A flexible and robust neural network IASIâ€NH<sub>3<

Journal of Geophysical Research D: Atmospheres 121, 6581-6599 DOI: 10.1002/2016jd024828

Citation Report

#	Article	IF	CITATIONS
1	Doubling of annual ammonia emissions from the peat fires in Indonesia during the 2015 El Niño. Geophysical Research Letters, 2016, 43, 11,007.	1.5	41
2	Using satelliteâ€based measurements to explore spatiotemporal scales and variability of drivers of new particle formation. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12217-12235.	1.2	5
3	Increasing Ammonia Concentrations Reduce the Effectiveness of Particle Pollution Control Achieved via SO ₂ and NO _{<i>X</i>} Emissions Reduction in East China. Environmental Science and Technology Letters, 2017, 4, 221-227.	3.9	142
4	Ammonia Emissions May Be Substantially Underestimated in China. Environmental Science & Technology, 2017, 51, 12089-12096.	4.6	160
5	Observation of Air Pollution over China Using the IASI Thermal Infrared Space Sensor. , 2017, , 309-322.		2
6	Gasâ€aerosol partitioning of ammonia in biomass burning plumes: Implications for the interpretation of spaceborne observations of ammonia and the radiative forcing of ammonium nitrate. Geophysical Research Letters, 2017, 44, 8084-8093.	1.5	30
7	IASI-derived NH ₃ enhancement ratios relative to CO for the tropical biomass burning regions. Atmospheric Chemistry and Physics, 2017, 17, 12239-12252.	1.9	12
8	The impact of resolution on meteorological, chemical and aerosol properties in regional simulations with WRF-Chem. Atmospheric Chemistry and Physics, 2017, 17, 1511-1528.	1.9	19
9	Temporal and spatial variability of ammonia in urban and agricultural regions of northern Colorado, United States. Atmospheric Chemistry and Physics, 2017, 17, 6197-6213.	1.9	53
10	Temporal characteristics of atmospheric ammonia and nitrogen dioxide over China based on emission data, satellite observations and atmospheric transport modeling since 1980. Atmospheric Chemistry and Physics, 2017, 17, 9365-9378.	1.9	54
11	Ground Ammonia Concentrations over China Derived from Satellite and Atmospheric Transport Modeling. Remote Sensing, 2017, 9, 467.	1.8	30
12	Validation of the CrIS fast physical NH ₃ retrieval with ground-based FTIR. Atmospheric Measurement Techniques, 2017, 10, 2645-2667.	1.2	52
13	Version 2 of the IASI NH ₃ neural network retrieval algorithm: near-real-time and reanalysed datasets. Atmospheric Measurement Techniques, 2017, 10, 4905-4914.	1.2	118
14	A General Framework for Global Retrievals of Trace Gases From IASI: Application to Methanol, Formic Acid, and PAN. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,963.	1.2	38
15	A physics-based approach to oversample multi-satellite, multispecies observations to a common grid. Atmospheric Measurement Techniques, 2018, 11, 6679-6701.	1.2	64
16	Rapid SO ₂ emission reductions significantly increase tropospheric ammonia concentrations over the North China Plain. Atmospheric Chemistry and Physics, 2018, 18, 17933-17943.	1.9	121
17	Industrial and agricultural ammonia point sources exposed. Nature, 2018, 564, 99-103.	13.7	312
18	Technical note: How are NH ₃ dry deposition estimates affected by combining the LOTOS-EUROS model with IASI-NH ₃ satellite observations?. Atmospheric Chemistry and Physics, 2018, 18, 13173-13196.	1.9	12

