Light-dependent chlorophyll f synthase is a highly diver photosystem II

Science 353, DOI: 10.1126/science.aaf9178

Citation Report

#	Article	IF	CITATIONS
1	Photosynthetic Versatility in the Genome of Geitlerinema sp. PCC 9228 (Formerly Oscillatoria) Tj ETQq0 0 0 rgBT Microbiology, 2016, 7, 1546.	/Overlock 1.5	10 Tf 50 74 37
2	A Proposal for Formation of Archaean Stromatolites before the Advent of Oxygenic Photosynthesis. Frontiers in Microbiology, 2016, 7, 1784.	1.5	16
3	Network analysis of transcriptomics expands regulatory landscapes in <i>Synechococcus</i> sp. PCC 7002. Nucleic Acids Research, 2016, 44, 8810-8825.	6.5	26
4	Cyanobacteriochrome Photoreceptors Lacking the Canonical Cys Residue. Biochemistry, 2016, 55, 6981-6995.	1.2	34
5	Embracing Biological Solutions to the Sustainable Energy Challenge. CheM, 2017, 2, 20-51.	5.8	51
6	Light use efficiency for vegetables production in protected and indoor environments. European Physical Journal Plus, 2017, 132, 1.	1.2	65
7	Biochemistry of Chlorophyll Biosynthesis in Photosynthetic Prokaryotes. , 2017, , 67-122.		8
8	Light regulation of pigment and photosystem biosynthesis in cyanobacteria. Current Opinion in Plant Biology, 2017, 37, 24-33.	3.5	93
9	Phytochrome diversification in cyanobacteria and eukaryotic algae. Current Opinion in Plant Biology, 2017, 37, 87-93.	3.5	63
10	Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World Journal of Microbiology and Biotechnology, 2017, 33, 20.	1.7	170
11	A niche for cyanobacteria producing chlorophyll <i>f</i> within a microbial mat. ISME Journal, 2017, 11, 2368-2378.	4.4	62
12	Gaia and her microbiome. FEMS Microbiology Ecology, 2017, 93, fiw247.	1.3	29
13	The C21-formyl group in chlorophyll f originates from molecular oxygen. Journal of Biological Chemistry, 2017, 292, 19279-19289.	1.6	20
14	An algal photoenzyme converts fatty acids to hydrocarbons. Science, 2017, 357, 903-907.	6.0	317
15	Subcellular pigment distribution is altered under far-red light acclimation in cyanobacteria that contain chlorophyll f. Photosynthesis Research, 2017, 134, 183-192.	1.6	24
16	Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335. II.Characterization of phycobiliproteins produced during acclimation to far-red light. Photosynthesis Research, 2017, 131, 187-202.	1.6	75
17	Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335: I. Regulation of FaRLiP gene expression. Photosynthesis Research, 2017, 131, 173-186.	1.6	67

18Diversity of Chlorophototrophic Bacteria Revealed in the Omics Era. Annual Review of Plant Biology,
2018, 69, 21-49.8.694

