Transition Metal Disulfides as Nobleâ€Metalâ€Alternat Production

Advanced Energy Materials 6, 1502555 DOI: 10.1002/aenm.201502555

Citation Report

#	Article	IF	CITATIONS
1	Nanostructured p-Type Semiconductor Electrodes and Photoelectrochemistry of Their Reduction Processes. Energies, 2016, 9, 373.	1.6	46
2	Activating Catalytic Inert Basal Plane of Molybdenum Disulfide to Optimize Hydrogen Evolution Activity via Defect Doping and Strain Engineering. Journal of Physical Chemistry C, 2016, 120, 16761-16766.	1.5	138
3	Targeted Synthesis of 2H―and 1Tâ€Phase MoS ₂ Monolayers for Catalytic Hydrogen Evolution. Advanced Materials, 2016, 28, 10033-10041.	11.1	534
4	Fabrication of zero to three dimensional nanostructured molybdenum sulfides and their electrochemical and photocatalytic applications. Nanoscale, 2016, 8, 18250-18269.	2.8	79
5	Exceptional Visibleâ€Lightâ€Driven Cocatalystâ€Free Photocatalytic Activity of gâ€C ₃ N ₄ by Well Designed Nanocomposites with Plasmonic Au and SnO ₂ . Advanced Energy Materials, 2016, 6, 1601190.	10.2	207
6	Porous hollow manganites with robust composite shells for oxidation of CO at low temperature. RSC Advances, 2016, 6, 113682-113688.	1.7	4
7	General applicability of nanocrystalline Ni ₂ P as a noble-metal-free cocatalyst to boost photocatalytic hydrogen generation. Catalysis Science and Technology, 2016, 6, 8212-8221.	2.1	113
8	Simultaneous H ₂ Generation and Biomass Upgrading in Water by an Efficient Nobleâ€Metalâ€Free Bifunctional Electrocatalyst. Angewandte Chemie - International Edition, 2016, 55, 9913-9917.	7.2	435
9	Simultaneous H ₂ Generation and Biomass Upgrading in Water by an Efficient Nobleâ€Metalâ€Free Bifunctional Electrocatalyst. Angewandte Chemie, 2016, 128, 10067-10071.	1.6	94
10	A silver on 2D white-C3N4support photocatalyst for mechanistic insights: synergetic utilization of plasmonic effect for solar hydrogen evolution. RSC Advances, 2016, 6, 112420-112428.	1.7	30
11	Au Multimer@MoS2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect. Nano Energy, 2016, 30, 549-558.	8.2	98
12	Engineering the Edges of MoS ₂ (WS ₂) Crystals for Direct Exfoliation into Monolayers in Polar Micromolecular Solvents. Journal of the American Chemical Society, 2016, 138, 14962-14969.	6.6	189
13	Electron-transfer dependent photocatalytic hydrogen generation over cross-linked CdSe/TiO ₂ type-II heterostructure. Nanotechnology, 2017, 28, 084002.	1.3	33
14	Heterostructured WS ₂ â€MoS ₂ Ultrathin Nanosheets Integrated on CdS Nanorods to Promote Charge Separation and Migration and Improve Solarâ€Driven Photocatalytic Hydrogen Evolution. ChemSusChem, 2017, 10, 1563-1570.	3.6	150
15	Multi-node CdS hetero-nanowires grown with defect-rich oxygen-doped MoS2 ultrathin nanosheets for efficient visible-light photocatalytic H2 evolution. Nano Research, 2017, 10, 1377-1392.	5.8	104
16	Positive Ni(HCO ₃) ₂ as a Novel Cocatalyst for Boosting the Photocatalytic Hydrogen Evolution Capability of Mesoporous TiO ₂ Nanocrystals. ACS Sustainable Chemistry and Engineering, 2017, 5, 5027-5038.	3.2	98
17	Utilization of MoS2 and graphene to enhance the photocatalytic activity of Cu2O for oxidative C C bond formation. Applied Catalysis B: Environmental, 2017, 213, 1-8.	10.8	52
18	Bismuth sulphide-modified molybdenum disulphide as an efficient photocatalyst for hydrogen production under simulated solar light. Catalysis Communications, 2017, 98, 66-70.	1.6	25

#	Article	IF	CITATIONS
19	Integrating metallic nanoparticles of Au and Pt with MoS ₂ –CdS hybrids for high-efficient photocatalytic hydrogen generation via plasmon-induced electron and energy transfer. RSC Advances, 2017, 7, 26097-26103.	1.7	27
20	Highly efficient visible light-driven hydrogen production of precious metal-free hybrid photocatalyst: CdS@NiMoS core–shell nanorods. Catalysis Science and Technology, 2017, 7, 2798-2804.	2.1	47
21	Continuous and large-area transition metal disulfides films deposited by pulsed laser/chemical vapor-combined process as a counter electrode for dye-sensitized solar cells. Materials Letters, 2017, 201, 216-220.	1.3	3
22	Preparation of Bifunctional CuWO ₄ â€Based Heterostructure Nanocomposites for Nobleâ€Metalâ€Free Photocatalysts. ChemistrySelect, 2017, 2, 4484-4498.	0.7	13
23	Construction of unique two-dimensional MoS ₂ –TiO ₂ hybrid nanojunctions: MoS ₂ as a promising cost-effective cocatalyst toward improved photocatalytic reduction of CO ₂ to methanol. Nanoscale, 2017, 9, 9065-9070.	2.8	134
24	Manifestation of Concealed Defects in MoS2Nanospheres for Efficient and Durable Electrocatalytic Hydrogen Evolution Reaction. ChemistrySelect, 2017, 2, 4667-4672.	0.7	2
25	One-pot Synthesis of CdS Irregular Nanospheres Hybridized with Oxygen-Incorporated Defect-Rich MoS ₂ Ultrathin Nanosheets for Efficient Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 23635-23646.	4.0	178
26	Engineering the crystallinity of MoS ₂ monolayers for highly efficient solar hydrogen production. Journal of Materials Chemistry A, 2017, 5, 8591-8598.	5.2	69
27	Fabrication of Hâ€TiO ₂ /CdS/Cu _{2â€<i>x</i>} S Ternary Heterostructures for Enhanced Photocatalytic Hydrogen Production. ChemistrySelect, 2017, 2, 2681-2686.	0.7	9
28	Hydrazine-assisted formation of ultrathin MoS ₂ nanosheets for enhancing their co-catalytic activity in photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 6981-6991.	5.2	120
29	Modulation of charge carrier pathways in CdS nanospheres by integrating MoS ₂ and Ni ₂ P for improved migration and separation toward enhanced photocatalytic hydrogen evolution. Catalysis Science and Technology, 2017, 7, 641-649.	2.1	76
30	One dimensional CdS based materials for artificial photoredox reactions. Journal of Materials Chemistry A, 2017, 5, 2387-2410.	5.2	190
31	A 2D self-assembled MoS ₂ /ZnIn ₂ S ₄ heterostructure for efficient photocatalytic hydrogen evolution. Nanoscale, 2017, 9, 18290-18298.	2.8	121
32	Over two-orders of magnitude enhancement of the photocatalytic hydrogen evolution activity of carbon nitride via mediator-free decoration with gold-organic microspheres. Chemical Communications, 2017, 53, 11814-11817.	2.2	35
33	Recent Progress in Semiconductorâ€Based Nanocomposite Photocatalysts for Solarâ€ŧoâ€Chemical Energy Conversion. Advanced Energy Materials, 2017, 7, 1700529.	10.2	189
34	Defect-Induced Epitaxial Growth for Efficient Solar Hydrogen Production. Nano Letters, 2017, 17, 6676-6683.	4.5	96
35	Superior Photocatalytic H ₂ Production with Cocatalytic Co/Ni Species Anchored on Sulfide Semiconductor. Advanced Materials, 2017, 29, 1703258.	11.1	188
36	Amorphous WS x as an efficient cocatalyst grown on CdS nanoparticles via photochemical deposition for enhanced visible-light-driven hydrogen evolution. Molecular Catalysis, 2017, 440, 190-198.	1.0	26