#	Article	IF	CITATIONS
19	Stratospheric aerosol radiative forcing simulated by the chemistry climate model EMAC using Aerosol CCI satellite data. Atmospheric Chemistry and Physics, 2018, 18, 12845-12857.	1.9	17
20	Spatial–temporal patterns of inorganic nitrogen air concentrations and deposition in eastern China. Atmospheric Chemistry and Physics, 2018, 18, 10931-10954.	1.9	65
21	Validation of mobile in situ measurements of dairy husbandry emissions by fusion of airborne/surface remote sensing with seasonalÂcontext from the Chino Dairy Complex. Environmental Pollution, 2018, 242, 2111-2134.	3.7	9
22	Unprecedented Atmospheric Ammonia Concentrations Detected in the High Arctic From the 2017 Canadian Wildfires. Journal of Geophysical Research D: Atmospheres, 2019, 124, 8178-8202.	1.2	25
23	Bias in ammonia emission inventory and implications on emission control of nitrogen oxides over North China Plain. Atmospheric Environment, 2019, 214, 116869.	1.9	20
24	Quantification of Ammonia Emissions With High Spatial Resolution Thermal Infrared Observations From the Hyperspectral Thermal Emission Spectrometer (HyTES) Airborne Instrument. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 4798-4812.	2.3	2
25	Evaluating Ammonia (NH ₃) Predictions in the NOAA NAQFC for Eastern North Carolina Using Ground Level and Satellite Measurements. Journal of Geophysical Research D: Atmospheres, 2019, 124, 8242-8259.	1.2	6
26	Tracking down global NH ₃ point sources with wind-adjusted superresolution. Atmospheric Measurement Techniques, 2019, 12, 5457-5473.	1.2	39
27	Satellite-derived emissions of carbon monoxide, ammonia, and nitrogen dioxide from the 2016 Horse River wildfire in the Fort McMurray area. Atmospheric Chemistry and Physics, 2019, 19, 2577-2599.	1.9	37
28	Retrieval of liquid water cloud properties from POLDER-3 measurements using a neural network ensemble approach. Atmospheric Measurement Techniques, 2019, 12, 1697-1716.	1.2	11
29	Atmospheric ammonia (NH3) emanations from Lake Natron's saline mudflats. Scientific Reports, 2019, 9, 4441.	1.6	24
30	A Decadal Data Set of Global Atmospheric Dust Retrieved From IASI Satellite Measurements. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1618-1647.	1.2	32
31	Acetone Atmospheric Distribution Retrieved From Space. Geophysical Research Letters, 2019, 46, 2884-2893.	1.5	18
32	NH ₃ emissions from large point sources derived from CrIS and IASI satellite observations. Atmospheric Chemistry and Physics, 2019, 19, 12261-12293.	1.9	89
33	Estimating global surface ammonia concentrations inferred from satellite retrievals. Atmospheric Chemistry and Physics, 2019, 19, 12051-12066.	1.9	31
34	Statistical retrieval of atmospheric profiles with deep convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 158, 231-240.	4.9	21
35	Toward a Generic Analytical Framework for Sustainable Nitrogen Management: Application for China. Environmental Science & Technology, 2019, 53, 1109-1118.	4.6	27
36	Global and regional model simulations of atmospheric ammonia. Atmospheric Research, 2020, 234, 104702.	1.8	13

