Highâ€Performance Epoxy Nanocomposites Reinforced Nanotube Sponge for Electromagnetic Interference Shie

Advanced Functional Materials 26, 447-455 DOI: 10.1002/adfm.201503782

Citation Report

#	Article	IF	CITATIONS
1	Carbon Nanotube Sponges, Aerogels, and Hierarchical Composites: Synthesis, Properties, and Energy Applications. Advanced Energy Materials, 2016, 6, 1600554.	10.2	183
2	Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353, 1137-1140.	6.0	3,688
3	Ti ₃ C ₂ MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band. ACS Applied Materials & Interfaces, 2016, 8, 21011-21019.	4.0	775
4	Nanoscaled self-alignment of Fe ₃ O ₄ nanodiscs in ultrathin rGO films with engineered conductivity for electromagnetic interference shielding. Nanoscale, 2016, 8, 15989-15998.	2.8	71
5	Light-Weight Silver Plating Foam and Carbon Nanotube Hybridized Epoxy Composite Foams with Exceptional Conductivity and Electromagnetic Shielding Property. ACS Applied Materials & Interfaces, 2016, 8, 24131-24142.	4.0	164
6	A strategy to achieve enhanced electromagnetic interference shielding at low concentration with a new generation of conductive carbon black in a chlorinated polyethylene elastomeric matrix. Physical Chemistry Chemical Physics, 2016, 18, 24591-24599.	1.3	85
7	Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance. Nanoscale, 2016, 8, 16684-16693.	2.8	131
8	Highly Stable Carbon Nanotube/Polyaniline Porous Network for Multifunctional Applications. ACS Applied Materials & Interfaces, 2016, 8, 34027-34033.	4.0	55
9	Three-dimensional carbon nanotube based polymer composites for thermal management. Composites Part A: Applied Science and Manufacturing, 2016, 90, 678-686.	3.8	65
10	Construction of a carbon fiber based layer-by-layer (LbL) assembly – a smart approach towards effective EMI shielding. RSC Advances, 2016, 6, 112614-112619.	1.7	29
11	Largely enhanced electrical properties of polymer composites via the combined effect of volume exclusion and synergy. RSC Advances, 2016, 6, 51900-51907.	1.7	9
12	Graphene foam/carbon nanotube/poly(dimethyl siloxane) composites for exceptional microwave shielding. Composites Part A: Applied Science and Manufacturing, 2016, 85, 199-206.	3.8	171
13	Ultralight, super-elastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding. Carbon, 2017, 115, 629-639.	5.4	228
14	Chiral induced synthesis of helical polypyrrole (PPy) nano-structures: a lightweight and high-performance material against electromagnetic pollution. Journal of Materials Chemistry C, 2017, 5, 2175-2181.	2.7	134
15	A comparative study on electromagnetic interference shielding behaviors of chemically reduced and thermally reduced graphene aerogels. Journal of Colloid and Interface Science, 2017, 492, 112-118.	5.0	37
16	Strain sensing behaviors of epoxy nanocomposites with carbon nanotubes under cyclic deformation. Polymer, 2017, 112, 1-9.	1.8	94
17	Graphene, microscale metallic mesh, and transparent dielectric hybrid structure for excellent transparent electromagnetic interference shielding and absorbing. 2D Materials, 2017, 4, 025021.	2.0	58
18	Ultralight Graphene Foam/Conductive Polymer Composites for Exceptional Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2017, 9, 9059-9069.	4.0	438

#	Article	IF	CITATIONS
19	Tunable electromagnetic interference shielding effectiveness via multilayer assembly of regenerated cellulose as a supporting substrate and carbon nanotubes/polymer as a functional layer. Journal of Materials Chemistry C, 2017, 5, 3130-3138.	2.7	137
20	Process-microstructure-electrical conductivity relationships in injection-molded polypropylene/carbon nanotube nanocomposite foams. Composites Part A: Applied Science and Manufacturing, 2017, 96, 28-36.	3.8	80
21	Highly Efficient Microwave Absorption of Magnetic Nanospindle–Conductive Polymer Hybrids by Molecular Layer Deposition. ACS Applied Materials & Interfaces, 2017, 9, 11116-11125.	4.0	91
22	A wearable microwave absorption cloth. Journal of Materials Chemistry C, 2017, 5, 2432-2441.	2.7	100
23	Fabrication and toughening behavior of carbon nanotube (CNT) scaffold reinforced SiBCN ceramic composites with high CNT loading. Ceramics International, 2017, 43, 9024-9031.	2.3	22
24	Metal organic framework (MOF)-derived carbonaceous Co3O4/Co microframes anchored on RGO with enhanced electromagnetic wave absorption performances. Synthetic Metals, 2017, 228, 32-40.	2.1	102
25	Unique Multilayered Assembly Consisting of "Flower-Like―Ferrite Nanoclusters Conjugated with MWCNT as Millimeter Wave Absorbers. Journal of Physical Chemistry C, 2017, 121, 13998-14009.	1.5	51
26	Carbon Nanotube–Multilayered Graphene Edge Plane Core–Shell Hybrid Foams for Ultrahighâ€Performance Electromagneticâ€Interference Shielding. Advanced Materials, 2017, 29, 1701583.	11.1	560
27	High Strain Tolerant EMI Shielding Using Carbon Nanotube Network Stabilized Rubber Composite. Advanced Materials Technologies, 2017, 2, 1700078.	3.0	153
28	Graphene paper for exceptional EMI shielding performance using large-sized graphene oxide sheets and doping strategy. Carbon, 2017, 122, 74-81.	5.4	195
29	Collision-induced activation: Towards industrially scalable approach to graphite nanoplatelets functionalization for superior polymer nanocomposites. Scientific Reports, 2017, 7, 3560.	1.6	30
30	Laminated and Two-Dimensional Carbon-Supported Microwave Absorbers Derived from MXenes. ACS Applied Materials & Interfaces, 2017, 9, 20038-20045.	4.0	323
31	Flexible, Ultrathin, and High-Efficiency Electromagnetic Shielding Properties of Poly(Vinylidene) Tj ETQq0 0 0 rgB	[/Qverloct 4.0	264 x 10 Tf 50 26
32	Stiff, Thermally Stable and Highly Anisotropic Wood-Derived Carbon Composite Monoliths for Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2017, 9, 21371-21381.	4.0	148
33	In-situ pressing synthesis of densely compacted carbon nanotubes reinforced nanocomposites with outstanding mechanical performance. Composites Science and Technology, 2017, 146, 131-138.	3.8	7
34	One-Pot Sintering Strategy for Efficient Fabrication of High-Performance and Multifunctional Graphene Foams. ACS Applied Materials & amp; Interfaces, 2017, 9, 13323-13330.	4.0	40
35	Nano ZnO enhanced 3D porous reduced graphene oxide (RGO) for light-weight superior electromagnetic interference shielding. Materials Research Express, 2017, 4, 025605.	0.8	2

36	Ultralow content silver densely-coated glass microsphere for high performance conducting polymer-matrix composites. Composites Science and Technology, 2017, 140, 89-98.	3.8	23
----	--	-----	----

#	Article	IF	CITATIONS
37	Synthesis of lightweight and flexible composite aerogel of mesoporous iron oxide threaded by carbon nanotubes for microwave absorption. Journal of Alloys and Compounds, 2017, 697, 138-146.	2.8	66
38	Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities. Composites Science and Technology, 2017, 139, 83-89.	3.8	356
39	Graphene-Based Sandwich Structures for Frequency Selectable Electromagnetic Shielding. ACS Applied Materials & Interfaces, 2017, 9, 36119-36129.	4.0	135
40	Porous Electrospun Fibers with Selfâ€Sealing Functionality: An Enabling Strategy for Trapping Biomacromolecules. Small, 2017, 13, 1701949.	5.2	33
41	Electromagnetic wave suppressors derived from crosslinked polymer composites containing functional particles: Potential and key challenges. Nano Structures Nano Objects, 2017, 12, 130-146.	1.9	52
42	Highly Conductive Transition Metal Carbide/Carbonitride(MXene)@polystyrene Nanocomposites Fabricated by Electrostatic Assembly for Highly Efficient Electromagnetic Interference Shielding. Advanced Functional Materials, 2017, 27, 1702807.	7.8	620
43	Phenolic resin-enhanced three-dimensional graphene aerogels and their epoxy nanocomposites with high mechanical and electromagnetic interference shielding performances. Composites Science and Technology, 2017, 152, 254-262.	3.8	106
44	Ultrahigh molecular weight polyethylene composites with segregated nickel conductive network for highly efficient electromagnetic interference shielding. Materials Letters, 2017, 209, 353-356.	1.3	38
45	Cyanate Ester Resin Filled with Graphene Nanosheets and NiFe ₂ O ₄ –Reduced Graphene Oxide Nanohybrids for Efficient Electromagnetic Interference Shielding. Nano, 2017, 12, 1750066.	0.5	16
46	Electromagnetic screening in soft conducting composite-containing ferrites: the key role of size and shape anisotropy. Materials Chemistry Frontiers, 2017, 1, 2574-2589.	3.2	26
47	Ultralight and Flexible Polyurethane/Silver Nanowire Nanocomposites with Unidirectional Pores for Highly Effective Electromagnetic Shielding. ACS Applied Materials & Interfaces, 2017, 9, 32211-32219.	4.0	158
48	Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon, 2017, 124, 506-514.	5.4	297
49	Electromagnetic wave absorption properties of a carbon nanotube modified by a tetrapyridinoporphyrazine interface layer. Journal of Materials Chemistry C, 2017, 5, 7479-7488.	2.7	146
50	Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers. Carbon, 2017, 123, 385-394.	5.4	114
51	Lightweight, thermally insulating and stiff carbon honeycomb-induced graphene composite foams with a horizontal laminated structure for electromagnetic interference shielding. Carbon, 2017, 123, 223-232.	5.4	91
52	Toward high efficiency thermally conductive and electrically insulating pathways through uniformly dispersed and highly oriented graphites close-packed with SiC. Composites Science and Technology, 2017, 150, 217-226.	3.8	49
53	Collagen Fiber Membrane as an Absorptive Substrate To Coat with Carbon Nanotubes-Encapsulated Metal Nanoparticles for Lightweight, Wearable, and Absorption-Dominated Shielding Membrane. Industrial & Engineering Chemistry Research, 2017, 56, 8553-8562.	1.8	19
54	Flexible and efficient electromagnetic interference shielding materials from ground tire rubber. Carbon, 2017, 121, 267-273.	5.4	150

ARTICLE IF CITATIONS # Lightweight flexible carbon nanotube/polyaniline films with outstanding EMI shielding properties. 55 2.7 75 Journal of Materials Chemistry C, 2017, 5, 8694-8698. Magnetic, electrically conductive and lightweight graphene/iron pentacarbonyl porous films enhanced with chitosan for highly efficient broadband electromagnetic interference shielding. 3.8 58 Composites Science and Technology, 2017, 151, 71-78. A strong and tough polymer–carbon nanotube film for flexible and efficient electromagnetic 57 2.7 112 interference shielding. Journal of Materials Chemistry C, 2017, 5, 8944-8951. Electromagnetic dissipation on the surface of metal organic framework (MOF)/reduced graphene 2.0 oxide (RGŎ) hybrids. Materials Chemistry and Physics, 2017, 199, 340-347. Synthesis of hollow Cu_{1.8}S nano-cubes for electromagnetic interference shielding. 59 2.8 31 Nanoscale, 2017, 9, 10961-10965. Electromagnetic interference shielding based on a high strength polyaniline-aramid nanocomposite. Composites Science and Technology, 2017, 149, 159-165. 3.8 Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for 61 5.8 82 selective-frequency absorptions. Nano Research, 2017, 10, 1595-1607. Decoration of multi-walled carbon nanotubes with FexNi1-x alloys and their magnetic properties. 2.8 Journal of Alloys and Compounds, 2017, 693, 1083-1089. Strong flexible polymer/graphene composite films with 3D saw-tooth folding for enhanced and 63 5.4 159 tunable electromagnetic shielding. Carbon, 2017, 113, 55-62. Reprint of Graphene foam/carbon nanotube/poly(dimethyl siloxane) composites for exceptional 64 3.8 microwave shielding. Composites Part A: Applied Science and Manufacturing, 2017, 92, 190-197. Fabrication of Porous Silicon Carbide Ceramics with High Electromagnetic Interference Shielding 4 65 0.7 Effectiveness. ChemistrySelect, 2017, 2, 11131-11136. Octadecylamine-Grafted Graphene Oxide Helps the Dispersion of Carbon Nanotubes in Ethylene Vinyl Acetate. Polymers, 2017, 9, 397. Tailored distribution of nanoparticles in bi-phasic polymeric blends as emerging materials for suppressing electromagnetic radiation: challenges and prospects. Journal of Materials Chemistry C, 67 2.7 73 2018, 6, 3120-3142. Lightweight, compressible and electrically conductive polyurethane sponges coated with synergistic multiwalled carbon nanotubes and graphene for piezoresistive sensors. Nanoscale, 2018, 10, 7116-7126. 2.8 243 Facile approach to fabricate BCN/Fe<i> _x </i> (B/C/N)<i> _y </i> 69 nano-architectures with enhanced electromagnetic wave absorption. Nanotechnology, 2018, 29, 7 1.3 235701. Efficient electromagnetic interference shielding of lightweight carbon nanotube/polyethylene composites<i>via</i>compression molding plus salt-leaching. RSC Advances, 2018, 8, 8849-8855. 33 Scalable and Sustainable Approach toward Highly Compressible, Anisotropic, Lamellar Carbon Sponge. 71 5.8 246 CheM, 2018, 4, 544-554. Absorption and Reflection Contributions to the High Performance of Electromagnetic Waves Shielding Materials Fabricated by Compositing Leather Matrix with Metal Nanoparticles. ACS Applied Materials & amp; Interfaces, 2018, 10, 14036-14044. 44

