bond polarity on the structural and dynamical properties of silica-like liquids. Journal of Chemical Physics, 2018, 148, 104506.	1.2	8
78	High density liquid structure enhancement in glass forming aqueous solution of LiCl. Journal of Chemical Physics, 2018, 148, 222829.	1.2	5
79	Experimental study of the polyamorphism of water. II. The isobaric transitions between HDA and VHDA at intermediate and high pressures. Journal of Chemical Physics, 2018, 148, 124509.	1.2	17
80	Experimental study of the polyamorphism of water. I. The isobaric transitions from amorphous ices to LDA at 4 MPa. Journal of Chemical Physics, 2018, 148, 124508.	1.2	13
81	Water-like anomalies as a function of tetrahedrality. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3333-E3341.	3.3	55
82	Structural Properties of Ionic Aqueous Solutions. , 2018, , 153-162.		0
83	Ammonia Clathrate Hydrate As Seen from Grand Canonical Monte Carlo Simulations. ACS Earth and Space Chemistry, 2018, 2, 521-531.	1.2	20
84	Nuclear quantum effects on the liquid–liquid phase transition of a water-like monatomic liquid. Physical Chemistry Chemical Physics, 2018, 20, 8210-8217.	1.3	9
85	Water, the special liquid. Journal of Molecular Liquids, 2018, 259, 304-318.	2.3	26
86	Hierarchical aging pathways and reversible fragile-to-strong transition upon annealing of a metallic glass former. Acta Materialia, 2018, 144, 400-410.	3.8	86
87	Fragile to strong crossover and Widom line in supercooled water: A comparative study. Frontiers of Physics, 2018, 13, 1.	2.4	18
88	Signature of the hydrogen-bonded environment of liquid water in X-ray emission spectra from first-principles calculations. Frontiers of Physics, 2018, 13, 1.	2.4	3
89	High-temperature dynamic behavior in bulk liquid water: A molecular dynamics simulation study using the OPC and TIP4P-Ew potentials. Frontiers of Physics, 2018, 13, 1.	2.4	7
90	High-density amorphous ice: nucleation of nanosized low-density amorphous ice. Journal of Physics Condensed Matter, 2018, 30, 034002.	0.7	16

#	Article	IF	CITATIONS
91	Water phase transitions from the perspective of hydrogen-bond network analysis. Physical Chemistry Chemical Physics, 2018, 20, 28308-28318.	1.3	8
92	Streams, cascades, and pools: various water cluster motifs in structurally similar Ni(<scp>ii</scp>) complexes. CrystEngComm, 2018, 20, 7071-7081.	1.3	5
93	Carboxylic acids in aqueous solutions: Hydrogen bonds, hydrophobic effects, concentration fluctuations, ionization, and catalysis. Journal of Chemical Physics, 2018, 149, 244503.	1.2	10
94	Water Is a Cagey Liquid. Journal of the American Chemical Society, 2018, 140, 17106-17113.	6.6	29
95	Clay mineral–water interactions. Developments in Clay Science, 2018, 9, 89-124.	0.3	17
96	Common microscopic structural origin for water's thermodynamic and dynamic anomalies. Journal of Chemical Physics, 2018, 149, 224502.	1.2	68
97	The Role of Hydrogen Bonding in the Folding/Unfolding Process of Hydrated Lysozyme: A Review of Recent NMR and FTIR Results. International Journal of Molecular Sciences, 2018, 19, 3825.	1.8	49
98	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:mrow> < mml:msub> < mml:mrow> < mml:mi mathvariant="bold"> H < /mml:mi> < /mml:mrow> < mml:mrow> < mml:mn mathvariant="bold"> 2 < /mml:mi> < /mml:mrow> < /mml:msub> < mml:mi	2.9	21
99	mathyarlant="normal">O'community community community under Rapid Compression and Experimental estimation of the location of liquid-liquid critical point for polyol aqueous solutions. Journal of Chemical Physics, 2018, 149, 204501.	1.2	12
100	Breakdown of the Stokes-Einstein relation above the melting temperature in a liquid phase-change material. Science Advances, 2018, 4, eaat8632.	4.7	43
101	High and low density patches in simulated liquid water. Journal of Chemical Physics, 2018, 149, 204507.	1.2	33
102	Electron-Hole Theory of the Effect of Quantum Nuclei on the X-Ray Absorption Spectra of Liquid Water. Physical Review Letters, 2018, 121, 137401.	2.9	35
103	Surprising thermodynamic properties of alcohols and water on their coexistence curves. Journal of Molecular Liquids, 2018, 272, 590-596.	2.3	4
104	Crucial role of fragmented and isolated defects in persistent relaxation of deeply supercooled water. Journal of Chemical Physics, 2018, 149, 124504.	1.2	46
105	Vibrational, energetic-dynamical and dissociation properties of water clusters in static electric fields: Non-equilibrium molecular-dynamics insights. Chemical Physics Letters, 2018, 710, 207-214.	1.2	7
106	Singular sublimation of ice and snow crystals. Nature Communications, 2018, 9, 4191.	5.8	37
107	Fractional Stokes–Einstein relation in TIP5P water at high temperatures. Chinese Physics B, 2018, 27, 066101.	0.7	3
108	Perspective: Crossing the Widom line in no man's land: Experiments, simulations, and the location of the liquid-liquid critical point in supercooled water. Journal of Chemical Physics, 2018, 149, 140901.	1.2	69

#	ዶkoឈa s and anomalous thermal expansion behavior of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi< td=""><td>IF</td><td>CITATIONS</td></mml:mi<></mml:msub></mml:mrow></mml:math 	IF	CITATIONS
109	mathvariant="normal">H <mml:mn>2</mml:mn> <mml:mi mathvariant="normal">O and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:math> and <mml:math mathvariant="normal">D<mml:mn>2</mml:mn><mml:mi< td=""><td>1.1</td><td>8</td></mml:mi<></mml:math </mml:math></mml:math </mml:mi 	1.1	8
110	mathyariant="normal"> mathyariant="normal"> Viscosity and self-diffusion of supercooled and stretched water from molecular dynamics simulations. Journal of Chemical Physics, 2018, 149, 094503.	1.2	62
111	Why different water models predict different structures under 2D confinement. Journal of Computational Chemistry, 2018, 39, 2051-2059.	1.5	25
112	Fluctuations near the liquid–liquid transition in a model of silica. Physical Chemistry Chemical Physics, 2018, 20, 25195-25202.	1.3	8
113	Temperature dependent dynamics in water-ethanol liquid mixtures. Journal of Molecular Liquids, 2018, 271, 571-579.	2.3	21
114	Density anomaly of water at negative pressures from first principles. Journal of Physics Condensed Matter, 2018, 30, 254005.	0.7	10
115	Glass Forming Ability in Systems with Competing Orderings. Physical Review X, 2018, 8, .	2.8	35
116	Communication: Diffusion constant in supercooled water as the Widom line is crossed in no man's land. Journal of Chemical Physics, 2018, 148, 191102.	1.2	13
117	Thermodynamic and structural anomalies of water nanodroplets. Nature Communications, 2018, 9, 2402.	5.8	19
118	Hierarchical lattice models of hydrogen-bond networks in water. Physical Review E, 2018, 97, 062113.	0.8	6
119	On the temperature dependence of the α function in the cubic equation of state. Chemical Engineering Science, 2018, 192, 565-575.	1.9	28
120	How do hydrogen bonds break in supercooled water?: Detecting pathways not going through saddle point of two-dimensional potential of mean force. Journal of Chemical Physics, 2018, 148, 244501.	1.2	8
121	X-ray Scattering and O–O Pair-Distribution Functions of Amorphous Ices. Journal of Physical Chemistry B, 2018, 122, 7616-7624.	1.2	58
122	Frustration vs Prenucleation: Understanding the Surprising Stability of Supersaturated Sodium Thiosulfate Solutions. Journal of Physical Chemistry B, 2018, 122, 7590-7596.	1.2	20
123	Anomalous scattering in supercooled ST2 water. Molecular Physics, 2018, 116, 1953-1964.	0.8	14
124	Molecular dynamics simulations for optical Kerr effect of TIP4P/2005 water in liquid and supercooled states. Journal of Molecular Liquids, 2018, 269, 38-46.	2.3	5
125	Investigation concerning the uniqueness of separatrix lines separating liquidlike from gaslike regimes deep in the supercritical phase of water with a focus on Widom line concepts. Physical Review E, 2018, 98, 022104.	0.8	31
126	Viscosity and real-space molecular motion of water: Observation with inelastic x-ray scattering. Physical Review E, 2018, 98, 022604.	0.8	25

