Phototactic guidance of a tissue-engineered soft-roboti

Science 353, 158-162 DOI: 10.1126/science.aaf4292

Citation Report

#	Article	IF	CITATIONS
1	Batoid locomotion: effects of speed on pectoral fin deformation in the little skate, <i>Leucoraja erinacea</i> . Journal of Experimental Biology, 2017, 220, 705-712.	0.8	42
2	Sharks shift their spine into high gear. Nature, 2016, 540, 532-533.	13.7	0
3	Development of a bio-inspired transformable robotic fin. Bioinspiration and Biomimetics, 2016, 11, 056010.	1.5	10
4	The effect of viscous force on the prediction of muscle contractility in biohybrid cantilever-based experiments. Extreme Mechanics Letters, 2016, 9, 342-346.	2.0	7
5	Bioinspired decision architectures containing host and microbiome processing units. Bioinspiration and Biomimetics, 2016, 11, 056017.	1.5	2
6	Automated design of DNA origami. Nature Biotechnology, 2016, 34, 826-827.	9.4	45
8	Miniaturized soft bio-hybrid robotics: a step forward into healthcare applications. Lab on A Chip, 2016, 16, 3626-3630.	3.1	64
9	Alighting on soft robot rays. Nature Biotechnology, 2016, 34, 932-932.	9.4	0
11	Structure and mechanical implications of the pectoral fin skeleton in the Longnose Skate (Chondrichthyes, Batoidea). Acta Biomaterialia, 2017, 51, 393-407.	4.1	11
12	Building a bioartificial heart: Obstacles and opportunities. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 748-750.	0.4	11
13	Thin polymeric films for building biohybrid microrobots. Bioinspiration and Biomimetics, 2017, 12, 021001.	1.5	23
14	Fabrication strategy for micro soft robotics with semiconductor devices integration. , 2017, , .		7
15	Materially Engineered Artificial Pollinators. CheM, 2017, 2, 224-239.	5.8	45
16	A modular approach to the design, fabrication, and characterization of muscle-powered biological machines. Nature Protocols, 2017, 12, 519-533.	5.5	82
17	Cell Guidance on Nanostructured Metal Based Surfaces. Advanced Healthcare Materials, 2017, 6, 1600914.	3.9	22
18	Turning Potential Into Action: Using Pluripotent Stem Cells to Understand Heart Development and Function in Health and Disease. Stem Cells Translational Medicine, 2017, 6, 1452-1457.	1.6	3
19	Wearable Mechanotransduced Tactile Sensor for Haptic Perception. Advanced Materials Technologies, 2017, 2, 1700006.	3.0	45
20	Advances in engineering hydrogels. Science, 2017, 356, .	6.0	1,836

#	Article	IF	CITATIONS
21	Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Science Translational Medicine, 2017, 9, .	5.8	151
22	Mobile microrobots for bioengineering applications. Lab on A Chip, 2017, 17, 1705-1724.	3.1	294
23	A light-driven artificial flytrap. Nature Communications, 2017, 8, 15546.	5.8	499
24	How exaptations facilitated photosensory evolution: Seeing the light by accident. BioEssays, 2017, 39, 1600266.	1.2	16
26	Consequentialism and the Synthetic Biology Problem. Cambridge Quarterly of Healthcare Ethics, 2017, 26, 206-229.	0.5	6
27	Fast-moving soft electronic fish. Science Advances, 2017, 3, e1602045.	4.7	621
28	Bioengineering cardiac constructs using 3D printing. Journal of 3D Printing in Medicine, 2017, 1, 123-139.	1.0	44
29	Biohybrid Microtube Swimmers Driven by Single Captured Bacteria. Small, 2017, 13, 1603679.	5.2	134
30	Multicellular Biohybrid Materials: Probing the Interplay of Cells of Different Types Precisely Positioned and Constrained on 3D Wireframe‣ike Microstructures. Advanced Healthcare Materials, 2017, 6, 1601053.	3.9	17
31	Cell Generator: A Self‣ustaining Biohybrid System Based on Energy Harvesting from Engineered Cardiac Microtissues. Advanced Functional Materials, 2017, 27, 1606169.	7.8	10
32	Deterministic assembly of 3D mesostructures in advanced materials via compressive buckling: A short review of recent progress. Extreme Mechanics Letters, 2017, 11, 96-104.	2.0	68
33	Recreating the Cardiac Microenvironment in Pluripotent Stem Cell Models of Human Physiology and Disease. Trends in Cell Biology, 2017, 27, 352-364.	3.6	15
34	An autonomous flexible propulsor in a quiescent flow. International Journal of Heat and Fluid Flow, 2017, 68, 151-157.	1.1	9
35	Electrically and Sunlightâ€Driven Actuator with Versatile Biomimetic Motions Based on Rolled Carbon Nanotube Bilayer Composite. Advanced Functional Materials, 2017, 27, 1704388.	7.8	211
36	In Situ Characterization of Interfaces Relevant for Efficient Photoinduced Reactions. Advanced Materials Interfaces, 2017, 4, 1601118.	1.9	21
37	Control of cardiomyocyte contraction for actuation of bio-syncretic robots. , 2017, , .		0
38	Energy efficiency of mobile soft robots. Soft Matter, 2017, 13, 8223-8233.	1.2	36
39	Cardiac Muscle-cell Based Actuator and Self-stabilizing Biorobot - PART 1. Journal of Visualized Experiments, 2017, , .	0.2	2

#	Article	IF	CITATIONS
40	A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish. Science Robotics, 2017, 2, .	9.9	200
41	Spot light on skeletal muscles: optogenetic stimulation to understand and restore skeletal muscle function. Journal of Muscle Research and Cell Motility, 2017, 38, 331-337.	0.9	9
42	Mechanical behavior of PDMS at low pressure. Materials Research Express, 2017, 4, 075306.	0.8	4
43	Biomimicry, Biofabrication, and Biohybrid Systems: The Emergence and Evolution of Biological Design. Advanced Healthcare Materials, 2017, 6, 1700496.	3.9	49
44	Stretchable Motion Memory Devices Based on Mechanical Hybrid Materials. Advanced Materials, 2017, 29, 1701780.	11.1	68
45	Unsteady bio-fluid dynamics in flying and swimming. Acta Mechanica Sinica/Lixue Xuebao, 2017, 33, 663-684.	1.5	39
46	Hybrid BioMicromotors. Applied Physics Reviews, 2017, 4, .	5.5	100
47	Omni Directional Multimaterial Soft Cylindrical Actuator and Its Application as a Steerable Catheter. Soft Robotics, 2017, 4, 224-240.	4.6	25
48	Temporal and spatial programming in soft composite hydrogel objects. Journal of Materials Chemistry B, 2017, 5, 7491-7495.	2.9	4
49	A Locomotion Robot Driven by Soft Dielectric Elastomer Resonator. Lecture Notes in Computer Science, 2017, , 120-126.	1.0	2
50	An Integrated Design, Material, and Fabrication Platform for Engineering Biomechanically and Biologically Functional Soft Tissues. ACS Applied Materials & Interfaces, 2017, 9, 29430-29437.	4.0	98
51	Spatiotemporal hydrogel biomaterials for regenerative medicine. Chemical Society Reviews, 2017, 46, 6532-6552.	18.7	317
52	Cardiac Muscle Cell-based Actuator and Self-stabilizing Biorobot - Part 2. Journal of Visualized Experiments, 2017, , .	0.2	2
53	Biocontractile microfluidic channels for peristaltic pumping. Biomedical Microdevices, 2017, 19, 72.	1.4	8
54	Organismal engineering: Toward a robotic taxonomic key for devices using organic materials. Science Robotics, 2017, 2, .	9.9	61
55	Biohybrid actuators for robotics: A review of devices actuated by living cells. Science Robotics, 2017, 2, .	9.9	334
56	Electromechanical Control and Stability Analysis of a Soft Swim-Bladder Robot Driven by Dielectric Elastomer. Journal of Applied Mechanics, Transactions ASME, 2017, 84, .	1.1	16
57	Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators. Acta Biomaterialia, 2017, 59, 68-81.	4.1	255

