Structural Basis for Cooperative Function of Mettl3 and

Molecular Cell 63, 306-317 DOI: 10.1016/j.molcel.2016.05.041

Citation Report

#	Article	IF	Citations
1	m6A modulates neuronal functions and sex determination in Drosophila. Nature, 2016, 540, 242-247.	13.7	453
2	Structures of the m 6 A Methyltransferase Complex: Two Subunits with Distinct but Coordinated Roles. Molecular Cell, 2016, 63, 183-185.	4.5	40
3	Update: Mechanisms Underlying N 6 -Methyladenosine Modification of Eukaryotic mRNA. Trends in Genetics, 2016, 32, 763-773.	2.9	50
4	Human m ⁶ A writers: Two subunits, 2 roles. RNA Biology, 2017, 14, 300-304.	1.5	76
5	Epitranscriptomic regulation of viral replication. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 460-471.	0.9	17
6	Regulatory Role of N ⁶ -methyladenosine (m ⁶ A) Methylation in RNA Processing and Human Diseases. Journal of Cellular Biochemistry, 2017, 118, 2534-2543.	1.2	127
7	m 6 A in mRNA: An Ancient Mechanism for Fine-Tuning Gene Expression. Trends in Genetics, 2017, 33, 380-390.	2.9	338
8	Dynamic RNA Modifications in Gene Expression Regulation. Cell, 2017, 169, 1187-1200.	13.5	2,222
9	<i>N</i> ⁶ -methyladenosine is required for the hypoxic stabilization of specific mRNAs. Rna, 2017, 23, 1444-1455.	1.6	92
10	Readers, writers and erasers of N6-methylated adenosine modification. Current Opinion in Structural Biology, 2017, 47, 67-76.	2.6	82
11	The U6 snRNA m 6 A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. Cell, 2017, 169, 824-835.e14.	13.5	756
12	m ⁶ A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes and Development, 2017, 31, 990-1006.	2.7	448
13	The RNA Modification N 6 -methyladenosine and Its Implications in Human Disease. Genomics, Proteomics and Bioinformatics, 2017, 15, 154-163.	3.0	132
14	The Major Protein Arginine Methyltransferase in Trypanosoma brucei Functions as an Enzyme-Prozyme Complex. Journal of Biological Chemistry, 2017, 292, 2089-2100.	1.6	31
15	Chemical Modifications to RNA: A New Layer of Gene Expression Regulation. ACS Chemical Biology, 2017, 12, 316-325.	1.6	134
16	m6A Facilitates eIF4F-Independent mRNA Translation. Molecular Cell, 2017, 68, 504-514.e7.	4.5	197
17	N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing. Nucleic Acids Research, 2017, 45, 11356-11370.	6.5	337
18	Regulation of m6A Transcripts by the 3ʹ→5ʹ RNA Helicase YTHDC2 Is Essential for a Successful Meiotic Program in the Mammalian Germline. Molecular Cell, 2017, 68, 374-387.e12.	4.5	370

TION RE

#	Article	IF	CITATIONS
19	Human METTL16 is a <i>N</i> ⁶ â€methyladenosine (m ⁶ A) methyltransferase that targets preâ€mRNAs and various nonâ€coding RNAs. EMBO Reports, 2017, 18, 2004-2014.	2.0	481
20	Mutations in RNA methylating enzymes in disease. Current Opinion in Chemical Biology, 2017, 41, 20-27.	2.8	18
21	Genome-Wide Maps of m6A circRNAs Identify Widespread and Cell-Type-Specific Methylation Patterns that Are Distinct from mRNAs. Cell Reports, 2017, 20, 2262-2276.	2.9	315
22	Roles of RNA methylation by means of N6-methyladenosine (m6A) in human cancers. Cancer Letters, 2017, 408, 112-120.	3.2	223
23	The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nature Medicine, 2017, 23, 1369-1376.	15.2	971
24	Rethinking m ⁶ A Readers, Writers, and Erasers. Annual Review of Cell and Developmental Biology, 2017, 33, 319-342.	4.0	833
25	m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature, 2017, 548, 338-342.	13.7	668
26	Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Research, 2017, 27, 1115-1127.	5.7	696
27	Detection of <i>N</i> ⁶ -methyladenosine based on the methyl-sensitivity of MazF RNA endonuclease. Chemical Communications, 2017, 53, 12930-12933.	2.2	113
28	The m6A pathway facilitates sex determination in Drosophila. Nature Communications, 2017, 8, 15737.	5.8	154
29	MiR-33a suppresses proliferation of NSCLC cells via targeting METTL3 mRNA. Biochemical and Biophysical Research Communications, 2017, 482, 582-589.	1.0	154
30	The Dark Side of the Epitranscriptome: Chemical Modifications in Long Non-Coding RNAs. International Journal of Molecular Sciences, 2017, 18, 2387.	1.8	101
31	Epitranscriptomic influences on development and disease. Genome Biology, 2017, 18, 197.	3.8	97
32	Deciphering the Epitranscriptome in Cancer. Trends in Cancer, 2018, 4, 207-221.	3.8	39
33	SUMOylation of the m6A-RNA methyltransferase METTL3 modulates its function. Nucleic Acids Research, 2018, 46, 5195-5208.	6.5	210
34	Structural insights into the RNA methyltransferase domain of METTL16. Scientific Reports, 2018, 8, 5311.	1.6	80
35	Towards the structural characterization of the human methyltransferome. Current Opinion in Structural Biology, 2018, 53, 12-21.	2.6	7
36	The YTH Domain Protein ECT2 Is an m ⁶ A Reader Required for Normal Trichome Branching in Arabidopsis. Plant Cell, 2018, 30, 986-1005.	3.1	186

ARTICLE IF CITATIONS # Distinguishing RNA modifications from noise in epitranscriptome maps. Nature Chemical Biology, 2018, 37 3.9 81 14, 215-225. N6-methyladenosine links RNA metabolism to cancer progression. Cell Death and Disease, 2018, 9, 124. 2.7 381 Interactions, localization, and phosphorylation of the m⁶A generating 39 1.6 312 METTL3–METTL14–WTAP complex. Rna, 2018, 24, 499-512. METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and Promotes Leukemogenesis via 749 mRNA m6A Modification. Cell Stem Cell, 2018, 22, 191-205.e9. N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through 41 7.1 317 histone modifications. Nature Neuroscience, 2018, 21, 195-206. N6-Methyladenosines Modulate A-to-I RNA Editing. Molecular Cell, 2018, 69, 126-135.e6. 4.5 108 Mechanism of N6-methyladenosine modification and its emerging role in cancer., 2018, 189, 173-183. 43 31 Structural Insights into N 6 -methyladenosine (m 6 A) Modification in the Transcriptome. Genomics, 44 56 Proteomics and Bioinformatics, 2018, 16, 85-98. YTH Domain: A Family of N 6 -methyladenosine (m 6 A) Readers. Genomics, Proteomics and 45 3.0 277 Bioinformatics, 2018, 16, 99-107. RNA epitranscriptomics: Regulation of infection of RNA and DNA viruses by <i>N</i>⁶8€methyladenosine (m⁶A). Reviews in Medical Virology, 2018, 28, e1983. Zc3h13 Regulates Nuclear RNA m6A Methylation and Mouse Embryonic Stem Cell Self-Renewal. 47 4.5 618 Molecular Čell, 2018, 69, 1028-1038.e6. Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m⁶A machinery component Wtap/Fl(2)d. Genes and Development, 2018, 32, 415-429. 48 416 Reading m6A in the Transcriptome: m6A-Binding Proteins. Trends in Cell Biology, 2018, 28, 113-127. 49 3.6 445 The emerging role of mRNA methylation in normal and pathological behavior. Genes, Brain and 1.1 Behavior, 2018, 17, e12428. Role of RNA modifications in brain and behavior. Genes, Brain and Behavior, 2018, 17, e12444. 51 1.1 47 N6-methyladenosine contributes to cellular phenotype in a genetically-defined model of breast cancer 28 progression. Oncotarget, 2018, 9, 31231-31243. N6-Methyladenosine in RNA and DNA: An Epitranscriptomic and Epigenetic Player Implicated in 53 1.2 52 Determination of Stem Cell Fate. Stem Cell's International, 2018, 2018, 1-18. Mettl3-mediated m6A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and 54 5.8 osteoporosis. Nature Communications, 2018, 9, 4772.