#	Article	IF	CITATIONS
127	Effect of H2O and D2O Thermal Anomalies on the Luminescence of Eu3+ Aqueous Complexes. Journal of Physical Chemistry C, 2018, 122, 14838-14845.	1.5	13
128	Molecular Dynamics Simulations of Water, Silica, and Aqueous Mixtures in Bulk and Confinement. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1187-1225.	1.4	28
129	Solvation Layer of Antifreeze Proteins Analyzed with a Markov State Model. Journal of Physical Chemistry B, 2018, 122, 11014-11022.	1.2	4
130	Modelling water with simple Mercedes-Benz models. Molecular Simulation, 2019, 45, 279-294.	0.9	8
131	On the link between polyamorphism and liquid-liquid transition: The case of salty water. Journal of Chemical Physics, 2019, 151, 044503.	1.2	9
132	The stability-limit conjecture revisited. Journal of Chemical Physics, 2019, 150, 234502.	1.2	18
133	Temperature dependent anomalous fluctuations in water: shift of â‰^1 kbar between experiment and classical force field simulations. Molecular Physics, 2019, 117, 3232-3240.	0.8	7
134	Enhanced Grüneisen Parameter in Supercooled Water. Scientific Reports, 2019, 9, 12006.	1.6	13
135	Hydrogen-Bonding in Liquid Water at Multikilobar Pressures. Journal of Physical Chemistry B, 2019, 123, 7748-7753.	1.2	15
136	The structural transition under densification and the relationship between structure and density of silica glass. European Physical Journal B, 2019, 92, 1.	0.6	3
137	Crystalline clusters in mW water: Stability, growth, and grain boundaries. Journal of Chemical Physics, 2019, 151, 044505.	1.2	17
138	The JG \hat{I}^2 -relaxation in water and impact on the dynamics of aqueous mixtures and hydrated biomolecules. Journal of Chemical Physics, 2019, 151, 034504.	1.2	22
139	Thermodynamics of supercooled and stretched water: Unifying two-structure description and liquid-vapor spinodal. Journal of Chemical Physics, 2019, 151, 034503.	1.2	53
140	Vitrification and increase of basicity in between ice Ih crystals in rapidly frozen dilute NaCl aqueous solutions. Journal of Chemical Physics, 2019, 151, 014503.	1.2	23
141	Concentrated suspensions of Brownian beads in water: dynamic heterogeneities through a simple experimental technique. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	6
142	Classy dynamics of water at interface with biomolecules: A Mode Coupling Theory test. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	10
143	Relative density and isobaric expansivity of cold and supercooled heavy water from 254 to 298 K and up to 100 MPa. Journal of Chemical Physics, 2019, 151, 034505.	1.2	7
144	A proposal for the structure of high- and low-density fluctuations in liquid water. Journal of Chemical Physics, 2019, 151, 034508.	1.2	39

#	Article	IF	CITATIONS
145	Soft condensed matter physics of foods and macronutrients. Nature Reviews Physics, 2019, 1, 551-566.	11.9	42
146	<i>Ab initio</i> spectroscopy of water under electric fields. Physical Chemistry Chemical Physics, 2019, 21, 21205-21212.	1.3	44
147	A doubly associated reference perturbation theory for water. Fluid Phase Equilibria, 2019, 500, 112252.	1.4	10
148	Low-order many-body interactions determine the local structure of liquid water. Chemical Science, 2019, 10, 8211-8218.	3.7	35
149	Radial distribution functions of water: Models vs experiments. Journal of Chemical Physics, 2019, 151, 044502.	1.2	25
150	Measurements of ultrafast dissociation in resonant inelastic x-ray scattering of water. Journal of Chemical Physics, 2019, 150, 204201.	1.2	12
151	Glass polymorphism in TIP4P/2005 water: A description based on the potential energy landscape formalism. Journal of Chemical Physics, 2019, 150, 244506.	1.2	20
152	Liquid water structure from X-ray absorption and emission, NMR shielding and X-ray diffraction. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	5
153	Water dynamics and thermal properties of tyramine-modified hyaluronic acid - Gelatin hydrogels. Polymer, 2019, 178, 121598.	1.8	7
154	Water's two-critical-point scenario in the Ising paradigm. Journal of Chemical Physics, 2019, 150, 244509.	1.2	19
155	Water in Mesoporous Confinement: Glass-To-Liquid Transition or Freezing of Molecular Reorientation Dynamics?. Molecules, 2019, 24, 3563.	1.7	1
156	Hydrogen bonding structure of confined water templated by a metal-organic framework with open metal sites. Nature Communications, 2019, 10, 4771.	5.8	86
157	Evidence of a Low–High Density Turning Point in Liquid Water at Ordinary Temperature under Pressure: A Molecular Dynamics Study. Journal of Physical Chemistry Letters, 2019, 10, 6414-6418.	2.1	9
159	X-Ray Physics. , 2019, , 23-70.		0
160	Imaging Physics. , 2019, , 71-198.		0
161	X-Ray Focusing Optics. , 2019, , 199-240.		1
162	X-Ray Microscope Systems. , 2019, , 241-258.		0
163	X-Ray Spectromicroscopy. , 2019, , 350-389.		0

#	ARTICLE	IF	CITATIONS
164	Coherent Imaging. , 2019, , 390-456.		0
165	Radiation Damage and Cryo Microscopy. , 2019, , 457-495.		1
166	Applications, and Future Prospects. , 2019, , 496-514.		0
169	Understanding the Origin of the Breakdown of the Stokes–Einstein Relation in Supercooled Water at Different Temperature〓Pressure Conditions. Journal of Physical Chemistry B, 2019, 123, 10089-10099.	1.2	31
170	X-Ray Microscopes: a Short Introduction. , 2019, , 1-4.		0
171	A Bit of History. , 2019, , 5-22.		0
172	X-Ray Microscope Instrumentation. , 2019, , 259-320.		0
173	X-Ray Tomography. , 2019, , 321-349.		1
174	Spontaneously Forming Dendritic Voids in Liquid Water Can Host Small Polymers. Journal of Physical Chemistry Letters, 2019, 10, 5585-5591.	2.1	21
175	Dynamics of hydration water in gelatin and hyaluronic acid hydrogels. European Physical Journal E, 2019, 42, 109.	0.7	12
176	Thermodynamic metric geometry of the two-state ST2 model for supercooled water. Journal of Chemical Physics, 2019, 151, 064503.	1.2	11
177	Modern Problems of the Physics of Liquid Systems. Springer Proceedings in Physics, 2019, , .	0.1	2
178	A twist in the tale of the structure of ice. Nature, 2019, 569, 495-496.	13.7	5
179	Glass polymorphism and liquid–liquid phase transition in aqueous solutions: experiments and computer simulations. Physical Chemistry Chemical Physics, 2019, 21, 23238-23268.	1.3	33
180	Anomalies in Supercooled Water at â^¼230 K Arise from a 1D Polymer to 2D Network Topological Transformation. Journal of Physical Chemistry Letters, 2019, 10, 6267-6273.	2.1	7
181	The Influence of Nanoporosity on the Behavior of Carbon-Bearing Fluids. , 2019, , 358-387.		5
182	Decoding signatures of structure, bulk thermodynamics, and solvation in three-body angle distributions of rigid water models. Journal of Chemical Physics, 2019, 151, 094501.	1.2	16
183	The effects of ultrasound pressure and temperature fields in millisecond bubble nucleation. Ultrasonics Sonochemistry, 2019, 55, 262-272.	3.8	20

#	ARTICLE	IF	CITATIONS
184	Do water's electrons care about electrolytes?. Chemical Science, 2019, 10, 848-865.	3.7	31
185	A Study of the Structural Organization of Water and Aqueous Solutions by Means of Optical Microscopy. Crystals, 2019, 9, 52.	1.0	5
186	Apparent power-law behavior of water's isothermal compressibility and correlation length upon supercooling. Physical Chemistry Chemical Physics, 2019, 21, 26-31.	1.3	28
187	Ferromagnetism-induced phase separation in a two-dimensional spin fluid. Journal of Chemical Physics, 2019, 150, 154501.	1.2	6
188	Translational and rotational dynamics of high and low density TIP4P/2005 water. Journal of Chemical Physics, 2019, 150, 224507.	1.2	20
189	State variables for glasses: The case of amorphous ice. Journal of Chemical Physics, 2019, 150, 224502.	1.2	14
190	Effect of OH groups on the polyamorphic transition of polyol aqueous solutions. Journal of Chemical Physics, 2019, 150, 224508.	1.2	10
191	Intermediate range O–O correlations in supercooled water down to 235 K. Journal of Chemical Physics, 2019, 150, 224506.	1.2	28
192	The Stokes-Einstein relation in water/methanol solutions. Journal of Chemical Physics, 2019, 150, 234506.	1.2	20
193	Deeply supercooled aqueous LiCl solution studied by frequency-resolved shear rheology. Journal of Chemical Physics, 2019, 150, 234505.	1.2	16
194	Thermodynamic analysis of the stability of planar interfaces between coexisting phases and its application to supercooled water. Journal of Chemical Physics, 2019, 150, 224503.	1.2	7
195	A study of the hydrogen bonds effect on the water density and the liquid-liquid transition. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	5
196	Does (H5O2)+â^' X (X = Ar, Ne, He) complex with C2 symmetry really exist?. Journal of Molecular Liquids, 2019, 288, 111075.	2.3	1
197	Effects of confinement on supercooled tetrahedral liquids. Journal of Chemical Physics, 2019, 150, 214704.	1.2	10
198	Surface tension in bulk and bounded liquids. Journal of Molecular Liquids, 2019, 288, 110873.	2.3	8
199	Ice Nucleation of Confined Monolayer Water Conforms to Classical Nucleation Theory. Journal of Physical Chemistry Letters, 2019, 10, 3115-3121.	2.1	9
200	Absence of amorphous forms when ice is compressed at low temperature. Nature, 2019, 569, 542-545.	13.7	47
201	Understanding Glass through Differential Scanning Calorimetry. Chemical Reviews, 2019, 119, 7848-7939.	23.0	258