	CITATION	REPORT	
#	Article	IF	Citations
19	Far-red light photoadaptations in aquatic cyanobacteria. Hydrobiologia, 2018, 813, 1-17.	1.0	27
20	Leptolyngbya CCM 4, a cyanobacterium with far-red photoacclimation from Cuatro Ciénegas Basin, México. Photosynthetica, 2018, 56, 342-353.	0.9	20
21	A physiological perspective on the origin and evolution of photosynthesis. FEMS Microbiology Reviews, 2018, 42, 205-231.	3.9	115
22	Living off the Sun: chlorophylls, bacteriochlorophylls and rhodopsins. Photosynthetica, 2018, 56, 11-43.	0.9	50
24	Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life. Astrobiology, 2018, 18, 663-708.	1.5	328
25	Diel regulation of photosynthetic activity in the oceanic unicellular diazotrophic cyanobacterium <i>Crocosphaera watsonii</i> WH8501. Environmental Microbiology, 2018, 20, 546-560.	1.8	25
26	Biomass from microalgae: the potential of domestication towards sustainable biofactories. Microbial Cell Factories, 2018, 17, 173.	1.9	200
27	Complementary chromatic and far-red photoacclimations in Synechococcus ATCC 29403 (PCC 7335). I: The phycobilisomes, a proteomic approach. Photosynthesis Research, 2018, 138, 39-56.	1.6	26
28	Enhancing photosynthesis in plants: the light reactions. Essays in Biochemistry, 2018, 62, 85-94.	2.1	90
29	Photosynthesis supported by a chlorophyll f-dependent, entropy-driven uphill energy transfer in Halomicronema hongdechloris cells adapted to far-red light. Photosynthesis Research, 2019, 139, 185-201.	1.6	59
30	Genetic Engineering, Synthetic Biology and the Light Reactions of Photosynthesis. Plant Physiology, 2019, 179, 778-793.	2.3	55
31	Photolyase-Like Catalytic Behavior of CeO ₂ . Nano Letters, 2019, 19, 8270-8277.	4.5	70
32	Characterization of chlorophyll f synthase heterologously produced in Synechococcus sp. PCC 7002. Photosynthesis Research, 2019, 140, 77-92.	1.6	56
33	Fischerella thermalis: a model organism to study thermophilic diazotrophy, photosynthesis and multicellularity in cyanobacteria. Extremophiles, 2019, 23, 635-647.	0.9	29
34	Energy transfer from chlorophyll f to the trapping center in naturally occurring and engineered Photosystem I complexes. Photosynthesis Research, 2019, 141, 151-163.	1.6	47
35	Far-red light acclimation in diverse oxygenic photosynthetic organisms. Photosynthesis Research, 2019, 142, 349-359.	1.6	35
36	Fourier transform visible and infrared difference spectroscopy for the study of P700 in photosystem I from Fischerella thermalis PCC 7521 cells grown under white light and far-red light: Evidence that the A–1 cofactor is chlorophyll f. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 452-460.	0.5	16
37	The trouble with oxygen: The ecophysiology of extant phototrophs and implications for the evolution of oxygenic photosynthesis. Free Radical Biology and Medicine, 2019, 140, 233-249.	1.3	38

CITATION REPORT ARTICLE IF CITATIONS Lightâ€Driven Kinetic Resolution of αâ€Functionalized Carboxylic Acids Enabled by an Engineered Fatty Acid 1.6 21 Photodecarboxylase. Angewandte Chemie, 2019, 131, 8562-8566. Aromaticity versus regioisomeric effect of Î²-substituents in porphyrinoids. Physical Ch<u>emistry</u> 1.3 24 Chemical Physics, 2019, 21, 10152-10162. Chlorophylls d and f: Synthesis, occurrence, light-harvesting, and pigment organization in 0.5 7 chlorophyll-binding protein complexes. Advances in Botanical Research, 2019, 121-139. Lightâ€Driven Kinetic Resolution of αâ€Functionalized Carboxylic Acids Enabled by an Engineered Fatty Acid Photodecarboxylase. Angewandte Chemie - International Edition, 2019, 58, 8474-8478. Functional Expression of Gloeobacter Rhodopsin in PSI-Less Synechocystis sp. PCC6803. Frontiers in 2.0 7 Bioengineering and Biotechnology, 2019, 7, 67. On the use of oxygenic photosynthesis for the sustainable production of commodity chemicals. Physiologia Plantarum, 2019, 166, 413-427. 2.6 Biocatalysis Fueled by Light: On the Versatile Combination of Photocatalysis and Enzymes. ChemBioChem, 2019, 20, 1871-1897. 1.3 79 Genome and proteome of the chlorophyll f-producing cyanobacterium Halomicronema hongdechloris: adaptative proteomic shifts under different light conditions. BMC Genomics, 2019, 20, 1.2 Photo-Biocatalysis: Biotransformations in the Presence of Light. ACS Catalysis, 2019, 9, 4115-4144. 5.5 219 Global Transcriptional Profiling of the Cyanobacterium Chlorogloeopsis fritschii PCC 9212 in Far-Red 1.5 Light: Insights Into the Regulation of Chlorophyll d Synthesis. Frontiers in Microbiology, 2019, 10, 465. Desert cyanobacteria under space and planetary simulations: a tool for searching for life beyond Earth and supporting human space exploration. International Journal of Astrobiology, 2019, 18, 0.9 17 483-489. Current and possible approaches for improving photosynthetic efficiency. Plant Science, 2019, 280, 433-440. Early Archean origin of Photosystem <scp>II</scp>. Geobiology, 2019, 17, 127-150. 1.1 95 Combining retinal-based and chlorophyll-based (oxygenic) photosynthesis: Proteorhodopsin expression increases growth rate and fitness of a â^†PSI strain of Synechocystis sp. PCC6803. Metabolic Engineering, 2019, 52, 68-76. 3.6 14

Spectral signatures of five hydroxymethyl chlorophyll a derivatives chemically derived from 52 13 1.6 chlorophyll b or chlorophyll f. Photosynthesis Research, 2019, 140, 115-127. Aerobic Enzymes and Their Radical SAM Enzyme Counterparts in Tetrapyrrole Pathways. Biochemistry, 2019, 58, 85-93. Evolution of light-independent protochlorophyllide oxidoreductase. Protoplasma, 2019, 256, 293-312. 54 1.0 23

Engineering cyanobacteria chassis cells toward more efficient photosynthesis. Current Opinion in 3.3 48 Biotechnology, 2020, 62, 1-6.

