Tuning Transition Metal Oxide–Sulfur Interactions fo The "Goldilocks―Principle

Advanced Energy Materials 6, 1501636 DOI: 10.1002/aenm.201501636

Citation Report

#	Article	IF	CITATIONS
1	Grapheneâ€Based Nanocomposites for Energy Storage. Advanced Energy Materials, 2016, 6, 1502159.	10.2	306
2	High-Energy-Density Lithium–Sulfur Batteries Based on Blade-Cast Pure Sulfur Electrodes. ACS Energy Letters, 2016, 1, 46-51.	8.8	109
3	Hollow porous SiO ₂ nanobelts containing sulfur for long-life lithium–sulfur batteries. RSC Advances, 2016, 6, 91179-91184.	1.7	12
4	Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries. Energy and Environmental Science, 2016, 9, 3061-3070.	15.6	598
5	Transport Properties of Polysulfide Species in Lithium–Sulfur Battery Electrolytes: Coupling of Experiment and Theory. ACS Central Science, 2016, 2, 560-568.	5.3	71
6	Uniform Li2S precipitation on N,O-codoped porous hollow carbon fibers for high-energy-density lithium–sulfur batteries with superior stability. Chemical Communications, 2016, 52, 10964-10967.	2.2	42
7	Challenges and current development of sulfur cathode in lithium–sulfur battery. Current Opinion in Chemical Engineering, 2016, 13, 53-62.	3.8	23
8	Ultrafine TiO ₂ Decorated Carbon Nanofibers as Multifunctional Interlayer for High-Performance Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2016, 8, 23105-23113.	4.0	200
9	A Cooperative Interface for Highly Efficient Lithium–Sulfur Batteries. Advanced Materials, 2016, 28, 9551-9558.	11.1	514
10	Soybean-derived hierarchical porous carbon with large sulfur loading and sulfur content for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 16507-16515.	5.2	91
11	Designing high-energy lithium–sulfur batteries. Chemical Society Reviews, 2016, 45, 5605-5634.	18.7	2,008
12	3D Carbonaceous Current Collectors: The Origin of Enhanced Cycling Stability for Highâ€Sulfurâ€Loading Lithium–Sulfur Batteries. Advanced Functional Materials, 2016, 26, 6351-6358.	7.8	216
13	In Situ Reactive Synthesis of Polypyrrole-MnO ₂ Coaxial Nanotubes as Sulfur Hosts for High-Performance Lithium–Sulfur Battery. Nano Letters, 2016, 16, 7276-7281.	4.5	271
14	Advanced Lithium–Sulfur Batteries Enabled by a Bioâ€Inspired Polysulfide Adsorptive Brush. Advanced Functional Materials, 2016, 26, 8418-8426.	7.8	120
15	Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nature Energy, 2016, 1, .	19.8	1,710
16	<i>In Situ</i> Reactive Assembly of Scalable Core–Shell Sulfur–MnO ₂ Composite Cathodes. ACS Nano, 2016, 10, 4192-4198.	7.3	351
17	Freestanding and Sandwich‧tructured Electrode Material with High Areal Mass Loading for Longâ€Life Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1602347.	10.2	159
18	A Mixed Microporous/Low-range Mesoporous Composite with High Sulfur Loading from Hierarchically-structured Carbon for Lithium Sulfur Batteries. Electrochimica Acta, 2017, 230, 181-188.	2.6	36

ATION REDO

#	Article	IF	CITATIONS
19	Nanostructured Metal Oxides and Sulfides for Lithium–Sulfur Batteries. Advanced Materials, 2017, 29, 1601759.	11.1	1,197
20	Suppressing Selfâ€Discharge and Shuttle Effect of Lithium–Sulfur Batteries with V ₂ O ₅ â€Decorated Carbon Nanofiber Interlayer. Small, 2017, 13, 1602539.	5.2	190
21	A Highâ€Efficiency Sulfur/Carbon Composite Based on 3D Graphene Nanosheet@Carbon Nanotube Matrix as Cathode for Lithium–Sulfur Battery. Advanced Energy Materials, 2017, 7, 1602543.	10.2	363
22	Core–Shell Structure and Interaction Mechanism of γâ€MnO ₂ Coated Sulfur for Improved Lithiumâ€Sulfur Batteries. Small, 2017, 13, 1603466.	5.2	145
23	Carbon nano-composites for lithium–sulfur batteries. Current Opinion in Green and Sustainable Chemistry, 2017, 4, 64-71.	3.2	22
24	Honeycombâ€like Nitrogen and Sulfur Dualâ€Đoped Hierarchical Porous Biomassâ€Đerived Carbon for Lithium–Sulfur Batteries. ChemSusChem, 2017, 10, 1803-1812.	3.6	143
25	Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nature Communications, 2017, 8, 14627.	5.8	912
26	Recent innovative configurations in high-energy lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 5222-5234.	5.2	115
27	Interaction of TiS ₂ and Sulfur in Li-S Battery System. Journal of the Electrochemical Society, 2017, 164, A1291-A1297.	1.3	60
28	A Quinonoidâ€lmineâ€Enriched Nanostructured Polymer Mediator for Lithium–Sulfur Batteries. Advanced Materials, 2017, 29, 1606802.	11.1	127
29	Mechanism on the Improved Performance of Lithium Sulfur Batteries with MXene-Based Additives. Journal of Physical Chemistry C, 2017, 121, 11047-11054.	1.5	118
30	Facilitating the redox reaction of polysulfides by an electrocatalytic layer-modified separator for lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 10936-10945.	5.2	87
31	Review on High‣oading and Highâ€Energy Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1700260.	10.2	1,307
32	Ultrafine Nd 2 O 3 nanoparticles doped carbon aerogel to immobilize sulfur for high performance lithium–sulfur batteries. Journal of Electroanalytical Chemistry, 2017, 799, 617-624.	1.9	35
33	Mechanistic Insights into Surface Chemical Interactions between Lithium Polysulfides and Transition Metal Oxides. Journal of Physical Chemistry C, 2017, 121, 14222-14227.	1.5	86
34	Double-oxide sulfur host for advanced lithium-sulfur batteries. Nano Energy, 2017, 38, 12-18.	8.2	93
35	Balancing the chemisorption and charge transport properties of the interlayer in lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 12506-12512.	5.2	62
36	Cathode materials for lithium–sulfur batteries: a practical perspective. Journal of Materials Chemistry A, 2017, 5, 17734-17776.	5.2	226

#	Article	IF	CITATIONS
37	Encapsulating sulfur in δ-MnO2 at room temperature for Li-S battery cathode. Energy Storage Materials, 2017, 9, 78-84.	9.5	97
38	A self-stabilized suspension catholyte to enable long-term stable Li–S flow batteries. Journal of Materials Chemistry A, 2017, 5, 12904-12913.	5.2	27
39	Paperâ€Based Electrodes for Flexible Energy Storage Devices. Advanced Science, 2017, 4, 1700107.	5.6	361
40	Promotional role of Li 4 Ti 5 O 12 as polysulfide adsorbent and fast Li + conductor on electrochemical performances of sulfur cathode. Journal of Power Sources, 2017, 359, 250-261.	4.0	18
41	Morphologyâ€Conserved Transformations of Metalâ€Based Precursors to Hierarchically Porous Microâ€/Nanostructures for Electrochemical Energy Conversion and Storage. Advanced Materials, 2017, 29, 1607015.	11.1	79
42	A Toolbox for Lithium–Sulfur Battery Research: Methods and Protocols. Small Methods, 2017, 1, 1700134.	4.6	230
43	More Reliable Lithium‣ulfur Batteries: Status, Solutions and Prospects. Advanced Materials, 2017, 29, 1606823.	11.1	1,414
44	A Facile Synthesis of Mesoporous TiO 2 Sub-Microsphere Host for Long Life Lithium-Sulfur Battery Cathodes. Electrochimica Acta, 2017, 239, 56-64.	2.6	33
45	Inspired by the "tip effect― a novel structural design strategy for the cathode in advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 3140-3144.	5.2	23
46	Application of diatomite as an effective polysulfides adsorbent for lithium-sulfur batteries. Journal of Energy Chemistry, 2017, 26, 1267-1275.	7.1	26
47	Coaxial Carbon/MnO ₂ Hollow Nanofibers as Sulfur Hosts for Highâ€Performance Lithiumâ€ S ulfur Batteries. Chemistry - an Asian Journal, 2017, 12, 3128-3134.	1.7	46
48	Self-Templated Formation of Interlaced Carbon Nanotubes Threaded Hollow Co ₃ S ₄ Nanoboxes for High-Rate and Heat-Resistant Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2017, 139, 12710-12715.	6.6	456
49	Interwoven NiCo ₂ O ₄ Nanosheet/Carbon Nanotube Composites as Highly Efficient Lithiumâ^'Sulfur Cathode Hosts. ChemElectroChem, 2017, 4, 2959-2965.	1.7	18
50	A Pralineâ€Like Flexible Interlayer with Highly Mounted Polysulfide Anchors for Lithium–Sulfur Batteries. Small, 2017, 13, 1700357.	5.2	37
51	Freestanding carbon encapsulated mesoporous vanadium nitride nanowires enable highly stable sulfur cathodes for lithium-sulfur batteries. Nano Energy, 2017, 40, 655-662.	8.2	159
52	Rational design of yolk–shell silicon dioxide@hollow carbon spheres as advanced Li–S cathode hosts. Nanoscale, 2017, 9, 14881-14887.	2.8	38
53	Perovskite La0.6Sr0.4CoO3-δas a new polysulfide immobilizer for high-energy lithium-sulfur batteries. Nano Energy, 2017, 40, 360-368.	8.2	69
54	Porous hollow carbon nanospheres embedded with well-dispersed cobalt monoxide nanocrystals as effective polysulfide reservoirs for high-rate and long-cycle lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 17352-17359.	5.2	31

#	Article	IF	CITATIONS
55	Revealing the Electrochemical Charging Mechanism of Nanosized Li ₂ S by in Situ and Operando X-ray Absorption Spectroscopy. Nano Letters, 2017, 17, 5084-5091.	4.5	89
56	Separator Decoration with Cobalt/Nitrogen Codoped Carbon for Highly Efficient Polysulfide Confinement in Lithium–Sulfur Batteries. ChemSusChem, 2017, 10, 3557-3564.	3.6	33
57	Reactivity and Diffusivity of Li Polysulfides: A Fundamental Study Using Impedance Spectroscopy. ACS Applied Materials & Interfaces, 2017, 9, 29760-29770.	4.0	61
58	A sulfur host based on cobalt–graphitic carbon nanocages for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 24901-24908.	5.2	75
59	Construction of S@TiO ₂ @râ€GO Composites for Highâ€Performance Lithium–Sulfur Batteries. European Journal of Inorganic Chemistry, 2017, 2017, 3248-3252.	1.0	12
60	Cerium Oxide Nanocrystal Embedded Bimodal Micromesoporous Nitrogen-Rich Carbon Nanospheres as Effective Sulfur Host for Lithium–Sulfur Batteries. ACS Nano, 2017, 11, 7274-7283.	7.3	213
61	Borophene as Efficient Sulfur Hosts for Lithium–Sulfur Batteries: Suppressing Shuttle Effect and Improving Conductivity. Journal of Physical Chemistry C, 2017, 121, 15549-15555.	1.5	97
62	Chemical Bonding and Physical Trapping of Sulfur in Mesoporous Magnéli Ti ₄ O ₇ Microspheres for Highâ€Performance Li–S Battery. Advanced Energy Materials, 2017, 7, 1601616.	10.2	130
63	Interwoven MXene Nanosheet/Carbonâ€Nanotube Composites as Li–S Cathode Hosts. Advanced Materials, 2017, 29, 1603040.	11.1	606
64	Prussian Blue: A Potential Material to Improve the Electrochemical Performance of Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 4397-4403.	4.0	38
65	Interaction of FeS ₂ and Sulfur in Li-S Battery System. Journal of the Electrochemical Society, 2017, 164, A6039-A6046.	1.3	46
66	MoS2-decorated coaxial nanocable carbon aerogel composites as cathode materials for high performance lithium-sulfur batteries. Journal of Alloys and Compounds, 2017, 692, 40-48.	2.8	55
67	Exceptional energy and new insight with a sodium–selenium battery based on a carbon nanosheet cathode and a pseudographite anode. Energy and Environmental Science, 2017, 10, 153-165.	15.6	184
68	Cobalt oxyhydroxide/graphene oxide nanocomposite for amelioration of electrochemical performance of lithium/sulfur batteries. Journal of Solid State Electrochemistry, 2017, 21, 649-656.	1.2	19
69	Progress of the Interface Design in Allâ€Solidâ€State Li–S Batteries. Advanced Functional Materials, 2018, 28, 1707533.	7.8	182
70	Rational Design of Nanostructured Functional Interlayer/Separator for Advanced Li–S Batteries. Advanced Functional Materials, 2018, 28, 1707411.	7.8	272
71	Designing Realizable and Scalable Techniques for Practical Lithium Sulfur Batteries: A Perspective. Journal of Physical Chemistry Letters, 2018, 9, 1398-1414.	2.1	50
72	MnO ₂ –graphene nanosheets wrapped mesoporous carbon/sulfur composite for lithium–sulfur batteries. Royal Society Open Science, 2018, 5, 171824.	1.1	8