#	Article	IF	CITATIONS
202	Glassy Nuclei in Amorphous Ice. BesMasters, 2019, , .	0.0	2
203	Hydrogen bond correlated percolation in a supercooled water monolayer as a hallmark of the critical region. Journal of Molecular Liquids, 2019, 285, 727-739.	2.3	13
204	The physics and chemistry of ice. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20190138.	1.6	0
205	Revealing key structural features hidden in liquids and glasses. Nature Reviews Physics, 2019, 1, 333-348.	11.9	134
206	X-ray studies of the transformation from high- to low-density amorphous water. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180164.	1.6	17
207	Size dependence of dynamic fluctuations in liquid and supercooled water. Journal of Chemical Physics, 2019, 150, 144505.	1.2	5
208	Several glasses of water but one dense liquid. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9149-9151.	3.3	6
209	Interlayer hopping dynamics of bilayer water confined between graphene sheets. Chemical Physics Letters, 2019, 722, 153-159.	1.2	2
210	Water in an electric field does not dance alone: The relation between equilibrium structure, time dependent viscosity and molecular motions. Journal of Molecular Liquids, 2019, 282, 303-315.	2.3	17
211	Slow dynamics of hydration water and the trehalose dynamical transition. Journal of Molecular Liquids, 2019, 282, 617-625.	2.3	17
213	Water in nanotubes: The surface effect. Chemical Engineering Science, 2019, 203, 54-67.	1.9	57
214	Comparison of Approaches for Measuring and Predicting the Viscosity of Ternary Component Aerosol Particles. Analytical Chemistry, 2019, 91, 5074-5082.	3.2	33
215	Pressure response of the THz spectrum of bulk liquid water revealed by intermolecular instantaneous normal mode analysis. Journal of Chemical Physics, 2019, 150, 084502.	1.2	13
216	Giant Water Clusters: Where Are They From?. International Journal of Molecular Sciences, 2019, 20, 1582.	1.8	4
217	Thermochromism of pure alkanols and water versus its polarizability. Chemical Physics, 2019, 522, 99-103.	0.9	1
218	A dilute gold nanoparticle suspension as small-angle X-ray scattering standard for an absolute scale using an extended Guinier approximation. Journal of Applied Crystallography, 2019, 52, 344-350.	1.9	7
219	Compatibility of quantitative X-ray spectroscopy with continuous distribution models of water at ambient conditions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4058-4063.	3.3	54
220	Ice crystallization observed in highly supercooled confined water. Physical Chemistry Chemical Physics, 2019, 21, 4931-4938.	1.3	13

#	Article	IF	Citations
221	Pattern of property extrema in supercooled and stretched water models and a new correlation for predicting the stability limit of the liquid state. Journal of Chemical Physics, 2019, 150, 064503.	1.2	9
223	High-resolution adiabatic calorimetry of supercooled water. Journal of Physics: Conference Series, 2019, 1385, 012008.	0.3	7
224	Anomalous Intrinsic Fluorescence of HCl and NaOH Aqueous Solutions. Journal of Physical Chemistry Letters, 2019, 10, 7230-7236.	2.1	12
225	Probing the critical nucleus size for ice formation with graphene oxide nanosheets. Nature, 2019, 576, 437-441.	13.7	268
227	Electrocrystallization of Supercooled Water Confined between Graphene Layer. JETP Letters, 2019, 110, 557-561.	0.4	6
228	AFM nanoindentation reveals decrease of elastic modulus of lipid bilayers near freezing point of water. Scientific Reports, 2019, 9, 19473.	1.6	6
229	From the trimer, through the pentamer, to liquid water. Journal of Molecular Structure, 2019, 1177, 168-176.	1.8	5
230	Self-diffusion coefficient of bulk and confined water: a critical review of classical molecular simulation studies. Molecular Simulation, 2019, 45, 425-453.	0.9	130
231	Effect of truncating electrostatic interactions on predicting thermodynamic properties of water–methanol systems. Molecular Simulation, 2019, 45, 336-350.	0.9	17
232	Liquid state anomalies and the relationship to the crystalline phase diagram. Physical Review E, 2019, 99, 010103.	0.8	5
233	Waterlike anomalies in the Bose–Hubbard model. Physica A: Statistical Mechanics and Its Applications, 2019, 518, 323-330.	1.2	3
234	X-ray absorption spectrum simulations of hexagonal ice. Journal of Chemical Physics, 2019, 150, 034501.	1.2	13
235	Nonphysical Behavior in Several Statistical Mechanically Based Equations of State. Industrial & Engineering Chemistry Research, 2019, 58, 1382-1395.	1.8	8
237	Closest-Packing Water Monolayer Stably Intercalated in Phyllosilicate Minerals under High Pressure. Langmuir, 2020, 36, 618-627.	1.6	7
238	On the validity of the Stokes–Einstein relation for various water force fields. Molecular Physics, 2020, 118, e1702729.	0.8	22
239	pH dependence of water anomaly temperature investigated by Eu(III) cryptate luminescence. Analytical and Bioanalytical Chemistry, 2020, 412, 73-80.	1.9	9
240	The anomalies and criticality of liquid water. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26591-26599.	3.3	57
241	Liquid-liquid transition as a perturbation on the van der Waals' equation. Journal of Molecular Liquids, 2020, 319, 114205.	2.3	0

		CITATION R	EPORT	
#	Article		IF	CITATIONS
242	Liquid–liquid transition and polyamorphism. Journal of Chemical Physics, 2020, 153,	130901.	1.2	87
243	Fast increase of nanofluidic slip in supercooled water: the key role of dynamics. Nanosc 20396-20403.	cale, 2020, 12,	2.8	20
244	Competing interactions near the liquid-liquid phase transition of core-softened water/n mixtures. Journal of Molecular Liquids, 2020, 320, 114420.	nethanol	2.3	8
245	Signatures of a liquid–liquid transition in an ab initio deep neural network model for Proceedings of the National Academy of Sciences of the United States of America, 202 26040-26046.		3.3	112
246	Simulation of Liquids with the Tight-Binding Density-Functional Approach and Improved Charges. Journal of Physical Chemistry B, 2020, 124, 7421-7432.	d Atomic	1.2	4
247	Decoding a Percolation Phase Transition of Water at â ⁻¹ ⁄4330 K with a Nanoparticle Rul Physical Chemistry Letters, 2020, 11, 6704-6711.	er. Journal of	2.1	13
248	The anomalous thermal expansion of water. Physics Education, 2020, 55, 055008.		0.3	2
249	Solute Specific Perturbations to Water Structure and Dynamics in Tertiary Aqueous So of Physical Chemistry B, 2020, 124, 10983-10993.	lution. Journal	1.2	9
250	Evaluating the Performance of the PC-SAFT and CPA Equations of State on Anomalous Water. Journal of Chemical & Engineering Data, 2020, 65, 5718-5734.	Properties of	1.0	14
251	Anisotropic X-Ray Scattering of Transiently Oriented Water. Physical Review Letters, 20	020, 125, 076002.	2.9	13
252	Hyaluronic acid $\hat{a} \in$ gelatin hydrogels as bioelectrets: Charge transport and dielectric p effects. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27, 1387-1394	olarization	1.8	2
253	Quantum density anomaly in optically trapped ultracold gases. Physical Review A, 2020	0, 102, .	1.0	1
254	Electron Beam-Induced Transformation in High-Density Amorphous Ices. Journal of Phys B, 2020, 124, 9283-9288.	sical Chemistry	1.2	6
255	Slow Crystal Growth of Cubic Ice with Stacking Faults in a Glassy Dilute Glycerol Aquec Journal of Physical Chemistry Letters, 2020, 11, 9432-9438.	ous Solution.	2.1	8
256	Towards molecular movies with X-ray photon correlation spectroscopy. Physical Chemi Physics, 2020, 22, 19443-19453.	stry Chemical	1.3	26
257	Exploring Single-Nanoparticle Dynamics at High Temperature by Optical Tweezers. Nan 20, 8024-8031.	o Letters, 2020,	4.5	22
258	Reversible structural transformations in supercooled liquid water from 135 to 245 K. So 369, 1490-1492.	cience, 2020,	6.0	71
259	Activation energies and the extended jump model: How temperature affects reorientat hydrogen-bond exchange dynamics in water. Journal of Chemical Physics, 2020, 153, 0		1.2	14