#	Article	IF	CITATIONS
73	An Ultralight Graphene Honeycomb Sandwich for Stretchable Lightâ€Emitting Displays. Advanced Functional Materials, 2018, 28, 1707043.	7.8	61
74	Hydrogen Bond-Regulated Boron Nitride Network Structures for Improved Thermal Conductive Property of Polyamide-imide Composites. ACS Applied Materials & Interfaces, 2018, 10, 16812-16821.	4.0	196
75	Wool-Ball-Type Core-Dual-Shell FeCo@SiO2@MWCNTs Microcubes for Screening Electromagnetic Interference. ACS Applied Nano Materials, 2018, 1, 2261-2271.	2.4	22
76	Compacting CNT sponge to achieve larger electromagnetic interference shielding performance. Materials and Design, 2018, 144, 323-330.	3.3	33
77	Mechanical properties of nanocomposites reinforced by carbon nanotube sponges. Journal of Materiomics, 2018, 4, 157-164.	2.8	32
78	Thermal-air ageing treatment on mechanical, electrical, and electromagnetic interference shielding properties of lightweight carbon nanotube based polymer nanocomposites. Composites Part A: Applied Science and Manufacturing, 2018, 107, 447-460.	3.8	95
79	Robust and Mechanically and Electrically Self-Healing Hydrogel for Efficient Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2018, 10, 8245-8257.	4.0	134
80	Synergistic effect of graphene nanosheets and carbonyl iron–nickel alloy hybrid filler on electromagnetic interference shielding and thermal conductivity of cyanate ester composites. Journal of Materials Chemistry C, 2018, 6, 1476-1486.	2.7	212
81	Ultralight and Highly Elastic Graphene/Lignin-Derived Carbon Nanocomposite Aerogels with Ultrahigh Electromagnetic Interference Shielding Performance. ACS Applied Materials & Interfaces, 2018, 10, 8205-8213.	4.0	160
82	Porous superhydrophobic polymer/carbon composites for lightweight and self-cleaning EMI shielding application. Composites Science and Technology, 2018, 158, 86-93.	3.8	147
83	Light weight and flexible poly(ether ether ketone) based composite film with excellent thermal stability and mechanical properties for wide-band electromagnetic interference shielding. RSC Advances, 2018, 8, 3296-3303.	1.7	24
84	Effects of corona treatment on morphology and properties of carbon based fillers/epoxy nanocomposites. Polymer Composites, 2018, 39, E2298.	2.3	6
85	Lightweight, flexible and strong core-shell non-woven fabrics covered by reduced graphene oxide for high-performance electromagnetic interference shielding. Carbon, 2018, 130, 59-68.	5.4	150
86	Constructing highly oriented segregated structure towards high-strength carbon nanotube/ultrahigh-molecular-weight polyethylene composites for electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2018, 110, 237-245.	3.8	93
87	Microbuckling-Enhanced Electromagnetic-Wave-Absorbing Capability of a Stretchable Fe ₃ O ₄ /Carbon Nanotube/Poly(dimethylsiloxane) Composite Film. ACS Applied Nano Materials, 2018, 1, 2227-2236.	2.4	18
88	Ultra-light h-BCN architectures derived from new organic monomers with tunable electromagnetic wave absorption. Carbon, 2018, 136, 345-358.	5.4	69
89	Highâ€Loading Carbon Nanotube/Polymer Nanocomposite Fabric Coatings Obtained by Capillarityâ€Assisted "Excess Assembly―for Electromagnetic Interference Shielding. Advanced Materials Interfaces, 2018, 5, 1800116.	1.9	39
90	Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties. ACS Nano, 2018, 12, 4583-4593.	7.3	942

#	Article	IF	CITATIONS
91	Superflexible Interconnected Graphene Network Nanocomposites for High-Performance Electromagnetic Interference Shielding. ACS Omega, 2018, 3, 3599-3607.	1.6	40
92	Segregated polypropylene/cross-linked poly(ethylene-co-1-octene)/multi-walled carbon nanotube nanocomposites with low percolation threshold and dominated negative temperature coefficient effect: Towards electromagnetic interference shielding and thermistors. Composites Science and Technology. 2018. 159. 152-161.	3.8	83
93	Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film. ACS Applied Materials & Interfaces, 2018, 10, 11941-11949.	4.0	245
94	Hydro-sensitive sandwich structures for self-tunable smart electromagnetic shielding. Chemical Engineering Journal, 2018, 344, 342-352.	6.6	90
95	Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Progress in Polymer Science, 2018, 80, 1-38.	11.8	155
96	Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding. Carbon, 2018, 133, 457-463.	5.4	206
97	Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. Journal of Materials Chemistry C, 2018, 6, 4586-4602.	2.7	512
98	Fabrication of a flexible electromagnetic interference shielding Fe3O4@reduced graphene oxide/natural rubber composite with segregated network. Chemical Engineering Journal, 2018, 344, 184-193.	6.6	277
99	Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation. ACS Applied Materials & Interfaces, 2018, 10, 1104-1112.	4.0	327
100	Synergism between carbon materials and Ni chains in flexible poly(vinylidene fluoride) composite films with high heat dissipation to improve electromagnetic shielding properties. Carbon, 2018, 127, 469-478.	5.4	169
101	Variable densification of reduced graphene oxide foam into multifunctional high-performance graphene paper. Journal of Materials Chemistry C, 2018, 6, 12321-12328.	2.7	37
102	Electromagnetic interference shielding properties of graphene/MWCNT hybrid buckypaper. Micro and Nano Letters, 2018, 13, 1252-1254.	0.6	6
103	Robust and Flexible Cellulose Nanofiber/Multiwalled Carbon Nanotube Film for High-Performance Electromagnetic Interference Shielding. Industrial & Engineering Chemistry Research, 2018, 57, 17152-17160.	1.8	62
104	Ultra-Stiff Graphene Foams as Three-Dimensional Conductive Fillers for Epoxy Resin. ACS Nano, 2018, 12, 11219-11228.	7.3	37
106	Ultrathin Biomimetic Polymeric Ti ₃ C ₂ T _{<i>x</i>} MXene Composite Films for Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2018, 10, 44787-44795.	4.0	298
107	Influence of Nickel Layer on Electromagnetic Interference Shielding Effectiveness of CuSâ€Polyacrylonitrile Fibers. Bulletin of the Korean Chemical Society, 2018, 39, 1406-1411.	1.0	12
108	Flexible Poly(vinyl alcohol)/Reduced Graphene Oxide Coated Carbon Composites for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2018, 1, 5854-5864.	2.4	42
109	Green Approach to Conductive PEDOT:PSS Decorating Magnetic-Graphene to Recover Conductivity for Highly Efficient Absorption. ACS Sustainable Chemistry and Engineering, 2018, 6, 14017-14025.	3.2	113

	CITATION	Report	
#	Article	IF	CITATIONS
110	Polystyrene/rGO Composites with Orientation-3D Network Binary Structure and Its Surprising Conductivity. Macromolecules, 2018, 51, 7993-8000.	2.2	23
111	Carbon Composite Networks with Ultrathin Skin Layers of Graphene Film for Exceptional Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2018, 10, 38255-38263.	4.0	73
112	Quick Heat Dissipation in Absorption-Dominated Microwave Shielding Properties of Flexible Poly(vinylidene fluoride)/Carbon Nanotube/Co Composite Films with Anisotropy-Shaped Co (Flowers) Tj ETQq	004gBT/(Oveølsock 10 T
113	Highly Electrically Conductive Three-Dimensional Ti ₃ C ₂ T _{<i>x</i>} MXene/Reduced Graphene Oxide Hybrid Aerogels with Excellent Electromagnetic Interference Shielding Performances. ACS Nano, 2018, 12, 11193-11202.	7.3	671
114	Electrically Conductive and Mechanically Strong Graphene/Mullite Ceramic Composites for High-Performance Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2018, 10, 39245-39256.	4.0	64
115	A highly efficient and heat-resistant electromagnetic interference shielding carbon nanotube/poly(phenylene sulfide) composite <i>via</i> sinter molding. Journal of Materials Chemistry C, 2018, 6, 10760-10766.	2.7	57
116	Efficient electromagnetic interference shielding and radar absorbing properties of ultrathin and flexible polymer-carbon nanotube composite films. Materials Research Express, 2018, 5, 115304.	0.8	18
117	Lightweight flexible graphite sheet for high-performance electromagnetic interference shielding. Materials Letters, 2018, 233, 59-62.	1.3	24
118	Multifunctional Polymer Nanocomposites Reinforced by 3D Continuous Ceramic Nanofillers. ACS Nano, 2018, 12, 9126-9133.	7.3	44
119	Biomass-based honeycomb-like architectures for preparation of robust carbon foams with high electromagnetic interference shielding performance. Carbon, 2018, 140, 227-236.	5.4	87
120	Hybrids of CNTs and acrylic emulsion for the consolidation of wall paintings. Progress in Organic Coatings, 2018, 124, 185-192.	1.9	10
121	Injection Molded Segregated Carbon Nanotube/Polypropylene Composite for Efficient Electromagnetic Interference Shielding. Industrial & Engineering Chemistry Research, 2018, 57, 12378-12385.	1.8	53
122	Incorporating a microcellular structure into PVDF/graphene–nanoplatelet composites to tune their electrical conductivity and electromagnetic interference shielding properties. Journal of Materials Chemistry C, 2018, 6, 10292-10300.	2.7	165
123	Evolution of structural, electrical, and mechanical response of 3D robust network and conducting mechanically modified glass fabric-polyester composites with devisable 1D VGCNF. Composites Science and Technology, 2018, 163, 171-179.	3.8	8
124	Strategy to Enhance Conductivity of Polystyrene/Graphene Composite Foams via Supercritical Carbon Dioxide Foaming Process. Journal of Supercritical Fluids, 2018, 142, 52-63.	1.6	34
125	Anticorrosive, Ultralight, and Flexible Carbonâ€Wrapped Metallic Nanowire Hybrid Sponges for Highly Efficient Electromagnetic Interference Shielding. Small, 2018, 14, e1800534.	5.2	310
126	Semi-transparent biomass-derived macroscopic carbon grids for efficient and tunable electromagnetic shielding. Carbon, 2018, 139, 271-278.	5.4	68
127	Ultralight, highly flexible and conductive carbon foams for high performance electromagnetic shielding application. Journal of Materials Science: Materials in Electronics, 2018, 29, 13643-13652.	1.1	24