#	Article	IF	Citations
73	Vanadium Dioxide-Graphene Composite with Ultrafast Anchoring Behavior of Polysulfides for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 15733-15741.	4.0	92
74	In Situ Assembly of 2D Conductive Vanadium Disulfide with Graphene as a Highâ€Sulfurâ€Loading Host for Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1800201.	10.2	188
75	A three-dimensional self-assembled SnS ₂ -nano-dots@graphene hybrid aerogel as an efficient polysulfide reservoir for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 7659-7667.	5.2	95
76	Polysulfide Binding to Several Nanoscale Magnéli Phases Synthesized in Carbon for Longâ€Life Lithium–Sulfur Battery Cathodes. ChemSusChem, 2018, 11, 1838-1848.	3.6	19
77	An interwoven MoO ₃ @CNT scaffold interlayer for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 8612-8619.	5.2	141
78	Core-shell structured MoS 2 @S spherical cathode with improved electrochemical performance for lithium-sulfur batteries. Journal of Materials Science and Technology, 2018, 34, 1912-1918.	5.6	34
79	Quantitative investigation of polysulfide adsorption capability of candidate materials for Li-S batteries. Energy Storage Materials, 2018, 13, 241-246.	9.5	134
80	Biomimetic Bipolar Microcapsules Derived from <i>Staphylococcus aureus</i> for Enhanced Properties of Lithium–Sulfur Battery Cathodes. Advanced Energy Materials, 2018, 8, 1702373.	10.2	106
81	Functional Differentiation of Three Pores for Effective Sulfur Confinement in Li–S Battery. Small, 2018, 14, e1703279.	5.2	21
82	LDHs derived nanoparticle-stacked metal nitride as interlayer for long-life lithium sulfur batteries. Science Bulletin, 2018, 63, 169-175.	4.3	60
83	Elastic Sandwichâ€Type rGO–VS ₂ /S Composites with High Tap Density: Structural and Chemical Cooperativity Enabling Lithium–Sulfur Batteries with High Energy Density. Advanced Energy Materials, 2018, 8, 1702337.	10.2	227
84	Multifunctional Interlayer Based on Molybdenum Diphosphide Catalyst and Carbon Nanotube Film for Lithium–Sulfur Batteries. Small, 2018, 14, 1702853.	5.2	142
85	Novel Composite Polymer Electrolytes of PVdF-HFP Derived by Electrospinning with Enhanced Li-Ion Conductivities for Rechargeable Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2018, 1, 483-494.	2.5	75
86	A thin TiO ₂ NTs/GO hybrid membrane applied as an interlayer for lithium–sulfur batteries. RSC Advances, 2018, 8, 429-434.	1.7	29
87	Design of structural and functional nanomaterials for lithium-sulfur batteries. Nano Today, 2018, 18, 35-64.	6.2	110
88	Flexible and Hierarchically Structured Sulfur Composite Cathode Based on the Carbonized Textile for High-Performance Li–S Batteries. ACS Applied Materials & Interfaces, 2018, 10, 3938-3947.	4.0	33
89	Confining Sulfur in Integrated Composite Scaffold with Highly Porous Carbon Fibers/Vanadium Nitride Arrays for Highâ€Performance Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1706391.	7.8	350
90	Novel mesoporous carbon nanofibers prepared via electrospinning method as host materials for Li-S battery. Materials Letters, 2018, 225, 157-160.	1.3	22

	CITATION	CITATION REPORT	
#	Article	IF	Citations
91	Multi-electron reaction materials for sodium-based batteries. Materials Today, 2018, 21, 960-973.	8.3	103
92	Coordination effect of network NiO nanosheet and a carbon layer on the cathode side in constructing a high-performance lithium–sulfur battery. Journal of Materials Chemistry A, 2018, 6, 6503-6509.	5.2	58
93	Recent development of metal compound applications in lithium–sulphur batteries. Journal of Materials Research, 2018, 33, 16-31.	1.2	41
94	Leaf-like interconnected network structure of MWCNT/Co9S8/S for lithium-sulfur batteries. Journal of Alloys and Compounds, 2018, 731, 964-970.	2.8	38
95	Quaternary ammonium cationic polymer as a superior bifunctional binder for lithium–sulfur batteries and effects of counter anion. Electrochimica Acta, 2018, 259, 626-636.	2.6	49
96	Designing a Highâ€Performance Lithium–Sulfur Batteries Based on Layered Double Hydroxides–Carbon Nanotubes Composite Cathode and a Dualâ€Functional Graphene–Polypropylene–Al ₂ O ₃ Separator. Advanced Functional Materials, 2018. 28. 1704294.	7.8	135
97	Nanostructured Host Materials for Trapping Sulfur in Rechargeable Li–S Batteries: Structure Design and Interfacial Chemistry. Small Methods, 2018, 2, 1700279.	4.6	201
98	PEO-Linked MoS ₂ –Graphene Nanocomposites with 2D Polar–Nonpolar Amphoteric Surfaces as Sulfur Hosts for High-Performance Li–S Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 974-982.	3.2	37
99	Rational design of double-confined Mn2O3/S@Al2O3 nanocube cathodes for lithium-sulfur batteries. Journal of Solid State Electrochemistry, 2018, 22, 849-858.	1.2	19
100	MnO2 nanosheets grown on the internal/external surface of N-doped hollow porous carbon nanospheres as the sulfur host of advanced lithium-sulfur batteries. Chemical Engineering Journal, 2018, 335, 831-842.	6.6	157
101	Multifunctional second barrier layers for lithium–sulfur batteries. Materials Chemistry Frontiers, 2018, 2, 235-252.	3.2	34
102	Polysulfide immobilization and conversion on a conductive polar MoC@MoOx material for lithium-sulfur batteries. Energy Storage Materials, 2018, 10, 56-61.	9.5	157
103	A Bifunctional Perovskite Promoter for Polysulfide Regulation toward Stable Lithium–Sulfur Batteries. Advanced Materials, 2018, 30, 1705219.	11.1	276
104	Metal-based nanostructured materials for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 23127-23168.	5.2	195
105	Simultaneously Porous Structure and Chemical Anchor: A Multifunctional Composite by One-Step Mechanochemical Strategy toward High-Performance and Safe Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2018, 10, 41359-41369.	4.0	12
106	Molecular-Level CuS@S Hybrid Nanosheets Constructed by Mineral Chemistry for Energy Storage Systems. ACS Applied Materials & Interfaces, 2018, 10, 43669-43681.	4.0	32
107	Biomass-derived carbon/Î ³ -MnO2 nanorods/S composites prepared by facile procedures with improved performance for Li/S batteries. Electrochimica Acta, 2018, 292, 522-531.	2.6	28
108	A 3D Nitrogenâ€Doped Graphene/TiN Nanowires Composite as a Strong Polysulfide Anchor for Lithium–Sulfur Batteries with Enhanced Rate Performance and High Areal Capacity. Advanced Materials, 2018, 30, e1804089.	11.1	251

#	Article	IF	CITATIONS
109	TiO Phase Stabilized into Freestanding Nanofibers as Strong Polysulfide Immobilizer in Li–S Batteries: Evidence for Lewis Acid–Base Interactions. ACS Applied Materials & Interfaces, 2018, 10, 37937-37947.	4.0	53
110	Nickel–Cobalt Double Hydroxide as a Multifunctional Mediator for Ultrahighâ€Rate and Ultralongâ€Life Li–S Batteries. Advanced Energy Materials, 2018, 8, 1802431.	10.2	76
111	In-situ PECVD-enabled graphene-V2O3 hybrid host for lithium–sulfur batteries. Nano Energy, 2018, 53, 432-439.	8.2	105
112	Doubleâ€Shelled Phosphorus and Nitrogen Codoped Carbon Nanospheres as Efficient Polysulfide Mediator for Highâ€Performance Lithium–Sulfur Batteries. Advanced Science, 2018, 5, 1800621.	5.6	83
113	Boosting the Electrochemical Performance of Li–S Batteries with a Dual Polysulfides Confinement Strategy. Small, 2018, 14, e1802516.	5.2	58
114	Three-Dimensional S/CeO2/RGO Composites as Cathode Materials for Lithium–Sulfur Batteries. Materials, 2018, 11, 1720.	1.3	15
115	Biotemplating Growth of Nepenthes-like N-Doped Graphene as a Bifunctional Polysulfide Scavenger for Li–S Batteries. ACS Nano, 2018, 12, 10240-10250.	7.3	146
116	Ultrathin MXene Nanosheets Decorated with TiO ₂ Quantum Dots as an Efficient Sulfur Host toward Fast and Stable Li–S Batteries. Small, 2018, 14, e1802443.	5.2	125
117	Lithiophilic gel polymer electrolyte to stabilize the lithium anode for a quasi-solid-state lithium–sulfur battery. Journal of Materials Chemistry A, 2018, 6, 18627-18634.	5.2	69
118	A Perspective on Energy Densities of Rechargeable Liâ€6 Batteries and Alternative Sulfurâ€Based Cathode Materials. Energy and Environmental Materials, 2018, 1, 20-27.	7.3	104
119	Powder metallurgy template growth of 3D N-doped graphene foam as binder-free cathode for high-performance lithium/sulfur battery. Carbon, 2018, 137, 368-378.	5.4	50
120	A defective MOF architecture threaded by interlaced carbon nanotubes for high-cycling lithium–sulfur batteries. RSC Advances, 2018, 8, 18604-18612.	1.7	49
121	Electrochemically active separators with excellent catalytic ability toward high-performance Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 11694-11699.	5.2	46
122	Nitrogen-doped holey carbon nanotubes: Dual polysulfides trapping effect towards enhanced lithium-sulfur battery performance. Applied Surface Science, 2018, 454, 284-292.	3.1	23
123	In Situ Formed Protective Barrier Enabled by Sulfur@Titanium Carbide (MXene) Ink for Achieving High apacity, Long Lifetime Li‧ Batteries. Advanced Science, 2018, 5, 1800502.	5.6	210
124	Synchronous immobilization and conversion of polysulfides on a VO ₂ –VN binary host targeting high sulfur load Li–S batteries. Energy and Environmental Science, 2018, 11, 2620-2630.	15.6	465
125	Novel Non arbon Sulfur Hosts Based on Strong Chemisorption for Lithium–Sulfur Batteries. Small, 2018, 14, e1801987.	5.2	68
126	Cation-Directed Selective Polysulfide Stabilization in Alkali Metal–Sulfur Batteries. Journal of the American Chemical Society, 2018, 140, 10740-10748.	6.6	68

#	Article	IF	CITATIONS
127	Ultrathin HfO2-modified carbon nanotube films as efficient polysulfide barriers for Li-S batteries. Carbon, 2018, 139, 896-905.	5.4	33
128	Electrocatalysis of polysulfide conversion by conductive RuO ₂ nano dots for lithium–sulfur batteries. Nanoscale, 2018, 10, 16730-16737.	2.8	25
129	Heterogeneous/Homogeneous Mediators for Highâ€Energyâ€Density Lithium–Sulfur Batteries: Progress and Prospects. Advanced Functional Materials, 2018, 28, 1707536.	7.8	251
130	The Importance of Chemical Reactions in the Charging Process of Lithium-Sulfur Batteries. Journal of the Electrochemical Society, 2018, 165, A1288-A1296.	1.3	22
131	Dynamic Hosts for High-Performance Li–S Batteries Studied by Cryogenic Transmission Electron Microscopy and in Situ X-ray Diffraction. ACS Energy Letters, 2018, 3, 1325-1330.	8.8	47
132	All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture. Energy Storage Materials, 2018, 15, 458-464.	9.5	108
133	Multifunctionality of Carbon-based Frameworks in Lithium Sulfur Batteries. Electrochemical Energy Reviews, 2018, 1, 403-432.	13.1	42
134	Mechanism Investigation of High-Performance Li–Polysulfide Batteries Enabled by Tungsten Disulfide Nanopetals. ACS Nano, 2018, 12, 9504-9512.	7.3	89
135	Trapping and Redistribution of Hydrophobic Sulfur Sols in Graphene–Polyethyleneimine Networks for Stable Li–S Cathodes. Advanced Energy Materials, 2018, 8, 1801979.	10.2	30
136	Interwoven V ₂ O ₅ nanowire/graphene nanoscroll hybrid assembled as efficient polysulfide-trapping-conversion interlayer for long-life lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 19358-19370.	5.2	86
137	Reduced graphene oxide-encapsulated mesoporous silica as sulfur host for lithium–sulfur battery. Journal of Solid State Electrochemistry, 2018, 22, 3557-3568.	1.2	17
138	A Conductive Ni ₂ P Nanoporous Composite with a 3D Structure Derived from a Metal–Organic Framework for Lithium–Sulfur Batteries. Chemistry - A European Journal, 2018, 24, 13253-13258.	1.7	41
139	Electrocatalysis on Separator Modified by Molybdenum Trioxide Nanobelts for Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2018, 5, 1800243.	1.9	66
140	Functional Carbons Remedy the Shuttling of Polysulfides in Lithium–Sulfur Batteries: Confining, Trapping, Blocking, and Breaking up. Advanced Functional Materials, 2018, 28, 1800508.	7.8	164
141	Metal-organic frameworks composites threaded on the CNT knitted separator for suppressing the shuttle effect of lithium sulfur batteries. Energy Storage Materials, 2018, 14, 383-391.	9.5	135
142	Utilizing a metal as a sulfur host for high performance Li-S batteries. Nano Energy, 2018, 50, 685-690.	8.2	40
143	Sulfur Hosts against the Shuttle Effect. Small Methods, 2018, 2, 1700345.	4.6	132
144	A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li-S batteries. Energy Storage Materials, 2019, 16, 344-353.	9.5	150