		CITATION REPORT		
#	Article		IF	CITATIONS
260	Slow compression of crystalline ice at low temperature. Nature, 2020, 585, E9-E10.		13.7	4
261	Molecular Mechanism of Acceleration and Retardation of Collective Orientation Relaxa Molecules in Aqueous Solutions. Journal of Physical Chemistry B, 2020, 124, 11730-11		1.2	3
262	Absence of the liquid-liquid phase transition in aqueous ionic liquids. Physical Review E 060601.	, 2020, 102,	0.8	5
263	Extrapolation and interpolation strategies for efficiently estimating structural observal function of temperature and density. Journal of Chemical Physics, 2020, 153, 144101.		1.2	12
264	Some Aspects of the Liquid Water Thermodynamic Behavior: From The Stable to the D Regime. International Journal of Molecular Sciences, 2020, 21, 7269.	eep Supercooled	1.8	4
265	Protein-Water and Water-Water Long-Time Relaxations in Protein Hydration Water up Close Look through Density Correlation Functions. Molecules, 2020, 25, 4570.	on Cooling—A	1.7	7
266	Probing the network topology in network-forming materials: The case of water. AIP Adv	vances, 2020, 10,	0.6	26
267	Water above the spinodal. Journal of Chemical Physics, 2020, 152, 174501.		1.2	10
268	Possible Anomaly in the Surface Tension of Supercooled Water: New Experiments at Ex Supercooling down to â^'31.4 °C. Journal of Physical Chemistry Letters, 2020, 11	ktreme 1, 4443-4447.	2.1	11
269	Pronounced structural crossover in water at supercritical pressures. Journal of Physics Matter, 2020, 32, 385102.	Condensed	0.7	8
270	Temperature-dependent kinetic pathways featuring distinctive thermal-activation mecl structural evolution of ice VII. Proceedings of the National Academy of Sciences of the of America, 2020, 117, 15437-15442.		3.3	9
271	Effect of dissolved salt on the anomalies of water at negative pressure. Journal of Cher 2020, 152, 194501.	nical Physics,	1.2	4
272	Probing the intermolecular coupled vibrations in a water cluster with inelastic electron spectroscopy. Journal of Chemical Physics, 2020, 152, 234301.	tunneling	1.2	2
273	Experimental observation of density fluctuations in liquid metals associated with liquid liquid–gas and metal–nonmetal transitions. Journal of Physics Condensed Matter,		0.7	4
274	Local structure in water and its comparison with hexagonal ice from molecular dynami simulations of TIP4P/2005 water model. Molecular Simulation, 2020, 46, 557-564.	cs	0.9	1
275	Pressure Effects on Water Dynamics by Time-Resolved Optical Kerr Effect. Journal of Pł Chemistry Letters, 2020, 11, 3063-3068.	nysical	2.1	8
276	Polyamorphism Mirrors Polymorphism in the Liquid–Liquid Transition of a Molecular of the American Chemical Society, 2020, 142, 7591-7597.	Liquid. Journal	6.6	17
277	Analysis of Data on Zero and Negative Thermal Expansion Coefficients of Materials. Hig 2020, 58, 173-183.	gh Temperature,	0.1	3

#	Article	IF	CITATIONS
278	Between two and three dimensions: Crystal structures in a slit pore. Journal of Colloid and Interface Science, 2020, 580, 135-145.	5.0	8
279	A structural indicator for water built upon potential energy considerations. Journal of Chemical Physics, 2020, 152, 244503.	1.2	25
280	Controlling Mirror Symmetry Breaking and Network Formation in Liquid Crystalline Cubic, Isotropic Liquid and Crystalline Phases of Benzilâ€Based Polycatenars. Chemistry - A European Journal, 2020, 26, 16066-16079.	1.7	10
281	Pair Distribution Function from Electron Diffraction in Cryogenic Electron Microscopy: Revealing Glassy Water Structure. Journal of Physical Chemistry Letters, 2020, 11, 1564-1569.	2.1	16
282	Waterlike anomalies in hard core–soft shell nanoparticles using an effective potential approach: Pinned vs adsorbed polymers. Journal of Applied Physics, 2020, 127, .	1.1	13
283	Insights into the Emerging Networks of Voids in Simulated Supercooled Water. Journal of Physical Chemistry B, 2020, 124, 2180-2190.	1.2	14
284	Relaxation dynamics and power spectra of liquid water: a molecular dynamics simulation study. Molecular Physics, 2020, 118, e1733117.	0.8	0
285	The structure of water. Fluid Phase Equilibria, 2020, 511, 112514.	1.4	5
286	The dynamics of supercooled water can be predicted from room temperature simulations. Journal of Chemical Physics, 2020, 152, 074505.	1.2	15
287	Slow dynamics of supercooled hydration water in contact with lysozyme: examining the cage effect at different length scales. Philosophical Magazine, 2020, 100, 2582-2595.	0.7	6
288	Direct Evidence in the Scattering Function for the Coexistence of Two Types of Local Structures in Liquid Water. Journal of the American Chemical Society, 2020, 142, 2868-2875.	6.6	50
289	Interplay between freezing and density anomaly in a confined core-softened fluid. Molecular Physics, 2020, 118, e1718792.	0.8	3
290	Instantaneous normal mode analysis for OKE reduced spectra of liquid and supercooled water: Contributions of low-density and high-density liquids. Journal of Molecular Liquids, 2020, 301, 112363.	2.3	2
291	Two Local States of Ambient Water. Journal of the Korean Physical Society, 2020, 76, 1-7.	0.3	7
292	Spontaneous mirror symmetry breaking in benzil-based soft crystalline, cubic liquid crystalline and isotropic liquid phases. Chemical Science, 2020, 11, 5902-5908.	3.7	22
293	Tumbling with a limp: local asymmetry in water's hydrogen bond network and its consequences. Physical Chemistry Chemical Physics, 2020, 22, 10397-10411.	1.3	5
294	Pressure-temperature diagram of wetting and dewetting in a hydrophobic grain boundary and the liquidlike to icelike transition of monolayer water. Physical Review B, 2020, 101, .	1.1	3
295	Supercooled Low-Entropy Water Clusters. Journal of Physical Chemistry Letters, 2020, 11, 3667-3671.	2.1	4

#	Article	IF	CITATIONS
296	Experimental observation of nanophase segregation in aqueous salt solutions around the predicted liquid–liquid transition in water. Physical Chemistry Chemical Physics, 2020, 22, 9438-9447.	1.3	5
297	Experimental study of water thermodynamics up to 1.2 GPa and 473 K. Journal of Chemical Physics, 2020, 152, 154501.	1.2	6
298	An introduction to cryoâ€FIB‣EM crossâ€sectioning of frozen, hydrated Life Science samples. Journal of Microscopy, 2021, 281, 138-156.	0.8	30
299	Integral equation study of the effects of rotational degrees of freedom on properties of the Mercedes–Benz water model. Journal of Molecular Liquids, 2021, 327, 114880.	2.3	13
300	Partitioning of Crystalline and Amorphous Phases During Freezing of Simulated Enceladus Ocean Fluids. Journal of Geophysical Research E: Planets, 2021, 126, .	1.5	21
301	Structural behavior of a two length scale core-softened fluid in two dimensions. Physica A: Statistical Mechanics and Its Applications, 2021, 566, 125628.	1.2	11
302	Born–Oppenheimer molecular dynamics simulations on structures of high-density and low-density water: a comparison of the SCAN meta-GGA and PBE GGA functionals. Physical Chemistry Chemical Physics, 2021, 23, 2298-2304.	1.3	9
303	Breakdown of the Stokes–Einstein relation in supercooled water: the jump-diffusion perspective. Physical Chemistry Chemical Physics, 2021, 23, 19964-19986.	1.3	16
304	Caged structural water molecules emit tunable brighter colors by topological excitation. Nanoscale, 2021, 13, 15058-15066.	2.8	17
305	Dielectric relaxation of water: assessing the impact of localized modes, translational diffusion, and collective dynamics. Physical Chemistry Chemical Physics, 2021, 23, 20875-20882.	1.3	11
306	Pressure dependence of solvation of non-polar solute in simple model of water. Condensed Matter Physics, 2021, 24, 33604.	0.3	0
307	The Influence of Shear on the Liquid-Liquid Transition and Crystallization of Undercooled Zr _{41.2} Ti _{13.8} Cu _{12.5} Ni _{10.0} Be _{22.5} Bulk Metallic Glass Forming Alloy. SSRN Electronic Journal, 0, , .	0.4	0
308	Stable water droplets on composite structures formed by embedded water into fully hydroxylatedβ-cristobalite silica. Chinese Physics B, 2021, 30, 010503.	0.7	2
309	The role of high-density and low-density amorphous ice on biomolecules at cryogenic temperatures: a case study with polyalanine. Physical Chemistry Chemical Physics, 2021, 23, 19402-19414.	1.3	3
310	An Introduction to the Liquid State of Matter. Soft and Biological Matter, 2021, , 1-21.	0.3	0
311	Supercooled Water. Soft and Biological Matter, 2021, , 301-321.	0.3	0
312	Anomalous Behavior in the Nucleation of Ice at Negative Pressures. Physical Review Letters, 2021, 126, 015704.	2.9	24
313	Core-softened water–alcohol mixtures: the solute-size effects. Physical Chemistry Chemical Physics, 2021, 23, 16213-16223.	1.3	7