#	Article	IF	CITATIONS
128	Synthesis of graphene/thorns-like polyaniline/α-Fe2O3@SiO2 nanocomposites for lightweight and highly efficient electromagnetic wave absorber. Journal of Colloid and Interface Science, 2018, 530, 212-222.	5.0	52
129	Transparent conductor based on metal ring clusters interface with uniform light transmission for excellent microwave shielding. Thin Solid Films, 2018, 662, 76-82.	0.8	16
130	Integrated strength and toughness in graphene/calcium alginate films for highly efficient electromagnetic interference shielding. Journal of Materials Chemistry C, 2018, 6, 9166-9174.	2.7	54
131	Designed fabrication of reduced graphene oxides/Ni hybrids for effective electromagnetic absorption and shielding. Carbon, 2018, 139, 759-767.	5.4	267
132	Silica Aerogel–Epoxy Nanocomposites: Understanding Epoxy Reinforcement in Terms of Aerogel Surface Chemistry and Epoxy–Silica Interface Compatibility. ACS Applied Nano Materials, 2018, 1, 4179-4189.	2.4	35
133	Flexible Polydimethylsilane Nanocomposites Enhanced with a Three-Dimensional Graphene/Carbon Nanotube Bicontinuous Framework for High-Performance Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2018, 10, 26723-26732.	4.0	159
134	Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance. Chemical Engineering Journal, 2018, 352, 510-518.	6.6	203
135	Ni deposited onto MWCNTs buckypapers for improved broadband EMI shielding. Journal of Materials Science: Materials in Electronics, 2018, 29, 15034-15041.	1.1	11
136	Lightweight and highly efficient electromagnetic wave-absorbing of 3D CNTs/GNS@CoFe2O4 ternary composite aerogels. Journal of Alloys and Compounds, 2018, 768, 6-14.	2.8	98
137	A facile approach to fabricating silver-coated cotton fiber non-woven fabrics for ultrahigh electromagnetic interference shielding. Applied Surface Science, 2018, 458, 236-244.	3.1	155
138	Engineering closed-cell structure in lightweight and flexible carbon foam composite for high-efficient electromagnetic interference shielding. Carbon, 2018, 136, 299-308.	5.4	117
139	Ultralight and ultraelastic sponge/Al@Al2O3 nanocomposite with tunable electromagnetic properties. Journal of Applied Physics, 2018, 124, .	1.1	3
140	Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 2018, 114, 49-71.	3.8	554
141	Largely enhanced mechanical property of segregated carbon nanotube/poly(vinylidene fluoride) composites with high electromagnetic interference shielding performance. Composites Science and Technology, 2018, 167, 260-267.	3.8	74
142	Highly Conductive Nanocomposite Enabled by an Accordion-like Graphene Network for Flexible Heating Films and Supercapacitors. ACS Applied Nano Materials, 2018, 1, 4781-4787.	2.4	13
143	Lightweight and flexible electrospun polymer nanofiber/metal nanoparticle hybrid membrane for high-performance electromagnetic interference shielding. NPG Asia Materials, 2018, 10, 749-760.	3.8	170
144	Synergistic Effect of Graphite and Carbon Nanotubes on Improved Electromagnetic Interference Shielding Performance in Segregated Composites. Industrial & Engineering Chemistry Research, 2018, 57, 11929-11938.	1.8	78
145	Towards suppressing dielectric loss of GO/PVDF nanocomposites with TA-Fe coordination complexes as an interface layer. Journal of Materials Science and Technology, 2018, 34, 2415-2423.	5.6	29

#	ARTICLE Flexible and highly conductive sandwich nylon/nickel film for ultra-efficient electromagnetic	IF	Citations
146	interference shielding. Applied Surface Science, 2018, 455, 856-863.	3.1	66
147	Thermally Driven Transport and Relaxation Switching Selfâ€Powered Electromagnetic Energy Conversion. Small, 2018, 14, e1800987.	5.2	733
148	3D printed honeycomb spacers: Tailoring sandwich structures for enhanced electromagnetic shielding. Journal of Reinforced Plastics and Composites, 2018, 37, 1072-1082.	1.6	9
149	Transparent Perfect Microwave Absorber Employing Asymmetric Resonance Cavity. Advanced Science, 2019, 6, 1901320.	5.6	40
150	Mechanical properties and electromagnetic shielding performance of single-source-precursor synthesized dense monolithic SiC/HfC _x N _{1â^'x} /C ceramic nanocomposites. Journal of Materials Chemistry C, 2019, 7, 10683-10693.	2.7	27
151	High-performance functional nanocomposites using 3D ordered and continuous nanostructures generated from proximity-field nanopatterning. Functional Composites and Structures, 2019, 1, 032002.	1.6	27
152	Broadband and strong electromagnetic wave absorption of epoxy composites filled with ultralow content of non-covalently modified reduced graphene oxides. Carbon, 2019, 154, 115-124.	5.4	48
153	A Review on Graphene Polymer Nanocomposites in Harsh Operating Conditions. Industrial & Engineering Chemistry Research, 2019, 58, 17106-17129.	1.8	31
154	Stretched graphene nanosheets formed the "obstacle walls―in melamine sponge towards effective electromagnetic interference shielding applications. Materials and Design, 2019, 182, 108029.	3.3	46
155	Multifunctional primer film made from percolation enhanced CNT/Epoxy nanocomposite and ultrathin CNT network. Composites Part B: Engineering, 2019, 175, 107107.	5.9	12
156	Foam structure to improve microwave absorption properties of silicon carbide/carbon material. Journal of Materials Science and Technology, 2019, 35, 2658-2664.	5.6	36
157	Carbon nanotube buckypaper and buckypaper/polypropylene composites for high shielding effectiveness and absorption-dominated shielding material. Composites Science and Technology, 2019, 181, 107699.	3.8	53
158	Microwave assisted sinter molding of polyetherimide/carbon nanotubes composites with segregated structure for high-performance EMI shielding applications. Composites Science and Technology, 2019, 182, 107753.	3.8	65
159	Low-Melting-Point Alloy Continuous Network Construction in a Polymer Matrix for Thermal Conductivity and Electromagnetic Shielding Enhancement. ACS Applied Polymer Materials, 2019, 1, 2006-2014.	2.0	33
160	Ultralight and flexible graphene foam coated with Bacillus subtilis as a highly efficient electromagnetic interference shielding film. Applied Surface Science, 2019, 491, 616-623.	3.1	34
161	High absorption shielding material of poly(phthalazinone etherketone)/multiwall carbon nanotube composite films with sandwich configurations. RSC Advances, 2019, 9, 18758-18766.	1.7	17
162	High-Performance Carbonized Waste Corrugated Boards Reinforced with Epoxy Coating as Lightweight Structured Electromagnetic Shields. ACS Sustainable Chemistry and Engineering, 2019, 7, 18718-18725.	3.2	46
163	Ultrathin 2D Nanomaterials for Electromagnetic Interference Shielding. Advanced Materials Interfaces, 2019, 6, 1901454.	1.9	75

#	Article	IF	CITATIONS
164	Aligned carbon nanotube/carbon (CNT/C) composites with exceptionally high electrical conductivity at elevated temperature to 400 °C. Materials Research Express, 2019, 6, 116302.	0.8	10
165	High strength and toughness epoxy nanocomposites reinforced with graphene oxide-nanocellulose micro/nanoscale structures. Applied Surface Science, 2019, 497, 143802.	3.1	11
166	Unprecedented Electromagnetic Interference Shielding from Three-Dimensional Bi-continuous Nanoporous Graphene. Matter, 2019, 1, 1077-1087.	5.0	53
167	Electromagnetic interference shielding property of polybenzoxazine/graphene/nickel composites. Reactive and Functional Polymers, 2019, 143, 104324.	2.0	18
168	Electromagnetic and acoustic double-shielding graphene-based metastructures. Nanoscale, 2019, 11, 1692-1699.	2.8	32
169	A novel core-shell epoxy high performance composite: Self-lubricating, heat-resistant and self-repairing. Progress in Organic Coatings, 2019, 129, 217-228.	1.9	4
170	Enhancing the EMI shielding of natural rubber-based supercritical CO ₂ foams by exploiting their porous morphology and CNT segregated networks. Nanoscale, 2019, 11, 1011-1020.	2.8	149
171	3D Ti3C2Tx MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties. Composites Part A: Applied Science and Manufacturing, 2019, 123, 293-300.	3.8	172
172	Hierarchical Structure MnO ₂ Coated PDMSâ^'Carbon Nanotube Sponge as Flexible Electrode for Electrocatalytic Water Splitting and High Performance Supercapacitor. ChemistrySelect, 2019, 4, 5996-6003.	0.7	10
173	Recent Advances in Polymer and Polymer Composites for Electromagnetic Interference Shielding: Review and Future Prospects. Polymer Reviews, 2019, 59, 687-738.	5.3	153
174	Promising Ti ₃ C ₂ T <i>_x</i> MXene/Ni Chain Hybrid with Excellent Electromagnetic Wave Absorption and Shielding Capacity. ACS Applied Materials & Interfaces, 2019, 11, 25399-25409.	4.0	337
175	Enhanced electromagnetic shielding property of cf/mullite composites fabricated by spark plasma sintering. Ceramics International, 2019, 45, 18988-18993.	2.3	13
176	Template-Free Synthesis of "Wool-Ball―Like Hollow CuS Structures Can Effectively Suppress Electromagnetic Radiation: A Mechanistic Insight. Journal of Physical Chemistry C, 2019, 123, 17136-17147.	1.5	14
177	Structuring dense three-dimensional sheet-like skeleton networks in biomass-derived carbon aerogels for efficient electromagnetic interference shielding. Carbon, 2019, 152, 316-324.	5.4	76
178	High angle sensitivity of carbon nanotubes films reinforced composites to electromagnetic interference shielding. Scripta Materialia, 2019, 170, 85-89.	2.6	14
179	Highly stretchable electromagnetic interference (EMI) shielding segregated polyurethane/carbon nanotube composites fabricated by microwave selective sintering. Journal of Materials Chemistry C, 2019, 7, 7938-7946.	2.7	128
180	Fabrication of a highly tough, strong, and stiff carbon nanotube/epoxy conductive composite with an ultralow percolation threshold <i>via</i> self-assembly. Journal of Materials Chemistry A, 2019, 7, 15731-15740.	5.2	41
181	Facile fabrication of conductive silver films on carbon fiber fabrics via two components spray deposition technique for electromagnetic interference shielding. Applied Surface Science, 2019, 487, 1245-1252.	3.1	37

#	Article	IF	CITATIONS
182	Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon, 2019, 152, 159-187.	5.4	365
183	Graphene-Wrapped MgO/Poly(vinyl alcohol) Composite Sheets: Dielectric and Electromagnetic Interference Shielding Properties at Elevated Temperatures. ACS Applied Materials & Interfaces, 2019, 11, 23714-23730.	4.0	16
184	Epoxy/ionic liquid-like MWCNTs composites with improved processability and mechanical properties. Composites Communications, 2019, 15, 46-52.	3.3	11
185	Ultralight and high-elastic carbon foam with hollow framework for dynamically tunable electromagnetic interference shielding at gigahertz frequency. Carbon, 2019, 153, 330-336.	5.4	42
186	Selective electromagnetic interference shielding performance and superior mechanical strength of conductive polymer composites with oriented segregated conductive networks. Chemical Engineering Journal, 2019, 373, 556-564.	6.6	147
187	Ï€-Ï€ stacking interface design for improving the strength and electromagnetic interference shielding of ultrathin and flexible water-borne polymer/sulfonated graphene composites. Carbon, 2019, 149, 679-692.	5.4	87
188	Novel Straw-Derived Carbon Materials for Electromagnetic Interference Shielding: A Waste-to-Wealth and Sustainable Initiative. ACS Sustainable Chemistry and Engineering, 2019, 7, 9663-9670.	3.2	61
189	3D-printed oblique honeycomb Al2O3/SiCw structure for electromagnetic wave absorption. Chemical Engineering Journal, 2019, 372, 940-945.	6.6	100
190	Eco-friendly flame retardant and electromagnetic interference shielding cotton fabrics with multi-layered coatings. Chemical Engineering Journal, 2019, 372, 1077-1090.	6.6	251
191	Lightweight sandwich fiber-welded foam-like nonwoven fabrics/graphene composites for electromagnetic shielding. Materials Chemistry and Physics, 2019, 232, 246-253.	2.0	11
192	Highly Transparent and Broadband Electromagnetic Interference Shielding Based on Ultrathin Doped Ag and Conducting Oxides Hybrid Film Structures. ACS Applied Materials & Interfaces, 2019, 11, 11782-11791.	4.0	88
193	Flexible and transparent graphene/silver-nanowires composite film for high electromagnetic interference shielding effectiveness. Science Bulletin, 2019, 64, 540-546.	4.3	85
194	Mechanically Durable, Highly Conductive, and Anticorrosive Composite Fabrics with Excellent Self-Cleaning Performance for High-Efficiency Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2019, 11, 10883-10894.	4.0	121
195	High-Temperature Oxidation-Resistant ZrN _{0.4} B _{0.6} /SiC Nanohybrid for Enhanced Microwave Absorption. ACS Applied Materials & Interfaces, 2019, 11, 15869-15880.	4.0	150
196	Flexible and flame-retarding thermoplastic polyurethane-based electromagnetic interference shielding composites. Chemical Engineering Journal, 2019, 370, 1341-1349.	6.6	75
197	Fiber-welded ciliated-like nonwoven fabric nano-composite multiscale architectures for superior mechanical and electromagnetic shielding behaviors. Composites Part A: Applied Science and Manufacturing, 2019, 121, 321-329.	3.8	23
198	Lightweight and flexible hybrid film based on delicate design of electrospun nanofibers for high-performance electromagnetic interference shielding. Nanoscale, 2019, 11, 8616-8625.	2.8	83
199	Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Progress in Materials Science, 2019, 103, 319-373.	16.0	490