#	Article	IF	CITATIONS
58	Visual and Robotic Guidance Systems for Transcatheter Implantation of Heart Value Prostheses. Bio-Medical Engineering, 2017, 51, 1-5.	0.3	4
59	Building a bioartificial heart: A 3-song saga. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 744-747.	0.4	0
60	Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nature Materials, 2017, 16, 303-308.	13.3	652
61	On the origin of synthetic life: attribution of output to a particular algorithm. Physica Scripta, 2017, 92, 013002.	1.2	5
62	How to Train a Cell–Cutting-Edge Molecular Tools. Frontiers in Chemistry, 2017, 5, 12.	1.8	8
63	Biomimetic approaches toward smart bio-hybrid systems. Nano Research, 2018, 11, 3009-3030.	5.8	26
64	Seamless modulus gradient structures for highly resilient, stretchable system integration. Materials Today Physics, 2018, 4, 28-35.	2.9	29
65	Kinematics of swimming of the manta ray: three-dimensional analysis of open water maneuverability. Journal of Experimental Biology, 2018, 221, .	0.8	44
66	Engineering Biology by Controlling Tissue Folding. Trends in Biotechnology, 2018, 36, 341-343.	4.9	0
67	Design of Materials and Mechanisms for Responsive Robots. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1, 359-384.	7.5	17
68	The evolution of artificial light actuators in living systems: from planar to nanostructured interfaces. Chemical Society Reviews, 2018, 47, 4757-4780.	18.7	70
69	Screen-Printed Curvature Sensors for Soft Robots. IEEE Sensors Journal, 2018, 18, 223-230.	2.4	70
70	The grand challenges of <i>Science Robotics</i> . Science Robotics, 2018, 3, .	9.9	787
71	Untethered soft robotics. Nature Electronics, 2018, 1, 102-112.	13.1	704
72	Engineered Living Materials: Prospects and Challenges for Using Biological Systems to Direct the Assembly of Smart Materials. Advanced Materials, 2018, 30, e1704847.	11.1	300
73	Enabling personalized implant and controllable biosystem development through 3D printing. Biotechnology Advances, 2018, 36, 521-533.	6.0	90
74	Piecewise Phototuning of Selfâ€Organized Helical Superstructures. Advanced Materials, 2018, 30, 1704941.	11.1	116
75	4D printing of a self-morphing polymer driven by a swellable guest medium. Soft Matter, 2018, 14, 765-772.	1.2	77

#	Article	IF	CITATIONS
76	Micro/Nanomachines and Living Biosystems: From Simple Interactions to Microcyborgs. Advanced Functional Materials, 2018, 28, 1705421.	7.8	99
77	Dynamic Model for Characterizing Contractile Behaviors and Mechanical Properties of a Cardiomyocyte. Biophysical Journal, 2018, 114, 188-200.	0.2	16
78	Electrically Driven Microengineered Bioinspired Soft Robots. Advanced Materials, 2018, 30, 1704189.	11.1	140
79	Electromagnetically Responsive Soft-Flexible Robots and Sensors for Biomedical Applications and Impending Challenges. Series in Bioengineering, 2018, , 43-72.	0.3	11
80	Diffusiophoretic exclusion of colloidal particles for continuous water purification. Lab on A Chip, 2018, 18, 1713-1724.	3.1	42
81	Ultrahigh Sensitive and Flexible Magnetoelectronics with Magnetic Nanocomposites: Toward an Additional Perception of Artificial Intelligence. ACS Applied Materials & Interfaces, 2018, 10, 17393-17400.	4.0	34
82	Bioinspired living structural color hydrogels. Science Robotics, 2018, 3, .	9.9	444
83	Soft Micro- and Nanorobotics. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1, 53-75.	7.5	145
84	A Bio-inspired Soft Robotic Arm: Kinematic Modeling and Hydrodynamic Experiments. Journal of Bionic Engineering, 2018, 15, 204-219.	2.7	45
85	Light Robots: Bridging the Gap between Microrobotics and Photomechanics in Soft Materials. Advanced Materials, 2018, 30, e1703554.	11.1	270
86	Classification of biological and bioinspired aquatic systems: A review. Ocean Engineering, 2018, 148, 75-114.	1.9	110
87	Micro-robot Driven by Cardiac Cells That Cooperatively Beating. , 2018, , .		1
88	Autonomously shaping natural climbing plants: a bio-hybrid approach. Royal Society Open Science, 2018, 5, 180296.	1.1	15
89	Liquid Metal Based Soft Robotics: Materials, Designs, and Applications. Advanced Materials Technologies, 2019, 4, 1800549.	3.0	126
90	Force Modulation and Adaptability of 3Dâ€Bioprinted Biological Actuators Based on Skeletal Muscle Tissue. Advanced Materials Technologies, 2019, 4, 1800631.	3.0	47
91	Emergence of traveling waves in linear arrays of electromechanical oscillators. Communications Physics, 2018, 1, .	2.0	4
92	Modulating physical, chemical, and biological properties in 3D printing for tissue engineering applications. Applied Physics Reviews, 2018, 5, .	5.5	28
93	Differentiation of C2C12 Myoblasts and Characterization of Electro-Responsive Beating Behavior of Myotubes Using Circularly Distributed Multiple Electrodes for Bio-Syncretic Robot. , 2018, , .		О

#	ARTICLE	IF	CITATIONS
94	Bodily Aware Soft Robots: Integration of Proprioceptive and Exteroceptive Sensors. , 2018, , .		50
95	A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nature Communications, 2018, 9, 3944.	5.8	385
96	Photo-responsive suspended micro-membranes. Journal of Materials Chemistry C, 2018, 6, 10428-10434.	2.7	12
97	Photothermocapillary Oscillators. Physical Review Letters, 2018, 121, 158001.	2.9	27
98	Perspective: The promise of multi-cellular engineered living systems. APL Bioengineering, 2018, 2, 040901.	3.3	110
99	Regulation of C2C12 Differentiation and Control of the Beating Dynamics of Contractile Cells for a Muscle-Driven Biosyncretic Crawler by Electrical Stimulation. Soft Robotics, 2018, 5, 748-760.	4.6	21
100	Recent Progress in Biomimetic Additive Manufacturing Technology: From Materials to Functional Structures. Advanced Materials, 2018, 30, e1706539.	11.1	325
101	Photoâ€Powered Artificial Organelles for ATP Generation and Lifeâ€Sustainment. Advanced Materials, 2018, 30, e1805038.	11.1	26
102	High-Throughput Separation, Trapping, and Manipulation of Single Cells and Particles by Combined Dielectrophoresis at a Bipolar Electrode Array. Analytical Chemistry, 2018, 90, 11461-11469.	3.2	76
103	Advances and Future Perspectives in 4D Bioprinting. Biotechnology Journal, 2018, 13, e1800148.	1.8	168
104	Bioinspired 3D structures with programmable morphologies and motions. Nature Communications, 2018, 9, 3705.	5.8	151
105	Viscoelastic Characteristics of Mechanically Assembled Three-Dimensional Structures Formed by Compressive Buckling. Journal of Applied Mechanics, Transactions ASME, 2018, 85, .	1.1	19
106	Development and application of human skeletal muscle microphysiological systems. Lab on A Chip, 2018, 18, 3061-3073.	3.1	18
107	Cultured Muscles with Tendon Structures for Modular Bio-Actuators. , 2018, , .		0
108	3D printed drug delivery and testing systems — a passing fad or the future?. Advanced Drug Delivery Reviews, 2018, 132, 139-168.	6.6	182
109	Soft Robotics: Academic Insights and Perspectives Through Bibliometric Analysis. Soft Robotics, 2018, 5, 229-241.	4.6	138
110	Biohybrid robot powered by an antagonistic pair of skeletal muscle tissues. Science Robotics, 2018, 3, .	9.9	170
111	Electronic skins for soft, compact, reversible assembly of wirelessly activated fully soft robots. Science Robotics, 2018, 3, .	9.9	176

#	Article	IF	Citations
112	Bio-inspired soft robotics: Material selection, actuation, and design. Extreme Mechanics Letters, 2018, 22, 51-59.	2.0	247
113	Self-Growing and Serpentine Locomotion of Liquid Metal Induced by Copper Ions. ACS Applied Materials & Interfaces, 2018, 10, 22889-22895.	4.0	62
114	A tissue-engineered scale model of the heart ventricle. Nature Biomedical Engineering, 2018, 2, 930-941.	11.6	162
115	Optically Driven Soft Micro Robotics. Advanced Optical Materials, 2018, 6, 1800207.	3.6	111
116	3D Bioprinted Muscle-Based Bio-Actuators: Force Adaptability Due to Training. Lecture Notes in Computer Science, 2018, , 316-320.	1.0	6
117	An inverse kinematics method of a soft robotic arm with three-dimensional locomotion for underwater manipulation. , 2018, , .		15
118	Acoustic actuators based on the resonance of an acoustic-film system applied to the actuation of soft robots. Journal of Sound and Vibration, 2018, 432, 310-326.	2.1	1
119	4D Printing of Actuating Cardiac Tissue. , 2018, , 153-162.		18
120	3D Hybrid Small Scale Devices. Small, 2018, 14, e1702497.	5.2	8
121	Bio-inspired Underwater Robots. , 2018, , 1-7.		0
122	Biophysical control of the cell rearrangements and cell shape changes that build epithelial tissues. Current Opinion in Genetics and Development, 2018, 51, 88-95.	1.5	27
123	Development and Future Challenges of Bio-Syncretic Robots. Engineering, 2018, 4, 452-463.	3.2	34
124	Fracture toughness of soft materials with rate-independent hysteresis. Journal of the Mechanics and Physics of Solids, 2018, 118, 341-364.	2.3	41
125	PDMS with designer functionalities—Properties, modifications strategies, and applications. Progress in Polymer Science, 2018, 83, 97-134.	11.8	478
126	Biomechanoâ€Interactive Materials and Interfaces. Advanced Materials, 2018, 30, e1800572.	11.1	93
127	Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature, 2018, 558, 274-279.	13.7	1,426
128	Translational Exploration and Clinical Testing of Silica–Gold Nanoparticles in Development of Multifunctional Nanoplatform for Theranostics of Atherosclerosis. , 2018, , 681-741.		0
129	Forward and inverse problems in the mechanics of soft filaments. Royal Society Open Science, 2018, 5, 171628.	1.1	129