#	Article	IF	CITATIONS
314	A new one-site coarse-grained model for water: Bottom-up many-body projected water (BUMPer). II. Temperature transferability and structural properties at low temperature. Journal of Chemical Physics, 2021, 154, 044105.	1.2	17
315	Relations between thermodynamics, structures, and dynamics for modified water models in their supercooled regimes. Journal of Chemical Physics, 2021, 154, 054502.	1.2	5
316	Liquid–liquid phase transition in molten cerium during shock release. Applied Physics Letters, 2021, 118, .	1.5	1
317	Anomalous structure transition in undercooled melt regulates polymorphic selection in barium titanate crystallization. Communications Chemistry, 2021, 4, .	2.0	6
318	Diffusion in dense supercritical methane from quasi-elastic neutron scattering measurements. Nature Communications, 2021, 12, 1958.	5.8	11
319	Structural relaxation and crystallization in supercooled water from 170 to 260 K. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
320	On the existence of soliton-like collective modes in liquid water at the viscoelastic crossover. Scientific Reports, 2021, 11, 5417.	1.6	1
321	Strong Enhancement of Nanoconfined Water Mobility by a Structure Breaking Salt. Journal of Physical Chemistry Letters, 2021, 12, 4038-4044.	2.1	7
323	Relationship between Hydrogen-Bonding Motifs and the 1b ₁ Splitting in the X-ray Emission Spectrum of Liquid Water. Journal of Physical Chemistry Letters, 2021, 12, 3996-4002.	2.1	21
324	Effects of interfaces on structure and dynamics of water droplets on a graphene surface: A molecular dynamics study. Journal of Chemical Physics, 2021, 154, 164704.	1.2	8
325	Phase Equilibrium of Water with Hexagonal and Cubic Ice Using the SCAN Functional. Journal of Chemical Theory and Computation, 2021, 17, 3065-3077.	2.3	37
326	Examining the Role of Different Molecular Interactions on Activation Energies and Activation Volumes in Liquid Water. Journal of Chemical Theory and Computation, 2021, 17, 2659-2671.	2.3	11
327	Dynamic heterogeneity, cooperative motion, and Johari–Goldstein \$\$eta \$\$-relaxation in a metallic glass-forming material exhibiting a fragile-to-strong transition. European Physical Journal E, 2021, 44, 56.	0.7	24
328	Structural and topological changes across the liquid–liquid transition in water. Journal of Chemical Physics, 2021, 154, 184506.	1.2	21
329	Surface-enhanced Raman scattering of water in aqueous dispersions of silver nanoparticles. Beilstein Journal of Nanotechnology, 2021, 12, 497-506.	1.5	3
330	Dry Ice Self-Pressurised Rapid Freezing (DryIce SPRF): all you need to cool for cryofixation of nematodes is dry ice. Nematology, 2021, -1, 1-17.	0.2	0
331	Simulation Meets Experiment: Unraveling the Properties of Water in Metal–Organic Frameworks through Vibrational Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 12451-12460.	1.5	16
332	Stability of Two-Dimensional Ionic Clusters at Solid–Liquid Interfaces. Langmuir, 2021, 37, 6373-6379.	1.6	1

#	Article	IF	CITATIONS
333	Thermodynamic perturbation theory for rotational degrees of freedom. Application to the Mercedes–Benz water model. Journal of Molecular Liquids, 2021, 330, 115671.	2.3	9
334	A hierarchical clustering method of hydrogen bond networks in liquid water undergoing shear flow. Scientific Reports, 2021, 11, 9542.	1.6	14
335	Two Liquid–Liquid Phase Transitions in Confined Water Nanofilms. Journal of Physical Chemistry Letters, 2021, 12, 4786-4792.	2.1	4
336	Vapor–liquid equilibrium of water with the MB-pol many-body potential. Journal of Chemical Physics, 2021, 154, 211103.	1.2	32
337	Two States of Water Converge to One State below 215 K. Journal of Physical Chemistry Letters, 2021, 12, 5802-5806.	2.1	3
338	Insight into Liquid Polymorphism from the Complex Phase Behavior of a Simple Model. Physical Review Letters, 2021, 127, 015701.	2.9	7
339	Manifestations of metastable criticality in the long-range structure of model water glasses. Nature Communications, 2021, 12, 3398.	5.8	14
340	Behavior of Proteins under Pressure from Experimental Pressure-Dependent Structures. Journal of Physical Chemistry B, 2021, 125, 6179-6191.	1.2	6
341	Synergism of dynamics of tetrahedral hydrogen bonds of liquid water. Physics of Fluids, 2021, 33, 067120.	1.6	6
342	Phase variety in ionic liquids: Hydrogen bonding and molecular conformations. Journal of Molecular Liquids, 2021, 332, 115189.	2.3	14
343	A note on producing supercooled water in a teaching laboratory. Revista Mexicana De Fisica E, 2021, 18,	0.2	0
344	Experimental evidence for glass polymorphism in vitrified water droplets. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
345	Donor-acceptor structure and dynamics: Molecular dynamics simulation study of TIP4P/2005 water model. Chemical Physics Letters, 2021, 775, 138581.	1.2	0
346	Computer simulations and integral equation study of a two length scale core-softened fluid. Journal of Molecular Liquids, 2021, , 116982.	2.3	1
347	Influence of Pore Surface Chemistry on the Rotational Dynamics of Nanoconfined Water. Journal of Physical Chemistry C, 2021, 125, 16864-16874.	1.5	13
348	High-Pressure Nonequilibrium Dynamics on Second-to-Microsecond Time Scales: Application of Time-Resolved X-ray Diffraction and Dynamic Compression in Ice. Journal of Physical Chemistry Letters, 2021, 12, 8024-8038.	2.1	5
349	Linking amorphous ice and supercooled liquid water. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	2
350	Structure and dynamics of water confined in cylindrical nanopores with varying hydrophobicity. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200403.	1.6	7

#	Article	IF	CITATIONS
351	Spontaneous Freezing of Water between 233 and 235 K Is Not Due to Homogeneous Nucleation. Journal of the American Chemical Society, 2021, 143, 13548-13556.	6.6	5
352	Effect of Sodium Chloride on Internal Quasi-Liquid Layers in Ice I _{<i>h</i>} . Journal of Physical Chemistry C, 2021, 125, 18526-18535.	1.5	5
353	Dynamical crossover and its connection to the Widom line in supercooled TIP4P/Ice water. Journal of Chemical Physics, 2021, 155, 054502.	1.2	14
354	Slow Dynamics of Biological Water. Springer Proceedings in Physics, 2022, , 29-52.	0.1	0
355	Metastability of Liquid Water Freezing into Ice VII under Dynamic Compression. Physical Review Letters, 2021, 127, 135701.	2.9	7
356	Segregation on the nanoscale coupled to liquid water polyamorphism in supercooled aqueous ionic-liquid solution. Journal of Chemical Physics, 2021, 155, 104502.	1.2	3
357	The effect of rotational degrees of freedom on solvation of nonpolar solute. Journal of Molecular Liquids, 2021, 337, 116453.	2.3	8
358	The temperature dependence of the frequency of longitudinal excitations in liquid along isobars: Simple liquid and water. Journal of Molecular Liquids, 2021, 337, 116450.	2.3	1
359	Breakdown of the Stokes–Einstein relation in supercooled liquids: A cage-jump perspective. Journal of Chemical Physics, 2021, 155, 114503.	1.2	5
360	Investigations of structural and dynamical mechanisms of ice formation regulated by graphene oxide nanosheets. Structural Dynamics, 2021, 8, 054901.	0.9	5
361	The effect of shear on the liquid–liquid transition and crystallization of the undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 (Vit1) bulk metallic glass forming alloy. Journal of Physics Condensed Matter, 2021, 33, 474002.	0.7	0
362	Liquid–liquid phase transition in simulations of ultrafast heating and decompression of amorphous ice. Journal of Non-Crystalline Solids: X, 2021, 11-12, 100067.	0.5	4
363	Temperature and temporal heterogeneities of water dynamics in the physiological temperature range. Journal of Molecular Liquids, 2021, 340, 117201.	2.3	3
364	Hydrophilicity and hydrophobicity: Key aspects for biomedical and technological purposes. Physica A: Statistical Mechanics and Its Applications, 2021, 580, 126189.	1.2	14
365	Can metallic lithium be electrochemically extracted from water, the universal solvent?. Journal of Molecular Liquids, 2021, 342, 117545.	2.3	3
366	Tetrahedral structure of supercooled water at ambient pressure and its influence on dynamic relaxation: Comparative study of water models. Journal of Molecular Liquids, 2021, 341, 117269.	2.3	4
367	Terahertz pump–probe of liquid water at 12.3 THz. Physical Chemistry Chemical Physics, 2022, 24, 653-665.	1.3	14
368	Nuclear quantum effects on the thermodynamic, structural, and dynamical properties of water. Physical Chemistry Chemical Physics, 2021, 23, 6914-6928.	1.3	14

#	Article	IF	CITATIONS
369	Liquid–Liquid Critical Point Hypothesis of Water. NIMS Monographs, 2021, , 1-28.	0.1	0
370	A Two-State Picture of Water and the Funnel of Life. Springer Proceedings in Physics, 2019, , 3-39.	0.1	8
371	Ice and Its Formation. , 2020, , 13-51.		3
372	High Resolution Distance Distributions Determined by X-Ray and Neutron Scattering. Advances in Experimental Medicine and Biology, 2017, 1009, 167-181.	0.8	5
373	Contrasting microscopic interactions determine the properties of water/methanol solutions. Frontiers of Physics, 2018, 13, 1.	2.4	10
375	Equation of state of water based on the SCAN meta-GGA density functional. Physical Chemistry Chemical Physics, 2020, 22, 4626-4631.	1.3	9
376	Effect of trehalose on protein cryoprotection: Insights into the mechanism of slowing down of hydration water. Journal of Chemical Physics, 2020, 153, 224503.	1.2	13
377	Role of hydrodynamics in liquid–liquid transition of a single-component substance. Proceedings of the United States of America, 2020, 117, 4471-4479.	3.3	15
378	Microscopic evidence of the connection between liquid-liquid transition and dynamical crossover in an ultraviscous metallic glass former. Physical Review Materials, 2018, 2, .	0.9	14
379	Nuclear quantum effects on the thermodynamic response functions of a polymorphic waterlike monatomic liquid. Physical Review Research, 2020, 2, .	1.3	6
380	Non-Newtonian flow effects in supercooled water. Physical Review Research, 2020, 2, .	1.3	10
381	Potential energy landscape formalism for quantum liquids. Physical Review Research, 2020, 2, .	1.3	4
382	Complex phase diagrams of systems with isotropic potentials: results of computer simulations. Physics-Uspekhi, 2020, 63, 417-439.	0.8	23
383	Supercooled and Supercritical Water and Ice. Soft and Biological Matter, 2021, , 183-231.	0.3	0
384	Microsecond melting and revitrification of cryo samples. Structural Dynamics, 2021, 8, 054302.	0.9	16
385	Thermally Driven Transformation of Water Clustering Structures at Self-Assembled Monolayers. Langmuir, 2021, 37, 11493-11498.	1.6	2
386	Hydrogen-Bonded Structure of Water in the Loop of Anchored Polyrotaxane Chain Controlled by Anchoring Density. Frontiers in Chemistry, 2021, 9, 743255.	1.8	1
387	Phase classification using neural networks: application to supercooled, polymorphic core-softened mixtures. Journal of Physics Condensed Matter, 2022, 34, 024002.	0.7	6