CITATION REPORT

CITATION	Report

#	Article	IF	CITATIONS
37	Environmental impacts of nitrogen emissions in China and the role of policies in emission reduction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190324.	1.6	39
38	Satellite-Based Estimates of Wet Ammonium (NH ₄ -N) Deposition Fluxes Across China during 2011–2016 Using a Space–Time Ensemble Model. Environmental Science & Technology, 2020, 54, 13419-13428.	4.6	8
39	A high-resolution map of reactive nitrogen inputs to China. Scientific Data, 2020, 7, 379.	2.4	12
40	Reviewing global estimates of surface reactive nitrogen concentration and deposition using satellite retrievals. Atmospheric Chemistry and Physics, 2020, 20, 8641-8658.	1.9	16
41	Artificial Neural Networks to Retrieve Land and Sea Skin Temperature from IASI. Remote Sensing, 2020, 12, 2777.	1.8	10
42	Satellite isoprene retrievals constrain emissions and atmospheric oxidation. Nature, 2020, 585, 225-233.	13.7	53
43	Multiphase buffer theory explains contrasts in atmospheric aerosol acidity. Science, 2020, 369, 1374-1377.	6.0	115
44	Global estimates of dry ammonia deposition inferred from space-measurements. Science of the Total Environment, 2020, 730, 139189.	3.9	11
45	A New Temperature Channel Selection Method Based on Singular Spectrum Analysis for Retrieving Atmospheric Temperature Profiles from FY-4A/GIIRS. Advances in Atmospheric Sciences, 2020, 37, 735-750.	1.9	6
46	Record high levels of atmospheric ammonia over India: Spatial and temporal analyses. Science of the Total Environment, 2020, 740, 139986.	3.9	61
47	Atmospheric ammonia variability and link with particulate matter formation: a case study over the Paris area. Atmospheric Chemistry and Physics, 2020, 20, 577-596.	1.9	24
48	Spaceborne Measurements of Formic and Acetic Acids: A Global View of the Regional Sources. Geophysical Research Letters, 2020, 47, e2019GL086239.	1.5	21
49	Atmospheric ammonia retrieval from the TANSO-FTS/GOSAT thermal infrared sounder. Atmospheric Measurement Techniques, 2020, 13, 309-321.	1.2	29
50	Enhanced atmospheric ammonia (NH3) pollution in China from 2008 to 2016: Evidence from a combination of observations and emissions. Environmental Pollution, 2020, 263, 114421.	3.7	53
51	High-resolution hybrid inversion of IASI ammonia columns to constrain US ammonia emissions using the CMAQ adjoint model. Atmospheric Chemistry and Physics, 2021, 21, 2067-2082.	1.9	22
52	Multiscale observations of NH ₃ around Toronto, Canada. Atmospheric Measurement Techniques, 2021, 14, 905-921.	1.2	7
53	Global Wetâ€Reduced Nitrogen Deposition Derived From Combining Satellite Measurements With Output From a Chemistry Transport Model. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033977.	1.2	2
54	Monthly Patterns of Ammonia Over the Contiguous United States at 2â€km Resolution. Geophysical Research Letters, 2021, 48, e2020GL090579.	1.5	16

CITATION REPORT

#	Article	IF	CITATIONS
55	10-year satellite-constrained fluxes of ammonia improve performance of chemistry transport models. Atmospheric Chemistry and Physics, 2021, 21, 4431-4451.	1.9	21
56	Long-term trends in air quality in major cities in the UK and India: a view from space. Atmospheric Chemistry and Physics, 2021, 21, 6275-6296.	1.9	31
57	Analysis of atmospheric ammonia over South and East Asia based on the MOZART-4 model and its comparison with satellite and surface observations. Atmospheric Chemistry and Physics, 2021, 21, 6389-6409.	1.9	8
58	Validation of IASI Satellite Ammonia Observations at the Pixel Scale Using In Situ Vertical Profiles. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033475.	1.2	28
59	Convergent evidence for the pervasive but limited contribution of biomass burning to atmospheric ammonia in peninsular Southeast Asia. Atmospheric Chemistry and Physics, 2021, 21, 7187-7198.	1.9	8
60	Global, regional and national trends of atmospheric ammonia derived from a decadal (2008–2018) satellite record. Environmental Research Letters, 2021, 16, 055017.	2.2	65
61	The Warming Climate Aggravates Atmospheric Nitrogen Pollution in Australia. Research, 2021, 2021, 9804583.	2.8	9
62	The Diel Cycle of NH ₃ Observed From the FYâ€4A Geostationary Interferometric Infrared Sounder (GIIRS). Geophysical Research Letters, 2021, 48, e2021GL093010.	1.5	11
63	The impact of organic pollutants from Indonesian peatland fires on the tropospheric and lower stratospheric composition. Atmospheric Chemistry and Physics, 2021, 21, 11257-11288.	1.9	8
64	Fourâ€Dimensional Wind Fields From Geostationary Hyperspectral Infrared Sounder Radiance Measurements With High Temporal Resolution. Geophysical Research Letters, 2021, 48, e2021GL093794.	1.5	25
65	Atmospheric Impacts of COVID-19 on NOx and VOC Levels over China Based on TROPOMI and IASI Satellite Data and Modeling. Atmosphere, 2021, 12, 946.	1.0	13
66	Atmospheric ammonia point source detection technique at regional scale using high resolution satellite imagery and deep learning. Atmospheric Research, 2021, 257, 105587.	1.8	2
67	Continental and Ecoregion‣pecific Drivers of Atmospheric NO ₂ and NH ₃ Seasonality Over Africa Revealed by Satellite Observations. Global Biogeochemical Cycles, 2021, 35, e2020GB006916.	1.9	5
68	UK Ammonia Emissions Estimated With Satellite Observations and GEOSâ€Chem. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035237.	1.2	24
69	Modeling atmospheric ammonia using agricultural emissions with improved spatial variability and temporal dynamics. Atmospheric Chemistry and Physics, 2020, 20, 16055-16087.	1.9	18
70	Atmospheric ammonia (NH ₃) over the Paris megacity: 9Âyears of total column observations from ground-based infrared remote sensing. Atmospheric Measurement Techniques, 2020, 13, 3923-3937.	1.2	10
72	A space view of agricultural and industrial changes during the Syrian civil war. Elementa, 2021, 9, .	1.1	3
73	Nextâ€Generation Isoprene Measurements From Space: Detecting Daily Variability at High Resolution. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	11