#	Article	IF	CITATIONS
55	Trypanosoma brucei PRMT1 Is a Nucleic Acid Binding Protein with a Role in Energy Metabolism and the Starvation Stress Response. MBio, 2018, 9, .	1.8	23
56	Structural Basis for Regulation of METTL16, an S-Adenosylmethionine Homeostasis Factor. Molecular Cell, 2018, 71, 1001-1011.e4.	4.5	146
57	Methylation of Structured RNA by the m6A Writer METTL16 Is Essential for Mouse Embryonic Development. Molecular Cell, 2018, 71, 986-1000.e11.	4.5	250
58	The RNA Epitranscriptome of DNA Viruses. Journal of Virology, 2018, 92, .	1.5	31
59	A protein–protein interaction underlies the molecular basis for substrate recognition by an adenosine-to-inosine RNA-editing enzyme. Nucleic Acids Research, 2018, 46, 9647-9659.	6.5	25
60	The Nâ€ŧerminal methyltransferase homologs NRMT1 and NRMT2 exhibit novel regulation of activity through heterotrimer formation. Protein Science, 2018, 27, 1585-1599.	3.1	12
61	RNA-modifying proteins as anticancer drug targets. Nature Reviews Drug Discovery, 2018, 17, 435-453.	21.5	107
62	Adenosine methylation as a molecular imprint defining the fate of <scp>RNA</scp> . FEBS Letters, 2018, 592, 2845-2859.	1.3	41
63	Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Research, 2018, 28, 616-624.	5.7	1,045
64	N6-Methyladenosine modification: a novel pharmacological target for anti-cancer drug development. Acta Pharmaceutica Sinica B, 2018, 8, 833-843.	5.7	58
65	The m ⁶ A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′–3′ exoribonuclease XRN1. Rna, 2018, 24, 1339-1350.	1.6	171
66	Link Between m6A Modification and Cancers. Frontiers in Bioengineering and Biotechnology, 2018, 6, 89.	2.0	244
67	A fluorescent methylation-switchable probe for highly sensitive analysis of FTO <i>N</i> ⁶ -methyladenosine demethylase activity in cells. Chemical Science, 2018, 9, 7174-7185.	3.7	28
68	METTL3 regulates WTAP protein homeostasis. Cell Death and Disease, 2018, 9, 796.	2.7	108
69	Impact of DNA and RNA Methylation on Radiobiology and Cancer Progression. International Journal of Molecular Sciences, 2018, 19, 555.	1.8	26
70	Mettl3–Mettl14 methyltransferase complex regulates the quiescence of adult hematopoietic stem cells. Cell Research, 2018, 28, 952-954.	5.7	97
71	Enhancing Epitranscriptome Module Detection from m6A-Seq Data Using Threshold-Based Measurement Weighting Strategy. BioMed Research International, 2018, 2018, 1-15.	0.9	10
72	The Emerging Field of Epitranscriptomics in Neurodevelopmental and Neuronal Disorders. Frontiers in Bioengineering and Biotechnology, 2018, 6, 46.	2.0	83

		CITATION REPORT		
#	Article		IF	CITATIONS
73	RNA m6A modification and its function in diseases. Frontiers of Medicine, 2018, 12, 48	1-489.	1.5	181
74	N6-Methyladenosine Role in Acute Myeloid Leukaemia. International Journal of Molecu 2018, 19, 2345.	ar Sciences,	1.8	34
75	m6A mRNA methylation regulates AKT activity to promote the proliferation and tumori endometrial cancer. Nature Cell Biology, 2018, 20, 1074-1083.	genicity of	4.6	592
76	Fragile X mental retardation protein modulates the stability of its m6A-marked messen Human Molecular Genetics, 2018, 27, 3936-3950.	ger RNA targets.	1.4	129
77	The m6Aâ€epitranscriptomic signature in neurobiology: from neurodevelopment to bra Journal of Neurochemistry, 2018, 147, 137-152.	ain plasticity.	2.1	120
78	Structural basis for eukaryotic mRNA modification. Current Opinion in Structural Biolog 59-68.	gy, 2018, 53,	2.6	18
79	The nucleotides they are a-changin': function of RNA binding proteins in post-trans messenger RNA editing and modification in Arabidopsis. Current Opinion in Plant Biolo 88-95.	criptional gy, 2018, 45,	3.5	20
80	RNA methylation in nuclear preâ€mRNA processing. Wiley Interdisciplinary Reviews RN	A, 2018, 9, e1489.	3.2	37
81	m6A RNA Methylation Controls Neural Development and Is Involved in Human Disease Neurobiology, 2019, 56, 1596-1606.	s. Molecular	1.9	127
82	Methylation of RNA N6-methyladenosine in modulation of cytokine responses and tum Cytokine, 2019, 118, 35-41.	origenesis.	1.4	24
83	The Role of Dynamic m ⁶ A <scp>RNA</scp> Methylation in Photobiology. and Photobiology, 2019, 95, 95-104.	Photochemistry	1.3	31
84	The study of <i>METTL3</i> and <i>METTL14</i> expressions in childhood <i>ETV6/RU acute lymphoblastic leukemia. Molecular Genetics & amp; Genomic Medicine, 2019, 7,</i>		0.6	14
85	Programmable RNA N6-methyladenosine editing by CRISPR-Cas9 conjugates. Nature C 2019, 15, 865-871.	hemical Biology,	3.9	140
86	Small changes, big implications: The impact of m6A RNA methylation on gene expression and development. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019	on in pluripotency , 1862, 194402.	0.9	37
87	Regulation of Viral Infection by the RNA Modification <i>N6</i> -Methyladenosine. Ann Virology, 2019, 6, 235-253.	ual Review of	3.0	111
88	m6A enhances the phase separation potential of mRNA. Nature, 2019, 571, 424-428.		13.7	460
89	Leukemia Stem Cells in Hematologic Malignancies. Advances in Experimental Medicine 2019, , .	and Biology,	0.8	1
90	The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nuclei 2019, 47, 7719-7733.	c Acids Research,	6.5	312

#	Article	IF	CITATIONS
91	Sequence-specific m ⁶ A demethylation in RNA by FTO fused to RCas9. Rna, 2019, 25, 1311-1323.	1.6	34
92	RNA modifications and the link to human disease. Methods in Enzymology, 2019, 626, 133-146.	0.4	20
93	Quantitative assessment of the ecological effects of land use/cover change in the arid region of Northwest China. Environmental Monitoring and Assessment, 2019, 191, 704.	1.3	11
94	Flexible Binding of m ⁶ A Reader Protein YTHDC1 to Its Preferred RNA Motif. Journal of Chemical Theory and Computation, 2019, 15, 7004-7014.	2.3	18
95	A distinct class of eukaryotic MT-A70 methyltransferases maintain symmetric DNA N6-adenine methylation at the ApT dinucleotides as an epigenetic mark associated with transcription. Nucleic Acids Research, 2019, 47, 11771-11789.	6.5	34
96	Structure and regulation of ZCCHC4 in m6A-methylation of 28S rRNA. Nature Communications, 2019, 10, 5042.	5.8	72
97	ZFP217 regulates adipogenesis by controlling mitotic clonal expansion in a METTL3-m ⁶ A dependent manner. RNA Biology, 2019, 16, 1785-1793.	1.5	41
98	Reading, writing and erasing mRNA methylation. Nature Reviews Molecular Cell Biology, 2019, 20, 608-624.	16.1	1,403
99	RNA-modifying enzymes and their function in a chromatin context. Nature Structural and Molecular Biology, 2019, 26, 858-862.	3.6	24
100	Mettl3 Regulates Osteogenic Differentiation and Alternative Splicing of Vegfa in Bone Marrow Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2019, 20, 551.	1.8	93
101	A Reader-Based Assay for m ⁶ A Writers and Erasers. Analytical Chemistry, 2019, 91, 3078-3084.	3.2	36
102	Epitranscriptomic Signatures in IncRNAs and Their Possible Roles in Cancer. Genes, 2019, 10, 52.	1.0	74
103	Epigenetic Methylations on N6-Adenine and N6-Adenosine with the same Input but Different Output. International Journal of Molecular Sciences, 2019, 20, 2931.	1.8	21
104	Chemical Modifications and Their Role in Long Non-coding RNAs. , 2019, , 35-63.		0
105	mRNA methylation in cell senescence. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1547.	3.2	35
106	METTL3 mediated m6A modification plays an oncogenic role in cutaneous squamous cell carcinoma by regulating ΔNp63. Biochemical and Biophysical Research Communications, 2019, 515, 310-317.	1.0	46
108	Charging the code — tRNA modification complexes. Current Opinion in Structural Biology, 2019, 55, 138-146.	2.6	45
109	Identification of a DNA N6-Adenine Methyltransferase Complex and Its Impact on Chromatin Organization. Cell, 2019, 177, 1781-1796.e25.	13.5	81