# 388	ARTICLE Transition in the supercritical state of matter: Review of experimental evidence. Physics Reports, 2021, 941, 1-27.	IF 10.3	CITATIONS 23
389	Liquid Pre-Freezing Percolation Transition to Equilibrium Crystal-in-Liquid Mesophase. Natural Science, 2018, 10, 247-262.	0.2	3
390	X-Ray Studies of Water. , 2019, , 1-54.		0
392	Minimal Microscopic Model for Liquid Polyamorphism and Waterlike Anomalies. Physical Review Letters, 2021, 127, 185701.	2.9	21
393	Interplay between adsorption, aggregation and diffusion in confined core-softened colloids. Jcis Open, 2021, 4, 100029.	1.5	4
394	Giant Water Clusters: Where Are They From?. , 2020, , .		0
396	Preferential N–Hâ√:C hydrogen bonding involving ditopic NH-containing systems and N-heterocyclic carbenes. RSC Advances, 2020, 10, 42164-42171.	1.7	9
397	X-Ray Studies of Water. , 2020, , 1935-1988.		5
399	Using Activation Energies to Elucidate Mechanisms of Water Dynamics. Journal of Physical Chemistry A, 2021, 125, 9941-9952.	1.1	9
400	Elevating density functional theory to chemical accuracy for water simulations through a density-corrected many-body formalism. Nature Communications, 2021, 12, 6359.	5.8	45
401	Properties of water and ice. , 2022, , 31-44.		0
402	X-ray emission spectroscopy: a genetic algorithm to disentangle core–hole-induced dynamics. Theoretical Chemistry Accounts, 2021, 140, 1.	0.5	6
403	Structure and dynamics of nanoconfined water and aqueous solutions. European Physical Journal E, 2021, 44, 136.	0.7	38
404	Dynamical Behavior of Water; Fluctuation, Reactions and Phase Transitions. Bulletin of the Chemical Society of Japan, 2021, 94, 2575-2601.	2.0	2
405	Advances in the study of supercooled water. European Physical Journal E, 2021, 44, 143.	0.7	40
406	Isothermal-isobaric algorithm to study the effects of rotational degrees of freedom-Benz water model. Journal of Molecular Liquids, 2021, 349, 118152.	2.3	3
407	Anomalous Noble Gas Solubility in Liquid Cloud Water: Possible Implications for Noble Gas Temperatures and Cloud Physics. Water Resources Research, 2021, 57, e2020WR029306.	1.7	1
408	Dynamic viscosity of methane and carbon dioxide hydrate systems from pure water at high-pressure driving forces. Chemical Engineering Science, 2022, 252, 117282.	1.9	20

#	Article	IF	CITATIONS
409	A new single equation of state to describe the dynamic viscosity and self-diffusion coefficient for all fluid phases of water from 200 to 1800 K based on a new original microscopic model. Physics of Fluids, 2021, 33, 117112.	1.6	5
410	Hydrogen bonding in liquid water at 1 GPa : Molecular dynamics simulation study of TIP4P/2005 water model. Computational and Theoretical Chemistry, 2022, 1208, 113527.	1.1	1
411	A general statistical mechanical model for fluid system thermodynamics: Application to sub- and super-critical water. Journal of Chemical Physics, 2022, 156, 044506.	1.2	3
412	Folded network and structural transition in molten tin. Nature Communications, 2022, 13, 126.	5.8	6
413	Liquid-to-liquid transition around the glass-transition temperature in a glass-forming metallic liquid. Acta Materialia, 2022, 225, 117588.	3.8	12
414	Roles of liquid structural ordering in glass transition, crystallization, and water's anomalies. Journal of Non-Crystalline Solids: X, 2022, 13, 100076.	0.5	5
415	Comparison of the phase transitions of high-pressure phases of ammonium fluoride and ice at ambient pressure. Journal of Chemical Physics, 2022, 156, 014502.	1.2	1
416	The physics of empty liquids: from patchy particles to water. Reports on Progress in Physics, 2022, 85, 016601.	8.1	20
417	Phase transitions affected by natural and forceful molecular interconversion. Journal of Chemical Physics, 2022, 156, 084502.	1.2	9
418	Thermodynamic mechanism of the density and compressibility anomalies of water in the range â^'Â30Â<ÂT (°C)Â<Â100. Scientific Reports, 2022, 12, 1219.	1.6	1
419	A density functional theory investigation of the reaction of water with Ce2Oâ^'. Computational and Theoretical Chemistry, 2022, 1209, 113603.	1.1	0
420	Is It Possible to Follow the Structural Evolution of Water in "No-Man's Land―Using a Pulsed-Heating Procedure?. Journal of Physical Chemistry Letters, 2022, 13, 1085-1089.	2.1	3
421	Molecular dynamics simulations of structural and dynamical aspects of DNA hydration water. Journal of Physics Condensed Matter, 2022, 34, 164002.	0.7	1
422	How clay delamination supports aseismic slip. American Mineralogist, 2023, 108, 87-99.	0.9	2
423	Identification of Valence Electronic States Reflecting the Hydrogen Bonding in Liquid Ethanol. Journal of Physical Chemistry B, 2022, 126, 1101-1107.	1.2	2
424	Phase transition of supercooled water confined in cooperative two-state domain. Journal of Physics Condensed Matter, 2022, 34, 165403.	0.7	4
425	Isotope effects on the structural transformation and relaxation of deeply supercooled water. Journal of Chemical Physics, 2022, 156, 084501.	1.2	4
426	Structure factor of a phase separating binary mixture with natural and forceful interconversion of species. Journal of Non-Crystalline Solids: X, 2022, 13, 100082.	0.5	4

	Ci	tation Report	
#	Article	IF	CITATIONS
427	Structure of Water at Hydrophilic and Hydrophobic Interfaces: Raman Spectroscopy of Water Confined in Periodic Mesoporous (Organo)Silicas. Journal of Physical Chemistry C, 2022, 126, 3520-3	531. ^{1.5}	11
428	Confining deep eutectic solvents in nanopores: Insight into thermodynamics and chemical activity. Journal of Molecular Liquids, 2022, 349, 118488.	2.3	5
429	Dynamical Manifestations of Supercooling in Amyloid Hydration. Journal of Physical Chemistry B, 2022, 126, 44-53.	1.2	3
430	Hierarchical clustering analysis of hydrogen bond networks in aqueous solutions. Physical Chemistry Chemical Physics, 2022, 24, 9707-9717.	1.3	2
431	Gold Nanoprobes Exploring the Ice Structure in the Aqueous Dispersion of Poly(Ethylene) Tj ETQq0 0	0 rgBT /Overlock 10	0 Tf 50 582 Td (

432	Multiple Melting Temperatures in Glass-Forming Melts. Sustainability, 2022, 14, 2351.	1.6	6
433	Oxygen NMR of high-density and low-density amorphous ice. Journal of Chemical Physics, 2022, 156, 084503.	1.2	3
434	Interpretation of the X-Ray Emission Spectra of Liquid Water through Temperature and Isotope Dependence. Physical Review Letters, 2022, 128, 086002.	2.9	8
435	Permittivity of Deeply Supercooled Water Based on the Measurements at Frequencies of 7.6 and 9.7 GHz. Journal of Communications Technology and Electronics, 2022, 67, 249-256.	0.2	2
436	Water structure, properties and some applications – A review. Chemical Thermodynamics and Thermal Analysis, 2022, 6, 100053.	0.7	24
437	Structural characteristics of low-density environments in liquid water. Physical Review E, 2022, 105, 034604.	0.8	13
438	Evidence of a liquid–liquid phase transition in H\$\$_2\$\$O and D\$\$_2\$\$O from path-integral molecular dynamics simulations. Scientific Reports, 2022, 12, 6004.	1.6	10
439	A study of nanoconfined water in halloysite. Applied Clay Science, 2022, 221, 106467.	2.6	10
440	The local structure of water from combining diffraction and X-ray spectroscopy. Journal of Non-Crystalline Solids: X, 2022, 14, 100087.	0.5	3
441	Low- and high-density forms of liquid water revealed by a new medium-range order descriptor. Journal of Molecular Liquids, 2022, 355, 118922.	2.3	11
442	Influence of ice formation on the dynamic and thermodynamic properties of aqueous solutions. Journal of Molecular Liquids, 2022, 356, 119039.	2.3	3
443	Predictions for the properties of water below its homogeneous crystallization temperature revisited. Journal of Non-Crystalline Solids: X, 2022, 14, 100090.	0.5	0
444	Physical properties of liquid oxygen under ultrahigh magnetic fields. Physical Review B, 2021, 104, .	1.1	2