ARTICLE IF CITATIONS # Photothermally triggered soft robot with adaptive local deformations and versatile bending modes. 130 1.8 12 Smart Materials and Structures, 2019, 28, 02LT01. Directional Shape Morphing Transparent Walking Soft Robot. Soft Robotics, 2019, 6, 760-767. 4.6 132 A Multiband LTE Antenna with Resonant Rings., 2019,,. 0 Modular fabrication of intelligent material-tissue interfaces for bioinspired and biomimetic devices. Progress in Materials Science, 2019, 106, 100589. Quantitative characterization of 3D bioprinted structural elements under cell generated forces. 134 5.8 73 Nature Communications, 2019, 10, 3029. Design, Optimization and Characterization of Bio-Hybrid Actuators Based on 3D-Bioprinted Skeletal 1.0 Muscle Tissue. Lecture Notes in Computer Science, 2019, , 205-215. Evaluation of 3D-Bioprinted Materials and Culture Methods Toward Actuator Driven by Skeletal 136 1.0 2 Muscle Cells. Lecture Notes in Computer Science, 2019, , 374-377. Insights Into the Pathogenesis of Catecholaminergic Polymorphic Ventricular Tachycardia From 1.6 Engineered Human Heart Tissue. Circulation, 2019, 140, 390-404. Bio-inspired untethered fully soft robots in liquid actuated by induced energy gradients. National 138 22 4.6 Science Review, 2019, 6, 970-981. Chameleon-Inspired Structural-Color Actuators. Matter, 2019, 1, 626-638. Constructing living buildings: a review of relevant technologies for a novel application of biohybrid 140 1.5 18 robotics. Journal of the Royal Society Interface, 2019, 16, 20190238. Insect-scale fast moving and ultrarobust soft robot. Science Robotics, 2019, 4, . 282 Living Materials Herald a New Era in Soft Robotics. Advanced Materials, 2019, 31, e1807747. 142 11.1 78 Biomimetic and Biohybrid Systems. Lecture Notes in Computer Science, 2019, , . 143 1.0 Direct-Ink-Write 3D Printing of Hydrogels into Biomimetic Soft Robots. ACS Nano, 2019, 13, 13176-13184. 144 203 7.3 Travelling waves on photo-switchable patterned liquid crystal polymer films directed by rotating 145 1.2 polarized light. Soft Matter, 2019, 15, 8040-8050. Stickâ€On Largeâ€Strain Sensors for Soft Robots. Advanced Materials Interfaces, 2019, 6, 1900985. 146 1.9 79 Flexible and Stretchable Selfâ€Powered Multiâ€Sensors Based on the Nâ€Type Thermoelectric Response of Polyurethane/Na<i>_x</i>(Niâ€ett)<i>_n</i> Composites. Advanced Electronic Materials, 2019, 5, 1900582.

9

#	Article	IF	CITATIONS
148	Fabrication of a Monolithic Lab-on-a-Chip Platform with Integrated Hydrogel Waveguides for Chemical Sensing. Sensors, 2019, 19, 4333.	2.1	21
149	Modeling and simulation of complex dynamic musculoskeletal architectures. Nature Communications, 2019, 10, 4825.	5.8	47
150	Fabrication and Characterization of Muscle Rings Using Circular Mould and Rotary Electrical Stimulation for Bio-Syncretic Robots. , 2019, , .		2
151	The Rise of Bioinspired Ionotronics. Advanced Intelligent Systems, 2019, 1, 1900073.	3.3	43
152	Streaming-enhanced flow-mediated transport. Journal of Fluid Mechanics, 2019, 878, 647-662.	1.4	16
153	Shape-shifting structured lattices via multimaterial 4D printing. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20856-20862.	3.3	257
154	Neuromuscular actuation of biohybrid motile bots. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19841-19847.	3.3	108
155	Multifunctional Soft Actuators Based on Anisotropic Paper/Polymer Bilayer Toward Bioinspired Applications. Advanced Materials Technologies, 2019, 4, 1800674.	3.0	37
156	Bioinspiriertes Design und additive Fertigung von weichen Materialien, Maschinen, Robotern und haptischen Schnittstellen. Angewandte Chemie, 2019, 131, 11300-11324.	1.6	5
157	Bioâ€inspired Design and Additive Manufacturing of Soft Materials, Machines, Robots, and Haptic Interfaces. Angewandte Chemie - International Edition, 2019, 58, 11182-11204.	7.2	120
159	Imaging with Optogenetically Engineered Living Cells as a Photodetector. Advanced Biology, 2019, 3, 1800319.	3.0	5
160	Controllable wrinkling patterns on liquid crystal polymer film/substrate systems by laser illumination. Extreme Mechanics Letters, 2019, 30, 100502.	2.0	14
161	Floating robotic insects to obtain electric energy from water surface for realizing some self-powered functions. Nano Energy, 2019, 63, 103810.	8.2	23
162	Coupling synthetic biology and programmable materials to construct complex tissue ecosystems. MRS Communications, 2019, 9, 421-432.	0.8	12
163	Photostationary RGB Selective Reflection from Selfâ€Organized Helical Superstructures for Continuous Photopatterning. Advanced Optical Materials, 2019, 7, 1900430.	3.6	24
164	Magnetically actuated microrobots as a platform for stem cell transplantation. Science Robotics, 2019, 4, .	9.9	247
165	Selfâ€Healing Hydrogels: The Next Paradigm Shift in Tissue Engineering?. Advanced Science, 2019, 6, 1801664.	5.6	314
166	A Micro Peristaltic Pump Using an Optically Controllable Bioactuator. Engineering, 2019, 5, 580-585.	3.2	20

#	Article	IF	CITATIONS
167	Insect Muscular Tissue-Powered Swimming Robot. Actuators, 2019, 8, 30.	1.2	16
168	An ultra-small fluid oscillation unit for pumping driven by self-organized three-dimensional bridging of pulsatile cardiomyocytes on elastic micro-piers. Sensors and Actuators B: Chemical, 2019, 293, 256-264.	4.0	17
169	Bio-inspired sensing and actuating materials. Journal of Materials Chemistry C, 2019, 7, 6493-6511.	2.7	112
170	Simulations of propelling and energy harvesting articulated bodies via vortex particle-mesh methods. Journal of Computational Physics, 2019, 392, 34-55.	1.9	15
171	Biohybrid Actuators Based on Skeletal Muscle-Powered Microgrooved Ultrathin Films Consisting of Poly(styrene- <i>block</i> -butadiene- <i>block</i> -styrene). ACS Biomaterials Science and Engineering, 2019, 5, 5734-5743.	2.6	30
172	A Remotely Controlled Transformable Soft Robot Based on Engineered Cardiac Tissue Construct. Small, 2019, 15, e1900006.	5.2	27
173	Ocean acidification and warming affect skeletal mineralization in a marine fish. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182187.	1.2	24
174	Vacuumâ€Powered Soft Pneumatic Twisting Actuators to Empower New Capabilities for Soft Robots. Advanced Materials Technologies, 2019, 4, 1800429.	3.0	72
175	Near-Infrared Light-Driven Controllable Motions of Gold-Hollow-Microcone Array. ACS Applied Materials & Interfaces, 2019, 11, 15927-15935.	4.0	19
176	Bioinspired Actuators Based on Stimuliâ€Responsive Polymers. Chemistry - an Asian Journal, 2019, 14, 2369-2387.	1.7	60
177	Optimal diameter reduction ratio of acinar airways in human lungs. PLoS ONE, 2019, 14, e0204191.	1.1	4
178	Molecular cargo delivery using multicellular magnetic microswimmers. Applied Materials Today, 2019, 15, 242-251.	2.3	52
179	CPG-fuzzy-based control of a cownose-ray-like fish robot. Industrial Robot, 2019, 46, 779-791.	1.2	28
180	Rise of cyborg microrobot: different story for different configuration. IET Nanobiotechnology, 2019, 13, 651-664.	1.9	9
181	Bio-Syncretic Light-gated Field-Effect Transistor: Fabrication and Characterization. , 2019, , .		0
182	Structurally isolated photoactuation of graphene-mixed temperature-responsive hydrogels in soft-rigid series structure. ROBOMECH Journal, 2019, 6, .	0.9	7
183	Sub-millisecond Control of Neuronal Firing by Organic Light-Emitting Diodes. Frontiers in Bioengineering and Biotechnology, 2019, 7, 278.	2.0	18
184	Cutting the Cord: Progress in Untethered Soft Robotics and Actuators. MRS Advances, 2019, 4, 2787-2804.	0.5	7