#	Article	IF	CITATIONS
200	Silicaâ€Mediated Formation of Nickel Sulfide Nanosheets on CNT Films for Versatile Energy Storage. Small, 2019, 15, e1805064.	5.2	45
201	Flexible and ultrathin electrospun regenerate cellulose nanofibers and d-Ti3C2Tx (MXene) composite film for electromagnetic interference shielding. Journal of Alloys and Compounds, 2019, 788, 1246-1255.	2.8	111
202	Preparation of Graphene Aerogel with High Mechanical Stability and Microwave Absorption Ability via Combining Surface Support of Metallic-CNTs and Interfacial Cross-Linking by Magnetic Nanoparticles. ACS Applied Materials & Interfaces, 2019, 11, 10409-10417.	4.0	66
203	Preparation of Thermally Conductive Polymer Composites with Good Electromagnetic Interference Shielding Efficiency Based on Natural Wood-Derived Carbon Scaffolds. ACS Sustainable Chemistry and Engineering, 2019, 7, 6259-6266.	3.2	104
204	CNT coatings grown on the outer and inner surfaces of magnetic hollow carbon fibers with enhanced electromagnetic interference shielding performance. Journal of Materials Chemistry C, 2019, 7, 14375-14383.	2.7	21
205	Tunable High-Performance Microwave Absorption and Shielding by Three Constituent Phases Between rGO and Fe3O4@SiO2 Nanochains. Frontiers in Chemistry, 2019, 7, 711.	1.8	11
206	Robustly Magnetic and Conductive Textile with High Electromagnetic Shielding Performance Prepared by Synchronous Thiol–Ene Click Chemistry. Industrial & Engineering Chemistry Research, 2019, 58, 23154-23165.	1.8	12
207	Highly Conductive and Machineâ€Washable Textiles for Efficient Electromagnetic Interference Shielding. Advanced Materials Technologies, 2019, 4, 1800503.	3.0	101
208	Effect of carbon nanofiller dimension on synergistic EMI shielding network of epoxy/metal conductive foams. Composites Part A: Applied Science and Manufacturing, 2019, 118, 41-48.	3.8	83
209	Lightweight and flexible Ni-Co alloy nanoparticle-coated electrospun polymer nanofiber hybrid membranes for high-performance electromagnetic interference shielding. Journal of Alloys and Compounds, 2019, 784, 244-255.	2.8	77
210	Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite. Carbon, 2019, 145, 61-66.	5.4	237
211	Cake-like flexible carbon nanotubes/graphene composite prepared via a facile method for high-performance electromagnetic interference shielding. Carbon, 2019, 145, 259-265.	5.4	55
212	Shape memory driving thickness-adjustable G@SMPU sponge with ultrahigh carbon loading ratio for excellent microwave shielding performance. Materials Letters, 2019, 236, 116-119.	1.3	10
213	A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites. Journal of Materials Science, 2019, 54, 1036-1076.	1.7	210
214	Flexible and conductive polyurethane composites for electromagnetic shielding and printable circuit. Chemical Engineering Journal, 2019, 360, 1427-1436.	6.6	91
215	Layered structural design of flexible waterborne polyurethane conductive film for excellent electromagnetic interference shielding and low microwave reflectivity. Applied Surface Science, 2019, 469, 1-9.	3.1	78
216	Constructing multiple interfaces in polydimethylsiloxane/multi-walled carbon nanotubes nanocomposites by the incorporation of cotton fibers for high-performance electromagnetic interference shielding and mechanical enhancement. Applied Surface Science, 2019, 466, 657-665.	3.1	82
217	Trace electrosprayed nanopolystyrene facilitated dispersion of multiwalled carbon nanotubes: Simultaneously strengthening and toughening epoxy. Carbon, 2019, 142, 131-140.	5.4	150

	CITATION	N REPORT	
#	Article	IF	CITATIONS
218	Flexible, durable and thermal conducting thiol-modified rGO-WPU/cotton fabric for robust electromagnetic interference shielding. Chemical Engineering Journal, 2019, 360, 817-828.	6.6	112
219	Ultrathin and anisotropic polyvinyl butyral/Ni-graphite/short-cut carbon fibre film with high electromagnetic shielding performance. Composites Science and Technology, 2019, 169, 127-134.	3.8	57
220	Electromagnetic interference shielding polymer composites with magnetic and conductive FeCo/reduced graphene oxide 3D networks. Journal of Materials Science: Materials in Electronics, 2019, 30, 2045-2056.	1.1	10
221	Robust, Superelastic Hard Carbon with In Situ Ultrafine Crystals. Advanced Functional Materials, 2020, 30, 1907486.	7.8	20
222	High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading. Carbon, 2020, 157, 570-577.	5.4	153
223	Lightweight Epoxy-Based Composites for EMI Shielding Applications. Journal of Electronic Materials, 2020, 49, 1702-1720.	1.0	27
224	Highly flexible and ultra-thin carbon-fabric/Ag/waterborne polyurethane film for ultra-efficient EMI shielding. Materials and Design, 2020, 185, 108227.	3.3	64
225	Multilayer-structured Ni-Co-Fe-P/polyaniline/polyimide composite fabric for robust electromagnetic shielding with low reflection characteristic. Chemical Engineering Journal, 2020, 380, 122553.	6.6	97
226	Overview on nanocarbon sponges in polymeric nanocomposite. Materials Research Innovations, 2020, 24, 309-320.	1.0	7
227	Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chemical Engineering Journal, 2020, 380, 122475.	6.6	426
228	Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chemical Engineering Journal, 2020, 381, 122622.	6.6	289
229	Highly efficient multielement flame retardant for multifunctional epoxy resin with satisfactory thermal, flameâ€retardant, and mechanical properties. Polymers for Advanced Technologies, 2020, 31, 146-159.	1.6	27
230	Fabrication of enhanced epoxy composite by embedded hierarchical porous lignocellulosic foam. Renewable Energy, 2020, 150, 1066-1073.	4.3	7
231	2D Ti3C2Tx MXene/aramid nanofibers composite films prepared via a simple filtration method with excellent mechanical and electromagnetic interference shielding properties. Ceramics International, 2020, 46, 6199-6204.	2.3	53
232	Highâ€electromagneticâ€shielding cotton fabric prepared using multiwall carbon nanotubes/nickel–phosphorus electroless plating. Applied Organometallic Chemistry, 2020, 34, e5434.	1.7	12
233	Multifunctions of Polymer Nanocomposites: Environmental Remediation, Electromagnetic Interference Shielding, And Sensing Applications. ChemNanoMat, 2020, 6, 174-184.	1.5	112
234	Synthesis of a furfural-based DOPO-containing co-curing agent for fire-safe epoxy resins. RSC Advances, 2020, 10, 1956-1965.	1.7	35
235	Lightweight, flexible MXene/polymer film with simultaneously excellent mechanical property and high-performance electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2020, 130, 105764.	3.8	145

#	Article	IF	CITATIONS
236	Achieving wideband microwave absorption properties in PVDF nanocomposite foams with an ultra-low MWCNT content by introducing a microcellular structure. Journal of Materials Chemistry C, 2020, 8, 58-70.	2.7	120
237	Layer-by-layer assembly of PDMS-coated nickel ferrite/multiwalled carbon nanotubes/cotton fabrics for robust and durable electromagnetic interference shielding. Cellulose, 2020, 27, 2829-2845.	2.4	42
238	A multi-dimensional and level-by-level assembly strategy for constructing flexible and sandwich-type nanoheterostructures for high-performance electromagnetic interference shielding. Nanoscale, 2020, 12, 3308-3316.	2.8	29
239	Fabrication of lightweight and flexible silicon rubber foams with ultra-efficient electromagnetic interference shielding and adjustable low reflectivity. Journal of Materials Chemistry C, 2020, 8, 147-157.	2.7	60
240	Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding. Journal of Materials Chemistry C, 2020, 8, 1673-1678.	2.7	83
241	Flexible, Robust, and Multifunctional Electromagnetic Interference Shielding Film with Alternating Cellulose Nanofiber and MXene Layers. ACS Applied Materials & Interfaces, 2020, 12, 4895-4905.	4.0	370
242	The effect of temperature and graphene concentration on the electrical conductivity and dielectric permittivity of graphene–polymer nanocomposites. Acta Mechanica, 2020, 231, 1305-1320.	1.1	29
243	Facile Preparation of Electromagnetic Interference Shielding Materials Enabled by Constructing Interconnected Network of Multi-walled Carbon Nanotubes in a Miscible Polymeric Blend. Chinese Journal of Polymer Science (English Edition), 2020, 38, 593-598.	2.0	9
244	Multifunctional Aramid Nanofiber/Carbon Nanotube Hybrid Aerogel Films. ACS Nano, 2020, 14, 688-697.	7.3	298
245	Sandwich-like Magnetic Graphene Papers Prepared with MOF-Derived Fe ₃ O ₄ –C for Absorption-Dominated Electromagnetic Interference Shielding. Industrial & Engineering Chemistry Research, 2020, 59, 154-165.	1.8	73
246	Reinforcing Microwave Absorption Multiwalled Carbon Nanotube–Epoxy Composites Using Glass Fibers for Multifunctional Applications. Advanced Engineering Materials, 2020, 22, 1900780.	1.6	12
247	Ultrastrong and Highly Conductive MXeneâ€Based Films for Highâ€Performance Electromagnetic Interference Shielding. Advanced Electronic Materials, 2020, 6, 1901094.	2.6	120
248	Controllable fabrication of elastomeric and porous graphene films with superior foldable behavior and excellent electromagnetic interference shielding performance. Carbon, 2020, 158, 728-737.	5.4	57
249	Substantially improving mechanical property of double percolated poly(phenylene) Tj ETQq1 1 0.784314 rgBT /O interference shielding performance. Journal of Applied Polymer Science, 2020, 137, 48709.	verlock 10 1.3) Tf 50 227 7
250	Lightweight and stiff carbon foams derived from rigid thermosetting polyimide foam with superior electromagnetic interference shielding performance. Carbon, 2020, 158, 45-54.	5.4	139
251	Multi-functional CNT nanopaper polyurethane nanocomposite fabricated by ultrasonic infiltration and dip soaking processes. Composites Part B: Engineering, 2020, 182, 107646.	5.9	27
252	Self-templating graphene network composites by flame carbonization for excellent electromagnetic interference shielding. Composites Part B: Engineering, 2020, 182, 107615.	5.9	39
253	Orthogonally structured graphene nanointerface for lightweight SiC nanowire-based nanocomposites with enhanced mechanical and electromagnetic-interference shielding properties. Composites Part B: Engineering, 2020, 202, 108381.	5.9	16

#	Article	IF	CITATIONS
254	Radio-frequency transparent carbon nanotube electrothermal film for radome de-icing application. Journal of Materials Research and Technology, 2020, 9, 10854-10862.	2.6	11
255	Ultrathin Densified Carbon Nanotube Film with "Metal-like―Conductivity, Superior Mechanical Strength, and Ultrahigh Electromagnetic Interference Shielding Effectiveness. ACS Nano, 2020, 14, 14134-14145.	7.3	162
256	Enhancements of foamability, electromagnetic interference shielding and mechanical property of epoxy microcellular composite foam with well-dispersed f-MWCNTs. Composites Part A: Applied Science and Manufacturing, 2020, 138, 106060.	3.8	39
257	Steam-chest molding of polypropylene/carbon black composite foams as broadband EMI shields with high absorptivity. Composites Communications, 2020, 22, 100508.	3.3	39
258	An electrically conductive polymer composite with a co-continuous segregated structure for enhanced mechanical performance. Journal of Materials Chemistry C, 2020, 8, 11546-11554.	2.7	40
259	Development of light cellular carbon nanotube@graphene/carbon nanocomposites with effective mechanical and EMI shielding performance. Carbon, 2020, 168, 719-731.	5.4	43
260	Influence of the filler dimensionality on the electrical, mechanical and electromagnetic shielding properties of isoprene rubber-based flexible conductive composites. Composites Communications, 2020, 21, 100417.	3.3	42
261	Carbon nanotube/ZnO nanowire/polyvinylidene fluoride hybrid nanocomposites for enhanced electromagnetic interference shielding. Canadian Journal of Chemical Engineering, 2020, 98, 1036-1046.	0.9	25
262	A comprehensive review on mechanical, electromagnetic radiation shielding, and thermal conductivity of fibers/inorganic fillers reinforced hybrid polymer composites. Polymer Composites, 2020, 41, 3940-3965.	2.3	179
263	Deposited structure design of epoxy composites with excellent electromagnetic interference shielding performance and balanced mechanical properties. Journal of Materials Chemistry C, 2020, 8, 16930-16939.	2.7	11
264	Conductive Skeleton–Heterostructure Composites Based on Chrome Shavings for Enhanced Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2020, 12, 53076-53087.	4.0	29
265	Collagen Fiber/Fe ₃ O ₄ /Polypyrrole Nanocomposites for Absorption-Type Electromagnetic Interference Shielding and Radar Stealth. ACS Applied Nano Materials, 2020, 3, 11906-11915.	2.4	19
266	Effects of Carbonyl Iron Powder (CIP) Content on the Electromagnetic Wave Absorption and Mechanical Properties of CIP/ABS Composites. Polymers, 2020, 12, 1694.	2.0	18
267	Curing behaviors and properties of epoxy resins with para-hexatomic ring blocks: Excellent comprehensive performances of tetrafluorophenyl. Polymer, 2020, 206, 122828.	1.8	22
268	Polymer-Assisted Fabrication of Silver Nanowire Cellular Monoliths: Toward Hydrophobic and Ultraflexible High-Performance Electromagnetic Interference Shielding Materials. ACS Applied Materials & Interfaces, 2020, 12, 38584-38592.	4.0	38
269	Multifunctional paraffin wax/carbon nanotube sponge composites with simultaneous high-efficient thermal management and electromagnetic interference shielding efficiencies for electronic devices. Composites Part B: Engineering, 2020, 199, 108308.	5.9	65
270	New Polymeric Three-Phase Nanocomposites Based on Polyvinylidene Fluoride, Magnetite Nanoparticles and Multi-Walled Carbon Nanotubes: Production, Structure and Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 4783-4791.	1.9	4
271	A cauliflower-shaped nickel @ porous calcium silicate core-shell composite: Preparation and enhanced electromagnetic shielding performance. Composites Science and Technology, 2020, 199, 108343.	3.8	32