#	Article	IF	CITATIONS
445	Temperature-Dependent Liquid Water Structure for Individual Micron-Sized, Supercooled Aqueous Droplets with Inclusions. Journal of Physical Chemistry A, 2021, 125, 10742-10749.	1.1	8
446	Anomalies and Local Structure of Liquid Water from Boiling to the Supercooled Regime as Predicted by the Many-Body MB-pol Model. Journal of Physical Chemistry Letters, 2022, 13, 3652-3658.	2.1	25
447	Origin of the anomalous properties in supercooled water based on experimental probing inside "no-man's landâ€: Journal of Non-Crystalline Solids: X, 2022, 14, 100095.	0.5	9
448	Maximum in density of electrolyte solutions: Learning about ion–water interactions and testing the Madrid-2019 force field. Journal of Chemical Physics, 2022, 156, 154502.	1.2	13
449	Anomalous liquids on a new landscape: From water to phase-change materials. Journal of Non-Crystalline Solids: X, 2022, , 100094.	0.5	0
450	Creating Controllable Three-Dimensional Microstructures on the Surface of Carbon Fibers by Manipulating Ice Crystallization to Improve Interfacial Properties of Composites. SSRN Electronic Journal, 0, , .	0.4	0
451	High-Dimensional Fluctuations in Liquid Water: Combining Chemical Intuition with Unsupervised Learning. Journal of Chemical Theory and Computation, 2022, 18, 3136-3150.	2.3	14
452	<i>In situ</i> characterization of liquids at high pressure combining X-ray tomography, X-ray diffraction and X-ray absorption using the white beam station at PSICHÉ. Journal of Synchrotron Radiation, 2022, 29, 853-861.	1.0	3
453	Assessing the Interplay between Functional-Driven and Density-Driven Errors in DFT Models of Water. Journal of Chemical Theory and Computation, 2022, 18, 3410-3426.	2.3	14
454	Low- and High-Density Unknown Waters at Ice–Water Interfaces. Journal of Physical Chemistry Letters, 2022, 13, 4251-4256.	2.1	4
455	Water clusters and density fluctuations in liquid water based on extended hierarchical clustering methods. Scientific Reports, 2022, 12, 8036.	1.6	6
456	Ephemeral Ice-Like Local Environments in Classical Rigid Models of Liquid Water. Journal of Chemical Physics, 0, , .	1.2	10
457	Connection between water's dynamical and structural properties: Insights from ab initio simulations. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121641119.	3.3	9
458	The structural order of protein hydration water. Communications in Theoretical Physics, 0, , .	1.1	1
459	Isotope effects on the dynamics of amorphous ices and aqueous phosphoric acid solutions. Physical Chemistry Chemical Physics, 2022, 24, 14846-14856.	1.3	1
460	Probing Adaptation of Hydration and Protein Dynamics to Temperature. ACS Omega, 2022, 7, 22020-22031.	1.6	4
461	An analytical approach to the anomalous density of water. Physics of Fluids, 2022, 34, .	1.6	5
462	Membraneless physiology of the living cell. The past and the present. 40pen, 2022, 5, 15.	0.1	2

#	Article	IF	CITATIONS
463	Barrier-free molecular reorientations in polyhedral water clusters. Structural Chemistry, 2023, 34, 553-563.	1.0	1
464	Guiding epitaxial crystallization of amorphous solids at the nanoscale: Interfaces, stress, and precrystalline order. Journal of Chemical Physics, 2022, 157, .	1.2	3
465	High-Density "Windowpane―Coordination Patterns of Water Clusters and Their NBO/NRT Characterization. Molecules, 2022, 27, 4218.	1.7	1
466	Correlated Local Fluctuations in the Hydrogen Bond Network of Liquid Water. Journal of the American Chemical Society, 2022, 144, 13127-13136.	6.6	4
467	Phase diagram of the TIP4P/Ice water model by enhanced sampling simulations. Journal of Chemical Physics, 2022, 157, .	1.2	8
468	Viscosity in water from first-principles and deep-neural-network simulations. Npj Computational Materials, 2022, 8, .	3.5	23
469	Modeling fluid polyamorphism through a maximum-valence approach. Physical Review E, 2022, 106, .	0.8	3
470	Pressure-annealed high-density amorphous ice made from vitrified water droplets: A systematic calorimetry study on water's second glass transition . Journal of Chemical Physics, 0, , .	1.2	4
471	Water: An Influential Agent for Lanthanideâ€Đoped Luminescent Nanoparticles in Nanomedicine. Advanced Optical Materials, 2023, 11, .	3.6	5
472	IR-Supported Thermogravimetric Analysis of Water in Hydrogels. Frontiers in Materials, 0, 9, .	1.2	5
473	Water as the often neglected medium at the interface between materials and biology. Nature Communications, 2022, 13, .	5.8	20
474	Structural changes across thermodynamic maxima in supercooled liquid tellurium: A water-like scenario. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5
475	Shear viscosity and Stokes-Einstein violation in supercooled light and heavy water. Physical Review E, 2022, 106, .	0.8	6
476	Multiple insights call for revision of modern thermodynamic models to account for structural fluctuations in water. AICHE Journal, 2022, 68, .	1.8	5
477	Charge Gradients around Dendritic Voids Cause Nanoscale Inhomogeneities in Liquid Water. Journal of Physical Chemistry Letters, 2022, 13, 7462-7468.	2.1	3
478	Infrared Spectroscopy on Equilibrated High-Density Amorphous Ice. Journal of Physical Chemistry Letters, 2022, 13, 7965-7971.	2.1	5
479	Confinement-Driven Heterogeneous Benzene Crystallization in Silica Nanopores. Energy & Fuels, 2022, 36, 9182-9193.	2.5	1
480	Double universality of the transition in the supercritical state. Science Advances, 2022, 8, .	4.7	6

#	Article	IF	CITATIONS
481	Molecular dynamics analysis of elastic properties and new phase formation during amorphous ices transformations. Scientific Reports, 2022, 12, .	1.6	4
482	Temperature Dependence of Water Absorption in the Biological Windows and Its Impact on the Performance of Ag ₂ S Luminescent Nanothermometers. Particle and Particle Systems Characterization, 2022, 39, .	1.2	3
483	The Possible Mechanism of Amyloid Transformation Based on the Geometrical Parameters of Early-Stage Intermediate in Silico Model for Protein Folding. International Journal of Molecular Sciences, 2022, 23, 9502.	1.8	1
484	Using Car-Parrinello simulations and microscopic order descriptors to reveal two locally favored structures with distinct molecular dipole moments and dynamics in ambient liquid water. Journal of Molecular Liquids, 2022, 364, 119936.	2.3	6
485	On a molecular origin of properties of water. Journal of Molecular Liquids, 2022, 365, 120100.	2.3	0
486	Boiling Line and Near-Critical Maxima of Propane-Nitrogen Mixture. SSRN Electronic Journal, 0, , .	0.4	0
487	Revealing the three-component structure of water with principal component analysis (PCA) of X-ray spectra. Soft Matter, 2022, 18, 7486-7496.	1.2	3
488	Vapor Pressure of Supercooled Water. International Journal of Thermophysics, 2022, 43, .	1.0	0
489	Applying SAFT-type models for the anomalous properties of water: Successes and challenges. Fluid Phase Equilibria, 2023, 565, 113617.	1.4	3
490	Three-Dimensional Confinement of Water: H ₂ O Exhibits Long-Range (>50 nm) Structure while D ₂ O Does Not. Nano Letters, 2022, 22, 7394-7400.	4.5	4
491	An extended Stokes–Einstein model for condensed ionic water structures with topological complexity. Journal of Physics Condensed Matter, 2022, 34, 475101.	0.7	1
492	Thermodynamic modeling of fluid polyamorphism in hydrogen at extreme conditions. Journal of Chemical Physics, 2022, 157, 101101.	1.2	3
493	A journey into the local structural order of liquid water: from the insights earned by geometrically-inspired descriptors to the development of a brand new energy-based indicator. European Physical Journal Plus, 2022, 137, .	1.2	5
494	Atomistic characterization of the SiO2 high-density liquid/low-density liquid interface. Journal of Chemical Physics, 2022, 157, .	1.2	1
495	Thermodynamics and structure of supercooled water. II Journal of Molecular Liquids, 2022, 367, 120508.	2.3	4
496	Creating controllable three-dimensional microstructures on the surface of carbon fibers by manipulating ice crystallization to improve interfacial properties of composites. Composites Science and Technology, 2022, 230, 109737.	3.8	4
497	Machine learning-generated TIP4P-BGWT model for liquid and supercooled water. Journal of Molecular Liquids, 2022, 367, 120459.	2.3	3
498	Biological Activity of Solutions of Substances at Low and Ultra Low Concentrations. Biophysics (Russian Federation), 2022, 67, 523-533.	0.2	5