#	Article	IF	CITATIONS
74	Simulation of organics in the atmosphere: evaluation of EMACv2.54 with the Mainz Organic Mechanism (MOM) coupled to the ORACLE (v1.0) submodel. Geoscientific Model Development, 2022, 15, 2673-2710.	1.3	13
75	Understanding the Simulated Ammonia Increasing Trend from 2008 to 2015 over Europe with CHIMERE and Comparison with IASI Observations. Atmosphere, 2022, 13, 1101.	1.0	2
76	Estimation of surface ammonia concentrations and emissions in China from the polar-orbiting Infrared Atmospheric Sounding Interferometer and the FY-4A Geostationary Interferometric Infrared Sounder. Atmospheric Chemistry and Physics, 2022, 22, 9099-9110.	1.9	9
77	Ground-based measurements of atmospheric NH3 by Fourier transform infrared spectrometry at Hefei and comparisons with IASI data. Atmospheric Environment, 2022, 287, 119256.	1.9	6
78	On the weekly cycle of atmospheric ammonia over European agricultural hotspots. Scientific Reports, 2022, 12, .	1.6	4
79	Estimating global ammonia (NH ₃) emissions based on IASI observations from 2008 to 2018. Atmospheric Chemistry and Physics, 2022, 22, 10375-10388.	1.9	14
80	Satellite Support to Estimate Livestock Ammonia Emissions: A Case Study in Hebei, China. Atmosphere, 2022, 13, 1552.	1.0	2
81	Ethylene industrial emitters seen from space. Nature Communications, 2022, 13, .	5.8	7
82	Measurement report: Evolution and distribution of NH ₃ over Mexico City from ground-based and satellite infrared spectroscopic measurements. Atmospheric Chemistry and Physics, 2022, 22, 14119-14132.	1.9	2
83	Urgency of controlling agricultural nitrogen sources to alleviate summertime air pollution in the North China Plain. Chemosphere, 2023, 311, 137124.	4.2	3
84	4DEnVar-based inversion system for ammonia emission estimation in China through assimilating IASI ammonia retrievals. Environmental Research Letters, 2023, 18, 034005.	2.2	2
85	Constraining industrial ammonia emissions using hyperspectral infrared imaging. Remote Sensing of Environment, 2023, 291, 113559.	4.6	0

CITATION REPORT