Performance of hollow-core FRP–concrete–steel br collision

Engineering Structures 123, 517-531 DOI: 10.1016/j.engstruct.2016.05.048

Citation Report

#	Article	IF	CITATIONS
1	Dynamic and Static Behavior of Hollow-Core FRP-Concrete-Steel and Reinforced Concrete Bridge Columns under Vehicle Collision. Polymers, 2016, 8, 432.	2.0	13
2	Numerical investigation of CFRP strengthened full scale CFST columns subjected to vehicular impact. Engineering Structures, 2016, 126, 292-310.	2.6	56
3	Performance of bridge piers under vehicle collision. Engineering Structures, 2017, 140, 337-352.	2.6	84
4	Seismic Performance of Innovative Hollow-Core FRP–Concrete–Steel Bridge Columns. Journal of Bridge Engineering, 2017, 22, .	1.4	38
5	Dynamic responses and failure modes of bridge columns under vehicle collision. Engineering Structures, 2018, 156, 243-259.	2.6	129
6	Shaking Table Testing of Segmental Hollow-Core FRP-Concrete-Steel Bridge Columns. Journal of Bridge Engineering, 2018, 23, .	1.4	35
7	Behavior of Hollow-Core FRP-Concrete-Steel Columns under Static Cyclic Flexural Loading. Journal of Structural Engineering, 2018, 144, .	1.7	27
8	Effects of axial load on nonlinear response of RC columns subjected to lateral impact load: Ship-pier collision. Engineering Failure Analysis, 2018, 91, 397-418.	1.8	88
9	Damage assessment of bridge piers subjected to vehicle collision. Advances in Structural Engineering, 2018, 21, 2270-2281.	1.2	30
10	Numerical analysis of collision between a tractor-trailer and bridge pier. International Journal of Protective Structures, 2018, 9, 484-503.	1.4	9
11	Numerical Simulation of Hybrid FRP-Concrete-Steel Double-Skin Tubular Columns under Close-Range Blast Loading. Journal of Composites for Construction, 2018, 22, .	1.7	29
12	Loading rate effects on the responses of simply supported RC beams subjected to the combination of impact and blast loads. Engineering Structures, 2019, 201, 109837.	2.6	40
13	Lateral impact behavior of double-skin steel tubular (DST) members with ultra-high performance fiber-reinforced concrete (UHPFRC). Thin-Walled Structures, 2019, 144, 106351.	2.7	30
14	Performance-based reliability analysis of bridge pier subjected to vehicular collision: Extremity and failure. Engineering Failure Analysis, 2019, 106, 104176.	1.8	24
15	Proposed design procedure for reinforced concrete bridge columns subjected to vehicle collisions. Structures, 2019, 22, 213-229.	1.7	38
16	Behavior of ultra-high performance fiber-reinforced concrete (UHPFRC) filled steel tubular members under lateral impact loading. International Journal of Impact Engineering, 2019, 132, 103314.	2.4	53
17	Bending and Buckling Behavior of Hollow-Core FRP–Concrete–Steel Columns. Journal of Bridge Engineering, 2019, 24, 04019082.	1.4	6
18	Effects of steel confinement and shear keys on the impact responses of precast concrete segmental columns. Journal of Constructional Steel Research, 2019, 158, 331-349.	1.7	21