#	Article	IF	CITATIONS
145	Sulfur/nickel ferrite composite as cathode with high-volumetric-capacity for lithium-sulfur battery. Science China Materials, 2019, 62, 74-86.	3.5	86
146	Carbon@titanium nitrideÂdual shell nanospheres as multi-functional hosts for lithium sulfur batteries. Energy Storage Materials, 2019, 16, 228-235.	9.5	276
147	Nb ₂ O ₅ /RGO Nanocomposite Modified Separators with Robust Polysulfide Traps and Catalytic Centers for Boosting Performance of Lithium–Sulfur Batteries. Small, 2019, 15, e1902363.	5.2	83
148	Revisiting the use of electrolyte additives in Li–S batteries: the role of porosity of sulfur host materials. Sustainable Energy and Fuels, 2019, 3, 2788-2797.	2.5	13
149	Conductive Holey MoO ₂ –Mo ₃ N ₂ Heterojunctions as Job-Synergistic Cathode Host with Low Surface Area for High-Loading Li–S Batteries. ACS Nano, 2019, 13, 10049-10061.	7.3	150
150	Polysulfide Shuttle Suppression by Electrolytes with Lowâ€Density for Highâ€Energy Lithium–Sulfur Batteries. Energy Technology, 2019, 7, 1900625.	1.8	57
151	Li4Ti5O12 nanowire array as a sulfur host for high performance lithium sulfur battery. Journal of Alloys and Compounds, 2019, 805, 873-879.	2.8	18
152	Fabrication of ultrafine Gd 2 O 3 nanoparticles/carbon aerogel composite as immobilization host for cathode for lithiumâ€sulfur batteries. International Journal of Energy Research, 2019, 43, 7614.	2.2	8
153	Chemical-dealloying to fabricate nonconductive interlayers for high-loading lithium sulfur batteries. Journal of Alloys and Compounds, 2019, 806, 881-888.	2.8	16
154	Thiuram Vulcanization Accelerators as Polysulfide Scavengers To Suppress Shuttle Effects for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 29970-29977.	4.0	20
155	Enhanced constraint and catalysed conversion of lithium polysulfides <i>via</i> composite oxides from spent layered cathodes. Journal of Materials Chemistry A, 2019, 7, 17867-17875.	5.2	28
156	Superior cycling life of Li–S batteries with high sulfur loading enabled by a bifunctional layered-MoO3 cathode. Journal of Power Sources, 2019, 436, 226840.	4.0	27
157	Conductive and Catalytic VTe ₂ @MgO Heterostructure as Effective Polysulfide Promotor for Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 13235-13243.	7.3	107
158	TiO2/Porous Carbon Composite-Decorated Separators for Lithium/Sulfur Battery. Nanoscale Research Letters, 2019, 14, 176.	3.1	26
159	VO ₂ (p)-V ₂ C(MXene) Grid Structure as a Lithium Polysulfide Catalytic Host for High-Performance Li–S Battery. ACS Applied Materials & Interfaces, 2019, 11, 44282-44292.	4.0	100
160	Factors of Kinetics Processes in Lithium–Sulfur Reactions. Energy Technology, 2019, 7, 1900574.	1.8	18
161	Sulfur Redox Reactions at Working Interfaces in Lithium–Sulfur Batteries: A Perspective. Advanced Materials Interfaces, 2019, 6, 1802046.	1.9	128
162	CoFe2O4 coated carbon fiber paper fabricated via a spray pyrolysis method for trapping lithium polysulfide in Li-S batteries. Applied Surface Science, 2019, 478, 341-346.	3.1	26

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
163	Two-dimensional materials for advanced Li-S batteries. Energy Storage Materials, 2019, 22, 284-310.	9.5	114
164	Rational Design of TiO–TiO ₂ Heterostructure/Polypyrrole as a Multifunctional Sulfur Host for Advanced Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 5055-5063.	4.0	91
165	Vanadium dioxide–reduced graphene oxide binary host as an efficient polysulfide plague for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 1658-1668.	5.2	106
166	Polyisoprene Captured Sulfur Nanocomposite Materials for High-Areal-Capacity Lithium Sulfur Battery. ACS Applied Polymer Materials, 2019, 1, 1965-1970.	2.0	37
167	Sulfonic Acid Based Complex Framework Materials (CFM): Nanostructured Polysulfide Immobilization Systems for Rechargeable Lithium–Sulfur Battery. Journal of the Electrochemical Society, 2019, 166, A1827-A1835.	1.3	54
168	Multiple Nanosheets Assembled Nanoflowerâ€ŀike MnO 2 to Anchor Polysulfides for Improving Electrochemical Performance in Lithium Sulfur Batteries. ChemistrySelect, 2019, 4, 7102-7107.	0.7	3
169	A Comprehensive Understanding of Lithium–Sulfur Battery Technology. Advanced Functional Materials, 2019, 29, 1901730.	7.8	267
170	A multi-functional interface derived from thiol-modified mesoporous carbon in lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 13372-13381.	5.2	17
171	A Comprehensive Review of Materials with Catalytic Effects in Li–S Batteries: Enhanced Redox Kinetics. Angewandte Chemie, 2019, 131, 18920-18931.	1.6	90
172	A Comprehensive Review of Materials with Catalytic Effects in Li–S Batteries: Enhanced Redox Kinetics. Angewandte Chemie - International Edition, 2019, 58, 18746-18757.	7.2	379
173	Sulfur in Mesoporous Tungsten Nitride Foam Blocks: A Rational Lithium Polysulfide Confinement Experimental Design Strategy Augmented by Theoretical Predictions. ACS Applied Materials & Interfaces, 2019, 11, 20013-20021.	4.0	9
174	Enhancing Catalytic Activity of Titanium Oxide in Lithium–Sulfur Batteries by Band Engineering. Advanced Energy Materials, 2019, 9, 1900953.	10.2	326
175	Nanostructures and Nanomaterials for Lithium Metal Batteries. , 2019, , 159-214.		0
176	Metal multiple-sulfides with nitrogen doped carbon layer for high performance lithium-sulfur batteries. Journal of Alloys and Compounds, 2019, 798, 531-539.	2.8	7
177	Ultrathin sheets of MoS2/g-C3N4 composite as a good hosting material of sulfur for lithium–sulfur batteries. Journal of Power Sources, 2019, 431, 93-104.	4.0	61
178	Boosting Li–S battery by rational design of freestanding cathode with enriched anchoring and catalytic N-sites carbonaceous host. Carbon, 2019, 150, 216-223.	5.4	42
179	Original growth mechanism for ultra-stable dendrite-free potassium metal electrode. Nano Energy, 2019, 62, 367-375.	8.2	93
180	Current Status and Future Prospects of Metal–Sulfur Batteries. Advanced Materials, 2019, 31, e1901125. 	11.1	422

#	Article	IF	CITATIONS
181	MnO ₂ -Coated Sulfur-Filled Hollow Carbon Nanosphere-Based Cathode Materials for Enhancing Electrochemical Performance of Li-S Cells. Journal of the Electrochemical Society, 2019, 166, A1355-A1362.	1.3	18
182	Supercritical CO2-assisted fabrication of CeO2 decorated porous carbon/sulfur composites for high-performance lithium sulfur batteries. SN Applied Sciences, 2019, 1, 1.	1.5	5
183	Emerging applications of biochar-based materials for energy storage and conversion. Energy and Environmental Science, 2019, 12, 1751-1779.	15.6	481
184	Trapping polysulfide on two-dimensional molybdenum disulfide for Li–S batteries through phase selection with optimized binding. Beilstein Journal of Nanotechnology, 2019, 10, 774-780.	1.5	9
185	Integrated Polypyrrole@Sulfur@Graphene Aerogel 3D Architecture via Advanced Vapor Polymerization for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 18448-18455.	4.0	53
186	Oxygen Deficiency Driven Conversion of Polysulfide by Electrocatalysis: MoO _{3â€x} Nanobelts for an Improved Lithium‧ulfur Battery Cathode. ChemNanoMat, 2019, 5, 926-931.	1.5	26
187	Few‣ayer Boron Nitride with Engineered Nitrogen Vacancies for Promoting Conversion of Polysulfide as a Cathode Matrix for Lithium–Sulfur Batteries. Chemistry - A European Journal, 2019, 25, 8112-8117.	1.7	39
188	Rational design of Co9S8/CoO heterostructures with well-defined interfaces for lithium sulfur batteries: A study of synergistic adsorption-electrocatalysis function. Nano Energy, 2019, 60, 332-339.	8.2	156
189	High electrical conductivity of 3D mesporous carbon nanocage as an efficient polysulfide buffer layer for high sulfur utilization in lithium-sulfur batteries. Journal of Alloys and Compounds, 2019, 789, 71-79.	2.8	37
190	Manipulating kinetics of sulfurized polyacrylonitrile with tellurium as eutectic accelerator to prevent polysulfide dissolution in lithium-sulfur battery under dissolution-deposition mechanism. Nano Energy, 2019, 60, 153-161.	8.2	103
191	MnO2-decorated graphene aerogel with dual-polymer interpenetrating network as an efficient hybrid host for Li-S batteries. Journal of Alloys and Compounds, 2019, 791, 483-489.	2.8	22
192	Electrospun nanostructures for conversion type cathode (S, Se) based lithium and sodium batteries. Journal of Materials Chemistry A, 2019, 7, 11613-11650.	5.2	60
193	Highly stable lithium–sulfur batteries based on p–n heterojunctions embedded on hollow sheath carbon propelling polysulfides conversion. Journal of Materials Chemistry A, 2019, 7, 9230-9240.	5.2	79
194	Materials for Positive Electrode (Cathode). , 2019, , 29-71.		0
195	Promoting polythionate intermediates formation by oxygen-deficient manganese oxide hollow nanospheres for high performance lithium-sulfur batteries. Chemical Engineering Journal, 2019, 370, 556-564.	6.6	54
196	Deposition of thin Î-MnO2 functional layers on carbon foam/sulfur composites for synergistically inhibiting polysulfides shuttling and increasing sulfur utilization. Electrochimica Acta, 2019, 305, 247-255.	2.6	11
197	Polysulfide-driven low charge overpotential for aprotic lithium–oxygen batteries. Journal of Materials Chemistry A, 2019, 7, 8777-8784.	5.2	3
198	Inhibition of polysulfide diffusion in lithium–sulfur batteries: mechanism and improvement strategies. Journal of Materials Chemistry A, 2019, 7, 12381-12413.	5.2	147

#	Article	IF	CITATIONS
199	Observation of Chemomechanical Failure and the Influence of Cutoff Potentials in All-Solid-State Li–S Batteries. Chemistry of Materials, 2019, 31, 2930-2940.	3.2	112
200	Conductive CoOOH as Carbonâ€Free Sulfur Immobilizer to Fabricate Sulfurâ€Based Composite for Lithium–Sulfur Battery. Advanced Functional Materials, 2019, 29, 1901051.	7.8	157
201	Construction of ultrathin MnO ₂ decorated graphene/carbon nanotube nanocomposites as efficient sulfur hosts for high-performance lithium–sulfur batteries. RSC Advances, 2019, 9, 6346-6355.	1.7	8
202	Multishelled Transition Metalâ€Based Microspheres: Synthesis and Applications for Batteries and Supercapacitors. Small, 2019, 15, e1804737.	5.2	47
203	Cobalt-embedded carbon nanofiber as electrocatalyst for polysulfide redox reaction in lithium sulfur batteries. Electrochimica Acta, 2019, 304, 11-19.	2.6	57
204	The effect of cerium oxide addition on the electrochemical properties of lithium-sulfur batteries. Journal of Alloys and Compounds, 2019, 787, 982-989.	2.8	27
205	Enhanced Sulfur Transformation by Multifunctional FeS ₂ /FeS/S Composites for Highâ€Volumetric Capacity Cathodes in Lithium–Sulfur Batteries. Advanced Science, 2019, 6, 1800815.	5.6	178
206	Recent advances in shuttle effect inhibition for lithium sulfur batteries. Energy Storage Materials, 2019, 23, 707-732.	9.5	249
207	Designing Effective Solvent–Catalyst Interface for Catalytic Sulfur Conversion in Lithium–Sulfur Batteries. Chemistry of Materials, 2019, 31, 10186-10196.	3.2	45
208	Nanoparticle Assembled Mesoporous MoO ₂ Microrods Derived from Metal Organic Framework and Wrapped with Graphene as the Sulfur Host for Longâ€Life Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2019, 6, 1801636.	1.9	34
209	Promoting polysulfide conversion by V2O3 hollow sphere for enhanced lithium-sulfur battery. Applied Surface Science, 2019, 473, 1002-1008.	3.1	47
210	Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading. Energy Storage Materials, 2019, 18, 289-310.	9.5	231
211	Recent progress in polymer materials for advanced lithium-sulfur batteries. Progress in Polymer Science, 2019, 90, 118-163.	11.8	130
212	Intercalation structure of vanadium nitride nanoparticles growing on graphene surface toward high negative active material for supercapacitor utilization. Journal of Alloys and Compounds, 2019, 781, 1054-1058.	2.8	52
213	Approaching Ultrastable Highâ€Rate Li–S Batteries through Hierarchically Porous Titanium Nitride Synthesized by Multiscale Phase Separation. Advanced Materials, 2019, 31, e1806547.	11.1	155
214	Scalable TiO2 embedded sulfur bulks@MnO2 nanosheets composite cathode for long-cyclic lithium-sulfur batteries. Journal of Solid State Chemistry, 2019, 270, 304-310.	1.4	13
215	Improvement of Li-Sulfur Cell Cycling Performance by Use of Fe _{1-x} S@NC as a Functional Additive for Chemical Confinement of Lithium Polysulfides. Journal of the Electrochemical Society, 2019, 166, A5201-A5209.	1.3	18
216	Rational design of porous carbon matrices to enable efficient lithiated silicon sulfur full cell. Carbon, 2019, 145, 100-111.	5.4	14