#

38

40

42

44

46

48

49

50

#	Article	IF	CITATIONS
56	Extensive remodeling of the photosynthetic apparatus alters energy transfer among photosynthetic complexes when cyanobacteria acclimate to far-red light. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148064.	0.5	46
57	Biotechnological strategies for improved photosynthesis in a future of elevated atmospheric CO2. Planta, 2020, 251, 24.	1.6	13
58	Far-red light allophycocyanin subunits play a role in chlorophyll d accumulation in far-red light. Photosynthesis Research, 2020, 143, 81-95.	1.6	25
59	Thermal, electrochemical and photochemical reactions involving catalytically versatile ene reductase enzymes. The Enzymes, 2020, 47, 491-515.	0.7	2
60	Far-red absorption and light-use efficiency trade-offs in chlorophyll f photosynthesis. Nature Plants, 2020, 6, 1044-1053.	4.7	41
61	Farâ€red photons have equivalent efficiency to traditional photosynthetic photons: Implications for redefining photosynthetically active radiation. Plant, Cell and Environment, 2020, 43, 1259-1272.	2.8	129
62	Light-driven formation of manganese oxide by today's photosystem II supports evolutionarily ancient manganese-oxidizing photosynthesis. Nature Communications, 2020, 11, 6110.	5.8	34
63	Light-induced phycobilisome dynamics in Halomicronema hongdechloris. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 403, 112838.	2.0	6
64	More than just a pair of blue genes: how cyanobacteria adapt to changes in their light environment. Physiologia Plantarum, 2020, 170, 7-9.	2.6	2
65	Opportunities and challenges for assigning cofactors in cryo-EM density maps of chlorophyll-containing proteins. Communications Biology, 2020, 3, 408.	2.0	21
66	Harvesting far-red light: Functional integration of chlorophyll f into Photosystem I complexes of Synechococcus sp. PCC 7002. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148206.	0.5	25
67	Global distribution of a chlorophyll <i>f</i> cyanobacterial marker. ISME Journal, 2020, 14, 2275-2287.	4.4	41
68	The diversity and distribution of D1 proteins in cyanobacteria. Photosynthesis Research, 2020, 145, 111-128.	1.6	21
69	Chlorophyll f synthesis by a super-rogue photosystem II complex. Nature Plants, 2020, 6, 238-244.	4.7	28
70	A Critical Review of Genome Editing and Synthetic Biology Applications in Metabolic Engineering of Microalgae and Cyanobacteria. Biotechnology Journal, 2020, 15, e1900228.	1.8	62
71	Structural basis for the adaptation and function of chlorophyll f in photosystem I. Nature Communications, 2020, 11, 238.	5.8	75
72	Light-activated nanozymes: catalytic mechanisms and applications. Nanoscale, 2020, 12, 2914-2923.	2.8	112
73	The structure of Photosystem I acclimated to far-red light illuminates an ecologically important acclimation process in photosynthesis. Science Advances, 2020, 6, eaay6415.	4.7	50