CITATION REPORT

#	Article	IF	CITATIONS
19	Impact Response and Capacity of Precast Concrete Segmental versus Monolithic Bridge Columns. Journal of Bridge Engineering, 2019, 24, .	1.4	29
20	Durability of Hollow-Core GFRP–Concrete–Steel Columns under Severe Weather Conditions. Journal of Composites for Construction, 2019, 23, .	1.7	9
21	Impact force profile and failure classification of reinforced concrete bridge columns against vehicle impact. Engineering Structures, 2019, 183, 443-458.	2.6	102
22	Nonlinear numerical analysis and progressive damage assessment of a cable-stayed bridge pier subjected to ship collision. Marine Structures, 2020, 69, 102662.	1.6	100
23	Performance of double skin FRP-concrete-steel self-centered segmental bridge piers subjected to forward-directivity near-fault ground motion. Engineering Structures, 2020, 221, 111065.	2.6	4
24	Dynamic responses and reliability analysis of bridge double-column under vehicle collision. Engineering Structures, 2020, 221, 111035.	2.6	29
25	Responses of concrete-filled FRP tubular and concrete-filled FRP-steel double skin tubular columns under horizontal impact. Thin-Walled Structures, 2020, 155, 106941.	2.7	21
26	Dynamic performance of a sandwich structure with honeycomb composite core for bridge pier protection from vehicle impact. Thin-Walled Structures, 2020, 157, 107010.	2.7	21
27	Effect of Cross-Sectional Aspect Ratio on Rectangular FRP-Concrete-Steel Double-Skin Tubular Columns under Axial Compression. Advances in Polymer Technology, 2020, 2020, 1-15.	0.8	4
28	Stress Wave Propagation and Structural Response of Precast Concrete Segmental Columns under Simulated Blast Loads. International Journal of Impact Engineering, 2020, 143, 103595.	2.4	23
29	Experimental investigation on performance of cantilever CFRP-wrapped circular RC columns under lateral low-velocity impact. Composite Structures, 2020, 242, 112143.	3.1	36
30	Elliptical FRP-Concrete-Steel Double-Skin Tubular Columns under Monotonic Axial Compression. Advances in Polymer Technology, 2020, 2020, 1-16.	0.8	3
31	Numerical Modeling and Performance Assessment of FRP-Strengthened Full-Scale Circular-Hollow-Section Steel Columns Subjected to Vehicle Collisions. Journal of Composites for Construction, 2020, 24, .	1.7	8
32	Experimental Investigation of the Hybrid FRP-UHPC-Steel Double-Skin Tubular Columns under Lateral Impact Loading. Journal of Composites for Construction, 2020, 24, .	1.7	38
33	State-of-the-Art Review on Responses of RC Structures Subjected to Lateral Impact Loads. Archives of Computational Methods in Engineering, 2021, 28, 2477-2507.	6.0	67
34	Behavior of CFRP-UHPFRC-steel double skin tubular columns against low-velocity impact. Composite Structures, 2021, 261, 113284.	3.1	8
35	Flexural resistance and deformation behaviour of CFRP-ULCC-steel sandwich composite structures. Composite Structures, 2021, 257, 113080.	3.1	14
36	Dynamic response analysis of bridge precast segment piers under vehicle collision. Engineering Failure Analysis, 2021, 124, 105363.	1.8	15

CITATION REPORT

#	Article	IF	CITATIONS
37	Dynamic responses of hybrid FRP-concrete-steel double-skin tubular column (DSTC) under lateral impact. Structures, 2021, 32, 1115-1144.	1.7	18
38	Lessons learned from vehicle collision accident of Dongguofenli Bridge: FE modeling and analysis. Engineering Structures, 2021, 244, 112813.	2.6	16
39	Behavior and design of reinforced concrete building columns subjected to low-velocity car impact. Structures, 2020, 26, 601-616.	1.7	29
40	Behavior of Concrete-Filled Hybrid Large Rupture Strain FRP Tubes Under Cyclic Axial Compression. Lecture Notes in Civil Engineering, 2018, , 346-353.	0.3	1
41	Numerical modelling of FRP-concrete-steel double-skin tubular columns under blast loading. , 2017, , 387-393.		0
42	Numerical Simulation of FRP-Concrete-Steel Double-Skin Tubular Column Under Lateral Impact Loading. Lecture Notes in Civil Engineering, 2020, , 467-476.	0.3	0
43	Numerical Modeling and Performance Assessment of Bridge Column Strengthened by FRP and Polyurea under Combined Collision and Blast Loading. Journal of Composites for Construction, 2022, 26, .	1.7	6
44	Axial compressive behavior and modeling of fiber-reinforced polymer-concrete-steel double-skin tubular stub columns with a rectangular outer tube and an elliptical inner tube. Engineering Structures, 2022, 260, 114222.	2.6	9
45	Numerical study on impact resistance of rubberised concrete roadside barrier. Advances in Structural Engineering, 0, , 136943322211201.	1.2	1
46	Vehicle collision with RC structures: A state-of-the-art review. Structures, 2022, 44, 1617-1635.	1.7	10
47	Seismic behaviour and modelling of rectangular FRP-concrete-steel tubular columns under axial compression and cyclic lateral loading. Structures, 2023, 48, 1505-1518.	1.7	9
48	Seismic performance of elliptical FRP-concrete-steel tubular columns under combined axial load and reversed lateral load. Engineering Structures, 2023, 286, 116135.	2.6	8