ARTICLE IF CITATIONS # SoftCon. ACM Transactions on Graphics, 2019, 38, 1-12. 4.9 33 185 Biological Material Interfaces as Inspiration for Mechanical and Optical Material Designs. Chemical 23.0 Reviews, 2019, 119, 12279-12336. Programmable Ultralight Magnets via Orientational Arrangement of Ferromagnetic Nanoparticles 187 7.3 24 within Aerogel Hosts. ACS Nano, 2019, 13, 13875-13883. Soft Robotics as an Enabling Technology for Agroforestry Practice and Research. Sustainability, 2019, 188 34 11,6751. Undulatory topographical waves for flow-induced foulant sweeping. Science Advances, 2019, 5, 189 4.7 17 eaax8935. System identification technique for control of hybrid bio-system. Journal of Mechanical Science and 190 Technology, 2019, 33, 6045-6051. A review on the modeling, materials, and actuators of aquatic unmanned vehicles. Ocean Engineering, 191 1.9 50 2019, 172, 257-285. Mapping the nonlinear crack tip deformation field in soft elastomer with a particle tracking method. 2.3 Journal of the Mechanics and Physics of Solids, 2019, 125, 326-346. Cardiomyocyte-Driven Structural Color Actuation in Anisotropic Inverse Opals. ACS Nano, 2019, 13, 193 7.3 99 796-802. A review on animal–robot interaction: from bio-hybrid organisms to mixed societies. Biological 194 Cybernetics, 2019, 113, 201-225. Reconfigurable nanoscale soft materials. Current Opinion in Solid State and Materials Science, 2019, 195 5.6 14 23, 41-49. Adaptive locomotion of artificial microswimmers. Science Advances, 2019, 5, eaau1532. 203 4D Corneal Tissue Engineering: Achieving Timeâ€Dependent Tissue Selfâ€Curvature through Localized 197 7.8 33 Control of Cell Actuators. Advanced Functional Materials, 2019, 29, 1807334. A fluid–structure interaction study of soft robotic swimmer using a fictitious domain/active-strain 198 1.9 14 method. Journal of Computational Physics, 2019, 376, 1138-1155 Development of micro- and nanorobotics: A review. Science China Technological Sciences, 2019, 62, 199 2.0 74 1-20. Advances in 4D Printing: Materials and Applications. Advanced Functional Materials, 2019, 29, 1805290. 633 Chemicals Enabled Liquid Metal Machine. Topics in Mining, Metallurgy and Materials Engineering, 2019, 201 1.4 0 , 311-328. Light-driven topographical morphing of azobenzene-doped liquid crystal polymer films via tunable photo-polymerization induced diffusion. Journal of the Mechanics and Physics of Solids, 2019, 123, 2.3 247-266.

#	Article	IF	CITATIONS
203	Effect of swarm configuration on fluid transport during vertical collective motion. Bioinspiration and Biomimetics, 2020, 15, 015002.	1.5	2
204	Microfluidic Platforms toward Rational Material Fabrication for Biomedical Applications. Small, 2020, 16, e1903798.	5.2	80
205	Biohybrid Design Gets Personal: New Materials for Patient‧pecific Therapy. Advanced Materials, 2020, 32, e1901969.	11.1	21
206	Artificial Sensory Memory. Advanced Materials, 2020, 32, e1902434.	11.1	200
207	Bioinspired Soft Robotic Caterpillar with Cardiomyocyte Drivers. Advanced Functional Materials, 2020, 30, 1907820.	7.8	81
208	A scalable pipeline for designing reconfigurable organisms. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1853-1859.	3.3	255
210	Unscented Kalman-filter-based sliding mode control for an underwater gliding snake-like robot. Science China Information Sciences, 2020, 63, 1.	2.7	9
213	3D printed nanomaterial-based electronic, biomedical, and bioelectronic devices. Nanotechnology, 2020, 31, 172001.	1.3	52
214	Regenerative medicine and drug delivery: Progress via electrospun biomaterials. Materials Science and Engineering C, 2020, 109, 110521.	3.8	70
215	An Artificial Somatic Reflex Arc. Advanced Materials, 2020, 32, e1905399.	11.1	126
216	Integration of Biological Components into Engineered Functional Systems. Matter, 2020, 3, 974-976.	5.0	1
217	Self-Oscillating Membranes: Chemomechanical Sheets Show Autonomous Periodic Shape Transformation. Physical Review Letters, 2020, 125, 178001.	2.9	18
218	Biohybrid Actuators for Soft Robotics: Challenges in Scaling Up. Actuators, 2020, 9, 96.	1.2	27
219	Shape-adaptable biodevices for wearable and implantable applications. Lab on A Chip, 2020, 20, 4321-4341.	3.1	27
220	Metamorphosis in Insect Muscle: Insights for Engineering Muscle-Based Actuators. Tissue Engineering - Part B: Reviews, 2020, 27, 330-340.	2.5	5
221	Recent advances in bioelectronics chemistry. Chemical Society Reviews, 2020, 49, 7978-8035.	18.7	54
222	Advanced organic electroactive nanomaterials for biomedical use. , 2020, , 141-165.		4
223	Soft Magnetic Pillars to Secure an Upper Airway for the Relief of Obstructive Sleep Apnea. Advanced Materials Technologies, 2020, 5, 2000695.	3.0	1

#	Article	IF	CITATIONS
224	Reconfigurable Soft Actuators with Multiple‣timuli Responses. Macromolecular Rapid Communications, 2020, 41, 2000313.	2.0	5
225	Applications and ethics of computer-designed organisms. Nature Reviews Molecular Cell Biology, 2020, 21, 655-656.	16.1	16
226	Photonic artificial muscles: from micro robots to tissue engineering. Faraday Discussions, 2020, 223, 216-232.	1.6	19
227	Biohybrid systems: Borrowing from nature to make better machines. APL Bioengineering, 2020, 4, 020401.	3.3	6
228	Recent Advances in Photoactuators and Their Applications in Intelligent Bionic Movements. Advanced Optical Materials, 2020, 8, 2000886.	3.6	45
229	Printed elastic membranes for multimodal pacing and recording of human stem-cell-derived cardiomyocytes. Npj Flexible Electronics, 2020, 4, .	5.1	8
230	Engineering control circuits for molecular robots using synthetic biology. APL Materials, 2020, 8, 101104.	2.2	4
231	Development of Magnetâ€Driven and Imageâ€Guided Degradable Microrobots for the Precise Delivery of Engineered Stem Cells for Cancer Therapy. Small, 2020, 16, e1906908.	5.2	84
232	Shape-Memory Polymeric Artificial Muscles: Mechanisms, Applications and Challenges. Molecules, 2020, 25, 4246.	1.7	48
233	Soft Actuators for Soft Robotic Applications: A Review. Advanced Intelligent Systems, 2020, 2, 2000128.	3.3	244
234	Intelligent Polymerâ€Based Bioinspired Actuators: From Monofunction to Multifunction. Advanced Intelligent Systems, 2020, 2, 2000138.	3.3	33
235	3D-printed programmable tensegrity for soft robotics. Science Robotics, 2020, 5, .	9.9	104
236	Structural Innovations in Printed, Flexible, and Stretchable Electronics. Advanced Materials Technologies, 2020, 5, .	3.0	57
237	An artificial sensory neuron with visual-haptic fusion. Nature Communications, 2020, 11, 4602.	5.8	166
238	An 88-milligram insect-scale autonomous crawling robot driven by a catalytic artificial muscle. Science Robotics, 2020, 5, .	9.9	88
239	Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields. Science Robotics, 2020, 5, .	9.9	163
240	Life, death, and self: Fundamental questions of primitive cognition viewed through the lens of body plasticity and synthetic organisms. Biochemical and Biophysical Research Communications, 2021, 564, 114-133.	1.0	42
241	Biohybrid robotics with living cell actuation. Chemical Society Reviews, 2020, 49, 4043-4069.	18.7	105