#	Article	IF	CITATIONS
217	NiCo ₂ O ₄ Nanofibers as Carbonâ€Free Sulfur Immobilizer to Fabricate Sulfurâ€Based Composite with High Volumetric Capacity for Lithium–Sulfur Battery. Advanced Energy Materials, 2019, 9, 1803477.	10.2	252
218	Synergistic Dual-Confinement Effect: Merit of Hollowly Metallic Co ₉ S ₈ in Packaging Enhancement of Electrochemical Performance of Li–S Batteries. ACS Applied Energy Materials, 2019, 2, 1428-1435.	2.5	33
219	Designing a highly efficient polysulfide conversion catalyst with paramontroseite for high-performance and long-life lithium-sulfur batteries. Nano Energy, 2019, 57, 230-240.	8.2	190
220	Activating Inert Metallic Compounds for Highâ€Rate Lithium–Sulfur Batteries Through In Situ Etching of Extrinsic Metal. Angewandte Chemie - International Edition, 2019, 58, 3779-3783.	7.2	296
221	Activating Inert Metallic Compounds for Highâ€Rate Lithium–Sulfur Batteries Through In Situ Etching of Extrinsic Metal. Angewandte Chemie, 2019, 131, 3819-3823.	1.6	41
222	N-doped carbon-coated hollow carbon nanofibers with interspersed TiO2 for integrated separator of Li-S batteries. Electrochimica Acta, 2019, 297, 641-649.	2.6	49
223	Functionalized titanium nitride-based MXenes as promising host materials for lithium-sulfur batteries: A first principles study. Ceramics International, 2019, 45, 1588-1594.	2.3	63
224	The role of functional materials to produce high areal capacity lithium sulfur battery. Journal of Energy Chemistry, 2020, 42, 195-209.	7.1	67
225	Dictating Highâ€Capacity Lithium–Sulfur Batteries through Redoxâ€Mediated Lithium Sulfide Growth. Small Methods, 2020, 4, 1900344.	4.6	99
226	Chemical Confinement and Utility of Lithium Polysulfides in Lithium Sulfur Batteries. Small Methods, 2020, 4, 1900001.	4.6	68
227	Lithium‣chwefelâ€Batterien mit Magerelektrolyt: Herausforderungen und Perspektiven. Angewandte Chemie, 2020, 132, 12736-12753.	1.6	33
228	2 D Materials for Inhibiting the Shuttle Effect in Advanced Lithium–Sulfur Batteries. ChemSusChem, 2020, 13, 1447-1479.	3.6	49
229	Rationalizing Electrocatalysis of Li–S Chemistry by Mediator Design: Progress and Prospects. Advanced Energy Materials, 2020, 10, 1901075.	10.2	296
230	Rapid gas-assisted exfoliation promises V2O5 nanosheets for high performance lithium-sulfur batteries. Nano Energy, 2020, 67, 104253.	8.2	106
231	Lithium–Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities. Angewandte Chemie - International Edition, 2020, 59, 12636-12652.	7.2	425
232	Covalent fixing of sulfur in metal–sulfur batteries. Energy and Environmental Science, 2020, 13, 432-471.	15.6	118
233	Rational design of two-dimensional nanomaterials for lithium–sulfur batteries. Energy and Environmental Science, 2020, 13, 1049-1075.	15.6	285
234	ZnS spheres wrapped by an ultrathin wrinkled carbon film as a multifunctional interlayer for long-life Li–S batteries. Journal of Materials Chemistry A, 2020, 8, 231-241.	5.2	83

#	Article	IF	CITATIONS
235	Rational design of polar/nonpolar mediators toward efficient sulfur fixation and enhanced conductivity. Journal of Materials Chemistry A, 2020, 8, 1010-1051.	5.2	32
236	A flexible, hierarchically porous PANI/MnO ₂ network with fast channels and an extraordinary chemical process for stable fast-charging lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 2741-2751.	5.2	50
237	Enhanced Chemisorption and Catalytic Effects toward Polysulfides by Modulating Hollow Nanoarchitectures for Longâ€Life Lithium–Sulfur Batteries. Small, 2020, 16, e1906114.	5.2	48
238	Peroxymonosulfate activation by Co9S8@ S and N coâ€doped biochar for sulfamethoxazole degradation. Chemical Engineering Journal, 2020, 385, 123933.	6.6	128
239	Fishing-net-shaped cobalt oxide microspheres for effective polysulfide reservoirs of rechargeable Li–S battery cathodes. Materials Chemistry and Physics, 2020, 243, 122567.	2.0	5
240	Holey graphene modified LiFePO4 hollow microsphere as an efficient binary sulfur host for high-performance lithium-sulfur batteries. Energy Storage Materials, 2020, 26, 433-442.	9.5	49
241	Self-assembly of MoO ₃ -decorated carbon nanofiber interlayers for high-performance lithium–sulfur batteries. Physical Chemistry Chemical Physics, 2020, 22, 2157-2163.	1.3	24
242	Constructing a 3D compact sulfur host based on carbon-nanotube threaded defective Prussian blue nanocrystals for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 1154-1163.	5.2	32
243	Monodispersed MnOx-CeO2 solid solution as superior electrocatalyst for Li2S precipitation and conversion. Chemical Engineering Journal, 2020, 392, 123697.	6.6	46
244	Enabling rapid polysulfide conversion kinetics by using functionalized carbon nanosheets as metal-free electrocatalysts in durable lithium-sulfur batteries. Chemical Engineering Journal, 2020, 385, 123840.	6.6	36
245	Designing Highly Conductive Functional Groups Improving Guest–Host Interactions in Li/S Batteries. Small, 2020, 16, e1905585.	5.2	28
246	Bismuth sulfide bridged hierarchical Bi2S3/BiOCl@ZnIn2S4 for efficient photocatalytic Cr(VI) reduction. Journal of Hazardous Materials, 2020, 389, 121858.	6.5	107
247	Confining Li2S6 catholyte in 3D graphene sponge with ultrahigh total pore volume and oxygen-containing groups for lithium-sulfur batteries. Carbon, 2020, 158, 244-255.	5.4	39
248	Catalytic Interfacesâ€Enriched Hybrid Hollow Spheres Sulfur Host for Advanced Li–S Batteries. Advanced Materials Interfaces, 2020, 7, 1901420.	1.9	15
249	Phase-transformed Mo4P3 nanoparticles as efficient catalysts towards lithium polysulfide conversion for lithium–sulfur battery. Electrochimica Acta, 2020, 330, 135310.	2.6	44
250	Twoâ€Dimensional Materialâ€Functionalized Separators for Highâ€Energyâ€Density Metal–Sulfur and Metalâ€Based Batteries. ChemSusChem, 2020, 13, 1366-1378.	3.6	20
251	In-situ topochemical nitridation derivative MoO2–Mo2N binary nanobelts as multifunctional interlayer for fast-kinetic Li-Sulfur batteries. Nano Energy, 2020, 68, 104356.	8.2	116
252	Construction of reduced graphene oxide wrapped yolk–shell vanadium dioxide sphere hybrid host for high-performance lithium–sulfur batteries. Dalton Transactions, 2020, 49, 14921-14930.	1.6	8

#	Article	IF	CITATIONS
253	Insights into the Dynamic Catalytic Effect of Metal Sulfides with Prominent Lithiation Process in the Application of Li–S Batteries. ACS Applied Energy Materials, 2020, 3, 11131-11141.	2.5	3
254	LiV ₃ O ₈ -Based Functional Separator Coating as Effective Polysulfide Mediator for Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 2893-2899.	2.5	27
255	3D Printing of a V ₈ C ₇ –VO ₂ Bifunctional Scaffold as an Effective Polysulfide Immobilizer and Lithium Stabilizer for Li–S Batteries. Advanced Materials, 2020, 32, e2005967.	11.1	140
256	Hollow V2O5 nanospheres wrapped by activated carbon to confine polysulfides for lithium sulfur battery. Ionics, 2020, 26, 5435-5443.	1.2	6
257	Strategy for practically constructing high-capacity sulfur cathode by combining sulfur-hierarchical porous graphitic carbon composite with surface modification of polydopamine. Electrochimica Acta, 2020, 356, 136815.	2.6	9
258	Exploring and Understanding the Roles of Li2Sn and the Strategies to beyond Present Li-S Batteries. CheM, 2020, 6, 2533-2557.	5.8	148
259	Mitigation of Polysulfide Shuttling by Interlayer/Permselective Separators in Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2020, 3, 8095-8129.	2.5	60
260	CO ₂ -Oxidized Ti ₃ C ₂ T _{<i>x</i>} –MXenes Components for Lithium–Sulfur Batteries: Suppressing the Shuttle Phenomenon through Physical and Chemical Adsorption. ACS Nano, 2020, 14, 9744-9754.	7.3	88
261	Tuning Nitrogen in Graphitic Carbon Nitride Enabling Enhanced Performance for Polysulfide Confinement in Li–S Batteries. Energy & Fuels, 2020, 34, 11557-11564.	2.5	19
262	Promoting Electrocatalytic Conversion of Polysulfide using Cobalt Disulfide Nanocrystals for Lithium Sulfur Batteries. Journal of Physical Chemistry C, 2020, 124, 21319-21328.	1.5	6
263	Constructing Defect-Rich MoS ₂ /N-Doped Carbon Nanosheets for Catalytic Polysulfide Conversion in Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 13318-13327.	3.2	33
264	Fastâ€Charging Lithium–Sulfur Batteries Enabled via Lean Binder Content. Small, 2020, 16, e2004372.	5.2	21
265	In Situ Conversion of Metal–Organic Frameworks into VO ₂ –V ₃ S ₄ Heterocatalyst Embedded Layered Porous Carbon as an "Allâ€inâ€One―Host for Lithium–Sulfur Batteries. Small, 2020, 16, e2004806.	5.2	35
266	Prussian blue coated with reduced graphene oxide as high-performance cathode for lithium–Sulfur batteries. RSC Advances, 2020, 10, 31773-31779.	1.7	13
267	Vanadium based carbide–oxide heterogeneous V ₂ O ₅ @V ₂ C nanotube arrays for high-rate and long-life lithium–sulfur batteries. Nanoscale, 2020, 12, 18950-18964.	2.8	31
268	Recyclable cobalt-molybdenum bimetallic carbide modified separator boosts the polysulfide adsorption-catalysis of lithium sulfur battery. Science China Materials, 2020, 63, 2443-2455.	3.5	69
269	Enhanced Electrochemical Kinetics and Polysulfide Traps of Bifunctional Perovskite Promoter for Highly Stable Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 18636-18645.	3.2	12
270	Universal <i>in Situ</i> Crafted MO <i>_{<i>x</i>}</i> MXene Heterostructures as Heavy and Multifunctional Hosts for 3D-Printed Li–S Batteries. ACS Nano, 2020, 14, 16073-16084.	7.3	82

#	Article	IF	CITATIONS
271	Multifunctional V3S4-nanowire/graphene composites for high performance Li-S batteries. Science China Materials, 2020, 63, 1910-1919.	3.5	31
272	Functionalization of Nitrogen-Doped Carbon Nanofibers with Polyamidoamine Dendrimer as a Freestanding Electrode with High Sulfur Loading for Lithium–Polysulfides Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 7815-7824.	3.2	65
273	High Volumetric Energy Density Sulfur Cathode with Heavy and Catalytic Metal Oxide Host for Lithium–Sulfur Battery. Advanced Science, 2020, 7, 1903693.	5.6	96
274	Conversion of Co Nanoparticles to CoS in Metal–Organic Framework-Derived Porous Carbon during Cycling Facilitates Na ₂ S Reactivity in a Na–S Battery. ACS Applied Materials & Interfaces, 2020, 12, 29285-29295.	4.0	3
275	Dual-Regulation Strategy to Improve Anchoring and Conversion of Polysulfides in Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 7538-7551.	7.3	80
276	Rational Design of Coâ€NiSe ₂ @Nâ€Doped Carbon Hollow Structure for Enhanced Li–S Battery Performance. Energy Technology, 2020, 8, 2000302.	1.8	14
277	12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009–2020). Energy Storage Materials, 2020, 30, 346-366.	9.5	189
278	Rational Design of a Ni ₃ N _{0.85} Electrocatalyst to Accelerate Polysulfide Conversion in Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 6673-6682.	7.3	212
279	A three-dimensional nitrogen-doped graphene framework decorated with an atomic layer deposited ultrathin V ₂ O ₅ layer for lithium sulfur batteries with high sulfur loading. Journal of Materials Chemistry A, 2020, 8, 12106-12113.	5.2	28
280	Enhanced Polysulfide Regulation <i>via</i> Porous Catalytic V ₂ O ₃ /V ₈ C ₇ Heterostructures Derived from Metal–Organic Frameworks toward High-Performance Li–S Batteries. ACS Nano, 2020, 14, 8495-8507.	7.3	192
281	Rational structure designs of 2D materials and their applications toward advanced lithium-sulfur battery and lithium-selenium battery. Chemical Engineering Journal, 2020, 401, 125976.	6.6	42
282	Multifunctional MoSe2@rGO coating on the cathode versus the separator as an efficient polysulfide barrier for high-performance lithium-sulfur battery. Applied Surface Science, 2020, 527, 146785.	3.1	49
283	Three-dimensional graphene network-supported Co, N-codoped porous carbon nanocages as free-standing polysulfides mediator for lithium-sulfur batteries. Chemical Engineering Journal, 2020, 399, 125686.	6.6	44
284	A rGO-Based Fe2O3 and Mn3O4 binary crystals nanocomposite additive for high performance Li–S battery. Electrochimica Acta, 2020, 343, 136079.	2.6	13
285	Core–Shell Cathode Design with Molybdenum Trioxide as the Electrocatalytic Trapping Layer for High-Energy Density Room-Temperature Sodium Sulfur Batteries. Journal of Physical Chemistry C, 2020, 124, 7615-7623.	1.5	20
286	Three-dimensional Covalent Organic Frameworks as Host Materials for Lithium-Sulfur Batteries. Chinese Journal of Polymer Science (English Edition), 2020, 38, 550-557.	2.0	35
287	Octopus-Inspired Design of Apical NiS ₂ Nanoparticles Supported on Hierarchical Carbon Composites as an Efficient Host for Lithium Sulfur Batteries with High Sulfur Loading. ACS Applied Materials & Interfaces, 2020, 12, 17528-17537.	4.0	12
288	Ultrafine Co ₃ Se ₄ Nanoparticles in Nitrogenâ€Doped 3D Carbon Matrix for Highâ€Stable and Longâ€Cycleâ€Life Lithium Sulfur Batteries. Advanced Energy Materials, 2020, 10, 1904273.	10.2	141