#	Article	IF	CITATIONS
110	Where, When, and How: Context-Dependent Functions of RNA Methylation Writers, Readers, and Erasers. Molecular Cell, 2019, 74, 640-650.	4.5	1,096
111	N6â€methyladenosine regulatory machinery in plants: composition, function and evolution. Plant Biotechnology Journal, 2019, 17, 1194-1208.	4.1	140
112	A Review in Research Progress Concerning m6A Methylation and Immunoregulation. Frontiers in Immunology, 2019, 10, 922.	2.2	209
113	Detection of N6â€'methyladenosine modification residues (Review). International Journal of Molecular Medicine, 2019, 43, 2267-2278.	1.8	40
114	RBM15 Modulates the Function of Chromatin Remodeling Factor BAF155 Through RNA Methylation in Developing Cortex. Molecular Neurobiology, 2019, 56, 7305-7320.	1.9	40
115	Stage-specific requirement for Mettl3-dependent m6A mRNA methylation during haematopoietic stem cell differentiation. Nature Cell Biology, 2019, 21, 700-709.	4.6	172
116	Chemical RNA Modifications: The Plant Epitranscriptome. , 2019, , 291-310.		1
117	The chemical diversity of RNA modifications. Biochemical Journal, 2019, 476, 1227-1245.	1.7	94
118	N6-Methyladenosine (m6A): A Promising New Molecular Target in Acute Myeloid Leukemia. Frontiers in Oncology, 2019, 9, 251.	1.3	66
119	Bisubstrate analogues as structural tools to investigate m ⁶ A methyltransferase active sites. RNA Biology, 2019, 16, 798-808.	1.5	24
120	RNA epigenetics and cardiovascular diseases. Journal of Molecular and Cellular Cardiology, 2019, 129, 272-280.	0.9	25
121	N6-Methyladenosine and Viral Infection. Frontiers in Microbiology, 2019, 10, 417.	1.5	55
122	Functions of RNA N6-methyladenosine modification in cancer progression. Molecular Biology Reports, 2019, 46, 2567-2575.	1.0	32
123	Discovery of Small Molecules that Activate RNA Methylation through Cooperative Binding to the METTL3-14-WTAP Complex Active Site. Cell Reports, 2019, 26, 3762-3771.e5.	2.9	121
124	METTL3 inhibits BMSC adipogenic differentiation by targeting the JAK1/STAT5/C/EBPβ pathway <i>via</i> an m ⁶ A‥THDF2–dependent manner. FASEB Journal, 2019, 33, 7529-7544.	0.2	118
125	Transcriptomeâ€wide analysis of N6â€methyladenosine uncovers its regulatory role in gene expression in the lepidopteran <i>Bombyx mori</i> . Insect Molecular Biology, 2019, 28, 703-715.	1.0	38
126	Regulation of Gene Expression by N-methyladenosine in Cancer. Trends in Cell Biology, 2019, 29, 487-499.	3.6	159
127	Messenger RNA Modifications in Plants. Trends in Plant Science, 2019, 24, 328-341.	4.3	74

#	Article	IF	CITATIONS
128	N6-Methyladenosine Landscape of Glioma Stem-Like Cells: METTL3 Is Essential for the Expression of Actively Transcribed Genes and Sustenance of the Oncogenic Signaling. Genes, 2019, 10, 141.	1.0	82
129	Functions of RNA N6-methyladenosine modification in cancer progression. Molecular Biology Reports, 2019, 46, 1383-1391.	1.0	18
130	The role of m6A RNA methylation in cancer. Biomedicine and Pharmacotherapy, 2019, 112, 108613.	2.5	540
131	m6A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2. Nature Communications, 2019, 10, 5332.	5.8	268
132	Functions of N6-methyladenosine and its role in cancer. Molecular Cancer, 2019, 18, 176.	7.9	798
133	Mettl14 inhibits bladder TIC self-renewal and bladder tumorigenesis through N6-methyladenosine of Notch1. Molecular Cancer, 2019, 18, 168.	7.9	122
134	The interplay between m6A RNA methylation and noncoding RNA in cancer. Journal of Hematology and Oncology, 2019, 12, 121.	6.9	367
135	The m6A Dynamics of Profilin in Neurogenesis. Frontiers in Genetics, 2019, 10, 987.	1.1	8
136	m6A mRNA methylation regulates CTNNB1 to promote the proliferation of hepatoblastoma. Molecular Cancer, 2019, 18, 188.	7.9	129
137	N6-methyladenosine (m6A) RNA modification in gastrointestinal tract cancers: roles, mechanisms, and applications. Molecular Cancer, 2019, 18, 178.	7.9	72
138	The m ⁶ A Writer: Rise of a Machine for Growing Tasks. Biochemistry, 2019, 58, 363-378.	1.2	117
139	The role of RNA adenosine demethylases in the control of gene expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 343-355.	0.9	26
140	m6A modification of non-coding RNA and the control of mammalian gene expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 310-318.	0.9	132
141	UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research, 2019, 47, D506-D515.	6.5	6,185
142	Steering pluripotency and differentiation with N6-methyladenosine RNA modification. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 394-402.	0.9	13
143	m6A: Widespread regulatory control in virus replication. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 370-381.	0.9	37
144	Understanding m6A Function Through Uncovering the Diversity Roles of YTH Domain-Containing Proteins. Molecular Biotechnology, 2019, 61, 355-364.	1.3	31
145	<i>MTCH2</i> promotes adipogenesis in intramuscular preadipocytes <i>via</i> an m ⁶ Aâ€YTHDF1â€dependent mechanism. FASEB Journal, 2019, 33, 2971-2981.	0.2	63

#	Article	IF	CITATIONS
146	Mapping <i>N</i> ⁶ â€Methyladenosine (m ⁶ A) in RNA: Established Methods, Remaining Challenges, and Emerging Approaches. Chemistry - A European Journal, 2019, 25, 3455-3464.	1.7	18
147	RNA Modifications: Reversal Mechanisms and Cancer. Biochemistry, 2019, 58, 312-329.	1.2	41
148	Mechanistic insights into m6A RNA enzymes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 222-229.	0.9	89
149	The m6A‑methylase complex and mRNA export. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 319-328.	0.9	40
150	lt's complicated… m6A-dependent regulation of gene expression in cancer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 382-393.	0.9	31
151	Solution structure of the RNA recognition domain of METTL3-METTL14 N6-methyladenosine methyltransferase. Protein and Cell, 2019, 10, 272-284.	4.8	99
152	Dysregulated N6â€methyladenosineÂmethylation writer METTL3 contributes to the proliferation and migration of gastric cancer. Journal of Cellular Physiology, 2020, 235, 548-562.	2.0	96
153	A Mass Spectrometric Assay of METTL3/METTL14 Methyltransferase Activity. SLAS Discovery, 2020, 25, 361-371.	1.4	28
154	Reading Chemical Modifications in the Transcriptome. Journal of Molecular Biology, 2020, 432, 1824-1839.	2.0	18
155	Emerging role of m ⁶ A RNA methylation in nutritional physiology and metabolism. Obesity Reviews, 2020, 21, e12942.	3.1	71
156	METTL3 Regulates Osteoblast Differentiation and Inflammatory Response via Smad Signaling and MAPK Signaling. International Journal of Molecular Sciences, 2020, 21, 199.	1.8	93
157	New sights in cancer: Component and function of N6-methyladenosine modification. Biomedicine and Pharmacotherapy, 2020, 122, 109694.	2.5	20
158	Programmable RNA methylation and demethylation using PUF RNA binding proteins. Chemical Communications, 2020, 56, 1365-1368.	2.2	23
159	N6-Methyladenosine: A Potential Breakthrough for Human Cancer. Molecular Therapy - Nucleic Acids, 2020, 19, 804-813.	2.3	36
160	Identification of the 3-amino-3-carboxypropyl (acp) transferase enzyme responsible for acp3U formation at position 47 in Escherichia coli tRNAs. Nucleic Acids Research, 2020, 48, 1435-1450.	6.5	28
161	Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. European Journal of Heart Failure, 2020, 22, 54-66.	2.9	193
162	Newly identified DNA methyltransferases of Ixodes ricinus ticks. Ticks and Tick-borne Diseases, 2020, 11, 101348.	1.1	7
163	The m6A epitranscriptome: transcriptome plasticity in brain development and function. Nature Reviews Neuroscience, 2020, 21, 36-51.	4.9	195