CITA	NOI	Repo	RT

#	Article	IF	CITATIONS
37	Spatial separation of the hydrogen evolution center from semiconductors using a freestanding silica-sphere-supported Pt composite. Physical Chemistry Chemical Physics, 2017, 19, 24249-24254.	1.3	5
38	C Fibers@WSe ₂ Nanoplates Core–Shell Composite: Highly Efficient Solar-Driven Photocatalyst. ACS Applied Materials & Interfaces, 2017, 9, 28704-28715.	4.0	20
39	Tailoring catalytic activities of transition metal disulfides for water splitting. FlatChem, 2017, 4, 68-80.	2.8	24
40	Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting. Chemical Science, 2017, 8, 5261-5274.	3.7	299
41	Design and architecture of metal organic frameworks for visible light enhanced hydrogen production. Applied Catalysis B: Environmental, 2017, 218, 555-569.	10.8	173
42	The Application of Metal Sulfides in Sodium Ion Batteries. Advanced Energy Materials, 2017, 7, 1601329.	10.2	496
43	BiVO4 nanowires decorated with CdS nanoparticles as Z-scheme photocatalyst with enhanced H2 generation. Applied Catalysis B: Environmental, 2017, 201, 77-83.	10.8	269
44	2D Transition Metal Dichalcogenides and Graphene-Based Ternary Composites for Photocatalytic Hydrogen Evolution and Pollutants Degradation. Nanomaterials, 2017, 7, 62.	1.9	33
46	Self-assembled MoS ₂ -GO Framework as an Efficient Cocatalyst of CuInZnS for Visible-Light Driven Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 4671-4679.	3.2	44
47	Synergetic Exfoliation and Lateral Size Engineering of MoS ₂ for Enhanced Photocatalytic Hydrogen Generation. Small, 2018, 14, e1704153.	5.2	84
48	Highly Efficient Photocatalytic Hydrogen Evolution by ReS ₂ via a Twoâ€Electron Catalytic Reaction. Advanced Materials, 2018, 30, e1707123.	11.1	90
49	Oxygen-incorporation in Co2P as a non-noble metal cocatalyst to enhance photocatalysis for reducing water to H2 under visible light. Chemical Engineering Journal, 2018, 346, 281-288.	6.6	66
50	Effect of sacrificial agents on the dispersion of metal cocatalysts for photocatalytic hydrogen evolution. Applied Surface Science, 2018, 442, 361-367.	3.1	33
51	Largely enhanced photocatalytic activity of Au/XS ₂ /Au (X = Re, Mo) antenna–reactor hybrids: charge and energy transfer. Nanoscale, 2018, 10, 4130-4137.	2.8	32
52	Zirconium–Porphyrinâ€Based Metal–Organic Framework Hollow Nanotubes for Immobilization of Nobleâ€Metal Single Atoms. Angewandte Chemie, 2018, 130, 3551-3556.	1.6	102
53	Zirconium–Porphyrinâ€Based Metal–Organic Framework Hollow Nanotubes for Immobilization of Nobleâ€Metal Single Atoms. Angewandte Chemie - International Edition, 2018, 57, 3493-3498.	7.2	341
54	Engineered MoSe ₂ â€Based Heterostructures for Efficient Electrochemical Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1703212.	10.2	152
55	Hollow CoS _{<i>x</i>} Polyhedrons Act as High-Efficiency Cocatalyst for Enhancing the Photocatalytic Hydrogen Generation of g-C ₃ N ₄ . ACS Sustainable Chemistry and Engineering, 2018, 6, 2767-2779.	3.2	343