#	Article	IF	CITATIONS
289	Dual-confined sulfur cathodes based on SnO2-decorated MoS2 microboxes for long-life lithium–sulfur batteries. Electrochimica Acta, 2020, 340, 135991.	2.6	17
290	A multifunctional separator based on scandium oxide nanocrystal decorated carbon nanotubes for high performance lithium–sulfur batteries. Nanoscale, 2020, 12, 6832-6843.	2.8	34
291	Mulberry-like hollow rGO microspheres decorated with CoO nanoparticles as efficient polysulfides anchoring for Li-S batteries. Journal of Electroanalytical Chemistry, 2020, 873, 114375.	1.9	6
292	Spatial and Kinetic Regulation of Sulfur Electrochemistry on Semiâ€Immobilized Redox Mediators in Working Batteries. Angewandte Chemie - International Edition, 2020, 59, 17670-17675.	7.2	54
293	Strongly Anchoring Polysulfides by Hierarchical Fe3O4/C3N4 Nanostructures for Advanced Lithium–Sulfur Batteries. Nano-Micro Letters, 2020, 12, 139.	14.4	40
294	Electrodeposited Sulfur and CoxS Electrocatalyst on Buckypaper as High-Performance Cathode for Li–S Batteries. Nano-Micro Letters, 2020, 12, 141.	14.4	18
295	Curtailing Carbon Usage with Addition of Functionalized NiFe2O4 Quantum Dots: Toward More Practical S Cathodes for Li–S Cells. Nano-Micro Letters, 2020, 12, 145.	14.4	27
296	Spatial and Kinetic Regulation of Sulfur Electrochemistry on Semiâ€Immobilized Redox Mediators in Working Batteries. Angewandte Chemie, 2020, 132, 17823-17828.	1.6	5
297	Selenium or Tellurium as Eutectic Accelerators for High-Performance Lithium/Sodium–Sulfur Batteries. Electrochemical Energy Reviews, 2020, 3, 613-642.	13.1	75
298	Rational design of perfluorinated sulfonic acid ionic sieve modified separator for high-performance Li-S battery. Journal of Solid State Electrochemistry, 2020, 24, 771-779.	1.2	2
299	Vanadium oxide nanorods embed in porous graphene aerogel as high-efficiency polysulfide-trapping-conversion mediator for high performance lithium-sulfur batteries. Chemical Engineering Journal, 2020, 393, 124570.	6.6	47
300	Nanoengineering to achieve high efficiency practical lithium–sulfur batteries. Nanoscale Horizons, 2020, 5, 808-831.	4.1	53
301	Attapulgite nanorods assisted surface engineering for separator to achieve high-performance lithium–sulfur batteries. Journal of Energy Chemistry, 2020, 48, 364-374.	7.1	27
302	Theoretical and Experimental Strategies for New Heterostructures with Improved Stability for Rechargeable Lithium Sulfur Batteries. Journal of the Electrochemical Society, 2020, 167, 040513.	1.3	3
303	Electronâ€ S tate Confinement of Polysulfides for Highly Stable Sodium–Sulfur Batteries. Advanced Materials, 2020, 32, e1907557.	11.1	150
304	Solid Additives for Improving the Performance of Sulfur Cathodes in Lithium–Sulfur Batteries—Adsorbents, Mediators, and Catalysts. Small Methods, 2020, 4, 1900864.	4.6	60
305	Defect-Rich Multishelled Fe-Doped Co ₃ O ₄ Hollow Microspheres with Multiple Spatial Confinements to Facilitate Catalytic Conversion of Polysulfides for High-Performance Li–S Batteries. ACS Applied Materials & Interfaces, 2020, 12, 12763-12773.	4.0	129
306	Grapheneâ€Modified Mesoporous Iron Phosphate as Superior Binary Sulfur Host for Lithium–Sulfur Batteries. Energy Technology, 2020, 8, 1901462.	1.8	4

			_
#	ARTICLE	IF	CITATIONS
307	Cerium oxide embedded bilayer separator enabling fast polysulfide conversion for high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2020, 388, 124120.	6.6	51
308	Co-Fe bimetallic sulfide with robust chemical adsorption and catalytic activity for polysulfides in lithium-sulfur batteries. Chemical Engineering Journal, 2020, 387, 124122.	6.6	65
309	Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 3421-3430.	5.2	151
310	An ultra-durable gel electrolyte stabilizing ion deposition and trapping polysulfides for lithium-sulfur batteries. Energy Storage Materials, 2020, 27, 25-34.	9.5	27
311	Spherical Metal Oxides with High Tap Density as Sulfur Host to Enhance Cathode Volumetric Capacity for Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2020, 12, 5909-5919.	4.0	76
312	Graphene-Like Matrix Composites with Fe2O3 and Co3O4 as Cathode Materials for Lithium–Sulfur Batteries. ACS Applied Nano Materials, 2020, 3, 1382-1390.	2.4	21
313	Conductive RuO2 stacking microspheres as an effective sulfur immobilizer for lithium–sulfur battery. Electrochimica Acta, 2020, 337, 135772.	2.6	36
314	Mo ₂ C-Embedded Carambola-like N,S-Rich Carbon Framework as the Interlayer Material for High-Rate Lithium–Sulfur Batteries in a Wide Temperature Range. ACS Applied Materials & Interfaces, 2020, 12, 22971-22980.	4.0	56
315	Brief Overview of Next-Generation Batteries. SpringerBriefs in Materials, 2020, , 35-51.	0.1	0
316	Oneâ€Pot Fabrication of Crumpled Nâ€Doped Graphene Anchored with Cobalt for Highâ€Performance Lithium–Sulfur Batteries. ChemElectroChem, 2020, 7, 1733-1738.	1.7	5
317	Rational design of MoNi sulfide yolk-shell heterostructure nanospheres as the efficient sulfur hosts for high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2020, 394, 124983.	6.6	31
318	2D/1D V2O5 Nanoplates Anchored Carbon Nanofibers as Efficient Separator Interlayer for Highly Stable Lithium–Sulfur Battery. Nanomaterials, 2020, 10, 705.	1.9	20
319	A combination of MnO2-decorated graphene aerogel modified separator and I/N codoped graphene aerogel sulfur host to synergistically promote Li–S battery performance. Electrochimica Acta, 2020, 348, 136173.	2.6	22
320	Probing the interaction mechanism of heterostructured VOxNy nanoparticles supported in nitrogen-doped reduced graphene oxide aerogel as an efficient polysulfide electrocatalyst for stable sulfur cathodes. Journal of Power Sources, 2020, 461, 228144.	4.0	16
321	Effective accommodation and conversion of polysulfides using organic–inorganic hybrid frameworks for long-life lithium–sulfur batteries. Nanoscale, 2020, 12, 13377-13387.	2.8	3
322	Sandwichâ€like Catalyst–Carbon–Catalyst Trilayer Structure as a Compact 2D Host for Highly Stable Lithium–Sulfur Batteries. Angewandte Chemie, 2020, 132, 12227-12236.	1.6	3
323	Revisiting the Role of Conductivity and Polarity of Host Materials for Longâ€Life Lithium–Sulfur Battery. Advanced Energy Materials, 2020, 10, 1903934.	10.2	52
324	Molecular‣evel Design of Pyrrhotite Electrocatalyst Decorated Hierarchical Porous Carbon Spheres as Nanoreactors for Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2000651.	10.2	101

#	Article	IF	CITATIONS
325	Sandwichâ€like Catalyst–Carbon–Catalyst Trilayer Structure as a Compact 2D Host for Highly Stable Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2020, 59, 12129-12138.	7.2	130
326	Ni ₁₂ P ₅ nanoparticles bound on graphene sheets for advanced lithium–sulfur batteries. Nanoscale, 2020, 12, 10760-10770.	2.8	40
327	Catalyzing the polysulfide conversion for promoting lithium sulfur battery performances: A review. Journal of Energy Chemistry, 2021, 54, 434-451.	7.1	136
328	Single-atom catalysts for metal-sulfur batteries: Current progress and future perspectives. Journal of Energy Chemistry, 2021, 54, 452-466.	7.1	63
329	Host Materials Anchoring Polysulfides in Li–S Batteries Reviewed. Advanced Energy Materials, 2021, 11, 2001304.	10.2	254
330	Manganese and graphene oxide composite as highly effective sulfur host for enlightening electrochemical kinetics of lithiumâ€sulfur batteries. International Journal of Energy Research, 2021, 45, 5214-5223.	2.2	2
331	Stabilizing Effect of Polysulfides on Lithium Metal Anodes in Sparingly Solvating Solvents. Batteries and Supercaps, 2021, 4, 347-358.	2.4	10
332	Unraveling Shuttle Effect and Suppression Strategy in Lithium/Sulfur Cells by In Situ/Operando Xâ€ray Absorption Spectroscopic Characterization. Energy and Environmental Materials, 2021, 4, 222-228.	7.3	31
333	Recent advances of metal phosphides for Li–S chemistry. Journal of Energy Chemistry, 2021, 55, 533-548.	7.1	103
334	Facile and low-temperature strategy to prepare hollow ZIF-8/CNT polyhedrons as high-performance lithium-sulfur cathodes. Chemical Engineering Journal, 2021, 404, 126579.	6.6	63
335	Facile in situ nitrogen-doped carbon coated iron sulfide as green and efficient adsorbent for stable lithium–sulfur batteries. Chemical Engineering Journal, 2021, 404, 126462.	6.6	31
336	Recent advances in interlayer and separator engineering for lithium-sulfur batteries. Journal of Energy Chemistry, 2021, 57, 41-60.	7.1	68
337	Improved Redox Reaction of Lithium Polysulfides on the Interfacial Boundary of Polar CoC ₂ O ₄ as a Polysulfide Catenator for a Highâ€Capacity Lithium‣ulfur Battery. ChemSusChem, 2021, 14, 876-883.	3.6	15
338	Efficient separators with fast Li-ion transfer and high polysulfide entrapment for superior lithium-sulfur batteries. Chemical Engineering Journal, 2021, 408, 127348.	6.6	25
339	Revealing the Origin of Highly Efficient Polysulfide Anchoring and Transformation on Anion‧ubstituted Vanadium Nitride Host. Advanced Functional Materials, 2021, 31, 2008034.	7.8	39
340	In-situ anchoring sulfiphilic silica nanoparticles onto macro-mesoporous carbon framework for cost-effective Li-S cathodes. Chemical Engineering Journal, 2021, 406, 126781.	6.6	6
341	A high conductive TiC–TiO2/SWCNT/S composite with effective polysulfides adsorption for high performance Li–S batteries. Journal of Alloys and Compounds, 2021, 851, 156793.	2.8	14
342	Exploring lithium ion storage ability and cycling performance of the Cu2SnSe4 nanoparticles encapsulated with nitrogen-doped carbon. Applied Surface Science, 2021, 540, 148435.	3.1	5

#	Article	IF	CITATIONS
343	Coupling highly dispersed Sb2S3 nanodots with nitrogen/sulfur dual-doped porous carbon nanosheets for efficient immobilization and catalysis of polysulfides conversion. Chemical Engineering Journal, 2021, 420, 127688.	6.6	29
344	Yolkâ^'Shell Nano ZnO@Coâ€Doped NiO with Efficient Polarization Adsorption and Catalysis Performance for Superior Lithiumâ^'Sulfur Batteries. Small, 2021, 17, e2005227.	5.2	37
345	Rational design of 3D hierarchical MXene@AlF3/Ni(OH)2 nanohybrid for high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2021, 409, 128102.	6.6	43
346	WO3 Nanowire/Carbon Nanotube Interlayer as a Chemical Adsorption Mediator for High-Performance Lithium-Sulfur Batteries. Molecules, 2021, 26, 377.	1.7	12
347	Single atom catalysts supported on N-doped graphene toward fast kinetics in Li–S batteries: a theoretical study. Journal of Materials Chemistry A, 2021, 9, 12225-12235.	5.2	62
348	Multicore closely packed ultrathin-MnO ₂ @N-doped carbon-gear yolk–shell micro-nanostructures as highly efficient sulfur hosts for Li–S batteries. Journal of Materials Chemistry A, 2021, 9, 2276-2283.	5.2	20
349	Boosting Energy Storage via Confining Soluble Redox Species onto Solid–Liquid Interface. Advanced Energy Materials, 2021, 11, 2003599.	10.2	35
350	Fabrication of NiO–carbon nanotube/sulfur composites for lithium-sulfur battery application. RSC Advances, 2021, 11, 10753-10759.	1.7	15
351	Functional and structural insight into lignocellulosic fibers for high-areal-capacity lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 18260-18271.	5.2	13
352	Engineering nanoreactors for metal–chalcogen batteries. Energy and Environmental Science, 2021, 14, 540-575.	15.6	70
353	Separator Design Variables and Recommended Characterization Methods for Viable Lithium–Sulfur Batteries. Advanced Materials Technologies, 2021, 6, 2001136.	3.0	26
354	Recent Advances in Molybdenum-Based Materials for Lithium-Sulfur Batteries. Research, 2021, 2021, 5130420.	2.8	31
355	Tailoring 3D Carbon Foam using CNTs and MnO ₂ to Fabricate Stable Lithium/Dissolved Lithium Polysulfide Batteries. Langmuir, 2021, 37, 4016-4024.	1.6	8
356	Demystifying the catalysis in lithium–sulfur batteries: Characterization methods and techniques. SusMat, 2021, 1, 51-65.	7.8	68
357	Crystalline Multiâ€Metallic Compounds as Host Materials in Cathode for Lithium–Sulfur Batteries. Small, 2021, 17, e2005332.	5.2	33
358	Yolk@Shell Structured MnS@Nitrogen-Doped Carbon as a Sulfur Host and Polysulfide Conversion Booster for Lithium/Sodium Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 3487-3494.	2.5	16
359	Double role of CoO Co4N hetero-nanocages as sulfur host for lithium-sulfur batteries. Journal of Materiomics, 2021, 7, 1301-1308.	2.8	3
360	Activated carbon from pyrolysis of peanut shells as cathode for lithium-sulfur batteries. Biomass and Bioenergy, 2021, 146, 105971.	2.9	25