#	Article	IF	CITATIONS
74	Biosynthesis of the modified tetrapyrroles—the pigments of life. Journal of Biological Chemistry, 2020, 295, 6888-6925.	1.6	170
75	Tightening the Screws on PsbA in Cyanobacteria. Trends in Genetics, 2021, 37, 211-215.	2.9	4
76	Engineering biology approaches for food and nutrient production by cyanobacteria. Current Opinion in Biotechnology, 2021, 67, 1-6.	3.3	21
77	Granick revisited: Synthesizing evolutionary and ecological evidence for the late origin of bacteriochlorophyll via ghost lineages and horizontal gene transfer. PLoS ONE, 2021, 16, e0239248.	1.1	10
78	Light Harvesting Modulation in Photosynthetic Organisms. Advances in Photosynthesis and Respiration, 2021, , 223-246.	1.0	1
79	Red-Shifted and Red Chlorophylls in Photosystems: Entropy as a Driving Force for Uphill Energy Transfer?. Advances in Photosynthesis and Respiration, 2021, , 247-275.	1.0	2
80	Photosynthesis Long Wavelength Pigments in Photosynthesis. , 2021, , 245-255.		2
81	Chlorophyll Species and Their Functions in the Photosynthetic Energy Conversion. Advances in Photosynthesis and Respiration, 2021, , 133-161.	1.0	1
83	Photocatalysis as the â€~master switch' of photomorphogenesis in early plant development. Nature Plants, 2021, 7, 268-276.	4.7	22
84	Enhanced Peroxidaseâ€mimicking Activity of Plasmonic Goldâ€modified Mn ₃ O ₄ Nanocomposites through Photoexcited Hot Electron Transfer. Chemistry - an Asian Journal, 2021, 16, 1603-1607.	1.7	10
85	Time-resolved comparative molecular evolution of oxygenic photosynthesis. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148400.	0.5	44
86	Photosynthesis research under climate change. Photosynthesis Research, 2021, 150, 5-19.	1.6	68
87	A novel thylakoid-less isolate fills a billion-year gap in the evolution of Cyanobacteria. Current Biology, 2021, 31, 2857-2867.e4.	1.8	30
88	Synthetic Biology Approaches To Enhance Microalgal Productivity. Trends in Biotechnology, 2021, 39, 1019-1036.	4.9	41
89	Breaking the Red Limit: Efficient Trapping of Long-Wavelength Excitations in Chlorophyll-f-Containing Photosystem I. CheM, 2021, 7, 155-173.	5.8	17
90	Perspectives on improving light distribution and light use efficiency in crop canopies. Plant Physiology, 2021, 185, 34-48.	2.3	50
93	Advances in the members and biosynthesis of chlorophyll family. Photosynthetica, 2019, 57, 974-984.	0.9	29
94	Non-a chlorophylls in cyanobacteria. Photosynthetica, 2019, 57, 1109-1118.	0.9	12

#	Article	IF	CITATIONS
95	Substantial near-infrared radiation-driven photosynthesis of chlorophyll f-containing cyanobacteria in a natural habitat. ELife, 2020, 9, .	2.8	29
96	Electrostatic profiling of photosynthetic pigments: implications for directed spectral tuning. Physical Chemistry Chemical Physics, 2021, 23, 24677-24684.	1.3	2
97	Potential of Producing Flavonoids Using Cyanobacteria As a Sustainable Chassis. Journal of Agricultural and Food Chemistry, 2021, 69, 12385-12401.	2.4	10
99	Mass Spectrometry of Chlorophylls from Phototrophic Prokaryotes. Current Organic Chemistry, 2018, 22, 877-884.	0.9	1
100	Optimization of Microalgae Photosynthetic Metabolism to Close the Gap with Potential Productivity. Grand Challenges in Biology and Biotechnology, 2019, , 223-248.	2.4	4
102	Redesigning the photosynthetic light reactions to enhance photosynthesis – the <i>PhotoRedesign</i> consortium. Plant Journal, 2022, 109, 23-34.	2.8	21
103	Photosynthetic Improvement of Industrial Microalgae for Biomass and Biofuel Production. , 2020, , 285-317.		0
104	Chlorophylls in Microalgae: Occurrence, Distribution, and Biosynthesis. , 2020, , 1-18.		6
105	Biosynthesis of Chlorophyll and Bilins in Algae. Advances in Photosynthesis and Respiration, 2020, , 83-103.	1.0	3
107	Complete Genome Sequencing of a Novel <i>Gloeobacter</i> Species from a Waterfall Cave in Mexico. Genome Biology and Evolution, 2021, 13, .	1.1	9
108	Applications of Synthetic Biotechnology on Carbon Neutrality Research: A Review on Electrically Driven Microbial and Enzyme Engineering. Frontiers in Bioengineering and Biotechnology, 2022, 10, 826008.	2.0	6
109	Chlorophyll f can replace chlorophyll a in the soluble antenna of dinoflagellates. Photosynthesis Research, 2022, 152, 13-22.	1.6	4
110	Light quality, oxygenic photosynthesis and more. Photosynthetica, 2022, 60, 25-58.	0.9	7
111	Insights into soybean with high photosynthetic efficiency. Advances in Botanical Research, 2022, , 121-151.	0.5	1
112	Effects of Light and Oxygen on Chlorophyll d Biosynthesis in a Marine Cyanobacterium AcaryochlorisÂmarina. Plants, 2022, 11, 915.	1.6	3
113	<i>Kovacikia minuta</i> sp. nov. (Leptolyngbyaceae, Cyanobacteria), a new freshwater chlorophyll <i>f</i> â€producing cyanobacterium. Journal of Phycology, 2022, 58, 424-435.	1.0	5
114	Acclimation of the photosynthetic apparatus to low light in a thermophilic Synechococcus sp. strain. Photosynthesis Research, 2022, 153, 21-42.	1.6	4
121	Changes in supramolecular organization of cyanobacterial thylakoid membrane complexes in response to far-red light photoacclimation. Science Advances, 2022, 8, eabj4437.	4.7	9