#	Article	IF	CITATIONS
272	Toward Ceramic Anticorrosion Coatings: A Review. Corrosion, 2020, 76, 895-917.	0.5	5
273	An elegant coupling: Freeze-casting and versatile polymer composites. Progress in Polymer Science, 2020, 109, 101289.	11.8	69
274	Enhanced microwave shielding effectiveness and suppressed reflection of chopped carbon fiber felt by electrostatic flocking of carbon fiber. Composites Part A: Applied Science and Manufacturing, 2020, 139, 106099.	3.8	28
275	Metal carbide/Ni hybrids for high-performance electromagnetic absorption and absorption-based electromagnetic interference shielding. Inorganic Chemistry Frontiers, 2020, 7, 4832-4844.	3.0	31
276	Sustainable Lightweight Biochar-Based Composites with Electromagnetic Shielding Properties. ACS Omega, 2020, 5, 32490-32497.	1.6	21
277	Lightweight and robust rGO/sugarcane derived hybrid carbon foams with outstanding EMI shielding performance. Journal of Materials Science and Technology, 2020, 52, 119-126.	5.6	286
279	Nano-porous carbon wrapped SiC nanowires with tunable dielectric properties for electromagnetic applications. Materials and Design, 2020, 192, 108738.	3.3	17
280	Fe ionic induced strong bioinspired Fe3O4@graphene aerogel with excellent electromagnetic shielding effectiveness. Applied Surface Science, 2020, 525, 146569.	3.1	17
281	Multifunctional MXene-Based Fireproof Electromagnetic Shielding Films with Exceptional Anisotropic Heat Dissipation Capability and Joule Heating Performance. ACS Applied Materials & Interfaces, 2020, 12, 27350-27360.	4.0	157
282	Filler-Free Conducting Polymers as a New Class of Transparent Electromagnetic Interference Shields. ACS Applied Materials & Interfaces, 2020, 12, 28596-28606.	4.0	50
283	Electromagnetic Interference Shielding of Graphene Aerogel with Layered Microstructure Fabricated via Mechanical Compression. ACS Applied Materials & amp; Interfaces, 2020, 12, 30686-30694.	4.0	88
284	Lightweight and Construable Magnetic Wood for Electromagnetic Interference Shielding. Advanced Engineering Materials, 2020, 22, 2000257.	1.6	15
285	Ultra-fast heat dissipating aerogels derived from polyaniline anchored cellulose nanofibers as sustainable microwave absorbers. Carbohydrate Polymers, 2020, 246, 116663.	5.1	60
286	Electromagnetic Wave Absorption Properties of Structural Conductive ABS Fabricated by Fused Deposition Modeling. Polymers, 2020, 12, 1217.	2.0	25
287	Superior and highly absorbed electromagnetic interference shielding performance achieved by designing the reflection-absorption-integrated shielding compartment with conductive wall and lossy core. Chemical Engineering Journal, 2020, 393, 124644.	6.6	87
288	A Multifunctional Smart Textile Derived from Merino Wool/Nylon Polymer Nanocomposites as Next Generation Microwave Absorber and Soft Touch Sensor. ACS Applied Materials & Interfaces, 2020, 12, 17988-18001.	4.0	80
289	Flexible and Ultrathin Waterproof Cellular Membranes Based on Highâ€Conjunction Metalâ€Wrapped Polymer Nanofibers for Electromagnetic Interference Shielding. Advanced Materials, 2020, 32, e1908496.	11.1	234
290	Highly flexible and ultrathin Mo2C film via in-situ growth on graphene oxide for electromagnetic shielding application. Carbon, 2020, 163, 254-264.	5.4	36

#	Article	IF	CITATIONS
291	Ultrahigh-Sensitive Finlike Double-Sided E-Skin for Force Direction Detection. ACS Applied Materials & Interfaces, 2020, 12, 14136-14144.	4.0	44
292	Graphene Foams for Electromagnetic Interference Shielding: A Review. ACS Applied Nano Materials, 2020, 3, 6140-6155.	2.4	87
293	Ultraflexible and Mechanically Strong Double-Layered Aramid Nanofiber–Ti ₃ C ₂ T _{<i>x</i>} MXene/Silver Nanowire Nanocomposite Papers for High-Performance Electromagnetic Interference Shielding. ACS Nano, 2020, 14, 8368-8382.	7.3	566
294	Gradient structure design of lightweight and flexible silicone rubber nanocomposite foam for efficient electromagnetic interference shielding. Chemical Engineering Journal, 2020, 390, 124589.	6.6	124
295	Carbon nanofiber-structured polyurethane foams for compaction-adjustable microwave shielding. Materials Chemistry and Physics, 2020, 246, 122808.	2.0	8
296	Bifunctional carbon-encapsulated FeSiAl hybrid flakes for enhanced microwave absorption properties and analysis of corrosion resistance. Journal of Alloys and Compounds, 2020, 828, 154079.	2.8	53
297	Highly Stretchable Electromagnetic Interference Shielding Materials Made with Conductive Microcoils Confined to a Honeycomb Structure. ACS Applied Materials & Interfaces, 2020, 12, 12101-12108.	4.0	23
298	The optimization of nanocomposite coating with polyaniline coated carbon nanotubes on fabrics for exceptional electromagnetic interference shielding. Diamond and Related Materials, 2020, 104, 107757.	1.8	39
299	Recyclable conductive epoxy composites with segregated filler network structure for EMI shielding and strain sensing. Composites Part A: Applied Science and Manufacturing, 2020, 132, 105837.	3.8	61
300	SWCNT-modulated folding-resistant sandwich-structured graphene film for high-performance electromagnetic interference shielding. Carbon, 2020, 162, 490-496.	5.4	39
301	Ultrathin and flexible biomass-derived C@CoFe nanocomposite films for efficient electromagnetic interference shielding. Composites Part B: Engineering, 2020, 190, 107935.	5.9	74
302	Ultralight, Flexible, and Biomimetic Nanocellulose/Silver Nanowire Aerogels for Electromagnetic Interference Shielding. ACS Nano, 2020, 14, 2927-2938.	7.3	254
303	Synthesis and Electromagnetic Interference Shielding Performance of Ti3SiC2-Based Ceramics Fabricated by Liquid Silicon Infiltration. Materials, 2020, 13, 328.	1.3	5
304	Lightweight and Robust Carbon Nanotube/Polyimide Foam for Efficient and Heat-Resistant Electromagnetic Interference Shielding and Microwave Absorption. ACS Applied Materials & Interfaces, 2020, 12, 8704-8712.	4.0	227
305	Axial Alignment of Carbon Nanotubes on Fibers To Enable Highly Conductive Fabrics for Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2020, 12, 7477-7485.	4.0	60
306	Carbon fiber-based polymer composite via ceramization toward excellent electromagnetic interference shielding performance and high temperature resistance. Composites Part A: Applied Science and Manufacturing, 2020, 131, 105769.	3.8	30
307	Constructing nanopores in poly(oxymethylene)/multi-wall carbon nanotube nanocomposites via poly(l-lactide) assisting for improving electromagnetic interference shielding. Journal of Colloid and Interface Science, 2020, 565, 536-545.	5.0	64
308	High-efficiency electromagnetic wave absorption of epoxy composites filled with ultralow content of reduced graphene/carbon nanotube oxides. Composites Science and Technology, 2020, 189, 108020.	3.8	44

#	Article	IF	CITATIONS
309	Silver nanowires intercalating Ti ₃ C ₂ T _x MXene composite films with excellent flexibility for electromagnetic interference shielding. Journal of Materials Chemistry C, 2020, 8, 3120-3126.	2.7	71
310	Recent advances and future perspectives for graphene oxide reinforced epoxy resins. Materials Today Communications, 2020, 23, 100883.	0.9	53
311	Surface Modification Design for Improving the Strength and Water Vapor Permeability of Waterborne Polymer/SiO2 Composites: Molecular Simulation and Experimental Analyses. Polymers, 2020, 12, 170.	2.0	18
312	Laterally compressed graphene foam/acrylonitrile butadiene styrene composites for electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2020, 133, 105887.	3.8	42
313	UV-light modulated Ti3C2Tx MXene/g-C3N4 heterojunction film for electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2020, 134, 105899.	3.8	36
314	High performance epoxy composites prepared using recycled short carbon fiber with enhanced dispersibility and interfacial bonding through polydopamine surface-modification. Composites Part B: Engineering, 2020, 193, 107987.	5.9	76
315	Multifunctional epoxy composites with highly flame retardant and effective electromagnetic interference shielding performances. Composites Part B: Engineering, 2020, 192, 107990.	5.9	61
316	The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design – A review. Progress in Materials Science, 2020, 113, 100672.	16.0	163
317	Electromagnetic shielding behavior of heat-treated Ti3C2TX MXene accompanied by structural and phase changes. Carbon, 2020, 165, 150-162.	5.4	52
318	Preparation and EMI shielding performance of epoxy/non-metallic conductive fillers nano-composites. Progress in Organic Coatings, 2020, 145, 105674.	1.9	26
319	Flexible heteroatomâ€doped porous carbon nanofiber cages for electrode scaffolds. , 2020, 2, 472-481.		21
320	Modulating electromagnetic interference shielding performance of ultra-lightweight composite foams through shape memory function. Composites Part B: Engineering, 2021, 204, 108497.	5.9	74
321	Construction of shape-memory carbon foam composites for adjustable EMI shielding under self-fixable mechanical deformation. Chemical Engineering Journal, 2021, 405, 126927.	6.6	72
322	Terahertz time domain spectroscopy of graphene and <scp>MXene</scp> polymer composites. Journal of Applied Polymer Science, 2021, 138, 49962.	1.3	10
323	Hierarchical, seamless, edge-rich nanocarbon hybrid foams for highly efficient electromagnetic-interference shielding. Journal of Materials Science and Technology, 2021, 72, 154-161.	5.6	45
324	3D-printing of segregated carbon nanotube/polylactic acid composite with enhanced electromagnetic interference shielding and mechanical performance. Materials and Design, 2021, 197, 109222.	3.3	63
325	Enhanced impact resistance and electromagnetic interference shielding of carbon nanotubes films composites. Journal of Applied Polymer Science, 2021, 138, 50033.	1.3	15
326	Nanoelectromagnetic of a highly conductive 2D transition metal carbide (MXene)/Graphene nanoplatelets composite in the EHF M-band frequency. Carbon, 2021, 173, 528-539.	5.4	28