#	Article	IF	Citations
56	Toward a rational photocatalyst design: a new formation strategy of co-catalyst/semiconductor heterostructures <i>via in situ</i> exsolution. Chemical Communications, 2018, 54, 1505-1508.	2.2	39
57	High Yield Exfoliation of WS ₂ Crystals into 1–2 Layer Semiconducting Nanosheets and Efficient Photocatalytic Hydrogen Evolution from WS ₂ /CdS Nanorod Composites. ACS Applied Materials & Interfaces, 2018, 10, 2810-2818.	4.0	112
58	Electrocatalytic and photocatalytic hydrogen evolution integrated with organic oxidation. Chemical Communications, 2018, 54, 5943-5955.	2.2	142
59	Direct Growth of MoS ₂ and WS ₂ Layers by Metal Organic Chemical Vapor Deposition. Advanced Materials Interfaces, 2018, 5, 1800140.	1.9	52
60	Highly Efficient MoS ₂ /Ag ₂ S/Ag Photoelectrocatalyst Obtained from a Recycled DVD Surface. ACS Sustainable Chemistry and Engineering, 2018, 6, 7818-7825.	3.2	29
61	Ultra-small freestanding amorphous molybdenum sulfide colloidal nanodots for highly efficient photocatalytic hydrogen evolution reaction. Applied Catalysis B: Environmental, 2018, 232, 446-453.	10.8	63
62	Solvothermal synthesis of metallic 1T-WS2: A supporting co-catalyst on carbon nitride nanosheets toward photocatalytic hydrogen evolution. Chemical Engineering Journal, 2018, 335, 282-289.	6.6	161
63	Noble metal-free near-infrared-driven photocatalyst for hydrogen production based on 2D hybrid of black Phosphorus/WS2. Applied Catalysis B: Environmental, 2018, 221, 645-651.	10.8	171
64	Nanohybrids of Twoâ€Ðimensional Transitionâ€Metal Dichalcogenides and Titanium Dioxide for Photocatalytic Applications. Chemistry - A European Journal, 2018, 24, 18-31.	1.7	53
65	Novel β-NiS film modified CdS nanoflowers heterostructure nanocomposite: Extraordinarily highly efficient photocatalysts for hydrogen evolution. Applied Catalysis B: Environmental, 2018, 224, 1000-1008.	10.8	74
66	Largely enhanced photocatalytic hydrogen production rate of CdS/(Au–ReS ₂) nanospheres by the dielectric–plasmon hybrid antenna effect. Nanoscale, 2018, 10, 19586-19594.	2.8	21
67	One-pot synthesis of CdS-MoS2/RGO-E nano-heterostructure with well-defined interfaces for efficient photocatalytic H2 evolution. International Journal of Hydrogen Energy, 2018, 43, 20382-20391.	3.8	36
68	Photocatalytic properties of two-dimensional graphene and layered transition-metal dichalcogenides based photocatalyst for photoelectrochemical hydrogen generation: An overview. International Journal of Hydrogen Energy, 2018, 43, 18925-18945.	3.8	83
69	Effective use of photogenerated electrons and holes in a system: Photocatalytic selective oxidation of aromatic alcohols to aldehydes and hydrogen production. Journal of Catalysis, 2018, 367, 159-170.	3.1	102
70	Enriching Hot Electrons via NIRâ€Photonâ€Excited Plasmon in WS ₂ @Cu Hybrids for Fullâ€Spectrum Solar Hydrogen Evolution. Advanced Functional Materials, 2018, 28, 1804055.	7.8	89
71	Mosaicâ€Structured Cobalt Nickel Thiophosphate Nanosheets Incorporated Nâ€doped Carbon for Efficient and Stable Electrocatalytic Water Splitting. Advanced Functional Materials, 2018, 28, 1805075.	7.8	57
72	Decoration of WS2 as an effective noble-metal free cocatalyst on ZnIn2S4 for enhanced visible light photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 18261-18269.	3.8	53
73	Self-assembly optimization of cadmium/molybdenum sulfide hybrids by cation coordination competition toward extraordinarily efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 18396-18402.	5.2	22

#	Article	IF	CITATIONS
74	Surface-functionalized MoS2 ultrathin nanosheets for electrochemical monitoring terminal deoxynucleotidyl transferase activity based on in-situ polymerized DNA. Sensors and Actuators B: Chemical, 2018, 277, 297-305.	4.0	10
75	Hierarchical photocatalyst of In2S3 on exfoliated MoS2 nanosheets for enhanced visible-light-driven Aza-Henry reaction. Applied Catalysis B: Environmental, 2018, 237, 288-294.	10.8	70
76	Transition-metal-doped NiSe2 nanosheets towards efficient hydrogen evolution reactions. Nano Research, 2018, 11, 6051-6061.	5.8	72
77	Non-noble-metal bismuth nanoparticle-decorated bismuth vanadate nanoarray photoanode for efficient water splitting. Materials Chemistry Frontiers, 2018, 2, 1799-1804.	3.2	13
78	Nickel foam derived nitrogen doped nickel sulfide nanowires as an efficient electrocatalyst for the hydrogen evolution reaction. Dalton Transactions, 2018, 47, 9871-9876.	1.6	20
79	Facile one-pot synthesis of wood based bismuth molybdate nano-eggshells with efficient visible-light photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 556, 284-290.	2.3	25
80	Achieving photocatalytic hydrogen production from alkaline solution upon a designed mesoporous TiO ₂ –Ni hybrid employing commonly used paper as a sacrificial electron donor. Inorganic Chemistry Frontiers, 2018, 5, 2709-2717.	3.0	27
81	Earth-Abundant MoS ₂ and Cobalt Phosphate Dual Cocatalysts on 1D CdS Nanowires for Boosting Photocatalytic Hydrogen Production. Langmuir, 2019, 35, 11056-11065.	1.6	77
82	A ternary ZnO/ZnS/MoS ₂ composite as a reusable SERS substrate derived from the polyoxomolybdate/ZIF-8 host–guest framework. Journal of Materials Chemistry C, 2019, 7, 9856-9864.	2.7	19
83	Integration of Plasmonic Metal and Cocatalyst: An Efficient Strategy for Boosting the Visible and Broadâ€5pectrum Photocatalytic H 2 Evolution. Advanced Materials Interfaces, 2019, 6, 1900775.	1.9	18
84	Graphene oxide induced dual cocatalysts formation on manganese sulfide with enhanced photocatalytic hydrogen production from hydrogen sulfide. Applied Surface Science, 2019, 494, 700-707.	3.1	21
85	Novel ZnCdS Quantum Dots Engineering for Enhanced Visible-Light-Driven Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 13805-13814.	3.2	66
86	Amorphous Bimetallic Cobalt Nickel Sulfide Cocatalysts for Significantly Boosting Photocatalytic Hydrogen Evolution Performance of Graphitic Carbon Nitride: Efficient Interfacial Charge Transfer. ACS Applied Materials & Interfaces, 2019, 11, 26898-26908.	4.0	110
87	Robust and efficient photocatalytic hydrogen generation of ReS2/CdS and mechanistic study by on-line mass spectrometry and in situ infrared spectroscopy. Applied Catalysis B: Environmental, 2019, 257, 117897.	10.8	50
88	Recent Advances in Cuâ€Based Cocatalysts toward Solarâ€ŧoâ€Hydrogen Evolution: Categories and Roles. Solar Rrl, 2019, 3, 1900256.	3.1	41
89	Green and in-situ synthesis of noble-metal-free Ni2P/CdS nanoheterostructure for enhanced photocatalytic H2 generation activity. Journal of the Taiwan Institute of Chemical Engineers, 2019, 103, 110-117.	2.7	16
90	Design of Phosphorene for Hydrogen Evolution Performance Comparable to Platinum. Chemistry of Materials, 2019, 31, 8948-8956.	3.2	66
91	One-pot synthesis of MoS2/CdS nanosphere heterostructures for efficient H2 evolution under visible light irradiation. International Journal of Hydrogen Energy, 2019, 44, 31930-31939.	3.8	31