#	Article	IF	Citations
242	Multistimuliâ€Responsive Insect‣cale Soft Robotics Based on Anisotropic Superâ€Aligned VO ₂ Nanowire/Carbon Nanotube Bimorph Actuators. Advanced Intelligent Systems, 2020, 2, 2000051.	3.3	14
243	"Living Robotsâ€∎ Ethical Questions About Xenobots. American Journal of Bioethics, 2020, 20, W1-W3.	0.5	10
244	Design of a biohybrid robot by mimicking the gait mechanism of Aplysia californica. Procedia CIRP, 2020, 89, 154-158.	1.0	1
245	A Coupled FEMâ€SPH Modeling Technique to Investigate the Contractility of Biohybrid Thin Films. Advanced Biology, 2020, 4, e1900306.	3.0	6
246	Comparative study of robotic artificial actuators and biological muscle. Advances in Mechanical Engineering, 2020, 12, 168781402093340.	0.8	41
247	Controllable Stiffness Origami "Skeletons―for Lightweight and Multifunctional Artificial Muscles. Advanced Functional Materials, 2020, 30, 2000349.	7.8	38
248	Bio-inspired design of active photo-mechano-chemically dual-responsive photonic film based on cholesteric liquid crystal elastomers. Journal of Materials Chemistry C, 2020, 8, 5517-5524.	2.7	40
249	Development of 3D neuromuscular bioactuators. APL Bioengineering, 2020, 4, 016107.	3.3	39
250	Bioinspired Soft Robot with Incorporated Microelectrodes. Journal of Visualized Experiments, 2020, , .	0.2	6
251	Thermal wrinkling of liquid crystal polymer shell/core spheres. Extreme Mechanics Letters, 2020, 40, 100860.	2.0	11
252	Multifunctional soft machines based on stimuli-responsive hydrogels: from freestanding hydrogels to smart integrated systems. Materials Today Advances, 2020, 8, 100088.	2.5	67
253	Shape curvature effects in viscous streaming. Journal of Fluid Mechanics, 2020, 898, .	1.4	11
254	An organosynthetic dynamic heart model with enhanced biomimicry guided by cardiac diffusion tensor imaging. Science Robotics, 2020, 5, .	9.9	30
255	Bioinspired underwater locomotion of light-driven liquid crystal gels. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5125-5133.	3.3	237
256	Development of Multibody Marine Robots: A Review. IEEE Access, 2020, 8, 21178-21195.	2.6	22
257	Nonlinear Error Feedback Positioning Control for a Pneumatic Soft Bionic Fin via an Extended State Observer. IEEE Access, 2020, 8, 12688-12696.	2.6	5
258	PEDOT:PSS and Ni-based thermoelectric generator for solar thermal energy conversion. Journal of Materials Chemistry C, 2020, 8, 3914-3922.	2.7	17
259	Pros and Cons: Magnetic versus Optical Microrobots. Advanced Materials, 2020, 32, e1906766.	11.1	206

		CITATION REPORT		
#	Article		IF	CITATIONS
260	Metal or muscle? The future of biologically inspired robots. Science Robotics, 2020, 5,		9.9	9
261	Low-power microelectronics embedded in live jellyfish enhance propulsion. Science Adeeaaz3194.	vances, 2020, 6,	4.7	40
262	CFD-based multi-objective controller optimization for soft robotic fish with muscle-like Bioinspiration and Biomimetics, 2020, 15, 035004.	actuation.	1.5	18
264	Self-Regulating Plant Robots: Bioinspired Heliotropism and Nyctinasty. Soft Robotics, 2	2020, 7, 444-450.	4.6	15
265	Bioinspired Embodiment for Intelligent Sensing and Dexterity in Fine Manipulation: A S Transactions on Industrial Informatics, 2020, 16, 4308-4321.	urvey. IEEE	7.2	13
266	Emergence of functional neuromuscular junctions in an engineered, multicellular spina bioactuator. APL Bioengineering, 2020, 4, 026104.	l cord-muscle	3.3	19
267	Light-induced spontaneous bending of a simply supported liquid crystal elastomer rect Physical Review E, 2020, 101, 042701.	angular plate.	0.8	8
268	Computational modeling of swimming in marine invertebrates with implications for so robots. Bioinspiration and Biomimetics, 2020, 15, 046010.	ft swimming	1.5	4
269	Muscular Thin Films for Label-Free Mapping of Excitation Propagation in Cardiac Tissue Biomedical Engineering, 2020, 48, 2425-2437.	Annals of	1.3	4
270	Biohybrid robot with skeletal muscle tissue covered with a collagen structure for movi Bioengineering, 2020, 4, 026101.	ng in air. APL	3.3	51
271	Photoresponsive Hydrogel Microcrawlers Exploit Friction Hysteresis to Crawl by Recipr Actuation. Soft Robotics, 2021, 8, 10-18.	ocal	4.6	34
272	Transparent Soft Actuators/Sensors and Camouflage Skins for Imperceptible Soft Robo Materials, 2021, 33, e2002397.	otics. Advanced	11.1	131
273	Recent progress in engineering functional biohybrid robots actuated by living cells. Act Biomaterialia, 2021, 121, 29-40.	a	4.1	26
274	Oblique wrinkling patterns on liquid crystal polymer core–shell cylinders under thern International Journal of Solids and Structures, 2021, 208-209, 181-193.	hal load.	1.3	7
275	How Can Interfacial Phenomena in Nature Inspire Smaller Robots. Advanced Materials 8, .	Interfaces, 2021,	1.9	14
276	Living Materials for Life Healthcare. Accounts of Materials Research, 2021, 2, 59-70.		5.9	30
277	Materials, Actuators, and Sensors for Soft Bioinspired Robots. Advanced Materials, 202	21, 33, e2003139.	11.1	209
278	Nanomedicines: Redefining traditional medicine. Biomedicine and Pharmacotherapy, 2	021, 134, 111103.	2.5	62

	CHATION	REPORT	
#	ARTICLE	IF	CITATIONS
279	Becoming Sustainable, The New Frontier in Soft Robotics. Advanced Materials, 2021, 33, e2004413.	11.1	107
280	Engineering bioactive synthetic polymers for biomedical applications: a review with emphasis on tissue engineering and controlled release. Materials Advances, 2021, 2, 4447-4478.	2.6	40
281	Computationally Assisted Design and Selection of Maneuverable Biological Walking Machines. Advanced Intelligent Systems, 2021, 3, 2000237.	3.3	15
282	Biohybrid Robot. Journal of the Robotics Society of Japan, 2021, 39, 310-313.	0.0	0
283	Soft microrobotics. Advances in Chemical Engineering, 2021, 57, 1-44.	0.5	3
284	Agile reversible shape-morphing of particle rafts. Soft Matter, 2021, 17, 7554-7564.	1.2	4
285	Ear-Bot: Locust Ear-on-a-Chip Bio-Hybrid Platform. Sensors, 2021, 21, 228.	2.1	10
286	Stimuli-responsive engineered living materials. Soft Matter, 2021, 17, 785-809.	1.2	64
287	Soft Robots. , 2021, , 1-15.		12
288	Robotized algal cells and their multiple functions. Soft Matter, 2021, 17, 3047-3054.	1.2	7
289	Sensing Materials: Bio-inspired Materials. , 2021, , .		0
290	Living materials with programmable functionalities grown from engineered microbial co-cultures. Nature Materials, 2021, 20, 691-700.	13.3	151
291	Biohybrid robotics: From the nanoscale to the macroscale. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1703.	3.3	21
292	Semi-convertible Hydrogel Enabled Photoresponsive Lubrication. Matter, 2021, 4, 675-687.	5.0	33
293	A Computational Model for Tail Undulation and Fluid Transport in the Giant Larvacean. Fluids, 2021, 6, 88.	0.8	4
294	Neuromechanical wave resonance in jellyfish swimming. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
295	Microengineered Materials with Selfâ€Healing Features for Soft Robotics. Advanced Intelligent Systems, 2021, 3, 2100005.	3.3	14
296	A cellular platform for the development of synthetic living machines. Science Robotics, 2021, 6, .	9.9	86