#	Article	IF	CITATIONS
164	RNA Modifications in Cancer: Functions, Mechanisms, and Therapeutic Implications. Annual Review of Cancer Biology, 2020, 4, 221-240.	2.3	60
165	The Biogenesis and Precise Control of RNA m6A Methylation. Trends in Genetics, 2020, 36, 44-52.	2.9	198
166	An Emerging Role for isomiRs and the microRNA Epitranscriptome in Neovascularization. Cells, 2020, 9, 61.	1.8	31
167	Epigenetic Modifications of mRNA and DNA in Plants. Molecular Plant, 2020, 13, 14-30.	3.9	124
168	Advances in the role of m6A RNA modification in cancer metabolic reprogramming. Cell and Bioscience, 2020, 10, 117.	2.1	17
169	New Insights on the Role of N6-Methyladenosine RNA Methylation in the Physiology and Pathology of the Nervous System. Frontiers in Molecular Biosciences, 2020, 7, 555372.	1.6	19
170	m6A RNA Methylation in Cardiovascular Diseases. Molecular Therapy, 2020, 28, 2111-2119.	3.7	73
171	METTL3 counteracts premature aging via m6A-dependent stabilization of MIS12 mRNA. Nucleic Acids Research, 2020, 48, 11083-11096.	6.5	99
172	The Mammalian Cap-Specific m6Am RNA Methyltransferase PCIF1 Regulates Transcript Levels in Mouse Tissues. Cell Reports, 2020, 32, 108038.	2.9	50
173	N6-methyladenosine RNA modification in cancer therapeutic resistance: Current status and perspectives. Biochemical Pharmacology, 2020, 182, 114258.	2.0	43
174	Structural and Virus Regulatory Insights Into Avian N6-Methyladenosine (m6A) Machinery. Frontiers in Cell and Developmental Biology, 2020, 8, 543.	1.8	9
175	N6-methyladenosine as a Novel Regulator of Brain Physiology and Diseases. Current Medical Science, 2020, 40, 401-406.	0.7	3
176	Epitranscriptomic(N6-methyladenosine) Modification of Viral RNA and Virus-Host Interactions. Frontiers in Cellular and Infection Microbiology, 2020, 10, 584283.	1.8	36
177	Emerging roles of N6-methyladenosine (m6A) modification in breast cancer. Cell and Bioscience, 2020, 10, 136.	2.1	20
178	The role of m6A modification in physiology and disease. Cell Death and Disease, 2020, 11, 960.	2.7	111
179	Stabilization of ERK-Phosphorylated METTL3 by USP5 Increases m6A Methylation. Molecular Cell, 2020, 80, 633-647.e7.	4.5	83
180	The m6A methylation regulator-based signature for predicting the prognosis of prostate cancer. Future Oncology, 2020, 16, 2421-2432.	1.1	20
181	Reshaping the role of m6A modification in cancer transcriptome: a review. Cancer Cell International, 2020, 20, 353.	1.8	37

#	Article	IF	CITATIONS
182	METTL14 aggravates endothelial inflammation and atherosclerosis by increasing FOXO1 N6-methyladeosine modifications. Theranostics, 2020, 10, 8939-8956.	4.6	136
183	<i>METTL3</i> polymorphisms and Wilms tumor susceptibility in Chinese children: A fiveâ€center case–control study. Journal of Gene Medicine, 2020, 22, e3255.	1.4	14
184	mRNA adenosine methylase (MTA) deposits m ⁶ A on pri-miRNAs to modulate miRNA biogenesis in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21785-21795.	3.3	83
185	Insight into m ⁶ A methylation from occurrence to functions. Open Biology, 2020, 10, 200091.	1.5	24
186	m ⁶ A RNA modification modulates PI3K/Akt/mTOR signal pathway in Gastrointestinal Cancer. Theranostics, 2020, 10, 9528-9543.	4.6	62
187	RNA-Binding Proteins as Regulators of Migration, Invasion and Metastasis in Oral Squamous Cell Carcinoma. International Journal of Molecular Sciences, 2020, 21, 6835.	1.8	34
188	m6A modification in RNA: biogenesis, functions and roles in gliomas. Journal of Experimental and Clinical Cancer Research, 2020, 39, 192.	3.5	94
189	m6A RNA Methylation: Ramifications for Gene Expression and Human Health. Molecular Biotechnology, 2020, 62, 467-484.	1.3	40
190	Roles of METTL3 in cancer: mechanisms and therapeutic targeting. Journal of Hematology and Oncology, 2020, 13, 117.	6.9	269
191	FTO – A Common Genetic Basis for Obesity and Cancer. Frontiers in Genetics, 2020, 11, 559138.	1.1	75
192	RNA m6A Modification in Cancers: Molecular Mechanisms and Potential Clinical Applications. Innovation(China), 2020, 1, 100066.	5.2	69
193	Emerging role of RNA methyltransferase METTL3 in gastrointestinal cancer. Journal of Hematology and Oncology, 2020, 13, 57.	6.9	71
194	<scp>RNA</scp> m ⁶ A methylation regulates sorafenib resistance in liver cancer through <scp>FOXO</scp> 3â€mediated autophagy. EMBO Journal, 2020, 39, e103181.	3.5	271
195	The 18S ribosomal <scp>RNA</scp> m ⁶ A methyltransferase Mett 5 is required for normal walking behavior in <i>Drosophila</i> . EMBO Reports, 2020, 21, e49443.	2.0	52
196	RNA modifications in brain tumorigenesis. Acta Neuropathologica Communications, 2020, 8, 64.	2.4	15
197	Identification of a m6A RNA methylation regulators-based signature for predicting the prognosis of clear cell renal carcinoma. Cancer Cell International, 2020, 20, 157.	1.8	38
198	The potential role of RNA N6-methyladenosine in Cancer progression. Molecular Cancer, 2020, 19, 88.	7.9	516
199	Diverse molecular functions of m6A mRNA modification in cancer. Experimental and Molecular Medicine, 2020, 52, 738-749.	3.2	38

#	Article	IF	CITATIONS
200	Beta class amino methyltransferases from bacteria to humans: evolution and structural consequences. Nucleic Acids Research, 2020, 48, 10034-10044.	6.5	21
201	Mechanism of RNA modification N6-methyladenosine in human cancer. Molecular Cancer, 2020, 19, 104.	7.9	184
202	N6-Deoxyadenosine Methylation in Mammalian Mitochondrial DNA. Molecular Cell, 2020, 78, 382-395.e8.	4.5	156
203	Hypoxia Promotes Vascular Smooth Muscle Cell (VSMC) Differentiation of Adipose-Derived Stem Cell (ADSC) by Regulating Mettl3 and Paracrine Factors. Stem Cells International, 2020, 2020, 1-11.	1.2	51
204	The roles of m6A RNA modifiers in human cancer. Journal of the Chinese Medical Association, 2020, 83, 221-226.	0.6	28
205	m6A Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer. Cancer Cell, 2020, 37, 270-288.	7.7	688
206	Role of m6A in Embryonic Stem Cell Differentiation and in Gametogenesis. Epigenomes, 2020, 4, 5.	0.8	22
207	Programmable m6A modification of cellular RNAs with a Cas13-directed methyltransferase. Nature Biotechnology, 2020, 38, 1431-1440.	9.4	173
208	Genetic analyses support the contribution of mRNA N6-methyladenosine (m6A) modification to human disease heritability. Nature Genetics, 2020, 52, 939-949.	9.4	113
209	Asymmetric dimerization of adenosine deaminase acting on RNA facilitates substrate recognition. Nucleic Acids Research, 2020, 48, 7958-7972.	6.5	33
210	Nutrient Control of mRNA Translation. Annual Review of Nutrition, 2020, 40, 51-75.	4.3	25
211	A New Model of Spontaneous Colitis in Mice Induced by Deletion of an RNA m6A Methyltransferase Component METTL14 in T Cells. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 747-761.	2.3	69
212	N6-Adenosine Methylation in RNA and a Reduced m3G/TMG Level in Non-Coding RNAs Appear at Microirradiation-Induced DNA Lesions. Cells, 2020, 9, 360.	1.8	36
213	Molecular Mechanisms Driving mRNA Degradation by m6A Modification. Trends in Genetics, 2020, 36, 177-188.	2.9	251
214	N6-Methyladenosine Regulates the Expression and Secretion of TGFβ1 to Affect the Epithelial–Mesenchymal Transition of Cancer Cells. Cells, 2020, 9, 296.	1.8	47
215	m6A mRNA methylation: A pleiotropic regulator of cancer. Gene, 2020, 736, 144415.	1.0	20
216	Pathogenic diversity of RNA variants and RNA variation-associated factors in cancer development. Experimental and Molecular Medicine, 2020, 52, 582-593.	3.2	10
217	The RNA modification N6-methyladenosine as a novel regulator of the immune system. Nature Immunology, 2020, 21, 501-512.	7.0	256