#	Article	IF	CITATIONS
92	Facile Synthesis of FeS@C Particles Toward High-Performance Anodes for Lithium-Ion Batteries. Nanomaterials, 2019, 9, 1467.	1.9	5
93	Junction of porous g-C3N4 with BiVO4 using Au as electron shuttle for cocatalyst-free robust photocatalytic hydrogen evolution. Applied Surface Science, 2019, 498, 143808.	3.1	34
94	Vertical 1T/2H-WS2 nanoflakes grown on 2D-C3N4: Multiple charge transfer channels designed for enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2019, 556, 224-231.	5.0	29
95	Solvent-free nanocasting toward universal synthesis of ordered mesoporous transition metal sulfide@N-doped carbon composites for electrochemical applications. Nano Research, 2019, 12, 2250-2258.	5.8	25
96	Decorating MoS2 and CoSe2 nanostructures on 1D-CdS nanorods for boosting photocatalytic hydrogen evolution rate. Journal of Molecular Liquids, 2019, 289, 111164.	2.3	12
97	Noble-metal-free CdS@MoS2 core-shell nanoheterostructures for efficient and stabilized visible-light-driven H2 generation. International Journal of Hydrogen Energy, 2019, 44, 16657-16666.	3.8	27
98	Fabrication of 1D long chain-like metal porphyrin-based coordination complexes for high-efficiency hydrogen evolution and photoelectric response. International Journal of Hydrogen Energy, 2019, 44, 18072-18082.	3.8	7
99	A Critical Review on Enhancement of Photocatalytic Hydrogen Production by Molybdenum Disulfide: From Growth to Interfacial Activities. Small, 2019, 15, e1900578.	5.2	69
100	Dual function of graphene oxide for assisted exfoliation of black phosphorus and electron shuttle in promoting visible and near-infrared photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2019, 256, 117864.	10.8	41
101	In situ observation of NiS nanoparticles depositing on single TiO2 mesocrystal for enhanced photocatalytic hydrogen evolution activity. Applied Catalysis B: Environmental, 2019, 254, 594-600.	10.8	50
102	Awakening Solar Hydrogen Evolution of MoS ₂ in Alkalescent Electrolyte through Doping with Co. ChemSusChem, 2019, 12, 3336-3342.	3.6	27
103	Metallic molybdenum sulfide nanodots as platinum-alternative co-catalysts for photocatalytic hydrogen evolution. Journal of Catalysis, 2019, 374, 237-245.	3.1	37
104	1T MoS2 nanosheets with extraordinary sodium storage properties via thermal-driven ion intercalation assisted exfoliation of bulky MoS2. Nano Energy, 2019, 61, 361-369.	8.2	157
105	Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts. Catalysts, 2019, 9, 276.	1.6	214
106	Few-layered 1T-MoS ₂ -modified ZnCoS solid-solution hollow dodecahedra for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 8472-8484.	5.2	56
107	MoSx/CdS nano-heterostructures accurately constructed on the defects of CdS for efficient photocatalytic H2 evolution under visible light irradiation. Chemical Engineering Journal, 2019, 370, 305-313.	6.6	115
108	Construction of ZnxCd1â^²xS/Bi2S3 composite nanospheres with photothermal effect for enhanced photocatalytic activities. Journal of Colloid and Interface Science, 2019, 546, 303-311.	5.0	56
109	<i>N</i> , <i>N</i> -Dimethylformamide assisted hydrothermal introduction of MoS ₂ on ultrathin g-C ₃ N ₄ layers with enhanced visible light photocatalytic hydrogen evolution activity. Sustainable Energy and Fuels, 2019, 3, 1461-1467.	2.5	21

#	Article	IF	CITATIONS
110	Synthesis of Well-Defined Pt-Based Catalysts for Methanol Oxidation Reaction Based on Electron–Hole Separation Effects. ACS Sustainable Chemistry and Engineering, 2019, 7, 8597-8603.	3.2	7
111	Non-noble metal Co as active sites on TiO2 nanorod for promoting photocatalytic H2 production. Materials Research Bulletin, 2019, 116, 16-21.	2.7	27
112	Hierarchical microsphere of MoNi porous nanosheets as electrocatalyst and cocatalyst for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2019, 249, 98-105.	10.8	98
113	Cocatalysts for Selective Photoreduction of CO ₂ into Solar Fuels. Chemical Reviews, 2019, 119, 3962-4179.	23.0	1,591
114	CdS nanospheres hybridized with graphitic C ₃ N ₄ for effective photocatalytic hydrogen generation under visible light irradiation. Applied Organometallic Chemistry, 2019, 33, e4671.	1.7	13
115	Integration of metallic TaS ₂ Coâ€catalyst on carbon nitride photoharvester for enhanced photocatalytic performance. Canadian Journal of Chemical Engineering, 2019, 97, 1821-1827.	0.9	1
116	Unique 1D Cd _{1â^'} <i>_x</i> Zn <i>_x</i> S@Oâ€MoS ₂ /NiO <i>_x Nanohybrids: Highly Efficient Visibleâ€Lightâ€Driven Photocatalytic Hydrogen Evolution via Integrated Structural Regulation. Small, 2019, 15, e1804115.</i>	5.2	64
117	Toward a fundamental understanding of factors affecting the function of cocatalysts in photocatalytic water splitting. Current Opinion in Green and Sustainable Chemistry, 2019, 17, 21-28.	3.2	15
118	Phase and interlayer effect of transition metal dichalcogenide cocatalyst toward photocatalytic hydrogen evolution: The case of MoSe2. Applied Catalysis B: Environmental, 2019, 243, 330-336.	10.8	105
119	Recent advances in earth-abundant photocatalyst materials for solar H2 production. Advanced Powder Technology, 2020, 31, 11-28.	2.0	64
120	Multifunctional Transition Metalâ€Based Phosphides in Energyâ€Related Electrocatalysis. Advanced Energy Materials, 2020, 10, 1902104.	10.2	322
121	Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chemical Reviews, 2020, 120, 919-985.	23.0	1,605
122	Tunable Charge Transfer and Dual Plasmon Resonances of Au@WO3â^'x Hybrids and Applications in Photocatalytic Hydrogen Generation. Plasmonics, 2020, 15, 21-29.	1.8	9
123	In Situ Growth of BiOI/MoS 2 Heterostructure as Pt Supports for Visible Lightâ€Assisted Electrocatalytic Methanol Oxidation Reaction. Energy Technology, 2020, 8, 1900731.	1.8	7
124	Investigation of photocatalytic chlorpyrifos degradation by a new silica mesoporous material immobilized by WS ₂ and Fe ₃ O ₄ nanoparticles: Application of response surface methodology. Applied Organometallic Chemistry, 2020, 34, e5343.	1.7	19
125	Revealing the size effect of metallic CoS2 on CdS nanorods for photocatalytic hydrogen evolution based on Schottky junction. Applied Catalysis A: General, 2020, 592, 117377.	2.2	26
126	Band-gap engineering of layered covalent organic frameworks via controllable exfoliation for enhanced visible-light-driven hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 2689-2698.	3.8	32
127	MoSx-CdS/Cu2ZnSnS4-based thin film photocathode for solar hydrogen evolution from water. Applied Catalysis B: Environmental, 2020, 268, 118438.	10.8	41