#	Article	IF	CITATIONS
297	Development of Cultured Muscles with Tendon Structures for Modular Bio-Actuators. Micromachines, 2021, 12, 379.	1.4	10
298	A bio-syncretic phototransistor based on optogenetically engineered living cells. Biosensors and Bioelectronics, 2021, 178, 113050.	5.3	12
299	Underwater maneuvering of robotic sheets through buoyancy-mediated active flutter. Science Robotics, 2021, 6, .	9.9	12
300	An Electrical Stimulation Culture System for Daily Maintenance-Free Muscle Tissue Production. Cyborg and Bionic Systems, 2021, 2021, .	3.7	14
301	Biohybrid soft robots with self-stimulating skeletons. Science Robotics, 2021, 6, .	9.9	58
302	The emerging technology of biohybrid micro-robots: a review. Bio-Design and Manufacturing, 2022, 5, 107-132.	3.9	38
303	Synthetic living machines: A new window on life. IScience, 2021, 24, 102505.	1.9	35
304	Hybrid Living Capsules Autonomously Produced by Engineered Bacteria. Advanced Science, 2021, 8, 2004699.	5.6	17
305	Synthetic biology as driver for the biologization of materials sciences. Materials Today Bio, 2021, 11, 100115.	2.6	31
306	Digital light processing of liquid crystal elastomers for self-sensing artificial muscles. Science Advances, 2021, 7, .	4.7	99
307	Quantifying the Compressive Force of 3D Cardiac Tissues via Calculating the Volumetric Deformation of Builtâ€In Elastic Gelatin Microspheres. Advanced Healthcare Materials, 2021, 10, e2001716.	3.9	7
308	Mechanics of Biohybrid Valveless Pump-Bot. Journal of Applied Mechanics, Transactions ASME, 2021, 88,	1.1	6
309	Systemâ€Engineered Miniaturized Robots: From Structure to Intelligence. Advanced Intelligent Systems, 2021, 3, 2000284.	3.3	18
310	Maneuverable gait selection for a novel fish-inspired robot using a CMA-ES-assisted workflow. Bioinspiration and Biomimetics, 2021, 16, 056017.	1.5	6
311	Ten future challenges for synthetic biology. Engineering Biology, 2021, 5, 51-59.	0.8	24
312	Programmable light-driven swimming actuators via wavelength signal switching. Science Advances, 2021, 7, eabh3051.	4.7	24
313	Biomimetic anisotropic hydrogels: Advanced fabrication strategies, extraordinary functionalities, and broad applications. Progress in Materials Science, 2022, 124, 100870.	16.0	81
314	Biomimetic cell-actuated artificial muscle with nanofibrous bundles. Microsystems and Nanoengineering, 2021, 7, 70.	3.4	12

#	Article	IF	CITATIONS
316	A remeshed vortex method for mixed rigid/soft body fluid–structure interaction. Journal of Computational Physics, 2021, 444, 110577.	1.9	9
317	Moisture induced electricity for self-powered microrobots. Nano Energy, 2021, 90, 106499.	8.2	23
318	2D material programming for 3D shaping. Nature Communications, 2021, 12, 603.	5.8	43
319	Playing God and tampering with nature: popular labels for real concerns in synthetic biology. Transgenic Research, 2021, 30, 155-167.	1.3	8
320	Flagellate Underwater Robotics at Macroscale: Design, Modeling, and Characterization. IEEE Transactions on Robotics, 2022, 38, 731-747.	7.3	18
321	Recent progress of biomimetic motions—from microscopic micro/nanomotors to macroscopic actuators and soft robotics. RSC Advances, 2021, 11, 27406-27419.	1.7	9
322	3D-Printed Biohybrid Robots Powered by Neuromuscular Tissue Circuits from Aplysia californica. Lecture Notes in Computer Science, 2017, , 475-486.	1.0	12
323	Cell Patterning Method by Vibratory Stimuli. Lecture Notes in Computer Science, 2017, , 626-630.	1.0	1
324	Soft Robots. , 2020, , 1-14.		40
325	Self-powered high-sensitivity sensory memory actuated by triboelectric sensory receptor for real-time neuromorphic computing. Nano Energy, 2020, 75, 104930.	8.2	64
326	Enhanced flight performance in non-uniformly flexible wings. Journal of the Royal Society Interface, 2020, 17, 20200352.	1.5	10
329	Theoretical Modeling and Exact Solution for Extreme Bending Deformation of Hard-Magnetic Soft Beams. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	34
330	Traction force microscopy of engineered cardiac tissues. PLoS ONE, 2018, 13, e0194706.	1.1	52
331	Engineered Living Materials-Based Sensing and Actuation. Frontiers in Sensors, 2020, 1, .	1.7	22
332	Design of Soft Sensor for Feedback Control of Bio-actuator Powered by Skeletal Muscle. , 2021, , .		1
333	4D Printing of Engineered Living Materials. Advanced Functional Materials, 2022, 32, 2106843.	7.8	38
334	Nanoarchitectonics of hyperbolic paraboloid 2D Graphene Oxide Membranes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 2073-2079.	0.6	4
336	Microfluidic Platforms for Biofabrication and 3D Tissue Modeling. Biomaterials Science Series, 2019, , 49-76.	0.1	0

#	Article	IF	Citations
337	Development of modular bio-actuators used Artificial tendon structure. , 2019, , .		1
338	Hylozoic by Design: Converging Material and Biological Complexities for Cellâ€Driven Living Materials with 4D Behaviors. Advanced Functional Materials, 2022, 32, 2108057.	7.8	9
340	Materials Chemistry of Neural Interface Technologies and Recent Advances in Three-Dimensional Systems. Chemical Reviews, 2022, 122, 5277-5316.	23.0	31
342	Microrobots Actuated by Living Muscle. Journal of the Institute of Electrical Engineers of Japan, 2020, 140, 595-597.	0.0	0
344	Information and Scientific Impact of Advanced Therapies in the Age of Mass Media: Altmetrics-Based Analysis of Tissue Engineering. Journal of Medical Internet Research, 2021, 23, e25394.	2.1	0
345	Liquid metals as soft electromechanical actuators. Materials Advances, 2022, 3, 173-185.	2.6	32
346	Recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps: A review. Biomaterials, 2022, 280, 121298.	5.7	26
347	Ethanol Phase Change Actuator Based on Thermally Conductive Material for Fast Cycle Actuation. Polymers, 2021, 13, 4095.	2.0	2
348	Kinematic self-replication in reconfigurable organisms. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	57
349	Stimuli-Responsive Polymers for Soft Robotics. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5, 515-545.	7.5	21
350	Soft actuators for real-world applications. Nature Reviews Materials, 2022, 7, 235-249.	23.3	296
351	Biohybrid Microrobots. , 2022, , 305-347.		1
352	A Biomimetic Drosera Capensis with Adaptive Decisionâ€Predation Behavior Based on Multifunctional Sensing and Fast Actuating Capability. Advanced Functional Materials, 2022, 32, 2110296.	7.8	30
353	Convergence of undulatory swimming kinematics across a diversity of fishes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	38
354	Chemical Systems for Life Science. Reviews on Advanced Materials and Technologies, 2021, 3, 1-28.	0.1	1
355	Microvalve actuated by <i>Vorticella</i> : self-oscillating valve and improvement measures to calcium-responsive valve. Mechanical Engineering Journal, 2021, 8, 21-00199-21-00199.	0.2	0
356	A Novel Method of Rapid Pitch of Cownose-ray AUV. , 2020, , .		1
357	A Pharmacodynamic Evaluation Method Based on Optogenetics and Graphene FETs. , 2021, , .		0