#	Article	IF	CITATIONS
218	Mechanistic insights into m6A modification of U6 snRNA by human METTL16. Nucleic Acids Research, 2020, 48, 5157-5168.	6.5	70
219	Insights into the N ⁶ -methyladenosine mechanism and its functionality: progress and questions. Critical Reviews in Biotechnology, 2020, 40, 639-652.	5.1	15
220	Epitranscriptomics in liver disease: Basic concepts and therapeutic potential. Journal of Hepatology, 2020, 73, 664-679.	1.8	92
221	Role of RNA modifications in cancer. Nature Reviews Cancer, 2020, 20, 303-322.	12.8	621
222	The emerging molecular mechanism of m6A modulators in tumorigenesis and cancer progression. Biomedicine and Pharmacotherapy, 2020, 127, 110098.	2.5	67
223	Recent developments of small molecules targeting RNA m6A modulators. European Journal of Medicinal Chemistry, 2020, 196, 112325.	2.6	17
224	Epigenetic N6-methyladenosine modification of RNA and DNA regulates cancer. Cancer Biology and Medicine, 2020, 17, 9-19.	1.4	26
225	Transcription Dynamics Regulate Poly(A) Tails and Expression of the RNA Degradation Machinery to Balance mRNA Levels. Molecular Cell, 2020, 78, 434-444.e5.	4.5	50
226	A birds'â€eye view of the activity and specificity of the <scp>mRNA m⁶A</scp> methyltransferase complex. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1618.	3.2	34
227	Tagâ€Free Internal RNA Labeling and Photocaging Based on mRNA Methyltransferases. Angewandte Chemie - International Edition, 2021, 60, 4098-4103.	7.2	40
228	Novel Insights Into the Role of N6-Methyladenosine RNA Modification in Bone Pathophysiology. Stem Cells and Development, 2021, 30, 17-28.	1.1	21
229	Tagâ€Free Internal RNA Labeling and Photocaging Based on mRNA Methyltransferases. Angewandte Chemie, 2021, 133, 4144-4149.	1.6	11
230	The momentous role of N6â€methyladenosine in lung cancer. Journal of Cellular Physiology, 2021, 236, 3244-3256.	2.0	21
231	The Impacts of Non-coding RNAs and N6-Methyladenosine on Cancer: Past, Present, and Future. Current Cancer Drug Targets, 2021, 21, 375-385.	0.8	4
232	Multifaceted regulation of translation by the epitranscriptomic modification N ⁶ -methyladenosine. Critical Reviews in Biochemistry and Molecular Biology, 2021, 56, 137-148.	2.3	11
233	METTL3 regulates heterochromatin in mouse embryonic stem cells. Nature, 2021, 591, 317-321.	13.7	187
234	RNA m6A Methylation Regulators Subclassify Luminal Subtype in Breast Cancer. Frontiers in Oncology, 2020, 10, 611191.	1.3	8
235	Regulation of Gene Expression Associated With the N6-Methyladenosine (m6A) Enzyme System and Its Significance in Cancer. Frontiers in Oncology, 2020, 10, 623634.	1.3	27

ARTICLE IF CITATIONS # m ⁶ A deposition is regulated by PRMT1â€mediated arginine methylation of METTL14 in its 236 3.5 30 disordered Câ€terminal region. EMBO Journal, 2021, 40, e106309. Targeted RNA m6A Editing Using Engineered CRISPR-Cas9 Conjugates. Methods in Molecular Biology, 0.4 2021, 2298, 399-414. Methylation multiplicity and its clinical values in cancer. Expert Reviews in Molecular Medicine, 2021, 239 1.6 45 23, eŻ. METTL3/YTHDF2 m6A axis accelerates colorectal carcinogenesis through epigenetically suppressing 240 YPEL5. Molecular Oncology, 2021, 15, 2172-2184. RNA modifications in cardiovascular diseaseâ€"An experimental and computational perspective. , 2021, , 241 3 113-125. Ribonucleotide base-modifying enzymes and diseases., 2021, , 69-83. The role of m6A, m5C and Î[•] RNA modifications in cancer: Novel therapeutic opportunities. Molecular 243 7.9 245 Cancer, 2021, 20, 18. Epitranscriptome machinery in Trypanosomatids: New players on the table?. Molecular Microbiology, 244 1.2 2021, 115, 942-958. Emerging Roles of N6-Methyladenosine (m6A) Epitranscriptomics in Toxicology. Toxicological 245 1.4 19 Sciences, 2021, 181, 13-22. Targeting Epigenetic Mechanisms to Treat Alcohol Use Disorders (AUD). Current Pharmaceutical 246 Design, 2021, 27, 3252-3272. The Regulation of RNA Modification Systems: The Next Frontier in Epitranscriptomics?. Genes, 2021, 12, 247 1.0 29 345. The role of IGF2BP2, an m6A reader gene, in human metabolic diseases and cancers. Cancer Cell 1.8 96 International, 2021, 21, 99. Gluten-induced RNA methylation changes regulate intestinal inflammation via allele-specific 249 6.1 29 <i>XPO1</i> translation in epithelial cells. Gut, 2022, 71, 68-76. METTL3-dependent m6A modification programs T follicular helper cell differentiation. Nature 5.8 99 Communications, 2021, 12, 1333. Identification of a New Prognostic Risk Signature of Clear Cell Renal Cell Carcinoma Based on 251 7 0.9 N6-Methyladenosine RNA Methylation Regulators. Journal of Immunology Research, 2021, 2021, 1-23. Methyladenosine Modification in RNAs: Classification and Roles in Gastrointestinal Cancers. 14 Frontiers in Oncology, 2020, 10, 586789. METTL16, Methyltransferase-Like Protein 16: Current Insights into Structure and Function. 253 1.8 46 International Journal of Molecular Sciences, 2021, 22, 2176. Deciphering the molecular mechanisms of epitranscriptome regulation in cancer. BMB Reports, 2021, 1.1 54, 89-97.

ARTICLE IF CITATIONS # The Important Role of N6-methyladenosine RNA Modification in Non-Small Cell Lung Cancer. Genes, 256 1.0 14 2021, 12, 440. RNA methylation in hematological malignancies and its interactions with other epigenetic 3.3 19 modifications. Leukemia, 2021, 35, 1243-1257. Roles of RNA Methylation on Tumor Immunity and Clinical Implications. Frontiers in Immunology, 2021, 259 2.2 83 12,641507. A brief review of RNA modification related database resources. Methods, 2022, 203, 342-353. 260 The role of RNA N6-methyladenosine methyltransferase in cancers. Molecular Therapy - Nucleic Acids, 261 2.3 20 2021, 23, 887-896. The role of N6-methyladenosine modification in the life cycle and disease pathogenesis of hepatitis B and C viruses. Experimental and Molecular Medicine, 2021, 53, 339-345. 3.2 16 Gene Expression Profile and Prognostic Value of m6A RNA Methylation Regulators in Hepatocellular 263 1.8 6 Carcinoma. Journal of Hepatocellular Carcinoma, 2021, Volume 8, 85-101. Multidimensional crosstalk between RNA-binding proteins and noncoding RNAs in cancer biology. 264 4.3 16 Seminars in Cancer Biology, 2021, 75, 84-96. Mettl14-mediated m6A modification modulates neuron apoptosis during the repair of spinal cord 265 2.1 17 injury by regulating the transformation from priâ€mirâ€375 to miR-375. Cell and Bioscience, 2021, 11, 52. Epigenetic regulations in mammalian spermatogenesis: RNA-m6A modification and beyond. Cellular and 2.4 Molecular Life Sciences, 2021, 78, 4893-4905. m6A-independent genome-wide METTL3 and METTL14 redistribution drives the senescence-associated 267 4.6 71 secretory phenotype. Nature Cell Biology, 2021, 23, 355-365. Epigenetic regulation of mRNA N6-methyladenosine modifications in mammalian gametogenesis. 1.3 268 Molecular Human Reproduction, 2021, 27, . Transcriptome-wide study revealed m6A regulation of embryonic muscle development in Dingan goose 269 1.2 23 (Anser cygnoides orientalis). BMC Genomics, 2021, 22, 270. N6-methyladenosine-dependent signalling in cancer progression and insights into cancer therapies. 270 3.5 Journal of Experimental and Clinical Cancer Research, 2021, 40, 146. Dynamics of m6A RNA Methylome on the Hallmarks of Hepatocellular Carcinoma. Frontiers in Cell and 271 1.8 13 Developmental Biology, 2021, 9, 642443. The crucial roles of N6-methyladenosine (m6A) modification in the carcinogenesis and progression of colorectal cancer. Cell and Bioscience, 2021, 11, 72. Nonsegmented Negative-Sense RNA Viruses Utilize <i>N</i> ⁶ -Methyladenosine (m) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 273

CITATION REPORT

274The Biological Function, Mechanism, and Clinical Significance of m6A RNA Modifications in Head and
Neck Carcinoma: A Systematic Review. Frontiers in Cell and Developmental Biology, 2021, 9, 683254.1.8