#	Article	IF	CITATIONS
128	Nitriding Nickel-Based Cocatalyst: A Strategy To Maneuver Hydrogen Evolution Capacity for Enhanced Photocatalysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 884-892.	3.2	30
129	Valueâ€Added Formate Production from Selective Methanol Oxidation as Anodic Reaction to Enhance Electrochemical Hydrogen Cogeneration. ChemSusChem, 2020, 13, 914-921.	3.6	87
130	Two-dimensional materials as novel co-catalysts for efficient solar-driven hydrogen production. Journal of Materials Chemistry A, 2020, 8, 23202-23230.	5.2	81
131	Conductive Ni supported NiCoO2–NiCoP nanosheets as highly active electrocatalyst toward hydrogen evolution reaction in alkaline media. Journal of Alloys and Compounds, 2020, 848, 156603.	2.8	6
132	<i>In situ</i> photo-derived MnOOH collaborating with Mn ₂ Co ₂ C@C dual co-catalysts boost photocatalytic overall water splitting. Journal of Materials Chemistry A, 2020, 8, 17120-17127.	5.2	24
133	Hybrid cocatalysts in semiconductor-based photocatalysis and photoelectrocatalysis. Journal of Materials Chemistry A, 2020, 8, 14863-14894.	5.2	115
134	Recent advances of low-dimensional phosphorus-based nanomaterials for solar-driven photocatalytic reactions. Coordination Chemistry Reviews, 2020, 424, 213516.	9.5	64
135	Unique ternary Cd0.85Zn0.15S@WO3/WS2 core-shell nanorods for highly-efficient photocatalytic H2 evolution under visible-light irradiation. International Journal of Hydrogen Energy, 2020, 45, 27160-27170.	3.8	18
136	Megamerger of MOFs and g-C ₃ N ₄ for energy and environment applications: upgrading the framework stability and performance. Journal of Materials Chemistry A, 2020, 8, 17883-17906.	5.2	48
137	Strong interfacial coupling for NiS thin layer covered CdS nanorods with highly efficient photocatalytic hydrogen production. New Journal of Chemistry, 2020, 44, 19083-19090.	1.4	21
138	Surface-Enhanced Raman Scattering Monitoring of Oxidation States in Defect-Engineered Two-Dimensional Transition Metal Dichalcogenides. Journal of Physical Chemistry Letters, 2020, 11, 7981-7987.	2.1	17
139	Enhanced oxygen and hydrogen evolution performance by carbon-coated CoS ₂ –FeS ₂ nanosheets. Dalton Transactions, 2020, 49, 13352-13358.	1.6	30
140	One-dimensional CdS@Cd _{0.5} Zn _{0.5} S@ZnS-Ni(OH) ₂ nano-hybrids with epitaxial heterointerfaces and spatially separated photo-redox sites enabling highly-efficient visible-light-driven H ₂ evolution. Nanoscale, 2020, 12, 20522-20535.	2.8	17
141	Recent Advances of Bimetallic Sulfide Anodes for Sodium Ion Batteries. Frontiers in Chemistry, 2020, 8, 353.	1.8	24
142	High-efficiency and stable photocatalytic hydrogen evolution of rhenium sulfide co-catalyst on Zn0.3Cd0.7S. Materials Advances, 2020, 1, 363-370.	2.6	11
143	Lithium incorporation assisted synthesis of ultra-small Mo2C nanodots as efficient photocatalytic H2 evolution cocatalysts. Chemical Engineering Journal, 2020, 399, 125794.	6.6	33
144	Targeted removal of interfacial adventitious carbon towards directional charge delivery to isolated metal sites for efficient photocatalytic H2 production. Nano Energy, 2020, 76, 105077.	8.2	24
145	Plasmonic Cocatalyst with Electric and Thermal Stimuli Boots Solar Hydrogen Evolution. Solar Rrl, 2020, 4, 2000094.	3.1	11

#	Article	IF	CITATIONS
146	Designed synthesis of unique ZnS@CdS@Cd0.5Zn0.5S-MoS2 hollow nanospheres for efficient visible-light-driven H2 evolution. CrystEngComm, 2020, 22, 2743-2755.	1.3	8
147	Photocatalytic hydrogen evolution from biomass (glucose solution) on Au/CdS nanorods with Au3+ self-reduction. Journal of Solid State Chemistry, 2020, 289, 121495.	1.4	25
148	Hemispherical shell-thin lamellar WS2 porous structures composited with CdS photocatalysts for enhanced H2 evolution. Chemical Engineering Journal, 2020, 388, 124346.	6.6	56
149	Powerful combination of 2D g-C3N4 and 2D nanomaterials for photocatalysis: Recent advances. Chemical Engineering Journal, 2020, 390, 124475.	6.6	205
150	Bridge engineering in photocatalysis and photoelectrocatalysis. Nanoscale, 2020, 12, 5764-5791.	2.8	77
151	Metal sulfide/MOF-based composites as visible-light-driven photocatalysts for enhanced hydrogen production from water splitting. Coordination Chemistry Reviews, 2020, 409, 213220.	9.5	169
152	NiSâ€Decorated ZnO/ZnS Nanorod Heterostructures for Enhanced Photocatalytic Hydrogen Production: Insight into the Role of NiS. Solar Rrl, 2020, 4, 1900568.	3.1	35
153	Facile Morphologyâ€Tunable Preparation of CuS@MoS2Heterostructures Based on Template Solvothermal Method. ChemistrySelect, 2020, 5, 360-368.	0.7	6
154	Photocatalytic hydrogen evolution over nickel cobalt bimetallic phosphate anchored graphitic carbon nitrides by regulation of the d-band electronic structure. Catalysis Science and Technology, 2020, 10, 3654-3663.	2.1	9
155	Single Cobalt Atom Anchored Black Phosphorous Nanosheets as an Effective Cocatalyst Promotes Photocatalysis. ChemCatChem, 2020, 12, 3870-3879.	1.8	34
156	Recent advances in application of transition metal phosphides for photocatalytic hydrogen production. Chemical Engineering Journal, 2021, 405, 126547.	6.6	139
157	Solid-state synthesis of ultra-small freestanding amorphous MoP quantum dots for highly efficient photocatalytic H2 production. Chemical Engineering Journal, 2021, 406, 126838.	6.6	34
158	Ultrasonically prepared photocatalyst of W/WO3 nanoplates with WS2 nanosheets as 2D material for improving photoelectrochemical water splitting. Ultrasonics Sonochemistry, 2021, 70, 105339.	3.8	37
159	Bimetallic nanoparticles as cocatalysts for versatile photoredox catalysis. EnergyChem, 2021, 3, 100047.	10.1	103
160	Single source precursor synthesized CuS nanoparticles for NIR phototherapy of cancer and photodegradation of organic carcinogen. Journal of Photochemistry and Photobiology B: Biology, 2021, 214, 112084.	1.7	22
161	Transitionâ€Metal Carbides as Hydrogen Evolution Reduction Electrocatalysts: Synthetic Methods and Optimization Strategies. Chemistry - A European Journal, 2021, 27, 5074-5090.	1.7	41
162	Noble metal-free NiCo2S4/CN sheet-on-sheet heterostructure for highly efficient visible-light-driven photocatalytic hydrogen evolution. Journal of Alloys and Compounds, 2021, 853, 157284.	2.8	26
163	The application of Zeolitic imidazolate frameworks (ZIFs) and their derivatives based materials for photocatalytic hydrogen evolution and pollutants treatment. Chemical Engineering Journal, 2021, 417, 127914.	6.6	62