#	Article	IF	CITATIONS
327	Multi-scale structural nitrogen-doped rGO@CNTs composites with ultra-low loading towards microwave absorption. Applied Surface Science, 2021, 538, 147943.	3.1	41
328	Construction of compressible Polymer/MXene composite foams for high-performance absorption-dominated electromagnetic shielding with ultra-low reflectivity. Carbon, 2021, 173, 932-940.	5.4	148
329	Effect of secondary filler properties and geometry on the electrical, dielectric, and electromagnetic interference shielding properties of carbon nanotubes/polyvinylidene fluoride nanocomposites. Polymer Engineering and Science, 2021, 61, 959-970.	1.5	26
330	High temperature electromagnetic shielding shape memory polymer composite. Chemical Engineering Journal, 2021, 408, 127365.	6.6	106
331	Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding. Carbon, 2021, 172, 569-596.	5.4	120
332	Tunable and transparent broadband metamaterial absorber with water-based substrate for optical window applications. Nanoscale, 2021, 13, 7831-7837.	2.8	44
333	Dual synergistic effect of a carbon/metal hybrid network on the mechanical and electromagnetic interference shielding performance in self-assembly enhanced epoxy curing networks. Journal of Materials Chemistry C, 2021, 9, 9282-9291.	2.7	9
334	Transition Metal Carbide (MXene)–Polymer Nanocomposites. Inorganic Materials Series, 2021, , 99-128.	0.5	0
335	Flexible poly(dimethyl siloxane) composites enhanced with 3D porous interconnected threeâ€component nanofiller framework for absorptionâ€dominated electromagnetic shielding. Journal of Polymer Science, 2021, 59, 353-365.	2.0	4
336	Lightweight and high-strength GMT/PEFP/GNP composites with absorb-dominated electromagnetic interference shielding property. Journal of Materials Science: Materials in Electronics, 2021, 32, 25863-25875.	1.1	10
337	Polymer-based lightweight materials for electromagnetic interference shielding: a review. Journal of Materials Science, 2021, 56, 6549-6580.	1.7	93
338	Polypyrrole-Based Composite Materials for Electromagnetic Wave Absorption. Polymer Reviews, 2021, 61, 646-687.	5.3	86
339	Advances in electromagnetic shielding properties of composite foams. Journal of Materials Chemistry A, 2021, 9, 8896-8949.	5.2	184
340	PET/Ag NW/PMMA transparent electromagnetic interference shielding films with high stability and flexibility. Nanoscale, 2021, 13, 8067-8076.	2.8	40
341	Electromagnetic interference shielding effectiveness of polymer nanocomposites. , 2021, , 211-236.		1
342	High-Performance Multifunctional Carbon–Silicon Carbide Composites with Strengthened Reduced Graphene Oxide. ACS Nano, 2021, 15, 2880-2892.	7.3	44
343	Scalable Fabrication of High-Performance Thin-Shell Oxide Nanoarchitected Materials <i>via</i> Proximity-Field Nanopatterning. ACS Nano, 2021, 15, 3960-3970.	7.3	11
344	Epoxy Functional Composites Based on Lanthanide Metal–Organic Frameworks for Luminescent Polymer Materials. ACS Applied Materials & Interfaces, 2021, 13, 7625-7634.	4.0	26

#	Article	IF	CITATIONS
345	Carbonized cellulose microsphere@void@MXene composite films with egg-box structure for electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2021, 141, 106229.	3.8	54
346	Flexible Protective Film: Ultrahard, Yet Flexible Hybrid Nanocomposite Reinforced by 3D Inorganic Nanoshell Structures. Advanced Functional Materials, 2021, 31, 2010254.	7.8	19
347	Preparation of flame retardant and conductive epoxy resin composites by incorporating functionalized multiâ€walled carbon nanotubes and graphite sheets. Polymers for Advanced Technologies, 2021, 32, 2093-2101.	1.6	17
348	Ultrathin, Lightweight, and Flexible CNT Buckypaper Enhanced Using MXenes for Electromagnetic Interference Shielding. Nano-Micro Letters, 2021, 13, 66.	14.4	108
349	Sustainable Double-Network Structural Materials for Electromagnetic Shielding. Nano Letters, 2021, 21, 2532-2537.	4.5	83
350	Tuning the polymerization sequence of alkynyl-functionalized benzoxazine: application as precursor for efficient magnetic EMI shielding materials. Journal of Materials Science, 2021, 56, 10691-10705.	1.7	17
351	Direct coating of copper nanoparticles on flexible substrates from copper precursors using underwater plasma and their EMI performance. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 265, 114995.	1.7	7
352	Electrically Conductive Ti ₃ C ₂ T _{<i>x</i>} MXene/Polypropylene Nanocomposites with an Ultralow Percolation Threshold for Efficient Electromagnetic Interference Shielding. Industrial & Engineering Chemistry Research, 2021, 60, 4342-4350.	1.8	49
353	Flexible and lightweight melamine sponge/MXene/polyborosiloxane (MSMP) hybrid structure for high-performance electromagnetic interference shielding and anti-impact safe-guarding. Composites Part B: Engineering, 2021, 211, 108669.	5.9	46
354	Excellent thermally conducting modified graphite nanoplatelets and MWCNTs/poly(phenylene) Tj ETQq1 1 0.784 Composites Part A: Applied Science and Manufacturing, 2021, 143, 106280.	314 rgBT / 3.8	Overlock 10 19
356	Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: Recent progress, challenges and prospects. Carbon, 2021, 176, 88-105.	5.4	328
357	Polyvinylidene Fluoride Core–Shell Nanofiber Membranes with Highly Conductive Shells for Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2021, 13, 25428-25437.	4.0	25
358	Enhanced shielding of electromagnetic radiations with flexible, lightâ€weight, and conductive <scp>Ag u</scp> / <scp>MWCNT</scp> / <scp>rGO</scp> architected <scp>PVDF</scp> nanocomposite films. Polymers for Advanced Technologies, 2021, 32, 3759-3769.	1.6	22
359	Application-Driven Carbon Nanotube Functional Materials. ACS Nano, 2021, 15, 7946-7974.	7.3	102
360	Ultralight carbon nanotube/graphene/polyimide foam with heterogeneous interfaces for efficient electromagnetic interference shielding and electromagnetic wave absorption. Carbon, 2021, 176, 118-125.	5.4	122
361	Hierarchical Porous Carbon Nanotube Skeleton Supported Polydimethylsiloxane Composite with Electrical Continuity for Highâ€Performance Electromagnetic Shielding. Advanced Materials Technologies, 2021, 6, 2100013.	3.0	8
362	Ultrathin, Strong, and Highly Flexible Ti ₃ C ₂ T _{<i>x</i>} MXene/Bacterial Cellulose Composite Films for High-Performance Electromagnetic Interference Shielding. ACS Nano, 2021, 15, 8439-8449.	7.3	178
363	Lignin doped epoxy acrylate sandwich electromagnetic shielding material synergized with Fe ₃ O ₄ and CNT. Journal of Dispersion Science and Technology, 2022, 43, 2209-2217	1.3	1

#	Article	IF	CITATIONS
364	3D cross-linked graphene or/and MXene based nanomaterials for electromagnetic wave absorbing and shielding. Carbon, 2021, 178, 413-435.	5.4	73
365	Decreasing the complex permittivity to enhance microwave absorption properties of flaky FeSiAl/MnZn ferrites composites. Journal of Materials Science: Materials in Electronics, 2021, 32, 18371-18380.	1.1	10
366	Advances in waterborne polymer/carbon material composites for electromagnetic interference shielding. Carbon, 2021, 177, 412-426.	5.4	103
367	Robust, Multiresponsive, Superhydrophobic, and Oleophobic Nanocomposites via a Highly Efficient Multifluorination Strategy. ACS Applied Materials & Interfaces, 2021, 13, 28949-28961.	4.0	31
368	Advanced collagen nanofibers-based functional bio-composites for high-value utilization of leather: A review. Journal of Science: Advanced Materials and Devices, 2021, 6, 153-166.	1.5	12
369	Porous aerogel and sponge composites: Assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today, 2021, 38, 101204.	6.2	142
370	High-Performance Joule Heating and Electromagnetic Shielding Properties of Anisotropic Carbon Scaffolds. ACS Applied Materials & Interfaces, 2021, 13, 29101-29112.	4.0	51
371	A Suggested Vacuum Bagging Process for the Fabrication of Single-Walled Carbon Nanotube/Epoxy Composites That Maximize Electromagnetic Interference Shielding Effectiveness. Polymers, 2021, 13, 1867.	2.0	6
372	Construction of three-dimensional interconnected graphene nanosheet network in thermoplastic polyurethane with highly efficient electromagnetic interference shielding. Composites Part B: Engineering, 2021, 215, 108813.	5.9	43
373	Flexible PTFE/MXene/PI soft electrothermal actuator with electromagnetic-interference shielding property. Chemical Engineering Journal, 2021, 414, 128883.	6.6	65
374	Lightweight high-performance carbon-polymer nanocomposites for electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2021, 145, 106376.	3.8	126
375	Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon, 2021, 177, 377-402.	5.4	405
376	Bi-continuous conductive network induced by in-situ phase separation in epoxy composites with enhanced electromagnetic interference shielding performance. Reactive and Functional Polymers, 2021, 164, 104918.	2.0	6
377	Multifunctional and corrosion resistant poly(phenylene sulfide)/Ag composites for electromagnetic interference shielding. Chemical Engineering Journal, 2021, 415, 129052.	6.6	68
378	Bubble-templated rGO-graphene nanoplatelet foams encapsulated in silicon rubber for electromagnetic interference shielding and high thermal conductivity. Chemical Engineering Journal, 2021, 415, 129054.	6.6	60
379	Electromagnetic Interference Shielding and Electrothermal Performance of MXene oated Cellulose Hybrid Papers and Fabrics Manufactured by a Facile Scalable Dipâ€Dry Coating Process. Advanced Engineering Materials, 2021, 23, 2100548.	1.6	24
380	Ultralight hard <scp>carbon nanotubes</scp> nanofiber foam/epoxy nanocomposites for comprehensive microwave absorption performance. Polymer Composites, 2021, 42, 4673-4683.	2.3	8
381	Structure and Bottom-up Formation Mechanism of Multisheet Silica-Based Nanoparticles Formed in an Epoxy Matrix through an <i>In Situ</i>	1.6	23

#	Article	IF	CITATIONS
382	Enhanced electromagnetic wave absorption performance of polymer/SiC-nanowire/MXene (Ti3C2Tx) composites. Carbon, 2021, 179, 408-416.	5.4	66
383	Modelling, fabrication and characterization of graphene/polymer nanocomposites for electromagnetic interference shielding applications. Carbon Trends, 2021, 4, 100047.	1.4	32
384	Polymerâ€based EMI shielding composites with 3D conductive networks: A miniâ€review. SusMat, 2021, 1, 413-431.	7.8	212
385	PVDF composites filled with core–shell fillers of Si@SiO2, Si@SiO2@PS: effects of multiple shells on dielectric properties and thermal conductivity. Journal of Materials Science: Materials in Electronics, 2021, 32, 23429-23444.	1.1	5
386	Microwave Absorption Performance of Single-Layer and Multi-Layer Structures Prepared by CNTs/Fe3O4 Nonwoven Materials. Crystals, 2021, 11, 1000.	1.0	9
387	Ultrathin, Ultralight, and Anisotropic Ordered Reduced Graphene Oxide Fiber Electromagnetic Interference Shielding Membrane. Advanced Materials Technologies, 2021, 6, 2100531.	3.0	13
388	MXene/polyurethane auxetic composite foam for electromagnetic interference shielding and impact attenuation. Composites Part A: Applied Science and Manufacturing, 2021, 147, 106430.	3.8	53
389	Multifunctional electromagnetic interference shielding films comprised of multilayered thermoplastic polyurethane membrane and silver nanowire. Composites Part A: Applied Science and Manufacturing, 2021, 147, 106472.	3.8	26
390	Tailoring hierarchical carbon nanotube cellular structure for electromagnetic interference shielding in extreme conditions. Materials and Design, 2021, 206, 109783.	3.3	11
391	Fabrication of highly flexible electromagnetic interference shielding polyimide carbon black composite using hot-pressing method. Composites Part B: Engineering, 2021, 221, 109010.	5.9	58
392	3D Interconnected Conductive Graphite Nanoplatelet Welded Carbon Nanotube Networks for Stretchable Conductors. Advanced Functional Materials, 2021, 31, 2107082.	7.8	41
393	Poly(vinyl alcohol)/MXene biomimetic aerogels with tunable mechanical properties and electromagnetic interference shielding performance controlled by pore structure. Polymer, 2021, 230, 124101.	1.8	36
394	Facile synthesis of Ti3C2TX–MXene composite with polyhedron Fe3O4/ carbonyl iron toward microwave absorption. Journal of Materials Science: Materials in Electronics, 2021, 32, 23762-23775.	1.1	5
395	Robust organic semiconductor thermoset composite films based on Crystallization-Driven Self-Assembled nanofibers of Poly(3-hexylthiophene) block copolymers. Chemical Engineering Journal, 2022, 430, 132695.	6.6	2
396	Low-temperature carbonized carbon nanotube/cellulose aerogel for efficient microwave absorption. Composites Part B: Engineering, 2021, 220, 108985.	5.9	95
397	3D porous nickel metal foam/polyaniline heterostructure with excellent electromagnetic interference shielding capability and superior absorption based on pre-constructed macroscopic conductive framework. Composites Science and Technology, 2021, 213, 108896.	3.8	80
398	Effective lightweight, flexible and ultrathin PVDF/rGO/Ba ₂ Co ₂ Fe ₁₂ O ₂₂ composite films for electromagnetic interference shielding applications. Nanotechnology, 2021, 32, 475707.	1.3	8
399	Microcellular epoxy/graphene nanocomposites with outstanding electromagnetic interference shielding and mechanical performance by overcoming nanofiller loading/dispersion dichotomy. Composites Science and Technology, 2021, 215, 109000.	3.8	22