#	Article	IF	CITATIONS
275	mRNA modifications in cardiovascular biology and disease: with a focus on m6A modification. Cardiovascular Research, 2022, 118, 1680-1692.	1.8	66
276	The emerging role of RNA N6-methyladenosine methylation in breast cancer. Biomarker Research, 2021, 9, 39.	2.8	22
277	Role of RNA N6-Methyladenosine Modification in Male Infertility and Genital System Tumors. Frontiers in Cell and Developmental Biology, 2021, 9, 676364.	1.8	11
278	Functions of RNA N6-methyladenosine modification in acute myeloid leukemia. Biomarker Research, 2021, 9, 36.	2.8	13
279	Demethyltransferase AlkBH1 substrate diversity and relationship to human diseases. Molecular Biology Reports, 2021, 48, 4747-4756.	1.0	11
280	A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Research, 2021, 49, 7239-7255.	6.5	190
281	Methyltransferaseâ€Like Protein 14 Attenuates Mitochondrial Antiviral Signaling Protein Expression to Negatively Regulate Antiviral Immunity via N ⁶ â€methyladenosine Modification. Advanced Science, 2021, 8, e2100606.	5.6	11
282	m6A Modification in Mammalian Nervous System Development, Functions, Disorders, and Injuries. Frontiers in Cell and Developmental Biology, 2021, 9, 679662.	1.8	10
283	m6A RNA methylation of major satellite repeat transcripts facilitates chromatin association and RNA:DNA hybrid formation in mouse heterochromatin. Nucleic Acids Research, 2021, 49, 5568-5587.	6.5	21
284	Systematic expression analysis of m 6 A RNA methyltransferases in clear cell renal cell carcinoma. BJUI Compass, 2021, 2, 402-411.	0.7	8
285	The Role of RNA Methyltransferase METTL3 in Hepatocellular Carcinoma: Results and Perspectives. Frontiers in Cell and Developmental Biology, 2021, 9, 674919.	1.8	19
286	m6A regulators are associated with osteosarcoma metastasis and have prognostic significance. Medicine (United States), 2021, 100, e25952.	0.4	9
287	Regulatory Role of N6-methyladenosine (m6A) Modification in Osteosarcoma. Frontiers in Oncology, 2021, 11, 683768.	1.3	7
288	N ⁶ â€methyladenosine Steers RNA Metabolism and Regulation in Cancer. Cancer Communications, 2021, 41, 538-559.	3.7	24
289	Division of labor in epitranscriptomics: What have we learnt from the structures of eukaryotic and viral multimeric <scp>RNA</scp> methyltransferases?. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1673.	3.2	5
290	Emerging Role of m6 A Methylome in Brain Development: Implications for Neurological Disorders and Potential Treatment. Frontiers in Cell and Developmental Biology, 2021, 9, 656849.	1.8	15
291	Rational Design of Novel Anticancer Small-Molecule RNA m6A Demethylase ALKBH5 Inhibitors. ACS Omega, 2021, 6, 13310-13320.	1.6	57
292	RNA modifications in hematopoietic malignancies: a new research frontier. Blood, 2021, 138, 637-648.	0.6	24

#	Article	IF	CITATIONS
293	The METTL3-m6A Epitranscriptome: Dynamic Regulator of Epithelial Development, Differentiation, and Cancer. Genes, 2021, 12, 1019.	1.0	15
294	Genome-Wide Investigation of N6-Methyladenosine Regulatory Genes and Their Roles in Tea (Camellia) Tj ETQq1	1 0.78431 1.7	4.rgBT /Ov
295	Methyl CpG binding protein 2 promotes colorectal cancer metastasis by regulating N ⁶ â€methyladenosine methylation through methyltransferaseâ€like 14. Cancer Science, 2021, 112, 3243-3254.	1.7	26
296	m ⁶ A modification of HSATIII IncRNAs regulates temperatureâ€dependent splicing. EMBO Journal, 2021, 40, e107976.	3.5	36
297	Hakai is required for stabilization of core components of the m6A mRNA methylation machinery. Nature Communications, 2021, 12, 3778.	5.8	77
298	Strategies for Covalent Labeling of Long RNAs. ChemBioChem, 2021, 22, 2826-2847.	1.3	25
299	Splice site m6A methylation prevents binding of U2AF35 to inhibit RNA splicing. Cell, 2021, 184, 3125-3142.e25.	13.5	103
300	Potential roles of N6-methyladenosine (m6A) in immune cells. Journal of Translational Medicine, 2021, 19, 251.	1.8	36
301	Long Non-Coding RNA Epigenetics. International Journal of Molecular Sciences, 2021, 22, 6166.	1.8	23
302	Acute depletion of METTL3 implicates <i>N</i> ⁶ -methyladenosine in alternative intron/exon inclusion in the nascent transcriptome. Genome Research, 2021, 31, 1395-1408.	2.4	37
303	Comprehensive Analysis of the Immune Infiltrates and PD-L1 of m6A RNA Methylation Regulators in Hepatocellular Carcinoma. Frontiers in Cell and Developmental Biology, 2021, 9, 681745.	1.8	11
304	N6-methyladenosine RNA modification regulates strawberry fruit ripening in an ABA-dependent manner. Genome Biology, 2021, 22, 168.	3.8	72
305	Deep and accurate detection of m6A RNA modifications using miCLIP2 and m6Aboost machine learning. Nucleic Acids Research, 2021, 49, e92-e92.	6.5	50
306	N6-Methyladenosine RNA Methylation Regulator-Related Alternative Splicing (AS) Gene Signature Predicts Non–Small Cell Lung Cancer Prognosis. Frontiers in Molecular Biosciences, 2021, 8, 657087.	1.6	19
307	Chromatin and transcriptional regulation by reversible RNA methylation. Current Opinion in Cell Biology, 2021, 70, 109-115.	2.6	44
308	The m6A methyltransferase METTL3 promotes hypoxic pulmonary arterial hypertension. Life Sciences, 2021, 274, 119366.	2.0	42
309	Physio-pathological effects of m6A modification and its potential contribution to melanoma. Clinical and Translational Oncology, 2021, 23, 2269-2279.	1.2	12
310	Interactions between m6A modification and miRNAs in malignant tumors. Cell Death and Disease, 2021, 12, 598.	2.7	52

#	Article	IF	CITATIONS
311	Circ_0008542 in osteoblast exosomes promotes osteoclast-induced bone resorption through m6A methylation. Cell Death and Disease, 2021, 12, 628.	2.7	59
312	N6-Methyladenosine RNA Modification in Inflammation: Roles, Mechanisms, and Applications. Frontiers in Cell and Developmental Biology, 2021, 9, 670711.	1.8	56
313	Role of m6A in osteoporosis, arthritis and osteosarcoma (Review). Experimental and Therapeutic Medicine, 2021, 22, 926.	0.8	16
314	<scp>RNA</scp> methyltransferase <scp>METTL16</scp> : Targets and function. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1681.	3.2	47
315	m6A RNA methylation facilitates pre-mRNA 3'-end formation and is essential for viability of Toxoplasma gondii. PLoS Pathogens, 2021, 17, e1009335.	2.1	15
316	RNA methylation in mammalian development and cancer. Cell Biology and Toxicology, 2021, 37, 811-831.	2.4	47
317	Function and clinical significance of N6-methyladenosine in digestive system tumours. Experimental Hematology and Oncology, 2021, 10, 40.	2.0	16
318	The N6-methyladenosine modification posttranscriptionally regulates hepatic UGT2B7 expression. Biochemical Pharmacology, 2021, 189, 114402.	2.0	16
319	Role of m6A methylation in occurrence and progression of digestive system malignancies. World Chinese Journal of Digestology, 2021, 29, 747-757.	0.0	0
320	m6A Modification: A Double-Edged Sword in Tumor Development. Frontiers in Oncology, 2021, 11, 679367.	1.3	41
321	METTL3 Inhibitors for Epitranscriptomic Modulation of Cellular Processes. ChemMedChem, 2021, 16, 3035-3043.	1.6	87
322	Distinct roles of Fto and Mettl3 in controlling development of the cerebral cortex through transcriptional and translational regulations. Cell Death and Disease, 2021, 12, 700.	2.7	15
323	Widespread remodeling of the m ⁶ A RNA-modification landscape by a viral regulator of RNA processing and export. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	39
324	A Lightâ€Controllable Chemical Modulation of m 6 A RNA Methylation. Angewandte Chemie, 2021, 133, 18264-18269.	1.6	5
325	N6-methyladenosine methyltransferases: functions, regulation, and clinical potential. Journal of Hematology and Oncology, 2021, 14, 117.	6.9	105
326	Multi-omics integration of methyltransferase-like protein family reveals clinical outcomes and functional signatures in human cancer. Scientific Reports, 2021, 11, 14784.	1.6	30
327	Changes in N6-Methyladenosine Modification Modulate Diabetic Cardiomyopathy by Reducing Myocardial Fibrosis and Myocyte Hypertrophy. Frontiers in Cell and Developmental Biology, 2021, 9, 702579.	1.8	26
328	N6-Methyladenosine Modification and Its Regulation of Respiratory Viruses. Frontiers in Cell and Developmental Biology, 2021, 9, 699997.	1.8	2