#	Article	IF	CITATIONS
164	Efficient spatial charge separation in unique 2D tandem heterojunction Cd _x Zn _{1â^'x} In ₂ S ₄ –CdS–MoS ₂ rendering highly-promoted visible-light-induced H ₂ generation. Journal of Materials Chemistry A, 2021, 9, 482-491.	5.2	28
165	Stacking design in photocatalysis: synergizing cocatalyst roles and anti-corrosion functions of metallic MoS2 and graphene for remarkable hydrogen evolution over CdS. Journal of Materials Chemistry A, 2021, 9, 1552-1562.	5.2	36
166	Efficient visible-light-driven H2 evolution induced by P-doped Cd1-xZnxS porous nano-spheres decorated with Ni2P and reduced graphene oxide. Applied Surface Science, 2021, 542, 148542.	3.1	12
167	Silicaâ€Decoration Boosts Ni Catalysis for (De)hydrogenation: Stepâ€Abundant Nanostructures Stabilized by Silica. ChemCatChem, 2021, 13, 1306-1310.	1.8	7
168	A flexible, integrated film battery configuration for ultrafast sodium ion storage. Journal of Materials Chemistry A, 2021, 9, 1252-1259.	5.2	1
169	Nearâ€Infraredâ€Driven Photocatalysts: Design, Construction, and Applications. Small, 2021, 17, e1904107.	5.2	63
170	Nanomaterials for water splitting and hydrogen generation. , 2021, , 277-312.		2
171	M/TiO ₂ (M = Fe, Co, Ni, Cu, Zn) catalysts for photocatalytic hydrogen production under UV and visible light irradiation. Inorganic Chemistry Frontiers, 2021, 8, 3491-3500.	3.0	22
172	Recent advances in metal–organic framework-based photocatalysts for hydrogen production. Sustainable Energy and Fuels, 2021, 5, 1597-1618.	2.5	39
173	Integration of redox cocatalysts for artificial photosynthesis. Energy and Environmental Science, 2021, 14, 5260-5288.	15.6	105
174	Photocatalyst for Highâ€Performance H 2 Production: Gaâ€Đoped Polymeric Carbon Nitride. Angewandte Chemie, 2021, 133, 6189-6194.	1.6	21
175	Nearâ€Infraredâ€Responsive Photocatalysts. Small Methods, 2021, 5, e2001042.	4.6	84
176	Photocatalyst for Highâ€Performance H ₂ Production: Gaâ€Doped Polymeric Carbon Nitride. Angewandte Chemie - International Edition, 2021, 60, 6124-6129.	7.2	108
177	Identifying Metallic Transition-Metal Dichalcogenides for Hydrogen Evolution through Multilevel High-Throughput Calculations and Machine Learning. Journal of Physical Chemistry Letters, 2021, 12, 2102-2111.	2.1	43
178	Nanostructured MoS3/WSe2 Thin-Film Photocathode for Efficient Water Splitting Under Light Illumination. Inorganic Materials: Applied Research, 2021, 12, 251-261.	0.1	2
179	Amorphous CoS _{<i>x</i>} Growth on CaTiO ₃ Nanocubes Formed S-Scheme Heterojunction for Photocatalytic Hydrogen Production. Energy & Fuels, 2021, 35, 6231-6239.	2.5	17
180	Bridging localized electron states of pyrite-type CoS2 cocatalyst for activated solar H2 evolution. Nano Research, 0, , 1.	5.8	12
181	Advancing Graphitic Carbon Nitride-Based Photocatalysts toward Broadband Solar Energy Harvesting. , 2021, 3, 663-697.		63