#	Article	IF	CITATIONS
361	Enhancing Reaction Kinetics of Sulfur-Containing Species in Li-S Batteries by Quantum Dot-Level Tin Oxide Hydroxide Catalysts. ACS Applied Energy Materials, 2021, 4, 4935-4944.	2.5	6
362	sâ€MoO 3 /MoO 2 @C Hollow Tubes as Polysulfideâ€Filter for Lithiumâ€ S ulfur Batteries. ChemistrySelect, 2021, 6, 3969-3975.	0.7	1
363	Co-Nx bonds as bifunctional electrocatalytic sites to drive the reversible conversion of lithium polysulfides for long life lithium sulfur batteries. Applied Surface Science, 2021, 546, 148914.	3.1	17
364	Lithium–Sulfur Battery Cathode Design: Tailoring Metalâ€Based Nanostructures for Robust Polysulfide Adsorption and Catalytic Conversion. Advanced Materials, 2021, 33, e2008654.	11.1	217
365	Folic acid self-assembly synthesis of ultrathin N-doped carbon nanosheets with single-atom metal catalysts. Energy Storage Materials, 2021, 36, 409-416.	9.5	39
366	Designing of multifunctional and flame retardant separator towards safer high-performance lithium-sulfur batteries. Nano Research, 2021, 14, 4865-4877.	5.8	32
367	A Natural Polymer Captor for Immobilizing Polysulfide/Polyselenide in Working Li–SeS2 Batteries. Nano-Micro Letters, 2021, 13, 104.	14.4	9
368	Denseâ€Stacking Porous Conjugated Polymer as Reactiveâ€Type Host for Highâ€Performance Lithium Sulfur Batteries. Angewandte Chemie, 2021, 133, 11460-11470.	1.6	11
369	The Positive Effect of ZnS in Waste Tire Carbon as Anode for Lithium-Ion Batteries. Materials, 2021, 14, 2178.	1.3	7
370	Material design and structure optimization for rechargeable lithium-sulfur batteries. Matter, 2021, 4, 1142-1188.	5.0	116
371	Function-convertible metal-organic crystal derived from liquid-solid interfacial reaction for lithium-sulfur batteries. Journal of Power Sources, 2021, 491, 229593.	4.0	7
372	MXeneâ€Derived Ti <i>_n</i> O ₂ <i>_{nâ^'}</i> ₁ Quantum Dots Distributed on Porous Carbon Nanosheets for Stable and Longâ€Life Li–S Batteries: Enhanced Polysulfide Mediation via Defect Engineering. Advanced Materials, 2021, 33, e2008447.	11.1	115
373	CNTs@S cathode modified with a barrier layer of TiO2-decorated reduced graphene oxide for lithium–sulfur batteries. Ionics, 2021, 27, 2387-2395.	1.2	8
374	Tailoring FeP with a Hollow Urchin Architecture for High-Performance Li–S Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 5315-5321.	3.2	22
375	Denseâ€Stacking Porous Conjugated Polymer as Reactiveâ€Type Host for Highâ€Performance Lithium Sulfur Batteries. Angewandte Chemie - International Edition, 2021, 60, 11359-11369.	7.2	62
376	Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium-sulfur batteries. Nature Communications, 2021, 12, 3102.	5.8	103
377	Nanotechnology for Sulfur Cathodes. ACS Nano, 2021, 15, 8087-8094.	7.3	29
378	Combination of heterostructure with oxygen vacancies in Co@CoO1-x nanosheets array for high-performance lithium sulfur batteries. Chemical Engineering Journal, 2021, 411, 128546.	6.6	48

#	Article	IF	CITATIONS
379	Metal–Organicâ€Frameworkâ€Derived Nanostructures as Multifaceted Electrodes in Metal–Sulfur Batteries. Advanced Materials, 2021, 33, e2008784.	11.1	67
380	Inhibition of Lithium Dendrite Formation in Lithium Metal Batteries via Regulated Cation Transport through Ultrathin Subâ€Nanometer Porous Carbon Nanomembranes. Advanced Energy Materials, 2021, 11, 2100666.	10.2	45
381	Advances in Lithium–Sulfur Batteries: From Academic Research to Commercial Viability. Advanced Materials, 2021, 33, e2003666.	11.1	357
382	Insight into Lithium–Sulfur Batteries with Novel Modified Separators: Recent Progress and Perspectives. Energy & Fuels, 2021, 35, 11089-11117.	2.5	27
383	Self-Assembled Polyoxometalate Nanodots as Bidirectional Cluster Catalysts for Polysulfide/Sulfide Redox Conversion in Lithium–Sulfur Batteries. ACS Nano, 2021, 15, 12222-12236.	7.3	77
384	Metal oxide-mediated differential chalcogen morphogenesis for Li-chalcogen battery application. Nano Energy, 2021, 84, 105842.	8.2	9
385	Boosting electrochemical kinetics of S cathodes for room temperature Na/S batteries. Matter, 2021, 4, 1768-1800.	5.0	39
386	Construction of multifunctional and flame retardant separator towards stable lithium-sulfur batteries with high safety. Chemical Engineering Journal, 2021, 416, 129087.	6.6	65
387	Enhanced electrochemical performance of lithium-sulfur batteries using a V2O5/graphene interlayer. Journal of Alloys and Compounds, 2021, 868, 159131.	2.8	21
388	The Electrocatalyst based on LiVPO4F/CNT to enhance the electrochemical kinetics for high performance Li-S batteries. Chemical Engineering Journal, 2021, 415, 129053.	6.6	17
389	Synthesis of pompon-like ZnO microspheres as host materials and the catalytic effects of nonconductive metal oxides for lithium-sulfur batteries. Journal of Industrial and Engineering Chemistry, 2021, 99, 309-316.	2.9	15
390	Hierarchically structured Ti3C2T MXene paper for Li-S batteries with high volumetric capacity. Nano Energy, 2021, 86, 106120.	8.2	67
391	Realizing Highâ€Performance Liâ€S Batteries through Additive Manufactured and Chemically Enhanced Cathodes. Small Methods, 2021, 5, e2100176.	4.6	12
392	Role of Catalytic Materials on Conversion of Sulfur Species for Room Temperature Sodium–Sulfur Battery. Energy and Environmental Materials, 2022, 5, 693-710.	7.3	18
393	Fabricating a Carbon Microtube Interlayer by a Sustainable Green Process as a Polysulfide-Trapping Shield for Lithium-Sulfur Batteries. Energy & Fuels, 2021, 35, 14140-14147.	2.5	6
394	Universal interface and defect engineering dual-strategy for graphene-oxide heterostructures toward promoted Li–S chemistry. Chemical Engineering Journal, 2021, 418, 129407.	6.6	24
395	Dual-heterostructures decorated interweaved carbon nanofibers sulfur host for high performance lithium-sulfur batteries. Chemical Engineering Journal, 2021, 418, 129388.	6.6	27
396	Ultra-thin 2D MoO2 nanosheets coupled with CNTs as efficient separator coating materials to promote the catalytic conversion of lithium polysulfides for advanced lithium-sulfur batteries. New Carbon Materials, 2021, 36, 810-820.	2.9	13

#	Article	IF	CITATIONS
397	3D CoS2/rGO aerogel as trapping-catalyst sulfur host to promote polysulfide conversion for stable Li-S batteries. Journal of Alloys and Compounds, 2021, 873, 159780.	2.8	32
398	Equivalent conversion of metal-free and metal-based (Co1-xS/Co9S8 nanohybrid) catalysts: Easy construction of a "highway" shaped porous carbon material as a dual-functional electrocatalyst for high-performance Zn-air batteries. Electrochimica Acta, 2021, 388, 138594.	2.6	4
399	Metal–Organic Framework Decorated Polymer Nanofiber Composite Separator for Physiochemically Shielding Polysulfides in Stable Lithium–Sulfur Batteries. Energy & Fuels, 2021, 35, 19154-19163.	2.5	13
400	Multiphase and Multicomponent Nickelâ€ŀron Oxide Heterostructure as an Efficient Separator Modification Layer for Advanced Lithium Sulfur Batteries. Batteries and Supercaps, 2021, 4, 1843-1849.	2.4	10
401	Interference Effect between Lithium Nitrate Additive and the Polysulfide Adsorber Magnesium Ferrite in Lithium-Sulfur Cells. Journal of the Electrochemical Society, 2021, 168, 090556.	1.3	0
402	A 3D Graphene/WO3 nanowire composite with enhanced capture and polysulfides conversion catalysis for high-performance Li–S batteries. Carbon, 2021, 182, 335-347.	5.4	34
403	Advances in multi-functional flexible interlayers for Li–S batteries and metal-based batteries. Materials Today Communications, 2021, 28, 102566.	0.9	6
404	Long-life lithium–sulfur battery enabled by a multifunctional gallium oxide shield. Chemical Engineering Journal, 2021, 420, 129772.	6.6	9
405	Phosphorus doped hierarchical porous carbon nanosheet array as an electrocatalyst to enhance polysulfides anchoring and conversion. Chemical Engineering Journal, 2022, 436, 132719.	6.6	24
406	Enhanced polysulfide conversion through metal oxide-support interaction in MnOx/MXene. Chemical Engineering Journal, 2021, 420, 130452.	6.6	15
407	Electrocatalytic and stoichiometric reactivity of 2D layered siloxene for highâ€energyâ€dense lithium–sulfur batteries. , 2021, 3, 976-990.		14
408	Defective graphene coating-induced exposed interfaces on CoS nanosheets for high redox electrocatalysis in lithium-sulfur batteries. Energy Storage Materials, 2021, 40, 358-367.	9.5	63
409	A (110) Facet-Dominated Vanadium Dioxide Enabling Bidirectional Electrocatalysis for Lithium–Sulfur Batteries. ACS Nano, 2021, 15, 16878-16886.	7.3	29
410	Recent progress in sulfur cathodes for application to lithium–sulfur batteries. Particuology, 2021, 58, 1-15.	2.0	31
411	Rechargeable metal (Li, Na, Mg, Al)-sulfur batteries: Materials and advances. Journal of Energy Chemistry, 2021, 61, 104-134.	7.1	80
412	Large-scale synthesis of Fe9S10/Fe3O4@C heterostructure as integrated trapping-catalyzing interlayer for highly efficient lithium-sulfur batteries. Chemical Engineering Journal, 2021, 422, 130049.	6.6	31
413	Modifying Î ³ -MnO2 to enhance the electrochemical performance of lithium-sulfur batteries. Chemical Engineering Journal, 2021, 421, 129782.	6.6	19
414	A Conjugated Porous Polymer Complexed with a Single-Atom Cobalt Catalyst as An Electrocatalytic Sulfur Host for Enhancing Cathode Reaction Kinetics. Energy Storage Materials, 2021, 41, 14-23.	9.5	51

#	Article	IF	CITATIONS
415	Defect engineered MoWS alloy catalyst boost the polysulfide conversion in lithium–sulfur battery. Journal of Power Sources, 2021, 511, 230426.	4.0	13
416	Porous N-doped carbon nanofibers assembled with nickel ferrite nanoparticles as efficient chemical anchors and polysulfide conversion catalyst for lithium-sulfur batteries. Journal of Colloid and Interface Science, 2021, 601, 209-219.	5.0	123
417	Ultrahigh rate and high-performance lithium-sulfur batteries with resorcinol-formaldehyde xerogel derived highly porous carbon matrix as sulfur cathode host. Chemical Engineering Journal, 2021, 425, 131521.	6.6	21
418	Creating anion defects on hollow CoxNi1-xO concave with dual binding sites as high-efficiency sulfur reduction reaction catalyst. Chemical Engineering Journal, 2022, 427, 132024.	6.6	13
419	Improved Redox Reaction of Lithium Polysulfides on the Interfacial Boundary of Polar CoC 2 O 4 as a Polysulfide Catenator for a Highâ€Capacity Lithium‣ulfur Battery. ChemSusChem, 2021, 14, 757-757.	3.6	2
420	Engineering hollow carbon spheres: directly from solid resin spheres to porous hollow carbon spheres <i>via</i> air induced linker cleaving. Nanoscale, 2021, 13, 13873-13881.	2.8	9
421	Polyaniline Encapsulated Amorphous V ₂ O ₅ Nanowireâ€Modified Multiâ€Functional Separators for Lithium–Sulfur Batteries. Small Methods, 2021, 5, e2001056.	4.6	86
422	Modulating the electronic structure of nanomaterials to enhance polysulfides confinement for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 18927-18946.	5.2	62
423	Recent Advances in Heterostructure Engineering for Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2003689.	10.2	269
424	The Role of Carbon Electrodes Pore Size Distribution on the Formation of the Cathode–Electrolyte Interphase in Lithium–Sulfur Batteries. Batteries and Supercaps, 2021, 4, 612-622.	2.4	18
425	Low temperature performance enhancement of high-safety Lithium–Sulfur battery enabled by synergetic adsorption and catalysis. Electrochimica Acta, 2020, 353, 136470.	2.6	14
426	Hierarchical, nitrogenous hollow carbon spheres filled with porous carbon nanosheets for use as efficient sulfur hosts for lithium-sulfur batteries. Journal of Alloys and Compounds, 2020, 836, 155295.	2.8	14
427	A rational VO2 nanotube/graphene binary sulfur host for superior lithium-sulfur batteries. Journal of Alloys and Compounds, 2020, 838, 155504.	2.8	18
428	Highly wrinkled NiO nanosheet-based hierarchical structure/reduced fluorographene composite for enhanced performance of lithium-sulfur battery. Journal of the Taiwan Institute of Chemical Engineers, 2020, 111, 205-211.	2.7	10
429	Research Progress on Improving the Sulfur Conversion Efficiency on the Sulfur Cathode Side in Lithium–Sulfur Batteries. Industrial & Engineering Chemistry Research, 2020, 59, 20979-21000.	1.8	13
430	Enhanced Sulfur Redox and Polysulfide Regulation via Porous VN-Modified Separator for Li–S Batteries. ACS Applied Materials & Interfaces, 2019, 11, 5687-5694. 	4.0	126
431	Perovskite Lithium Lanthanum Titanate-Modified Separator as Both Adsorbent and Converter of Soluble Polysulfides toward High-Performance Li-S Battery. ACS Sustainable Chemistry and Engineering, 2020, 8, 16477-16492.	3.2	20
432	Modifications of Separators for Li–S Batteries with Improved Electrochemical Performance. Russian Journal of Electrochemistry, 2020, 56, 365-377.	0.3	18