#	Article	IF	CITATIONS
329	A plant-like mechanism coupling m6A reading to polyadenylation safeguards transcriptome integrity and developmental gene partitioning in Toxoplasma. ELife, 2021, 10, .	2.8	19
330	A Light ontrollable Chemical Modulation of m ⁶ A RNA Methylation. Angewandte Chemie - International Edition, 2021, 60, 18116-18121.	7.2	23
331	METTL14 facilitates global genome repair and suppresses skin tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	61
332	m6A RNA methylation regulates promoter- proximal pausing of RNA polymerase II. Molecular Cell, 2021, 81, 3356-3367.e6.	4.5	47
333	Inhibition of METTL3/m6A/ <i>miR126</i> promotes the migration and invasion of endometrial stromal cells in endometriosis. Biology of Reproduction, 2021, 105, 1221-1233.	1.2	30
334	N6-Methyladenosine in Cancer Immunotherapy: An Undervalued Therapeutic Target. Frontiers in Immunology, 2021, 12, 697026.	2.2	14
335	RNA m6A Modification Plays a Key Role in Maintaining Stem Cell Function in Normal and Malignant Hematopoiesis. Frontiers in Cell and Developmental Biology, 2021, 9, 710964.	1.8	5
336	<i>m6A-express</i> : uncovering complex and condition-specific m6A regulation of gene expression. Nucleic Acids Research, 2021, 49, e116-e116.	6.5	24
337	1,4,9-Triazaspiro[5.5]undecan-2-one Derivatives as Potent and Selective METTL3 Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 12738-12760.	2.9	55
338	Regulatory role and mechanism of m6A RNA modification in human metabolic diseases. Molecular Therapy - Oncolytics, 2021, 22, 52-63.	2.0	23
339	Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants, 2021, 10, 1483.	2.2	22
340	RNA Modifications and Epigenetics in Modulation of Lung Cancer and Pulmonary Diseases. International Journal of Molecular Sciences, 2021, 22, 10592.	1.8	61
341	N6-Methyladenosine RNA Modification: An Emerging Immunotherapeutic Approach to Turning Up Cold Tumors. Frontiers in Cell and Developmental Biology, 2021, 9, 736298.	1.8	7
342	Knockdown of IncRNA NUTM2A‑AS1 inhibits lung adenocarcinoma cell viability by regulating the miR‑590‑5p/METTL3 axis. Oncology Letters, 2021, 22, 798.	0.8	9
343	METTL3-Mediated IncRNA m6A Modification in the Osteogenic Differentiation of Human Adipose-Derived Stem Cells Induced by NEL-Like 1 Protein. Stem Cell Reviews and Reports, 2021, 17, 2276-2290.	1.7	16
344	Evolution of Methyltransferase-Like (METTL) Proteins in Metazoa: A Complex Gene Family Involved in Epitranscriptomic Regulation and Other Epigenetic Processes. Molecular Biology and Evolution, 2021, 38, 5309-5327.	3.5	21
345	Methyltransferaseâ€like 3â€induced N6â€methyladenosine upregulation promotes oral squamous cell carcinoma by through p38. Oral Diseases, 2023, 29, 639-648.	1.5	8
346	Effect, Mechanism, and Applications of Coding/Non-coding RNA m6A Modification in Tumor Microenvironment. Frontiers in Cell and Developmental Biology, 2021, 9, 711815.	1.8	8

#	Article	IF	CITATIONS
347	N6-Methyladenosine and Rheumatoid Arthritis: A Comprehensive Review. Frontiers in Immunology, 2021, 12, 731842.	2.2	18
348	Multiomics analysis identifies key genes and pathways related to N6-methyladenosine RNA modification in ovarian cancer. Epigenomics, 2021, 13, 1359-1383.	1.0	4
349	Dynamic m6A mRNA Methylation Reveals the Role of METTL3/14-m6A-MNK2-ERK Signaling Axis in Skeletal Muscle Differentiation and Regeneration. Frontiers in Cell and Developmental Biology, 2021, 9, 744171.	1.8	15
350	Isorhapontigenin (ISO) inhibits EMT through FOXO3A/METTL14/VIMENTIN pathway in bladder cancer cells. Cancer Letters, 2021, 520, 400-408.	3.2	20
351	Relevance of N6-methyladenosine regulators for transcriptome: Implications for development and the cardiovascular system. Journal of Molecular and Cellular Cardiology, 2021, 160, 56-70.	0.9	9
352	The RNA m6A writer METTL14 in cancers: Roles, structures, and applications. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188609.	3.3	58
353	METTL3 induces PLX4032 resistance in melanoma by promoting m6A-dependent EGFR translation. Cancer Letters, 2021, 522, 44-56.	3.2	32
354	DNAzyme based three-way junction assay for antibody-free detection of locus-specific N6-methyladenosine modifications. Biosensors and Bioelectronics, 2021, 194, 113625.	5.3	20
355	The Complex Roles and Therapeutic Implications of m6A Modifications in Breast Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 615071.	1.8	9
356	The emerging roles of m ⁶ A modification in liver carcinogenesis. International Journal of Biological Sciences, 2021, 17, 271-284.	2.6	27
357	Biological functions of m6A methyltransferases. Cell and Bioscience, 2021, 11, 15.	2.1	33
358	Epitranscriptomics and Diseases. RNA Technologies, 2021, , 121-140.	0.2	Ο
359	Metabolic Control of m6A RNA Modification. Metabolites, 2021, 11, 80.	1.3	24
361	m ⁶ A RNA methylation: from mechanisms to therapeutic potential. EMBO Journal, 2021, 40, e105977.	3.5	316
362	mRNA Traffic Control Reviewed: N6â€Methyladenosine (m ⁶ A) Takes the Driver's Seat. BioEssays, 2018, 40, 1700093.	1.2	62
363	RNA N 6-Methyladenosine Modification in Normal and Malignant Hematopoiesis. Advances in Experimental Medicine and Biology, 2019, 1143, 75-93.	0.8	35
364	DNA N6-methyladenine in metazoans: functional epigenetic mark or bystander?. Nature Structural and Molecular Biology, 2017, 24, 503-506.	3.6	73
365	N6-methyladenosine regulates glycolysis of cancer cells through PDK4. Nature Communications, 2020, 11, 2578.	5.8	163

#	Article	IF	CITATIONS
366	Nanomaterial-based biosensors for DNA methyltransferase assay. Journal of Materials Chemistry B, 2020, 8, 3488-3501.	2.9	21
367	The N6-methyladenosine RNA modification in acute myeloid leukemia. Current Opinion in Hematology, 2021, 28, 80-85.	1.2	11
372	RNA secondary structure dependence in METTL3–METTL14 mRNA methylation is modulated by the N-terminal domain of METTL3. Biological Chemistry, 2020, 402, 89-98.	1.2	21
373	Analysis of METTL3 and METTL14 in hepatocellular carcinoma. Aging, 2020, 12, 21638-21659.	1.4	44
374	METTL14 Inhibits Hepatocellular Carcinoma Metastasis Through Regulating EGFR/PI3K/AKT Signaling Pathway in an m6A-Dependent Manner. Cancer Management and Research, 2020, Volume 12, 13173-13184.	0.9	41
375	Clustering Count-based RNA Methylation Data Using a Nonparametric Generative Model. Current Bioinformatics, 2018, 14, 11-23.	0.7	13
376	Expression profiles and prognostic roles of m6A writers, erasers and readers in gastric cancer. Future Oncology, 2021, 17, 2605-2620.	1.1	18
377	Dynamic m ⁶ A methylation facilitates mRNA triaging to stress granules. Life Science Alliance, 2018, 1, e201800113.	1.3	136
378	Role of m6A RNA methylation in cardiovascular disease (Review). International Journal of Molecular Medicine, 2020, 46, 1958-1972.	1.8	154
379	N6‑methyladenine RNA modification and cancer (Review). Oncology Letters, 2020, 20, 1504-1512.	0.8	25
380	Axon regeneration induced by environmental enrichment- epigenetic mechanisms. Neural Regeneration Research, 2020, 15, 10.	1.6	13
381	Structural insights into the molecular mechanism of the m6A writer complex. ELife, 2016, 5, .	2.8	386
382	The Tudor SND1 protein is an m6A RNA reader essential for replication of Kaposi's sarcoma-associated herpesvirus. ELife, 2019, 8, .	2.8	107
383	Role of methyltransferase-like enzyme 3 and methyltransferase-like enzyme 14 in urological cancers. PeerJ, 2020, 8, e9589.	0.9	17
384	N6-methyladenosine regulates ATM expression and downstream signaling. Journal of Cancer, 2021, 12, 7041-7051.	1.2	3
385	N6-methyladenosine RNA modification and its interaction with regulatory non-coding RNAs in colorectal cancer. RNA Biology, 2021, 18, 551-561.	1.5	7
386	Overexpression of methyltransferaseâ€ike 3 and 14 in oral squamous cell carcinoma. Journal of Oral Pathology and Medicine, 2022, 51, 134-145.	1.4	5
387	Hypoxia blocks ferroptosis of hepatocellular carcinoma via suppression of METTL14 triggered YTHDF2â€dependent silencing of SLC7A11. Journal of Cellular and Molecular Medicine, 2021, 25, 10197-10212.	1.6	73