#	Article	IF	CITATIONS
182	Tungsten-Based Catalysts for Environmental Applications. Catalysts, 2021, 11, 703.	1.6	49
183	Engineering two-dimensional metal oxides and chalcogenides for enhanced electro- and photocatalysis. Science Bulletin, 2021, 66, 1228-1252.	4.3	103
184	Unique hollow heterostructured CdS/Cd0.5Zn0.5S-Mo1â^'xWxS2: Highly-improved visible-light-driven H2 generation via synergy of Cd0.5Zn0.5S protective shell and defect-rich Mo1â^'xWXS2 cocatalyst. Nano Research, 2022, 15, 985-995.	5.8	15
185	Strategies for the enhanced water splitting activity over metal–organic frameworks-based electrocatalysts and photocatalysts. Materials Today Nano, 2021, 15, 100124.	2.3	28
186	Mixed-dimensional 1D CdS/2D MoSe2 heterostructures for high-performance photocatalytic hydrogen production. Surfaces and Interfaces, 2021, 25, 101192.	1.5	7
187	A ternary calabash model photocatalyst (Pd/MoP)/CdS for enhancing H2 evolution under visible light irradiation. Applied Surface Science, 2021, 564, 150432.	3.1	20
188	Efficient enhancement of photocatalytic hydrogen evolution of CdS nanorods by Nano-CuO. Journal of Alloys and Compounds, 2021, 883, 160832.	2.8	31
189	A dual-interfacial system with well-defined spatially separated redox-sites for boosting photocatalytic overall H2S splitting. Chemical Engineering Journal, 2021, 423, 130201.	6.6	8
190	A 2H-MoS ₂ /carbon cloth composite for high-performance all-solid-state supercapacitors derived from a molybdenum dithiocarbamate complex. Dalton Transactions, 2021, 50, 11954-11964.	1.6	3
191	Nanostructured photocatalysts: Introduction to photocatalytic mechanism and nanomaterials for energy and environmental applications. , 2021, , 3-33.		2
192	Construction of CoS _x –ZnIn ₂ S ₄ hollow nanocages derived from metal–organic frameworks for efficient photocatalytic hydrogen production. New Journal of Chemistry, 2021, 45, 13860-13868.	1.4	7
193	Nanopores in two-dimensional materials: accurate fabrication. Materials Horizons, 2021, 8, 1390-1408.	6.4	36
195	Crystal phase dependent solar driven hydrogen evolution catalysis over cobalt diselenide. Chemical Engineering Journal, 2020, 396, 125244.	6.6	30
196	Stepping toward the carbon circular economy (CCE): Integration of solar chemistry and biosystems for an effective CO2 conversion into added value chemicals and fuels. Advances in Inorganic Chemistry, 2021, 78, 289-351.	0.4	8
197	Recent advances in Co-based co-catalysts for efficient photocatalytic hydrogen generation. Journal of Colloid and Interface Science, 2022, 608, 1553-1575.	5.0	15
198	Unique NiCo ₂ S ₄ @ZnS/CdS Yolk–Shell Heterojunction for Efficient Visible-Light-Driven Photocatalytic Water Splitting. Crystal Growth and Design, 2021, 21, 6437-6447.	1.4	5
199	Polyoxometalate@Metal–Organic Framework Composites as Effective Photocatalysts. ACS Catalysis, 2021, 11, 13374-13396.	5.5	121
200	A 3D flower-like WC with large capacitance as efficient co-catalyst in photocatalytic H2 evolution. International Journal of Hydrogen Energy, 2021, 46, 39251-39261.	3.8	16

#	Article	IF	CITATIONS
201	Substrate-dependent degradation of thin TMDC layers in ambient conditions. Journal of Physics: Conference Series, 2020, 1695, 012197.	0.3	1
202	Pomegranate-like ZnxCd1-xS@MoS2 nano-heterostructure as a stable and efficient photocatalyst for H2 evolution. Materials Science in Semiconductor Processing, 2022, 138, 106287.	1.9	3
203	Nickel Boride Modified Titanium Dioxide for Photocatalytic Hydrogen Evolution. Material Sciences, 2020, 10, 895-905.	0.0	0
204	Controlling 1T/2H heterophase junctions in the MoS ₂ microsphere for the highly efficient photocatalytic hydrogen evolution. Catalysis Science and Technology, 2021, 11, 7914-7921.	2.1	4
205	Self-water-absorption-type two-dimensional composite photocatalyst with high-efficiency water absorption and overall water-splitting performance. , 2022, 1, 100008.		55
206	Visible-light-driven H ₂ production from heterostructured Zn _{0.5} Cd _{0.5} S–TiO ₂ photocatalysts modified with reduced graphene oxides. New Journal of Chemistry, 2021, 45, 21415-21422.	1.4	0
207	Phase segregation <i>via</i> etching-induced cation migration in CoS _{<i>x</i>} –ZnS nanoarchitectures for solar hydrogen evolution. Catalysis Science and Technology, 2022, 12, 1408-1417.	2.1	4
208	CoTe ₂ –NiTe ₂ heterojunction directly grown on CoNi alloy foam for efficient oxygen evolution reaction. Inorganic Chemistry Frontiers, 2022, 9, 332-342.	3.0	14
209	Heterogeneous Photocatalytic Activation of Persulfate for the Removal of Organic Contaminants in Water: A Critical Review. ACS ES&T Engineering, 2022, 2, 527-546.	3.7	101
210	A simple two-step strategy to synthesize defect-rich MoS2 nanocrystals for enhanced electrochemical hydrogen evolution. AIP Advances, 2022, 12, .	0.6	4
211	Ultra-thin carbon bridged MoC quantum dots/g-C3N4 with charge-transfer-reaction highways for boosting photocatalytic hydrogen production. Journal of Alloys and Compounds, 2022, 910, 164864.	2.8	8
212	Enhanced catalytic performance of Cu-doped MnFe2O4 magnetic ferrites: Tetracycline hydrochloride attacked by superoxide radicals efficiently in a strong alkaline environment. Chemosphere, 2022, 297, 134154.	4.2	31
213	Metallic Copperâ€Containing Composite Photocatalysts: Fundamental, Materials Design, and Photoredox Applications. Small Methods, 2022, 6, e2101001.	4.6	18
214	Drastic improvement in photoelectrochemical water splitting performance over prolonged reaction time using new carrier-guiding semiconductor nanostructures. Journal of Materials Chemistry A, 2022, 10, 9821-9829.	5.2	8
215	Fabricating WS2/Mn0.5Cd0.5S/CuInS2 hierarchical tandem p-n heterojunction for highly efficient hydrogen production. Applied Surface Science, 2022, 593, 153448.	3.1	10
216	A MOF-derived hierarchical CoP@ZnIn ₂ S ₄ photocatalyst for visible light-driven hydrogen evolution. Chemical Communications, 2022, 58, 6622-6625.	2.2	19
217	Capacitance Catalysis: Positive and Negative Effects of Capacitance of Mo ₂ C in Photocatalytic H ₂ Evolution. ACS Sustainable Chemistry and Engineering, 2022, 10, 5949-5957.	3.2	16
218	Scope and prospect of transition metal-based cocatalysts for visible light-driven photocatalytic hydrogen evolution with graphitic carbon nitride. Coordination Chemistry Reviews, 2022, 465, 214516.	9.5	34