#	Article	IF	CITATIONS
358	Design and Experimental Learning of Swimming Gaits for a Magnetic, Modular, Undulatory Robot. , 2021, , .		4
359	A Shift from Efficiency to Adaptability: Recent Progress in Biomimetic Interactive Soft Robotics in Wet Environments. Advanced Science, 2022, 9, e2104347.	5.6	29
360	Adaptive biohybrid pumping machine with flow loop feedback. Biofabrication, 2022, 14, 025009.	3.7	3
361	Increasingly Intelligent Micromachines. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5, 279-310.	7.5	35
362	Design, fabrication and application of magnetically actuated micro/nanorobots: a review. Nanotechnology, 2022, 33, 152001.	1.3	17
363	Three-dimensional geometry and topology effects in viscous streaming. Journal of Fluid Mechanics, 2022, 933, .	1.4	8
364	Bioinspired light-fueled water-walking soft robots based on liquid crystal network actuators with polymerizable miniaturized gold nanorods. Nano Today, 2022, 43, 101419.	6.2	85
365	Synthetic Biology and Cell Engineering for Bio-enabled Nano/Microrobots. , 2022, , 1-7.		0
366	Biohybrid Micro- and Nanorobots for Intelligent Drug Delivery. Cyborg and Bionic Systems, 2022, 2022, .	3.7	28
367	An autonomously swimming biohybrid fish designed with human cardiac biophysics. Science, 2022, 375, 639-647.	6.0	95
368	Actuation-Augmented Biohybrid Robot by Hyaluronic Acid-Modified Au Nanoparticles in Muscle Bundles to Evaluate Drug Effects. ACS Sensors, 2022, 7, 740-747.	4.0	15
369	Micro/nanorobots for precise drug delivery via targeted transport and triggered release: A review. International Journal of Pharmaceutics, 2022, 616, 121551.	2.6	14
370	Stretchable Thermoelectrics: Strategies, Performances, and Applications. Advanced Functional Materials, 2022, 32, .	7.8	40
371	Magnetic bio-hybrid micro actuators. Nanoscale, 2022, 14, 4364-4379.	2.8	14
372	Green Self-Propelling Swimmer Driven by Rain Droplets. SSRN Electronic Journal, 0, , .	0.4	0
373	A perspective on the use of light as a driving element for bio-hybrid actuation. Applied Physics Letters, 2022, 120, .	1.5	9
374	Course Control of a Manta Robot Based on Amplitude and Phase Differences. Journal of Marine Science and Engineering, 2022, 10, 285.	1.2	16
375	Nano/Micromotors in Active Matter. Micromachines, 2022, 13, 307.	1.4	5

IF ARTICLE CITATIONS # Advances in 3D Bioprinting., 2022, 1, 100011. 376 12 æ°∕陆ä,æ–仿ç"Ÿæœºå™ïä≌çš"å'展äŽå±•望. Journal of Zhejiang University: Science A, 2022, 23, 157-187. 1.3 The living interface between synthetic biology and biomaterial design. Nature Materials, 2022, 21, 378 13.3 68 390-397. Principles for the design of multicellular engineered living systems. APL Bioengineering, 2022, 6, 379 010903. Electrically Controlled Aquatic Soft Actuators with Desynchronized Actuation and Light-Mediated 380 4.0 13 Reciprocal Locomotion. ACS Applied Materials & amp; Interfaces, 2022, 14, 12936-12948. Taxonomy for engineered living materials. Cell Reports Physical Science, 2022, 3, 100807. 2.8 Programmable Lightâ€Driven Liquid Crystal Elastomer Kirigami with Controlled Molecular 382 3.3 9 Orientations. Advanced Intelligent Systems, 2022, 4, . Design and analysis of squid-like jet propeller actuated by piezoelectric pumps., 2022,,. Soft pneumatic actuators for mimicking multi-axial femoropopliteal artery mechanobiology. 384 3.7 3 Biofabrication, 2022, 14, 035005. Polypyrrole-Cl@poly(N-isopropylacrylamide) composite-based humidity and near infrared 1.8 dual-response actuators. Polymer, 2022, 245, 124669. Biomimetic Soft Robotics - Oscillatory & amp; Undulatory Control of a Propulsive Wing Structure. , 387 0 2021,,. Stress ball morphogenesis: How the lizard builds its lung. Science Advances, 2021, 7, eabk0161. 388 A Dataâ€Driven Review of Soft Robotics. Advanced Intelligent Systems, 2022, 4, . 390 3.3 28 Development of Living "Bio-Robots―for Autonomous Actuations. Journal of Robotics and Mechatronics, 2022, 34, 279-284. A Brief Overview of Bioinspired Robust Hydrogel Based Shape Morphing Functional Structure for 392 1.2 4 Biomedical Soft Robotics. Frontiers in Materials, 2022, 9, . Robotics as a Comparative Method in Ecology and Evolutionary Biology. Integrative and Comparative Biology, 2022, , . Xenobots: Applications in Drug Discovery. Current Pharmaceutical Biotechnology, 2022, 23, 1691-1703. 395 0.9 2 Microfluidic Generation of Multicomponent Soft Biomaterials. Engineering, 2022, 13, 128-143. 3.2

#	Article	IF	CITATIONS
397	Wirelessly Powered 3D Printed Hierarchical Biohybrid Robots with Multiscale Mechanical Properties. Advanced Functional Materials, 2022, 32, .	7.8	16
398	Photomorphogenesis of Diverse Autonomous Traveling Waves in a Monolithic Soft Artificial Muscle. ACS Applied Materials & Interfaces, 2022, 14, 23839-23849.	4.0	21
399	ç;¬ç£è¼²æ>²æ¢å§åĩå¼2¢åŠ>弿¨jåž<. Chinese Science Bulletin, 2022, , .	0.4	0
400	Submillimeter-scale multimaterial terrestrial robots. Science Robotics, 2022, 7, .	9.9	57
401	Electroactive nano-Biohybrid actuator composed of gold nanoparticle-embedded muscle bundle on molybdenum disulfide nanosheet-modified electrode for motion enhancement of biohybrid robot. Nano Convergence, 2022, 9, .	6.3	4
402	Bio-actuated microvalve in microfluidics using sensing and actuating function of Mimosa pudica. Scientific Reports, 2022, 12, .	1.6	4
403	3D printed protein-based robotic structures actuated by molecular motor assemblies. Nature Materials, 2022, 21, 703-709.	13.3	12
404	Biomimetic Aquatic Robots Based on Fluid-Driven Actuators: A Review. Journal of Marine Science and Engineering, 2022, 10, 735.	1.2	9
405	Bioinspired Soft Robotic Fish for Wireless Underwater Control of Gliding Locomotion. Advanced Intelligent Systems, 2022, 4, .	3.3	14
406	Recent Progress in Modeling and Control of Bio-Inspired Fish Robots. Journal of Marine Science and Engineering, 2022, 10, 773.	1.2	23
407	A comprehensive review on fish-inspired robots. International Journal of Advanced Robotic Systems, 2022, 19, 172988062211037.	1.3	15
408	Fabrication and Functionality Integration Technologies for Smallâ€5cale Soft Robots. Advanced Materials, 2022, 34, .	11.1	13
409	Bioinspired Materials for Wearable Devices and Point-of-Care Testing of Cancer. ACS Biomaterials Science and Engineering, 2023, 9, 2103-2128.	2.6	16
410	Acoustic Fabrication of Living Cardiomyocyte-based Hybrid Biorobots. ACS Nano, 2022, 16, 10219-10230.	7.3	9
411	Design and modeling of a novel soft parallel robot driven by endoskeleton pneumatic artificial muscles. Frontiers of Mechanical Engineering, 2022, 17, .	2.5	2
412	Responsive materials architected in space and time. Nature Reviews Materials, 2022, 7, 683-701.	23.3	80
413	4D-printed light-responsive structures. , 2022, , 55-105.		0
414	Cell navigation and delivery inÂvivo. , 2022, , 433-465.		0

#	Article	IF	CITATIONS
415	4D-printed low-voltage electroactive polymers modeling and fabrication. , 2022, , 107-150.		0
416	Fabrication of PEDOT:PSS based Soft Sensor for Feedback Control of Modular Bio-actuator. , 2022, , .		Ο
417	Progress, Challenges, and Prospects of Soft Robotics for Space Applications. Advanced Intelligent Systems, 2023, 5, .	3.3	31
418	Soft streaming – flow rectification via elastic boundaries. Journal of Fluid Mechanics, 2022, 945, .	1.4	3
419	Endless forms most beautiful 2.0: teleonomy and the bioengineering of chimaeric and synthetic organisms. Biological Journal of the Linnean Society, 2023, 139, 457-486.	0.7	28
420	Exploring standards for multicellular mammalian synthetic biology. Trends in Biotechnology, 2022, , .	4.9	1
421	A Manta Ray Robot with Soft Material Based Flapping Wing. Journal of Marine Science and Engineering, 2022, 10, 962.	1.2	21
422	Self-Assembled Biohybrid: A Living Material To Bridge the Functions between Electronics and Multilevel Biological Modules/Systems. ACS Applied Materials & Interfaces, 2022, 14, 32289-32298.	4.0	3
423	Highly robust and soft biohybrid mechanoluminescence for optical signaling and illumination. Nature Communications, 2022, 13, .	5.8	30
424	Green self-propelling swimmer driven by rain droplets. Nano Energy, 2022, 101, 107543.	8.2	25
425	Biohybrid materials: Structure design and biomedical applications. Materials Today Bio, 2022, 16, 100352.	2.6	5
426	Necrobotics: Biotic Materials as Readyâ€ŧoâ€Use Actuators. Advanced Science, 2022, 9, .	5.6	8
427	Anhydrobiotic chironomid larval motion-based multi-sensing microdevice for the exploration of survivable locations. IScience, 2022, , 104639.	1.9	0
428	Microliter Scale Synthesis of Luciferaseâ€Encapsulated Polymersomes as Artificial Organelles for Optogenetic Modulation of Cardiomyocyte Beating. Advanced Science, 2022, 9, .	5.6	6
429	A Manta Ray-Inspired Biosyncretic Robot with Stable Controllability by Dynamic Electric Stimulation. Cyborg and Bionic Systems, 2022, 2022, .	3.7	19
430	A 3D hard-magnetic rod model based on co-rotational formulations. Acta Mechanica Sinica/Lixue Xuebao, 2022, 38, .	1.5	7
431	Will microfluidics enable functionally integrated biohybrid robots?. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13
433	Multi-actuator light-controlled biological robots. APL Bioengineering, 2022, 6, .	3.3	5