#	Article	IF	CITATIONS
499	Structural and Electronic Effects at the Interface between Transition Metal Dichalcogenide Monolayers (MoS2, WSe2, and Their Lateral Heterojunctions) and Liquid Water. International Journal of Molecular Sciences, 2022, 23, 11926.	1.8	0
500	Monte Carlo simulations of simple two dimensional water-alcohol mixtures. Journal of Molecular Liquids, 2022, , 120692.	2.3	1
501	Effect of blockage ratio on flow of a viscoelastic wormlike micellar solution past a cylinder in a microchannel. Soft Matter, 2022, 18, 8856-8866.	1.2	4
502	Transient Mesoscopic Immiscibility, Viscosity Anomaly, and High Internal Pressure at the Semiconductor–Metal Transition in Liquid Ga ₂ Te ₃ . Journal of Physical Chemistry Letters, 2022, 13, 10843-10850.	2.1	4
503	The effect of intra-molecular bonds on the liquid–liquid critical point in modified-WAC models. Journal of Chemical Physics, 2022, 157, .	1.2	1
504	Stability and Metastability of Liquid Water in a Machine-Learned Coarse-Grained Model with Short-Range Interactions. Journal of Physical Chemistry B, 0, , .	1.2	8
505	Supercooled liquids. , 2024, , 171-180.		0
506	Protein hydration water: Focus on low density and high density local structures upon cooling. Journal of Molecular Liquids, 2023, 370, 120962.	2.3	3
507	Self-Diffusion in Confined Water: A Comparison between the Dynamics of Supercooled Water in Hydrophobic Carbon Nanotubes and Hydrophilic Porous Silica. International Journal of Molecular Sciences, 2022, 23, 14432.	1.8	1
508	Boiling line and near-critical maxima of propane-nitrogen mixtures. Physical Review E, 2022, 106, .	0.8	1
509	Refractive Index of Supercooled Water Down to 230.3 K in the Wavelength Range between 534 and 675 nm. Journal of Physical Chemistry Letters, 2022, 13, 11872-11877.	2.1	1
510	An analytical approach to the anomalous specific heat of water. Journal of Molecular Liquids, 2023, 371, 121049.	2.3	1
511	Correlated Fluctuations of Structural Indicators Close to the Liquid–Liquid Transition in Supercooled Water. Journal of Physical Chemistry B, 2023, 127, 378-386.	1.2	10
512	Fluid inclusions in minerals: from geosciences to the physics of water and back. Comptes Rendus Physique, 2022, 23, 71-87.	0.3	0
514	Free energy calculations and unbiased molecular dynamics targeting the liquid–liquid transition in water no man's land. Journal of Chemical Physics, 2023, 158, .	1.2	3
515	The electric field changes anomalous properties and phase transitions of Mercedes Benz water model. Physical Chemistry Chemical Physics, 0, , .	1.3	1
517	Self-diffusion and shear viscosity for the TIP4P/Ice water model. Journal of Chemical Physics, 2023, 158, .	1.2	5
518	Data-driven many-body potentials from density functional theory for aqueous phase chemistry. Chemical Physics Reviews, 2023, 4, .	2.6	4

#	Article	IF	CITATIONS
519	Liquid-liquid phase separation in supercooled water from ultrafast heating of low-density amorphous ice. Nature Communications, 2023, 14, .	5.8	15
520	Observing thermal single particle dynamics of ions and molecules in water with light. Progress of Theoretical and Experimental Physics, 0, , .	1.8	0
521	Water model determines thermosensitive and physicochemical properties of poly(N-isopropylacrylamide) in molecular simulations. Frontiers in Materials, 0, 10, .	1.2	3
522	Higher-Order Simulations of Droplet-Shock Interaction, Aerobreakup and Impingement at High Mach Numbers. , 2023, , .		3
523	Liquid Water: A Single Approach to Its Two Continuous Phase Transitions. Journal of Physical Chemistry B, 2023, 127, 955-960.	1.2	2
524	High-density liquid (HDL) adsorption at the supercooled water/vapor interface and its possible relation to the second surface tension inflection point. Journal of Chemical Physics, 2023, 158, .	1.2	3
525	Topology induced crossover between Langevin, subdiffusion, and Brownian diffusion regimes in supercooled water. Physical Chemistry Chemical Physics, 2023, 25, 10353-10366.	1.3	1
526	Generic maximum-valence model for fluid polyamorphism. Physical Review E, 2023, 107, .	0.8	Ο
527	Solid-amorphous transition is related to the waterlike anomalies in a fluid without liquid–liquid phase transition. Journal of Chemical Physics, 2023, 158, 134501.	1.2	3
528	Simulating a flexible water model as rigid: Best practices and lessons learned. Journal of Chemical Physics, 2023, 158, .	1.2	2
529	Building a Hofmeister-like series for the maximum in density temperature of aqueous electrolyte solutions. Journal of Molecular Liquids, 2023, 377, 121433.	2.3	4
530	Liquid water as an adaptive information medium. Chemical Physics, 2023, 568, 111825.	0.9	0
531	Structural analysis of water networks. Journal of Complex Networks, 2022, 11, .	1.1	2
532	A "short blanket―dilemma for a state-of-the-art neural network potential for water: Reproducing experimental properties or the physics of the underlying many-body interactions?. Journal of Chemical Physics, 2023, 158, .	1.2	25
533	Dynamical and interference effects in X-ray emission spectroscopy of H-bonded water– origin of the split lone-pair peaks. Molecular Physics, 2023, 121, .	0.8	2
534	Equation of State of Liquid Water Written by Simple Experimental Polynomials and the Liquid–Liquid Critical Point. Journal of Physical Chemistry B, 2023, 127, 1414-1421.	1.2	4
535	Scaled charges for ions: An improvement but not the final word for modeling electrolytes in water. Journal of Chemical Physics, 2023, 158, .	1.2	16
536	Impact of formulations of the homogeneous nucleation rate on ice nucleation events in cirrus. Atmospheric Chemistry and Physics, 2023, 23, 2035-2060.	1.9	1

#	Article	IF	CITATIONS
537	Experimental observation of mesoscopic fluctuations to identify origin of thermodynamic anomalies of ambient liquid water. Physical Review Research, 2023, 5, .	1.3	1
538	Improved and Always Improving: Reference Formulations for Thermophysical Properties of Water. Journal of Physical and Chemical Reference Data, 2023, 52, .	1.9	9
539	Correlations between defect propensity and dynamical heterogeneities in supercooled water. Journal of Chemical Physics, 2023, 158, 114502.	1.2	1
540	Combined Description of the Equation of State and Diffusion Coefficient of Liquid Water Using a Two-State Sanchez–Lacombe Approach. Molecules, 2023, 28, 2560.	1.7	1
541	Kinetics and Mechanisms of Pressure-Induced Ice Amorphization and Polyamorphic Transitions in a Machine-Learned Coarse-Grained Water Model. Journal of Physical Chemistry B, 2023, 127, 2847-2862.	1.2	3
542	Relaxation time scales of interfacial water upon fluid to ripple to gel phase transitions of bilayers. Journal of Chemical Physics, 2023, 158, .	1.2	2
543	Do Machine-Learning Atomic Descriptors and Order Parameters Tell the Same Story? The Case of Liquid Water. Journal of Chemical Theory and Computation, 2023, 19, 4596-4605.	2.3	3
544	Interfacial Properties of Fluids Exhibiting Liquid Polyamorphism and Water-Like Anomalies. Journal of Physical Chemistry B, 2023, 127, 3079-3090.	1.2	0
545	Anomalous Vapor and Ice Nucleation in Water at Negative Pressures: A Classical Density Functional Theory Study. Journal of Physical Chemistry B, 2023, 127, 3312-3324.	1.2	0
546	Persistent Local Structural Defectiveness as an Early Time Predictor of Intermittent Glassy Relaxation Events in Supercooled Water. Journal of Physical Chemistry B, 2023, 127, 3516-3523.	1.2	1
547	Glass Polymorphism in Hyperquenched Aqueous LiCl Solutions. Journal of Physical Chemistry B, 2023, 127, 3463-3477.	1.2	0
548	Nucleation and growth of crystalline ices from amorphous ices. Journal of Chemical Physics, 2023, 158, .	1.2	3
549	A Unified Description of the Liquid Structure, Static and Dynamic Anomalies, and Criticality of TIP4P/2005 Water by a Hierarchical Two-State Model. Journal of Physical Chemistry B, 2023, 127, 3452-3462.	1.2	3
550	Phase Diagrams of Liquid Electrolytes. , 2023, , 373-399.		0
551	Đ'Đ¿Đ»Đ͵Đ² Ñ,ĐμĐ¼Đ¿ĐμÑ€Đ°Ñ,урĐ͵ Ñ,а Ñ,Đ͵ÑĐºÑƒ Đ½Đ° Ñ,ĐμÑ€Đ¼Đ34ĐĐ,Đ½Đ°Đ¼Ñ−Ñ‡Đ½Đ,Đ¹ ξ	₽₽Ĵ%4еÑ,	"ѱцієE
552	Thermodynamic response functions and Stokes-Einstein breakdown in superheated water under gigapascal pressure. Theoretical Chemistry Accounts, 2023, 142, .	0.5	1
553	How Dimensionality Affects the Structural Anomaly in a Core-Softened Colloid. Colloids and Interfaces, 2023, 7, 33.	0.9	0
575	Sensing Kinetics of Ice Recrystallization through Plasmonic Nanoantennas. , 2022, , .		Ο

#	Article	IF	CITATIONS
581	The role of water in reactions catalysed by hydrolases under conditions of molecular crowding. Biophysical Reviews, 2023, 15, 639-660.	1.5	3
586	Water as a sensor of weak impacts on biological systems. Biophysical Reviews, 2023, 15, 819-832.	1.5	2
617	Sensing Kinetics of Ice Recrystallization Through Plasmonic Nanoantennas. , 2022, , .		0