#	Article	IF	CITATIONS
122	The terminal enzymes of (bacterio)chlorophyll biosynthesis. Royal Society Open Science, 2022, 9, 211903.	1.1	10
123	A Cyanobacteria Enriched Layer of Shark Bay Stromatolites Reveals a New Acaryochloris Strain Living in Near Infrared Light. Microorganisms, 2022, 10, 1035.	1.6	1
126	Adaptation of Cyanobacteria to the Endolithic Light Spectrum in Hyper-Arid Deserts. Microorganisms, 2022, 10, 1198.	1.6	5
127	Molecular Evolution of Far-Red Light-Acclimated Photosystem II. Microorganisms, 2022, 10, 1270.	1.6	13
128	Use of Quartz Sand Columns to Study Far-Red Light Photoacclimation (FaRLiP) in Cyanobacteria. Applied and Environmental Microbiology, 2022, 88, .	1.4	4
129	Rieske Oxygenase Catalyzed C–H Bond Functionalization Reactions in Chlorophyll <i>b</i> Biosynthesis. ACS Central Science, 2022, 8, 1393-1403.	5.3	11
131	Identification of far-red light acclimation in an endolithic Chroococcidiopsis strain and associated genomic features: Implications for oxygenic photosynthesis on exoplanets. Frontiers in Microbiology, 0, 13, .	1.5	10
132	Biology of Desert Endolithic Habitats. Ecological Studies, 2022, , 111-132.	0.4	0
133	A Chloroplast-Localised Fluorescent Protein Enhances the Photosynthetic Action Spectrum in Green Algae. Microorganisms, 2022, 10, 1770.	1.6	3
134	Collisionâ€induced dissociation as "mass spectrometric filter―for rapid screening of tetrapyrrole derivatives and their chelated metal species in complex biological and environmental samples. Rapid Communications in Mass Spectrometry, 2023, 37, .	0.7	3
135	Photosynthetic modulation during the diurnal cycle in a unicellular diazotrophic cyanobacterium grown under nitrogen-replete and nitrogen-fixing conditions. Scientific Reports, 2022, 12, .	1.6	2
136	Compensatory Transcriptional Response of Fischerella thermalis to Thermal Damage of the Photosynthetic Electron Transfer Chain. Molecules, 2022, 27, 8515.	1.7	0
137	How to tune the absorption spectrum of chlorophylls to enable better use of the available solar spectrum. PeerJ Physical Chemistry, 0, 4, e26.	0.0	2
138	Chlorophyll <i>f</i> production in two new subaerial cyanobacteria of the family Oculatellaceae. Journal of Phycology, 2023, 59, 370-382.	1.0	2
139	Regulation of chlorophyll biosynthesis by light-dependent acetylation of NADPH:protochlorophyll oxidoreductase A in Arabidopsis. Plant Science, 2023, 330, 111641.	1.7	0
140	Multienzymeâ€Like Nanozymes: Regulation, Rational Design, and Application. Advanced Materials, 2024, 36, .	11.1	43
141	The Evolution and Evolvability of Photosystem II. Annual Review of Plant Biology, 2023, 74, 225-257.	8.6	13
142	Accumulation of cyanobacterial photosystem II containing the "rogue―D1 subunit is controlled by FtsH protease and the synthesis of the standard D1 protein. Plant and Cell Physiology, 0, , .	1.5	0

#	Article	IF	CITATIONS
143	Whole-cell-catalyzed hydrogenation/deuteration of aryl halides with a genetically repurposed photodehalogenase. CheM, 2023, 9, 1897-1909.	5.8	4
146	Photoenzymatic Decarboxylation to Produce Hydrocarbon Fuels: A Critical Review. Molecular Biotechnology, 0, , .	1.3	Ο