#	Article	IF	CITATIONS
400	The influence of CNT-doped carbon aerogels on microstructural, rheological and mechanical properties of epoxy nanocomposites. Composites Science and Technology, 2021, 215, 109031.	3.8	10
401	Fractural performance of epoxy nanocomposites reinforced with carbon aerogels in different structures. Theoretical and Applied Fracture Mechanics, 2021, 115, 103079.	2.1	4
402	Engineering bacteria for high-performance three-dimensional carbon nanofiber aerogel. Carbon, 2021, 183, 267-276.	5.4	8
403	3D-printed impedance gradient Al2O3 ceramic with in-situ growing needle-like SiC nanowires for electromagnetic wave absorption. Ceramics International, 2021, 47, 31990-31999.	2.3	28
404	Leather-like hierarchical porous composites with outstanding electromagnetic interference shielding effectiveness and durability. Composites Part B: Engineering, 2021, 225, 109272.	5.9	12
405	Achieving flexible and durable electromagnetic interference shielding fabric through lightweight and mechanically strong aramid fiber wrapped in highly conductive multilayer metal. Applied Surface Science, 2021, 565, 150577.	3.1	28
406	Enhanced flexible polypropylene fabric with silver/magnetic carbon nanotubes coatings for electromagnetic interference shielding. Applied Surface Science, 2021, 568, 150845.	3.1	23
407	Highly enhanced microwave absorption for carbon nanotube/barium ferrite composite with ultra-low carbon nanotube loading. Journal of Materials Science and Technology, 2022, 102, 115-122.	5.6	37
408	Physical and Thermo-Mechanical Behaviour of Adansonia Digitata-Glass Fibres and Ceramic Hybrid Epoxy Composite. Materials Today: Proceedings, 2021, 45, 4587-4594.	0.9	3
409	Homogeneous silver nanoparticles decorating 3D carbon nanotube sponges as flexible high-performance electromagnetic shielding composite materials. Carbon, 2020, 165, 404-411.	5.4	51
410	In-situ co-continuous conductive network induced by carbon nanotubes in epoxy composites with enhanced electromagnetic interference shielding performance. Chemical Engineering Journal, 2020, 398, 125559.	6.6	46
411	Copper-Coated Reduced Graphene Oxide Fiber Mesh-Polymer Composite Films for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2020, 3, 5565-5574.	2.4	22
412	Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding. Optics Express, 2019, 27, 24194.	1.7	55
413	Carbon nanotube–reinforced polymer composite for electromagnetic interference application: A review. Nanotechnology Reviews, 2020, 9, 768-788.	2.6	77
414	3D Shapeable, Superior Electrically Conductive Cellulose Nanofibers/Ti ₃ C ₂ T _x MXene Aerogels/Epoxy Nanocomposites for Promising EMI Shielding. Research, 2020, 2020, 4093732.	2.8	124
415	Electromagnetic interference shielding and thermal properties of non-covalently functionalized reduced graphene oxide/epoxy composites. AIMS Materials Science, 2016, 4, 61-74.	0.7	26
416	Multispectral electromagnetic shielding using ultra-thin metal-metal oxide decorated hybrid nanofiber membranes. Communications Materials, 2021, 2, .	2.9	13
417	MXene nanohybrids: Excellent electromagnetic properties for absorbing electromagnetic waves. Ceramics International, 2022, 48, 1484-1493.	2.3	17

#	Article	IF	CITATIONS
418	High-Sensitivity Flexible Pressure Sensor-Based 3D CNTs Sponge for Human–Computer Interaction. Polymers, 2021, 13, 3465.	2.0	12
419	Selective localization of carbon nanotubes and its effect on the structure and properties of polymer blends. Progress in Polymer Science, 2021, 123, 101471.	11.8	55
420	MECHANICAL PROPERTIES OF DISCONNECTED MULTIWALLED CARBON NANOTUBES AND CARBON NANOTUBE COMPOSITES - A REVIEW PAPER. International Journal of Research -GRANTHAALAYAH, 2018, 6, 212-225.	0.1	1
422	In-situ characterization on the fracture behavior of three dimensional polymer nanocomposites reinforced by CNT sponge. Composites Science and Technology, 2022, 217, 109132.	3.8	5
423	Room temperature self-healing and recyclable conductive composites for flexible electronic devices based on imine reversible covalent bond. Journal of Alloys and Compounds, 2022, 894, 162433.	2.8	13
424	Electromagnetic interference shielding material for super-broadband: multi-walled carbon nanotube/silver nanowire film with an ultrathin sandwich structure. Journal of Materials Chemistry A, 2021, 9, 25999-26009.	5.2	23
425	The novel upgrade recycling of waste epoxy for thermal management and electromagnetic shielding application. Composites Part A: Applied Science and Manufacturing, 2022, 152, 106710.	3.8	10
426	Stretchable silver@CNT-poly(vinyl alcohol) films with efficient electromagnetic shielding prepared by polydopamine functionalization. Polymer, 2022, 238, 124413.	1.8	10
427	Enhancement of fabric–mortar interfacial adhesion by particle decoration: insights from pull-off measurements. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	1.3	5
428	Highly stretchable and conformal electromagnetic interference shielding armor with strain sensing ability. Chemical Engineering Journal, 2022, 431, 133908.	6.6	15
429	Flexible conductive gasket based on Eucommia ulmoides gum and carbon fillers. Industrial Crops and Products, 2022, 176, 114347.	2.5	7
430	Facile preparation of graphene film and sandwiched flexible poly(arylene ether nitrile)/graphene composite films with high EMI shielding efficiency. Composites Part A: Applied Science and Manufacturing, 2022, 154, 106777.	3.8	22
431	General biotemplating of hierarchically ultra-vesicular microspheres for superior microwave absorption. Chemical Engineering Journal, 2022, 431, 133925.	6.6	8
432	Understanding the dielectric properties and electromagnetic shielding efficiency of zirconia filled epoxy-MWCNT composites. Engineering Research Express, 2022, 4, 015008.	0.8	7
433	Effective electromagnetic interference shielding properties of micro-truss structured CNT/Epoxy composites fabricated based on visible light processing. Composites Science and Technology, 2022, 221, 109296.	3.8	20
434	Intrinsic carbon nanotube liquid crystalline elastomer photoactuators for high-definition biomechanics. Materials Horizons, 2022, 9, 1045-1056.	6.4	40
435	DOPO/Silicon/CNT Nanohybrid Flame Retardants: Toward Improving the Fire Safety of Epoxy Resins. Polymers, 2022, 14, 565.	2.0	5
436	Electromagnetic interference shielding materials: recent progress, structure design, and future perspective. Journal of Materials Chemistry C, 2021, 10, 44-72.	2.7	101

#	Article	IF	CITATIONS
437	High-Efficiency Electromagnetic Interference Shielding of rGO@FeNi/Epoxy Composites with Regular Honeycomb Structures. Nano-Micro Letters, 2022, 14, 51.	14.4	166
438	A solid solution-based millimeter-wave absorber exhibiting highly efficient absorbing capability and ultrabroad bandwidth simultaneously <i>via</i> a multi-elemental co-doping strategy. Journal of Materials Chemistry C, 2022, 10, 1381-1393.	2.7	7
439	Lowâ€dielectric constant and viscosity tetrafunctional bioâ€based epoxy resin containing cyclic siloxane blocks. Journal of Applied Polymer Science, 2022, 139, .	1.3	15
440	Multifunctional TPU composite foams with embedded biomass-derived carbon networks for electromagnetic interference shielding. Composites Communications, 2022, 30, 101062.	3.3	12
441	Evaluation, fabrication and dynamic performance regulation of green EMI-shielding materials with low reflectivity: A review. Composites Part B: Engineering, 2022, 233, 109652.	5.9	108
442	Layered Foam/Film Polymer Nanocomposites with Highly Efficient EMI Shielding Properties and Ultralow Reflection. Nano-Micro Letters, 2022, 14, 19.	14.4	76
443	MXene-Coated Wrinkled Fabrics for Stretchable and Multifunctional Electromagnetic Interference Shielding and Electro/Photo-Thermal Conversion Applications. ACS Applied Materials & Interfaces, 2021, 13, 60478-60488.	4.0	81
444	Nanomaterials for Electromagnetic Interference Shielding Applications: A Review. Nano, 2022, 17, .	0.5	16
445	Temperature Induced Transformation of Co@C Nanoparticle in 3d Hierarchical Core-Shell Nanofiber Network for Enhancing Electromagnetic Wave Adsorption. SSRN Electronic Journal, 0, , .	0.4	0
446	Epoxy as Filler or Matrix for Polymer Composites. , 0, , .		9
447	Iron-encapsulated CNTs on carbon fiber with high-performance EMI shielding and electrocatalytic activity. Advanced Composites and Hybrid Materials, 2022, 5, 2429-2439.	9.9	30
448	Carbon Nanotube/Polymer Coaxial Cables with Strong Interface for Damping Composites and Stretchable Conductors. Advanced Functional Materials, 2022, 32, .	7.8	9
449	Vertical carbon nanotubes arrays with controlled morphology on silicon carbide fibers for electromagnetic wave absorption. Ceramics International, 2022, 48, 19375-19381.	2.3	7
450	Temperature induced transformation of Co@C nanoparticle in 3D hierarchical core-shell nanofiber network for enhanced electromagnetic wave adsorption. Carbon, 2022, 195, 44-56.	5.4	50
451	Optimizing magnetic/dielectric matching in permalloy/carbonized cotton fiber composites by strain-tunable ferromagnetic resonance and defect-induced dielectric polarization. Journal of Materials Science and Technology, 2022, 124, 174-181.	5.6	6
452	Novel phosphonated hardeners derived from diamino diphenyl sulfone for epoxy resins: Synthesis and one-pack flame-retardant formulation alongside dicyandiamide. Polymer Degradation and Stability, 2022, 199, 109917.	2.7	10
453	Constructing hierarchical structure via in situ growth of CNT in SiO2-coated carbon foam for high-performance EMI shielding application. Composites Science and Technology, 2022, 222, 109372.	3.8	26
454	Stretchable polymer composite film based on pseudo-high carbon-filler loadings for electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2022, 157, 106937.	3.8	12

#	Article	IF	CITATIONS
455	Multifunctional fireproof electromagnetic shielding polyurethane films with thermal management performance. Chemical Engineering Journal, 2022, 439, 135673.	6.6	91
456	"Toolbox―for the Processing of Functional Polymer Composites. Nano-Micro Letters, 2022, 14, 35.	14.4	30
457	Transparent and Flexible Electromagnetic Interference Shielding Film Using ITO Nanobranches by Internal Scattering. ACS Applied Materials & amp; Interfaces, 2021, 13, 61413-61421.	4.0	15
458	Transparent and Highâ€Absoluteâ€Effectiveness Electromagnetic Interference Shielding Film Based on Singleâ€Crystal Graphene. Advanced Materials Technologies, 2022, 7, .	3.0	8
459	Manganese dioxide nanostructures reinforced epoxy nanocomposites: a study of mechanical properties. Polymer-Plastics Technology and Materials, 2022, 61, 441-460.	0.6	2
460	Lightweight and compressible anisotropic honeycomb-like graphene composites for highly tunable electromagnetic shielding with multiple functions. Materials Today Physics, 2022, 24, 100695.	2.9	11
462	Solvent-Free One-Pot Synthesis of Epoxy Nanocomposites Containing Mg(OH) ₂ Nanocrystal–Nanoparticle Formation Mechanism. Langmuir, 2022, 38, 5795-5802.	1.6	8
463	Vertically Aligned Carbon Nanotube@Graphene Paper/Polydimethylsilane Composites for Electromagnetic Interference Shielding and Flexible Joule Heating. ACS Applied Nano Materials, 2022, 5, 6365-6375.	2.4	11
464	Synthesis and electromagnetic wave absorbing properties of high-entropy metal diboride-silicon carbide composite powders. Journal of Materials Science, 2022, 57, 9218-9230.	1.7	7
465	Regulation mechanism for the formation and microwave absorbing performance of CNT/CoFe-MOF derived hierarchical composite. International Journal of Smart and Nano Materials, 2022, 13, 273-292.	2.0	4
466	Comprehensive review on polymer composites as electromagnetic interference shielding materials. Polymers and Polymer Composites, 2022, 30, 096739112211021.	1.0	8
467	Recent Progress in Electromagnetic Interference Shielding Performance of Porous Polymer Nanocomposites—A Review. Energies, 2022, 15, 3901.	1.6	23
468	Broadband electromagnetic wave absorbing performance by designing the foam structure and double-layer for cement-based composites containing MWCNTs. Cement and Concrete Composites, 2022, 131, 104595.	4.6	17
469	Improvement of electromagnetic interference properties of 3D few-layer graphene composite by means of freeze-drying. Ceramics International, 2022, 48, 26107-26115.	2.3	2
470	Investigation of flexible warp-knitted metal meshes for electromagnetic interference shielding. Textile Reseach Journal, 0, , 004051752211026.	1.1	2
471	High-performance porous carbon foams via catalytic pyrolysis of modified isocyanate-based polyimide foams for electromagnetic shielding. Nano Research, 2022, 15, 6851-6859.	5.8	22
472	Low dielectric and high performance of epoxy polymer via grafting POSS dangling chains. European Polymer Journal, 2022, 173, 111313.	2.6	17
473	Robust flame-retardant, super mechanical laminate epoxy composites with tunable electromagnetic interference shielding. Materials Today Physics, 2022, 26, 100724.	2.9	7