		CITATION REPORT		
# 433	ARTICLE Fe2O3/rGO/CNT composite sulfur hosts with physical and chemical dual-encapsulation for high partormance lithium \hat{e} sulfur batteries. New Journal of Chemistry 2021, 45, 21582-21590	اF 1_	4	Citations 3
434	Endoplasmic-reticulum-like catalyst coating on separator to enhance polysulfides conversion for lithium-sulfur batteries. Journal of Energy Chemistry, 2022, 67, 423-431.	br 7.1	1	14
435	Rechargeable Lithium Metal Batteries. , 2019, , 147-203.			0
437	Rational Design of Metal–Organic <scp>Frameworkâ€Based</scp> Materials for Advanced L Batteries. Bulletin of the Korean Chemical Society, 2021, 42, 148-158.	iï£;S 1.0	0	25
438	Recent advances in lithium-sulfur batteries using biomass-derived carbons as sulfur host. Rene and Sustainable Energy Reviews, 2022, 154, 111783.	wable 8.:	2	83
439	Synergistic coupling between Fe7S8-MoS2 heterostructure and few layers MoS2-embeded N-/ carbon nanocapsule enables superior Li-S battery performances. Applied Surface Science, 2022 151586.	P-doping 2, 574, 3.:	1	25
440	Heterostructure design of Fe2(MoO4)3 decorated MoO3 nanorods for boosting catalytic activ high-performance lithium sulfur batteries. Electrochimica Acta, 2022, 401, 139535.	/ity in 2.0	6	4
441	Atomically Dispersed and O, N-Coordinated Mn-Based Catalyst for Promoting the Conversion of Polysulfides in Li ₂ S-Based Li–S Battery. ACS Applied Materials & Defraces 54113-54123.	of , 2021, 13, 4.0	0	9
442	Cofactorâ€Assisted Artificial Enzyme with Multiple Liâ€Bond Networks for Sustainable Polysul Conversion in Lithium–Sulfur Batteries. Advanced Science, 2022, 9, e2104205.	fide 5.0	6	20
443	Valence mediation of samarium towards polysulfides as a redox mediator for high performance batteries. Materials Today Energy, 2020, 17, 100484.	e Li–S 2.€	5	5
444	Progress of nanotechnology for lithium-sulfur batteries. Frontiers of Nanoscience, 2021, 19, 13	37-164. 0.:	3	3
445	The enhanced confinement effect of double shell hollow mesoporous spheres assembled with nitrogen-doped copper cobaltate nanoparticles for enhancing lithium–sulfur batteries. Electrochimica Acta, 2022, 404, 139597.	2.0	6	13
446	Catalytic materials for lithium-sulfur batteries: mechanisms, design strategies and future persp Materials Today, 2022, 52, 364-388.	ective. 8.:	3	78
447	3D Net-like GO-d-Ti ₃ C ₂ T _{<i>x</i>} MXene Aerogels with Catalysis/Adsorption Dual Effects for High-Performance Lithium–Sulfur Batteries. ACS Applie Materials & Interfaces, 2021, 13, 55235-55242.	d 4.0	0	11
448	Polysulfide Catalytic Materials for Fastâ€Kinetic Metal–Sulfur Batteries: Principles and Active Advanced Science, 2022, 9, e2102217.	Centers. 5.0	6	56
449	Phosphorus doping of 3D structural MoS2 to promote catalytic activity for lithium-sulfur batte Chemical Engineering Journal, 2022, 431, 133923.	ries. 6.4	6	36
450	Multifunctional ZnCo ₂ O ₄ Quantum Dots Encapsulated In Carbon C Anchoring/Catalyzing Polysulfides and Selfâ€Repairing Lithium Metal Anode in Lithiumâ€Sulfu Advanced Functional Materials, 2022, 32, 2109462.	arrier for r Batteries. 7.8	8	44
451	Lithium sulfur batteries: Electrochemistry and mechanistic research. , 2021, , .			0

#	Article	IF	CITATIONS
452	Synthesis of Titanium Molybdenum Nitride-Decorated Electrospun Carbon Nanofiber Membranes as Interlayers to Suppress Polysulfide Shuttling in Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 776-788.	3.2	21
453	A rational design of V2O3/VN heterostructures with high-efficient chemisorption and electrocatalytic activity for polysulfides in lithium-sulfur batteries. Materials Chemistry and Physics, 2022, 277, 125578.	2.0	10
454	Preparation and Electrochemical Properties of Gadolinium Oxide –doped Carbon Aerogels/Sulfur Composites. International Journal of Electrochemical Science, 2022, 17, 220240.	0.5	1
455	Ordered Dual-Channel carbon embedded with molybdenum nitride catalytically induced High-Performance Lithium-Sulfur battery. Chemical Engineering Journal, 2022, 431, 134163.	6.6	16
456	Intrinsic catalytic Sites-Rich Co-doped SnO2 nanoparticles enabling enhanced conversion and capture of polysulfides. Chemical Engineering Journal, 2022, 431, 134033.	6.6	19
457	Hierarchically porous γ-Ti3O5 hollow nanospheres as an effective sulfur host for long-life lithium-sulfur batteries. Applied Surface Science, 2022, 579, 152178.	3.1	8
458	Metal-organic framework derived binary-metal oxide/MXene composite as sulfur host for high-performance lithium-sulfur batteries. Journal of Alloys and Compounds, 2022, 899, 163369.	2.8	32
459	Lithiated 3, 6-dioxa-1, 8-octane dithiol as redox mediator to manipulate polysulfides conversion for high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2022, 432, 134379.	6.6	10
460	Highly branched amylopectin binder for sulfur cathodes with enhanced performance and longevity. Exploration, 2022, 2, 20210131.	5.4	23
461	A flame-retardant polyimide interlayer with polysulfide lithium traps and fast redox conversion towards safety and high sulfur utilization Li–S batteries. Nanoscale, 2022, 14, 700-714.	2.8	8
462	Designing principles of advanced sulfur cathodes toward practical lithiumâ€ s ulfur batteries. SusMat, 2022, 2, 34-64.	7.8	77
463	Physical and Chemical Adsorption of Polysulfides. Modern Aspects of Electrochemistry, 2022, , 111-163.	0.2	1
465	Lithium–sulfur battery. , 2022, , 309-328.		1
466	Application and research of current collector for lithium-sulfur battery. Ionics, 2022, 28, 1713-1738.	1.2	6
467	La ₂ MoO ₆ as an Effective Catalyst for the Cathode Reactions of Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2022, 14, 5247-5256.	4.0	5
468	Multi-duties for one post: Biodegradable bacterial cellulose-based separator for lithium sulfur batteries. Carbohydrate Polymers, 2022, 285, 119201.	5.1	13
469	Enhanced sulfur redox kinetics by hollow structured NiCo2O4 entangled with acidified MWCNTs for lithium sulfur batteries. Journal of Materials Science, 2022, 57, 4704-4715.	1.7	8
470	Highly catalytic porous MoN nanosheets anchored carbon microtubes interlayer for lithium-sulfur batteries. Materials Today Energy, 2022, 24, 100941.	2.5	9

#	Article	IF	CITATIONS
471	Designing thermotolerant and flame-resistant PAN-based separator via surface engineering with heteroatoms doped carbon framework encapsulated with CoS2 nanocatalysts towards safe lithium-sulfur batteries. Composites Part B: Engineering, 2022, 233, 109644.	5.9	24
472	Plasma and magnetron sputtering constructed dual-functional polysulfides barrier separator for high-performance lithium-sulfur batteries. Journal of Colloid and Interface Science, 2022, 613, 636-643.	5.0	9
473	Exploring the Janus structure to improve kinetics in sulfur conversion of Li-S batteries. Nano Energy, 2022, 95, 106980.	8.2	24
474	MnCo ₂ O ₄ Spiny Microspheres as Polysulfide Anchors and Conversion Catalysts for High-Performance Li–S Batteries. Energy & Fuels, 2022, 36, 2202-2211.	2.5	8
475	Low-Cost Biomass-Gel-Induced Conductive Polymer Networks for High-Efficiency Polysulfide Immobilization and Catalytic Conversion in Li–S Batteries. ACS Applied Energy Materials, 2022, 5, 2308-2317.	2.5	11
476	Design Strategy for Mxene and Metal Chalcogenides/Oxides Hybrids for Energy Storage and Conversion. SSRN Electronic Journal, 0, , .	0.4	1
477	Perovskite Transition Metal Oxide of Nanofibers as Catalytic Hosts for Lithium–Sulfur Battery. SSRN Electronic Journal, 0, , .	0.4	0
478	Three-dimensional embroidered ball-like α-Fe ₂ O ₃ synthesised by a microwave hydrothermal method as a sulfur immobilizer for high-performance Li–S batteries. Journal of Materials Chemistry C, 2022, 10, 7066-7075.	2.7	5
479	Sputtered MoN nanolayer as a multifunctional polysulfide catalyst for high-performance lithium–sulfur batteries. EScience, 2022, 2, 329-338.	25.0	70
480	Functionalized 12µm Polyethylene Separator to Realize Dendriteâ€Free Lithium Deposition toward Highly Stable Lithiumâ€Metal Batteries. Advanced Science, 2022, 9, e2102215.	5.6	35
481	Interconnected Microporous and Mesoporous Carbon Derived from Pitch for Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 4462-4472.	3.2	5
482	Electrolyte Solvation Chemistry for the Solution of Highâ€Donorâ€Number Solvent for Stable Li–S Batteries. Small, 2022, 18, e2200046.	5.2	29
483	Cobalt-iron oxide nanoparticles anchored on carbon nanotube paper to accelerate polysulfide conversion for lithium-sulfur batteries. Journal of Alloys and Compounds, 2022, 909, 164805.	2.8	7
484	V2O3/VN Catalysts Decorated Free-Standing Multifunctional Interlayer for High-Performance Li-S Battery. Chemical Engineering Journal, 2022, 441, 136082.	6.6	18
485	lonicâ€Liquidâ€Assisted Synthesis of N, F, and B Coâ€Doped CoFe ₂ O _{4â^} <i>_x</i> on Multiwalled Carbon Nanotubes with Enriched Oxygen Vacancies for Li–S Batteries. Advanced Functional Materials, 2022, 32, .	7.8	48
486	Flexible, Electrically Conductive, Nanostructured, Asymmetric Aerogel Films for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 59174-59184.	4.0	5
487	Nonlinear Electrochemical Analysis: Worth the Effort to Reveal New Insights into Energy Materials. Advanced Energy Materials, 2022, 12, .	10.2	11
488	Chemistry and operation of lithium–sulfur batteries. , 2022, , 37-55.		1