		CITATION REPORT		
#	Article	IF	CITATIONS	
219	VS2 wrapped Si nanowires as core-shell heterostructure photocathode for highly efficient photoelectrochemical water reduction performance. Chemosphere, 2022, 302, 134708.	4.2	5	
220	Directing Charge Transfer in a Chemicalâ€Bonded BaTiO ₃ @ReS ₂ Schottky Heterojunction for Piezoelectric Enhanced Photocatalysis. Advanced Materials, 2022, 34, e2202508.	11.1	98	
221	Nanocarbon-based metal-free catalysts. , 2022, , 1-19.		0	
222	Ultrathin Two-Dimensional ZnIn ₂ S ₄ /Ni _{<i>x</i>} -B Heterostructure for High-Performance Photocatalytic Fine Chemical Synthesis and H ₂ Generation. ACS Applied Materials & Interfaces, 2022, 14, 25297-25307.	4.0	30	
223	Tuning electronic structure via CoS clusters for visual photocatalytic H2 production and mechanism insight. Chemical Engineering Journal, 2022, 446, 137399.	6.6	12	
224	Recent advance in metal- and covalent-organic framework-based photocatalysis for hydrogen evolution. Materials Today Chemistry, 2022, 26, 101037.	1.7	9	
225	Emerging Two-Dimensional-Based Nanostructured Catalysts: Applications in Sustainable Organic Transformations. Langmuir, 2022, 38, 9064-9072.	1.6	22	
226	Fabrication of CoS/CdS heterojunctions for enhanced photocatalytic hydrogen production. Inorganica Chimica Acta, 2022, 541, 121085.	1.2	5	
227	Improved atomic hydrogen desorption by Cu3N with suitable electronic structure to enhance photocatalytic H2 evolution. Materials Today Energy, 2022, 29, 101111.	2.5	5	
228	From glycerol production to its value-added uses: A critical review. Fuel, 2022, 329, 125044.	3.4	26	
229	The charge transfer pathway of g-C3N4 decorated Au/Ni3(VO4)2 composites for highly efficient photocatalytic hydrogen evolution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655, 130183.	2.3	4	
230	A CdS@MoS ₂ core@shell nanoheterostructure for efficient and stable photocatalytic H ₂ generation from lactic acid decomposition. New Journal of Chemistry, 2022, 46, 21078-21084.	1.4	3	
231	First-Principles Investigation of Adsorption Behaviors, Electronic, Optical, and Gas-Sensing Properties of the Pure and Pd-Decorated Ges2 Monolayers. SSRN Electronic Journal, 0, , .	0.4	0	
232	Recent advances in solution assisted synthesis of transition metal chalcogenides for photo-electrocatalytic hydrogen evolution. Physical Chemistry Chemical Physics, 2022, 24, 20638-20673.	1.3	27	
233	Green MoS2 nanosheets as a promising material for decontamination of hexavalent chromium, pharmaceuticals, and microbial pathogen disinfection: spectroscopic study. Journal of Nanoparticle Research, 2022, 24, .	0.8	5	
234	Molecular Engineering Strategies toward Molybdenum Diselenide Design for Energy Storage and Conversion. Advanced Energy Materials, 2022, 12, .	10.2	12	
235	Generating Oscillatory Behavior by Applying a Magnetic Field during Electrocatalytic Oxidation of Glycerol. Journal of Physical Chemistry C, 2022, 126, 18159-18169.	1.5	1	
236	In-situ topology synthesis of defective MoN nanosheets/g-C3N4 2D/2D heterojunction photocatalyst for efficient H2 production. Applied Surface Science, 2023, 608, 155199.	3.1	12	

#	Article	IF	CITATIONS
237	Porphyrin covalently functionalized MoS2 nanosheets: "Click―synthesis and tunable nonlinear absorption. Journal of Alloys and Compounds, 2023, 934, 167902.	2.8	2
238	<i>In situ</i> construction of an α-MoC/g-C ₃ N ₄ Mott–Schottky heterojunction with high-speed electron transfer channel for efficient photocatalytic H ₂ evolution. Inorganic Chemistry Frontiers, 2023, 10, 832-840.	3.0	4
239	Recent progress of photothermal effect on photocatalytic reduction of CO2. Fuel Processing Technology, 2023, 241, 107617.	3.7	11
240	Fabrication of r-GO/GO/α-Fe2O3/Fe2TiO5 Nanocomposite Using Natural Ilmenite and Graphite for Efficient Photocatalysis in Visible Light. Materials, 2023, 16, 139.	1.3	2
241	First-Principles Investigation of Adsorption Behaviors and Electronic, Optical, and Gas-Sensing Properties of Pure and Pd-Decorated GeS ₂ Monolayers. ACS Omega, 2022, 7, 46440-46451.	1.6	7
242	Partial Sulphidation to Regulate Coordination Structure of Single Nickel Atoms on Graphitic Carbon Nitride for Efficient Solar H ₂ Evolution. Small, 2023, 19, .	5.2	6
243	1T-phase MoS2/holey ultrathin g-C3N4 nanosheets based 2D/2D heterostructure for enhanced photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2023, 48, 7284-7293.	3.8	6
244	Manipulation of Photoelectrochemical Water Splitting by Controlling Direction of Carrier Movement Using InGaN/GaN Hetero-Structure Nanowires. Nanomaterials, 2023, 13, 358.	1.9	4
245	Boosting photocatalytic hydrogen evolution over CdS/MoS2 on the graphene/montmorillonite composites. Applied Clay Science, 2023, 236, 106855.	2.6	4
246	Exploring the recent advancements in metal-organic framework-based photocatalysts for hydrogen production. Materials Today Sustainability, 2023, 22, 100337.	1.9	2
247	Development of Mn-MOF/CuO composites as platform for efficient electrocatalytic OER. Fuel, 2023, 341, 127638.	3.4	11
248	A review on semiconductor photocathode in bioelectrochemical systems: Mechanism, limitation, and environmental application. Materials Today Sustainability, 2023, 22, 100349.	1.9	5
249	1D/2D CdS/WS2 heterojunction photocatalyst: First-principles insights for hydrogen production. Materials Today Communications, 2023, 35, 105991.	0.9	2
250	Embedded 1T-rich MoS2 into C3N4 hollow microspheres for effective photocatalytic hydrogen production. Chemical Physics Letters, 2023, 814, 140331.	1.2	3
251	Design and fabrication of NiS decorating 2D ultra-thin TiO2 thin film nanocomposites with enhanced photocatalytic hydrogen evolution activity. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0
252	Cobalt-based heterogeneous catalysts for photocatalytic carbon dioxide reduction. Tungsten, 2024, 6, 410-421.	2.0	6
253	The charge transfer pathway of g-C3N4 decorated Au/Bi(VO4) composites for highly efficient photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2023, 48, 23856-23865.	3.8	5
254	Design and Fabrication of High Performance Visible Light Driven H2 Production of N-doped TiO2 Nanotubes Incorporated 2D MoS2 Nanosheets Heterojunction Photocatalyst. Journal of Cluster Science, 0, , .	1.7	0

#	Article	IF	CITATIONS
256	Ga(X)N/Si nanoarchitecture: An emerging semiconductor platform for sunlight-powered water splitting toward hydrogen. Frontiers in Energy, 2024, 18, 56-79.	1.2	5
267	Emerging transition metal nitrides in solar energy conversion: design strategies and future perspectives for efficient photocatalysis. Catalysis Science and Technology, 2023, 13, 6864-6877.	2.1	1
272	Recent progress on covalent organic frameworks for photocatalytic hydrogen generation <i>via</i> water splitting. Materials Chemistry Frontiers, 2024, 8, 1513-1535.	3.2	0