#	Article	IF	CITATIONS
434	Model-Based Design Optimization of Underwater Flagellate Propellers. IEEE Robotics and Automation Letters, 2022, 7, 10089-10096.	3.3	2
435	T-phage inspired piezoelectric microrobot. International Journal of Mechanical Sciences, 2022, 231, 107596.	3.6	8
436	Engineered living bioassemblies for biomedical and functional material applications. Current Opinion in Biotechnology, 2022, 77, 102756.	3.3	2
437	Label-free purification and characterization of optogenetically engineered cells using optically-induced dielectrophoresis. Lab on A Chip, 2022, 22, 3687-3698.	3.1	5
439	Engineering multicellular living systems—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2022, 1518, 183-195.	1.8	3
440	3D-printed microrobots from design to translation. Nature Communications, 2022, 13, .	5.8	52
441	Development of High-Cell-Density Tissue Method for Compressed Modular Bioactuator. Micromachines, 2022, 13, 1725.	1.4	0
442	Soft Underwater Swimming Robots Based on Artificial Muscle. Advanced Materials Technologies, 2023, 8, .	3.0	12
443	Biohybrid robots: recent progress, challenges, and perspectives. Bioinspiration and Biomimetics, 2023, 18, 015001.	1.5	17
444	Actuators for Implantable Devices: A Broad View. Micromachines, 2022, 13, 1756.	1.4	2
445	Multifunctional Underwater Soft Robots: A Simulation Essay. IOP Conference Series: Materials Science and Engineering, 2022, 1261, 012008.	0.3	1
446	Powerful 2D Soft Morphing Actuator Propels Giant Manta Ray Robot. Advanced Intelligent Systems, 2022, 4, .	3.3	1
447	Effects of Flexural Rigidity on Soft Actuators via Adhering to Large Cylinders. Actuators, 2022, 11, 286.	1.2	3
448	The Soft Ray-Inspired Robots Actuated by Solid–Liquid Interpenetrating Silicone-Based Dielectric Elastomer Actuator. Soft Robotics, 2023, 10, 354-364.	4.6	3
449	Artificial Intelligence Systems, Responsibility and Agential Self-Awareness. Studies in Applied Philosophy, Epistemology and Rational Ethics, 2022, , 15-25.	0.2	0
450	An Overview of Soft Robotics. Annual Review of Control, Robotics, and Autonomous Systems, 2023, 6, 1-29.	7.5	32
451	A perspective on plant robotics: from bioinspiration to hybrid systems. Bioinspiration and Biomimetics, 2023, 18, 015006.	1.5	6
452	Improved Performance of Biohybrid Muscleâ€Based Bioâ€Bots Doped with Piezoelectric Boron Nitride Nanotubes. Advanced Materials Technologies, 2023, 8, .	3.0	5

	C	CITATION REPORT		
#	Article	I	F	CITATIONS
453	Reciprocal swimming at intermediate Reynolds number. Journal of Fluid Mechanics, 2022, 952, .	1	.4	2
454	Nanoengineering of biohybrid micro/nanobots for programmed biomedical applications. Colloids and Surfaces B: Biointerfaces, 2023, 222, 113054.	2	2.5	9
455	A Computational Approach forÂContactless Muscle Force andÂStrain Estimations inÂDistributed Actuation Biohybrid Mesh Constructs. Lecture Notes in Computer Science, 2022, , 140-151.	1	0	1
456	Autonomous waves and global motion modes in living active solids. Nature Physics, 2023, 19, 46-51.	. e	5.5	9
457	Biohybrid 3D Printing of a Tissue‧ensor Platform for Wireless, Realâ€Time, and Continuous Monito of Drugâ€Induced Cardiotoxicity. Advanced Materials, 2023, 35, .	oring 1	1.1	10
459	Nanoenabled Trainable Systems: From Biointerfaces to Biomimetics. ACS Nano, 2022, 16, 19651-196	564. 7	7.3	5
460	Shape Morphing by Topological Patterns and Profiles in Laser-Cut Liquid Crystal Elastomer Kirigami. ACS Applied Materials & Interfaces, 2023, 15, 4538-4548.	2	ł.0	4
461	Toward bioelectronic device based on bionanohybrid composed of nanomaterials and biomaterials: From nucleic acid and protein to living cell. Applied Physics Reviews, 2023, 10, .	E	5.5	3
462	Effects of Design and Hydrodynamic Parameters on Optimized Swimming for Simulated, Fish-inspired Robots. , 2022, , .	t		1
463	Remote control of muscle-driven miniature robots with battery-free wireless optoelectronics. Science Robotics, 2023, 8, .	g	9.9	19
464	Engineering Multiâ€Scale Organization for Biotic and Organic Abiotic Electroactive Systems. Advance Science, 2023, 10, .	ed E	5.6	5
465	High-resolution microsphere sensor for monitoring the spatial mechanical beating of cardiomyocytes in high-noise multi-scene environments. Sensors and Actuators B: Chemical, 2023, 384, 133658.	4	ŀ.O	0
466	Synthetic morphology with agential materials. , 2023, 1, 46-59.			16
467	Engineering living materials by synthetic biology. Biophysics Reviews, 2023, 4, .		.0	1
468	Optical modulation of excitation-contraction coupling in human-induced pluripotent stem cell-derived cardiomyocytes. IScience, 2023, 26, 106121.	1	9	7
469	Biointerface Coatings With Structural and Biochemical Properties Modifications of Biomaterials. Advanced Materials Interfaces, 2023, 10, .	1	9	6
471	Soft-body dynamics induces energy efficiency in undulatory swimming: A deep learning study. Frontiers in Robotics and AI, 0, 10, .	2	2.0	0
472	Plasmonic stimulation of gold nanorods for the photothermal control of engineered living materials. , 2023, 147, 213332.			4

#	Article	IF	CITATIONS
473	Magnetically-Assisted Microfluidic Printing for the Fabrication of Anisotropic Skeletal Muscle Structure. IEEE Robotics and Automation Letters, 2023, 8, 2661-2667.	3.3	0
474	Reconfigurable scaffolds for adaptive tissue regeneration. Nanoscale, 2023, 15, 6105-6120.	2.8	3
475	Development of Bio-cultured Artificial Muscles with High Design Flexibility. Journal of Bionic Engineering, 2023, 20, 1635-1645.	2.7	2
476	Active topological phase transitions in high-order elastic topological insulators driven by pneumatic methods and liquid metals. Journal of Applied Physics, 2023, 133, 104504.	1.1	5
477	A Torsion-Bending Antagonistic Bistable Actuator Enables Untethered Crawling and Swimming of Miniature Robots. Research, 2023, 6, .	2.8	3
478	Soft Electromagnetic Motor and Soft Magnetic Sensors for Synchronous Rotary Motion. Soft Robotics, 2023, 10, 912-922.	4.6	2
479	From rigid to soft to biological robots. Artificial Life and Robotics, 0, , .	0.7	1
480	Biological Robots: Perspectives on an Emerging Interdisciplinary Field. Soft Robotics, 2023, 10, 674-686.	4.6	4
481	Reconfigurable Innervation of Modular Soft Machines via Soft, Sticky, and Instant Electronic Adhesive Interlocking. Advanced Intelligent Systems, 2023, 5, .	3.3	0
482	Omni-Directional Ultrasonic Powering via Platonic Solid Receiver for mm-Scale Implantable Devices. , 0, , 1876-1885.		0
494	Living Organisms asÂSensors forÂBiohybrid Monitoring Systems. Lecture Notes in Computer Science, 2023, , 348-362.	1.0	0
504	The Tall, theÂSquat, & theÂBendy: Parametric Modeling andÂSimulation Towards Multi-functional Biohybrid Robots. Lecture Notes in Computer Science, 2023, , 217-226.	1.0	0
505	Biological Material. Natural Computing Series, 2023, , 171-196.	2.2	0
508	An Overview of the Untapped Potential of Soft Robotic Arms with Integration of Machining Tools.	0.3	0