#	Article	IF	CITATIONS
489	Nanostructured additives and binders for sulfur cathodes. , 2022, , 453-485.		0
490	Graphene–sulfur nanohybrids for cathodes in lithium–sulfur batteries. , 2022, , 315-332.		0
491	Design of nanostructured sulfur cathodes for high-performance lithium–sulfur batteries. , 2022, , 425-452.		0
492	Atomic surface modification strategy of <scp>MXene</scp> materials for <scp>highâ€performance</scp> metal sulfur batteries. International Journal of Energy Research, 2022, 46, 11659-11675.	2.2	21
493	Atomic Feâ^'N Doped Multiâ€Cavity Hollow Carbon Nanoreactor as an Efficient Electrocatalyst for Lithiumâ€Sulfur Batteries. Batteries and Supercaps, 2022, 5, .	2.4	7
494	Excavating Anomalous Capacity Increase of Li–S Pouch Cells by Electrochemical Oscillation Formation. ACS Applied Materials & Interfaces, 2022, 14, 22197-22205.	4.0	2
495	Balancing Electrolyte Donicity and Cathode Adsorption Capacity for Highâ€Performance LiS Batteries. Small, 2022, 18, e2201416.	5.2	5
496	Vanadium disulfide-coated carbon nanotube film as an interlayer for high-performance lithiumâ€'sulfur batteries. Journal of Energy Storage, 2022, 52, 104818.	3.9	5
497	High-density catalytic heterostructures strung by buried-in carbon tube network as monolithic holey host for endurable Li-S batteries. Chemical Engineering Journal, 2022, 446, 137294.	6.6	17
498	Thorn-Like Carbon Nanofibers Combined with Molybdenum Nitride Nanosheets as a Modified Separator Coating: An Efficient Chemical Anchor and Catalyst for Li–S Batteries. ACS Applied Energy Materials, 2022, 5, 6654-6662.	2.5	5
499	Covalently grafting conjugated porous polymers to MXene offers a two-dimensional sandwich-structured electrocatalytic sulfur host for lithium–sulfur batteries. Chemical Engineering Journal, 2022, 446, 137365.	6.6	25
500	Discovery of Dualâ€Functional Amorphous Titanium Suboxide to Promote Polysulfide Adsorption and Regulate Sulfide Growth in Li–S Batteries. Advanced Science, 2022, 9, .	5.6	9
501	Iron (Fe, Ni, Co)-based transition metal compounds for lithium-sulfur batteries: Mechanism, progress and prospects. Journal of Energy Chemistry, 2022, 73, 513-532.	7.1	50
502	La2NiO4 nanoparticles as a core host of sulfur to enhance cathode volumetric capacity for lithium–sulfur battery. Electrochimica Acta, 2022, 424, 140670.	2.6	3
503	Perovskite transition metal oxide of nanofibers as catalytic hosts for lithium–sulfur battery. Journal of Alloys and Compounds, 2022, 918, 165660.	2.8	12
504	In-situ embedding CoTe catalyst into 1D–2D nitrogen-doped carbon to didirectionally regulate lithium-sulfur batteries. Nano Research, 2022, 15, 8972-8982.	5.8	31
505	Electrocatalyst Modulation toward Bidirectional Sulfur Redox in Li–S Batteries: From Strategic Probing to Mechanistic Understanding. Advanced Energy Materials, 2022, 12, .	10.2	49
506	Facile Synthesis of CoS Nanoparticles Anchored on the Surface of Functionalized Multiwalled Carbon Nanotubes as Cathode Materials for Advanced Li–S Batteries. Industrial & Engineering Chemistry Research, 2022, 61, 9322,9330	1.8	6

#	Article	IF	CITATIONS
507	High-Performance Cathode Materials for Lithium–Sulfur Batteries Based on Sulfurated Poly(norbornadiene) and Sulfurated Poly(dicyclopentadiene). ACS Applied Energy Materials, 2022, 5, 7642-7650.	2.5	2
508	Two-dimensional host materials for lithium-sulfur batteries: A review and perspective. Energy Storage Materials, 2022, 50, 696-717.	9.5	26
509	Internally enhanced conductive 3D porous hierarchical biochar framework for lithium sulfur battery. Energy, 2022, 255, 124474.	4.5	9
510	Catalytic effect in Li-S batteries: From band theory to practical application. Materials Today, 2022, 57, 84-120.	8.3	69
511	Single Mo–N ₄ Atomic Sites Anchored on Nâ€doped Carbon Nanoflowers as Sulfur Host with Multiple Immobilization and Catalytic Effects for Highâ€Performance Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	7.8	39
512	Dawson-type polyoxometalate modified separator for anchoring/catalyzing polysulfides in high-performance lithium-sulfur batteries. Electrochimica Acta, 2022, 428, 140868.	2.6	11
513	Poly(ionic liquid) Nanovesicle-Templated Carbon Nanocapsules Functionalized with Uniform Iron Nitride Nanoparticles as Catalytic Sulfur Host for Li–S Batteries. ACS Nano, 2022, 16, 10554-10565.	7.3	18
514	Unity of Opposites between Soluble and Insoluble Lithium Polysulfides in Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, .	11.1	38
515	Sulfurized Polypropylene as Lowâ€Cost Cathode Material for High Capacity Lithiumâ€Sulfur Batteries. Batteries and Supercaps, 0, , .	2.4	1
516	Construction of frustrated Lewis pairs at N and Mo2C double sites boosts efficient electrocatalysts for Li-S batteries. Chemical Engineering Science, 2022, 261, 117942.	1.9	4
517	A naphthalene organic cage captured sodium polysulphide as cathode materials for lithium-ion sulfide batteries. Journal of Alloys and Compounds, 2022, 923, 166488.	2.8	1
518	é",硫电æ±éžå‡ç>,电å,¬åŒ−å‰,. Chinese Science Bulletin, 2023, 68, 399-413.	0.4	1
519	Will <scp>lithiumâ€sulfur</scp> batteries be the next <scp>beyondâ€lithium</scp> ion batteries and even much better?. InformaÄnÃ-Materiály, 2022, 4, .	8.5	48
520	Modulating Bond Interactions and Interface Microenvironments between Polysulfide and Catalysts toward Advanced Metal–Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	7.8	22
521	Molecular engineering of sulfurâ€providing materials for optimized sulfur conversion in Liâ€S chemistry. EcoMat, 2022, 4, .	6.8	7
522	Polar Co3Se4 nitrogen-doped porous carbon derived from ZIF-67 for use as a sulfur substrates in high-performance lithium-sulfur batteries. Journal of Alloys and Compounds, 2022, 923, 166435.	2.8	10
523	Highly active CoP-Co2N confined in nanocarbon enabling efficient electrocatalytic immobilizing-conversion of polysulfide targeting high-rate lithium-sulfur batteries. Journal of Energy Chemistry, 2022, 75, 250-259.	7.1	34
524	Renewable biomass-derived carbon-based hosts for lithium–sulfur batteries. Sustainable Energy and Fuels, 2022, 6, 5211-5242.	2.5	6

#	Article	IF	CITATIONS
525	Advances of graphene-based aerogels and their modifications in lithium-sulfur batteries. Carbon, 2023, 201, 679-702.	5.4	19
526	Wide-Temperature-Range Li–S Batteries Enabled by Thiodimolybdate [Mo ₂ S ₁₂] ^{2–} as a Dual-Function Molecular Catalyst for Polysulfide Redox and Lithium Intercalation. ACS Nano, 2022, 16, 14569-14581.	7.3	18
527	Lithiumâ€Rich Li[Li _{0.2} Ni _{0.2} Mn _{0.6}]O ₂ /Hierarchical Porous Graphitic Carbon Composites Promoters for Polysulfides Regulation in Lithium–Sulfur Batteries. Energy Technology, 0, , 2200800.	1.8	0
528	All-in-one Janus separator for lithium–sulfur batteries with lithium polysulfide and dendrite growth suppressed at temperature gradient effect. Journal of Power Sources, 2022, 550, 232115.	4.0	7
529	Graphene oxide wrapped hollow mesoporous carbon spheres as a dynamically bipolar host for lithium–sulfur batteries. Journal of Materials Chemistry A, 2022, 10, 24422-24433.	5.2	15
530	Multifunctional Ni/NiO heterostructure nanoparticles doped carbon nanorods modified separator for enhancing Li–S battery performance. Electrochimica Acta, 2022, 435, 141396.	2.6	12
531	Metal-organic framework-based catalysts for lithium-sulfur batteries. Coordination Chemistry Reviews, 2023, 475, 214879.	9.5	32
532	Ti _{<i>n</i>} O _{2<i>n</i>–1} /MXene Hierarchical Bifunctional Catalyst Anchored on Graphene Aerogel toward Flexible and High-Energy Li–S Batteries. ACS Nano, 2022, 16, 19133-19144.	7.3	22
533	The Optimization of a Carbon Paper/MnO2 Composite Current Collector for Manufacturing a High-Performance Li–S Battery Cathode. Crystals, 2022, 12, 1596.	1.0	1
534	Phase Evolution of VCâ€VO Heterogeneous Particles to Facilitate Sulfur Species Conversion in Liâ^'S Batteries. Advanced Functional Materials, 2023, 33, .	7.8	30
535	Protonâ€Induced Defectâ€Rich Vanadium Oxides as Reversible Polysulfide Conversion Sites for Highâ€Performance Lithium Sulfur Batteries. Chemistry - A European Journal, 2023, 29, .	1.7	2
536	Dual additive of lithium titanate and sulfurized pyrolyzed polyacrylonitrile in sulfur cathode for high rate performance in lithium–sulfur battery. Physical Chemistry Chemical Physics, 2022, 25, 351-358.	1.3	0
537	Cation-doped V2O5 microsphere as a bidirectional catalyst to activate sulfur redox reactions for lithium-sulfur batteries. Chemical Engineering Journal, 2023, 456, 140948.	6.6	15
538	High-entropy perovskite oxide nanofibers as efficient bidirectional electrocatalyst of liquid-solid conversion processes in lithium-sulfur batteries. Nano Energy, 2023, 106, 108037.	8.2	29
539	Coupling multifunctional catalytic active sites into metal carbide catalysts to promote the multipath bidirectional conversion of Li-S redox. Journal of Alloys and Compounds, 2023, 938, 168569.	2.8	4
540	Efficient sulfur host based on Sn doping to construct Fe2O3 nanospheres with high active interface structure for lithium-sulfur batteries. Applied Surface Science, 2023, 613, 156003.	3.1	84
541	Singleâ€ a tom electrocatalysts for lithium–sulfur chemistry: Design principle, mechanism, and outlook. , 2023, 5, .		18
542	Recent advances and perspectives of CeO2-based catalysts: Electronic properties and applications for energy storage and conversion. Frontiers in Chemistry, 0, 10, .	1.8	6

ARTICLE IF CITATIONS Unraveling Polysulfide's Adsorption and Electrocatalytic Conversion on Metal Oxides for Liâ€S 543 5.6 29 Batteries. Advanced Science, 2023, 10, . Porous TiO_{2â€"<i>x</i>}/C Nanofibers with Axially Aligned Tunnel Pores as Effective Sulfur Hosts for Stabilized Lithiumâ€"Sulfur Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 544 54725-54735. In Situ Constructing a Catalytic Shell for Sulfur Cathode via Electrochemical Oxidative 545 4.0 2 Polymerization. ACS Applied Materials & amp; Interfaces, 2022, 14, 54830-54839. Cooperative Catalysis of Polysulfides in Lithiumâ \in Sulfur Batteries through Adsorption Competition by Tuning Cationic Geometric Configuration of Dualâ \in active Sites in Spinel Oxides. Angewandte Chemie, 0, , 546 Cooperative Catalysis of Polysulfides in Lithiumâ€Sulfur Batteries through Adsorption Competition by Tuning Cationic Géometric Configuration of Dualâ€active Sites in Spinel Oxides. Angewandte Chemié -547 7.2 27 International Edition, 2023, 62, . Protecting lithium metal anodes in lithium–sulfur batteries: A review. Energy Material Advances, 2023, 548 4.7 4, . Longâ€lasting, reinforced electrical networking in a highâ€loading Li₂S cathode for 549 5 highâ€performance lithiumâ€"sulfur batteries., 2023, 5, . Electrocatalysts in lithium-sulfur batteries. Nano Research, 2023, 16, 4438-4467. 5.8 26 A review on lithium-sulfur batteries: Challenge, development, and perspective. Nano Research, 2023, 16, 551 5.8 36 8097-8138. Adsorption-catalysis design with cerium oxide nanorods supported nickel-cobalt-oxide with multifunctional reaction interfaces for anchoring polysulfides and accelerating redox reactions in lithium sulfur battery. Journal of Colloid and Interface Science, 2023, 635, 466-480. Electrocatalytic and Conductive Vanadium Oxide on Carbonized Bacterial Cellulose Aerogel for the 553 2 2.1 Sulfur Cathode in Li-S Batteries. Batteries, 2023, 9, 14. Two-in-one separator capturing and reutilizing polysulfides for high performance lithium-sulfur 6.6 batteries. Chemical Engineering Journal, 2023, 460, 141620. Catalytic performance of binary transition metal sulfide FeCoS2/rGO for lithiumâ€"sulfur batteries. 556 1.2 2 Journal of Solid State Electrochemistry, 2023, 27, 1045-1053. Nanoscale transition metal catalysts anchored on perovskite oxide enabling enhanced kinetics of 7.1 lithium polysulfide redox in lithium-sulfur batteries. Journal of Energy Chemistry, 2023, 81, 432-442. Multiple Effects of High Surface Area Hollow Nanospheres Assembled by Nickel Cobaltate Nanosheets 558 1.7 1 on Soluble Lithium Polysulfides. Molecules, 2023, 28, 1539. MnO-Mo2C heterogeneous particles supported on porous carbon: Accelerating the catalytic conversion of polysulfides. Chemical Engineering Journal, 2023, 460, 141811. Interface Engineering Toward Expedited Li₂S Deposition in Lithiumâ€"Sulfur Batteries: A 560 11.1 29 Critical Review. Advanced Materials, 2023, 35, . High Entropy Oxide (CrMnFeNiMg)₃O₄ with Large Compositional Space Shows Longâ€Term Stability as Cathode in Lithiumâ€Sulfur Batteries. ChemSusChem, 2023, 16, .

#	Article	IF	CITATIONS
562	Defect-Rich W/Mo-Doped V ₂ O ₅ Microspheres as a Catalytic Host To Boost Sulfur Redox Kinetics for Lithium–Sulfur Batteries. Inorganic Chemistry, 2023, 62, 5219-5228.	1.9	9
563	Selfâ€Assembled Macrocyclic Copper Complex Enables Homogeneous Catalysis for High‣oading Lithium–Sulfur Batteries. Advanced Materials, 2023, 35, .	11.1	7
594	From non-carbon host toward carbon-free lithium-sulfur batteries. Nano Research, 2024, 17, 1337-1365.	5.8	0
605	Structure engineering of cathode host materials for Li–S batteries. Rare Metals, 0, , .	3.6	0
611	Defective MnO2 functional separator coating as effective polysulfide mediators for lithium–sulfur batteries. Tungsten, 0, , .	2.0	0
612	Interface engineering toward stable lithium–sulfur batteries. Energy and Environmental Science, 2024, 17, 1330-1367.	15.6	2
618	Metal organic frameworks-based cathode materials for advanced Li-S batteries: A comprehensive review. Nano Research, 2024, 17, 2592-2618.	5.8	0