#	Article	IF	CITATIONS
474	Asymmetric multilayered MXene-AgNWs/cellulose nanofiber composite films with antibacterial properties for high-efficiency electromagnetic interference shielding. Journal of Materials Science and Technology, 2022, 129, 181-189.	5.6	40
475	Leather for flexible multifunctional bio-based materials: a review. Journal of Leather Science and Engineering, 2022, 4, .	2.7	13
476	A High-Mechanical-Strength Carbon/Graphene Porous Composite with Improved EMI Shielding Derived from High Nitrogen-Containing Bio-based Adenine-Containing Phthalonitrile Resin. Journal of Electronic Materials, 0, , .	1.0	0
477	Superior electromagnetic interference shielding effectiveness of functionalized MWCNTs filled flexible thermoplastic polymer nanocomposites. Journal of Elastomers and Plastics, 2022, 54, 975-999.	0.7	6
478	Heterogeneous films assembled from Ti3C2T MXene and porous double-layered carbon nanosheets for high-performance electromagnetic interference shielding. Applied Surface Science, 2022, 599, 153944.	3.1	16
479	Influence of multiâ€walled carbon nanotube content on electromagnetic wave absorption and mechanical properties of carbon nanotube/polyamide 12 composite. Polymer Composites, 2022, 43, 7739-7750.	2.3	9
480	Joule-heated flexible carbon composite towards the boosted electromagnetic wave shielding properties. Advanced Composites and Hybrid Materials, 2022, 5, 3012-3022.	9.9	25
481	In Situ Fabrication of Magnetic and Hierarchically Porous Carbon Films for Efficient Electromagnetic Wave Shielding and Absorption. ACS Applied Materials & Interfaces, 2022, 14, 33675-33685.	4.0	30
482	Controllable growth of NiCo compounds with different morphologies and structures on carbon fabrics as EMI shields with improved absorptivity. Carbon, 2022, 197, 508-518.	5.4	9
483	AgNWs/MXene derived multifunctional knitted fabric capable of high electrothermal conversion efficiency, large strain and temperature sensing, and EMI shielding. Journal of Alloys and Compounds, 2022, 923, 166471.	2.8	19
484	A Comparative Study on Bio-Based PU Foam Reinforced with Nanoparticles for EMI-Shielding Applications. Polymers, 2022, 14, 3344.	2.0	19
485	Adjustable core-sheath architecture of polyaniline-decorated hollow carbon nanofiber nanocomposites with negative permittivity for superb electromagnetic interference shielding. Advanced Composites and Hybrid Materials, 2022, 5, 2002-2011.	9.9	54
486	Hyperbolic Graphene Framework with Optimum Efficiency for Conductive Composites. ACS Nano, 2022, 16, 14703-14712.	7.3	20
487	Robust and self-healing polydimethylsiloxane/carbon nanotube foams for electromagnetic interference shielding and thermal insulation. Composites Communications, 2022, 35, 101323.	3.3	17
488	Unique applications of carbon materials in infrared stealth: A review. Chemical Engineering Journal, 2023, 452, 139147.	6.6	31
489	Facile preparation of large-scale expanded graphite/polydimethylsiloxane composites for highly-efficient electromagnetic interference shielding. Journal of Materials Chemistry A, 2022, 10, 23145-23154.	5.2	4
490	Effect of the Coupling Agent (3-Aminopropyl) Triethoxysilane on the Structure and Fire Behavior of Solvent-Free One-Pot Synthesized Silica-Epoxy Nanocomposites. Polymers, 2022, 14, 3853.	2.0	4
491	Superelastic, Highly Conductive, Superhydrophobic, and Powerful Electromagnetic Shielding Hybrid Aerogels Built from Orthogonal Graphene and Boron Nitride Nanoribbons. ACS Nano, 2022, 16, 17049-17061	7.3	42

#	Article	IF	CITATIONS
492	Flexible Warp-Knitted Metal Mesh-Based Composites: An Effective EMI Shielding Material with Efficient Joule Heating. ACS Applied Polymer Materials, 2022, 4, 7025-7041.	2.0	5
493	Highly Flexible Fabrics/Epoxy Composites with Hybrid Carbon Nanofillers for Absorption-Dominated Electromagnetic Interference Shielding. Nano-Micro Letters, 2022, 14, .	14.4	27
494	Porous nickel–zinc ferrite/polyaniline/polyimide composite based on improved impedance matching for electromagnetic microwave absorption. Polymer Composites, 2022, 43, 8737-8748.	2.3	5
495	High-strength, low infrared-emission nonmetallic films for highly efficient Joule/solar heating, electromagnetic interference shielding and thermal camouflage. Materials Horizons, 2023, 10, 235-247.	6.4	19
496	Multifunctional Waterborne Polyurethane Nanocomposite Films with Remarkable Electromagnetic Interference Shielding, Electrothermal and Solarthermal Performances. Chinese Journal of Polymer Science (English Edition), 2023, 41, 267-277.	2.0	5
497	Ultrathin Cellulose Nanofiber Assisted Ambientâ€Pressureâ€Dried, Ultralight, Mechanically Robust, Multifunctional MXene Aerogels. Advanced Materials, 2023, 35, .	11.1	111
498	Ultra-stable graphene aerogels for electromagnetic interference shielding. Science China Materials, 2023, 66, 1106-1113.	3.5	12
499	Silver-Sandwiched Natural Rubber/St-LDH/MWCNT Hybrid Bio-Nano-Composite System as a High-Performing Multimedia Laminated Electromagnetic Interference Shield Through a Tripling Mechanism. ACS Sustainable Chemistry and Engineering, 2022, 10, 14897-14913.	3.2	2
500	Low-thickness Ti–Mn–Zn-substituted Ba-hexaferrite/MWCNT nanocomposites with enhanced magnetic, dielectric, and microwave absorption properties. European Physical Journal Plus, 2022, 137, .	1.2	2
501	Ultraductile Cementitious Structural Health Monitoring Coating: Waterborne Polymer Biomimetic Muscle and Polyhedral Oligomeric Silsesquioxaneâ€Assisted Câ€5â€H Dispersion. Advanced Functional Materials, 2022, 32, .	7.8	32
502	Design of Interconnected Carbon Fiber Thermal Management Composites with Effective EMI Shielding Activity. ACS Applied Materials & Interfaces, 2022, 14, 49082-49093.	4.0	20
503	Recent progress on hybrid fibrous electromagnetic shields: Key protectors of living species against electromagnetic radiation. Matter, 2022, 5, 3807-3868.	5.0	19
504	Janus-inspired flexible cellulose nanofiber-assisted MXene/Silver nanowire papers with fascinating mechanical properties for efficient electromagnetic interference shielding. Carbon, 2023, 202, 314-324.	5.4	33
505	Carbon nanotube-vertical edge rich graphene hybrid sponge as multifunctional reinforcements for high performance epoxy composites. Carbon, 2023, 201, 871-880.	5.4	17
506	Constructing conductive network using 1D and 2D conductive fillers in porous poly(aryl ether) Tj ETQq0 0 0 rgBT 130414.	/Overlock 2.3	2 10 Tf 50 18 10
507	Electromagnetic Interference Shielding Performance of CNT Sponge/PDMS Force-Sensitive Composites. Journal of Electronic Materials, 2023, 52, 429-436.	1.0	3
508	Constructing a two-layer oblique honeycomb sandwich structure by LCD 3D printing for efficient electromagnetic wave absorbing. Composite Structures, 2023, 305, 116449.	3.1	10
509	Versatile nano–micro collagen fiber-based wearable electronics for health monitoring and thermal management. Journal of Materials Chemistry A, 2023, 11, 726-741.	5.2	17

#	Article	IF	CITATIONS
510	Sandwich-type phase-change composites with the dual-function of efficient heat management and temperature-regulated electromagnetic interference shielding performance. Journal of Materials Chemistry C, 2023, 11, 1381-1392.	2.7	8
511	Absorption-dominant EMI shielding polymer composite foams: Microstructure and geometry optimization. Materials Today Physics, 2023, 30, 100940.	2.9	15
512	Additive manufacturing of carbon nanotube/polylactic acid films with efficient electromagnetic interference shielding and electrical heating performance via fused deposition modeling. Synthetic Metals, 2023, 293, 117258.	2.1	11
513	Electrical properties of nano composite materials for electrical machines. Electrical Engineering, 0, , .	1.2	Ο
514	A study to determine electromagnetic interferenceâ€shielding effectiveness on bioâ€based polyurethane foam reinforced with <scp>PVDF</scp> / <scp>MgO</scp> /Ni for emerging applications. Journal of Applied Polymer Science, 2023, 140, .	1.3	7
515	A transparent water-based metamaterial broadband absorber with a tunable absorption band. Physica Scripta, 2023, 98, 015507.	1.2	8
516	Conductive fabrics based on carbon nanotube/Ti3C2Tx MXene/polyaniline/liquid metal quaternary composites with improved performance of EMI shielding and joule heating. Composites Communications, 2023, 38, 101476.	3.3	12
517	Designer Fe ₃ O ₄ @Ag Core–Shell Porous Nanospheres for Enhanced Electromagnetic Interference Shielding of Polymer Nanocomposites. Advanced Engineering Materials, 2023, 25, .	1.6	2
518	Balanced Mechanical and Biotribological Properties of Polymer Composites Reinforced by a 3D Interlocked Si ₃ N ₄ Nanowire Membrane. ACS Applied Materials & Interfaces, 2022, 14, 56203-56212.	4.0	6
519	Numerical Study of the Optical Response of ITO-In ₂ O ₃ Core-Shell Nanocrystals for Multispectral Electromagnetic Shielding. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2023, 8, 60-70.	1.4	2
520	Porous Graphene Produced by Carbothermal Shock for Green Electromagnetic Interference Shielding in Both Microwave and Terahertz Bands. Small Methods, 2023, 7, .	4.6	7
521	Polyoxometalate-immobilized carbon nanotube constructs triggered by host–guest assembly result in excellent electromagnetic interference shielding. Nanoscale, 2023, 15, 3805-3822.	2.8	2
522	Carbon-based aerogels and foams for electromagnetic interference shielding: A review. Carbon, 2023, 205, 10-26.	5.4	41
523	Pore-Rich Cellulose-Derived Carbon Fiber@Graphene Core-Shell Composites for Electromagnetic Interference Shielding. Nanomaterials, 2023, 13, 174.	1.9	3
524	Aeronautical nanocomposites for lightning strike prevention, radiation shielding, and stealth features. , 2023, , 139-164.		0
525	3D printing of architectured epoxy-based composite lattices with exceptional strength and toughness. Composites Part B: Engineering, 2023, 256, 110653.	5.9	5
526	Self-assembly hollowÂmagnetoelectric composites emerging tunable property between microwave absorption and shielding with light-weight and broad bandwidth. Journal of Alloys and Compounds, 2023, 947, 169368.	2.8	7
527	Aerogels containing ionomers and microwave assisted growth of carbon nanostructures on carbon urchins for multifunctional electromagnetic interference shielding. Carbon, 2023, 209, 118036.	5.4	7

ARTICLE IF CITATIONS # Facile approach for nanoconfinement of multilayer graphene oxide with polyether polyurethane sponge as biological carrier for the establishment of microalgal-bacterial bioreactor. Bioresource 528 4.8 2 Technology, 2023, 378, 128997. Direct-spun CNT textiles for high-performance electromagnetic interference shielding in an ultra-wide bandwidth. Carbon, 2023, 206, 166-180. 529 5.4 Ti₃C₂T_{<i>x</i>} MXene-Ferroferric Oxide/Carbon Nanotubes/Waterborne Polyurethane-Based Asymmetric Composite Aerogels for 530 2.4 5 Absorption-Dominated Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2023, 6, 4716-4725. A Pressure and Temperature Dual-Parameter Sensor Based on a Composite Material for Electronic Wearable Devices. Micromachines, 2023, 14, 690. Formation of a conductive network in ureaâ² formaldehyde/carbon nanotube composite foams for 532 1.6 0 electromagnetic shielding. Polymer International, 2023, 72, 711-719. Design and advanced manufacturing of electromagnetic interference shielding materials. Materials Today, 2023, 66, 245-272. 8.3 Preparation of a low dielectric POSS/epoxy hybrid polymer without sacrificing the mechanical performance. New Journal of Chemistry, 2023, 47, 10169-10177. 534 1.4 2 Study of EMI Shielding Performance of CNT-filled Epoxy Resin., 2023, , .