#	Article	IF	CITATIONS
388	Epitranscriptomic modifications in acute myeloid leukemia: m ⁶ A and 2′- <i>O</i> -methylation as targets for novel therapeutic strategies. Biological Chemistry, 2021, 402, 1531-1546.	1.2	3
389	m6A RNA Immunoprecipitation Followed by High-Throughput Sequencing to Map N6-Methyladenosine. Methods in Molecular Biology, 2022, 2404, 355-362.	0.4	5
390	Transient N-6-Methyladensosine Transcriptome Sequencing Reveals a Regulatory Role of m6A in Splicing Efficiency. SSRN Electronic Journal, 0, , .	0.4	0
395	Functions and Dynamics of Methylation in Eukaryotic mRNA. RNA Technologies, 2019, , 333-351.	0.2	0
396	The Role of mRNA m6A in Regulation of Gene Expression. RNA Technologies, 2019, , 353-376.	0.2	0
398	Molecular mechanism of methyltransferase-like protein family: Relationship with gastric cancer. World Chinese Journal of Digestology, 2020, 28, 428-434.	0.0	0
399	High-Throughput-Methyl-Reading (HTMR) assay: a solution based on nucleotide methyl-binding proteins enables large-scale screening for DNA/RNA methyltransferases and demethylases. Nucleic Acids Research, 2022, 50, e9-e9.	6.5	12
401	Knockdown of METTL14 inhibits the growth and invasion of cervical cancer. Translational Cancer Research, 2019, 8, 2307-2315.	0.4	8
403	m6A Modification in Non-Coding RNA: The Role in Cancer Drug Resistance. Frontiers in Oncology, 2021, 11, 746789.	1.3	10
406	RNA m6A methylation regulators in ovarian cancer. Cancer Cell International, 2021, 21, 609.	1.8	27
407	The Emerging Role of m6A Modification in Regulating the Immune System and Autoimmune Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 755691.	1.8	32
408	Three critical regions of the erythromycin resistance methyltransferase, ErmE, are required for function supporting a model for the interaction of Erm family enzymes with substrate rRNA. Rna, 2022, 28, 210-226.	1.6	1
409	Roles of M6A Regulators in Hepatocellular Carcinoma: Promotion or Suppression. Current Gene Therapy, 2021, 22, 40-50.	0.9	2
410	Up–to–date on the evidence linking miRNA-related epitranscriptomic modifications and disease settings. Can these modifications affect cross-kingdom regulation?. RNA Biology, 2021, , 1-14.	1.5	3
411	Balancing of mitochondrial translation through METTL8-mediated m3C modification of mitochondrial tRNAs. Molecular Cell, 2021, 81, 4810-4825.e12.	4.5	44
412	METTL14 suppresses pyroptosis and diabetic cardiomyopathy by downregulating TINCR lncRNA. Cell Death and Disease, 2022, 13, 38.	2.7	56
413	Novel insights into the interaction between N6-methyladenosine modification and circular RNA. Molecular Therapy - Nucleic Acids, 2022, 27, 824-837.	2.3	19
414	METTL14-mediated Lnc-LSG1 m6A modification inhibits clear cell renal cell carcinoma metastasis via regulating ESRP2 ubiquitination. Molecular Therapy - Nucleic Acids, 2022, 27, 547-561.	2.3	31

#	Article	IF	CITATIONS
415	METTL14 Regulates Autophagy and Osteogenic Differentiation of BMSCs Targeting Beclin-1 via an M ⁶ A-IGF2BPs-Dependent Mechanism. SSRN Electronic Journal, 0, , .	0.4	0
416	Insights into N6-methyladenosine and programmed cell death in cancer. Molecular Cancer, 2022, 21, 32.	7.9	81
417	Dynamic regulation and functions of mRNA m6A modification. Cancer Cell International, 2022, 22, 48.	1.8	63
418	N6-Methyladenosine Modifications in the Female Reproductive System: Roles in Gonad Development and Diseases. International Journal of Biological Sciences, 2022, 18, 771-782.	2.6	12
419	The Role of N6-Methyladenosine (m6A) Methylation Modifications in Hematological Malignancies. Cancers, 2022, 14, 332.	1.7	12
420	FIONA1â€Mediated m ⁶ A Modification Regulates the Floral Transition in <i>Arabidopsis</i> . Advanced Science, 2022, 9, e2103628.	5.6	34
421	Emerging role of m6A modification in osteogenesis of stem cells. Journal of Bone and Mineral Metabolism, 2022, 40, 177-188.	1.3	6
422	YTHDC1 regulates distinct post-integration steps of HIV-1 replication and is important for viral infectivity. Retrovirology, 2022, 19, 4.	0.9	8
423	RNA binding to human METTL3-METTL14 restricts N6-deoxyadenosine methylation of DNA in vitro. ELife, 2022, 11, .	2.8	11
424	Label-free and sensitive detection of RNA demethylase FTO with primer generation rolling circle amplification. Chemical Communications, 2022, 58, 1565-1568.	2.2	12
425	The role of regulators of RNA m6A methylation in lung cancer. Genes and Diseases, 2023, 10, 495-504.	1.5	5
426	The METTL5-TRMT112 N6-methyladenosine methyltransferase complex regulates mRNA translation via 18S rRNA methylation. Journal of Biological Chemistry, 2022, 298, 101590.	1.6	26
428	Downregulation of m ⁶ A writer complex member METTL14 in bladder urothelial carcinoma suppresses tumor aggressiveness. Molecular Oncology, 2022, 16, 1841-1856.	2.1	10
429	Discovery of substituted indole derivatives as allosteric inhibitors of <scp>m⁶Aâ€RNA</scp> methyltransferase, <scp>METTL3</scp> â€14 complex. Drug Development Research, 2022, , .	1.4	9
430	Emerging Roles of m6A RNA Methylation Regulators in Gynecological Cancer. Frontiers in Oncology, 2022, 12, 827956.	1.3	16
431	The N6-Methyladenosine Modification and Its Role in mRNA Metabolism and Gastrointestinal Tract Disease. Frontiers in Surgery, 2022, 9, 819335.	0.6	4
432	m6A: An Emerging Role in Programmed Cell Death. Frontiers in Cell and Developmental Biology, 2022, 10, 817112.	1.8	19
433	FIONA1 is an RNA N6-methyladenosine methyltransferase affecting Arabidopsis photomorphogenesis and flowering. Genome Biology, 2022, 23, 40.	3.8	43

ARTICLE IF CITATIONS # RNA m6A methylation regulates dissemination of cancer cells by modulating expression and membrane 434 3.7 21 localization of l2-catenin. Molecular Therapy, 2022, 30, 1578-1596. Emerging role of m⁶A modification in cardiovascular diseases. Cell Biology International, 1.4 2022, 46, 711-722. Roles and drug development of METTL3 (methyltransferase-like 3) in anti-tumor therapy. European 436 2.6 31 Journal of Medicinal Chemistry, 2022, 230, 114118. Activation of osteoblast ferroptosis via the METTL3/ASK1 $\hat{a} \in p38$ signaling pathway in high glucose and high fat (HGHF)â€induced diabetic bone loss. FASEB Journal, 2022, 36, e22147. Progress on <italic&gt;N&lt;/italic&gt;&lt;sup&gt;6&lt;/sup&gt;-methyladenosine regulation of immune homeostasis. Scientia Sinica Vitae, 2023, 53, 334-346. 438 0.1 1 Functions, mechanisms, and therapeutic implications of METTL14 in human cancer. Journal of 6.9 Hematology and Oncology, 2022, 15, 13. METTL16 exerts an m6A-independent function to facilitate translation and tumorigenesis. Nature Cell 440 4.6 143 Biology, 2022, 24, 205-216. YTHDF3 modulates hematopoietic stem cells by recognizing RNA m<sup>6</sup>A 1.7 modification on <i>Ccnd1</i>. Haematologica, 2022, 107, 2381-2394. Dynamic assembly of the mRNA m6A methyltransferase complex is regulated by METTL3 phase 442 2.6 22 séparation. PLoS Éiology, 2022, 20, e3001535. Adenosine-to-Inosine RNA Editing and <i>N</i>⁶-Methyladenosine Modification Modulating 443 1.7 Expression of Drug Metabolizing Enzymes. Drug Metabolism and Disposition, 2022, 50, 624-633. Connections between metabolism and epigenetic modifications in cancer. Medical Review, 2021, 1, 444 7 0.3 199-221. Genome-wide identification of m6A-associated functional SNPs as potential functional variants for 1.4 thyroid cancer. American Journal of Cancer Research, 2021, 11, 5402-5414. The role of Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) as m⁶A readers in cancer. International Journal of Biological Sciences, 2022, 18, 2744-2758. 446 2.6 30 Loss of m6A Methyltransferase METTL5 Promotes Cardiac Hypertrophy Through Epitranscriptomic 447 1.1 Control of SUZ12 Expression. Frontiers in Cardiovascular Médicine, 2022, 9, 852775. TBK1-METTL3 axis facilitates antiviral immunity. Cell Reports, 2022, 38, 110373. 448 2.9 24 Comprehensive Analysis of the Transcriptome-Wide m6A Methylome in Endometrioid Ovarian Cancer. 449 1.3 Frontiers in Oncology, 2022, 12, 844613. m⁶Aâ€mediated regulation of crop development and stress responses. Plant Biotechnology 450 4.1 31 Journal, 2022, 20, 1447-1455. Driving Chromatin Organisation through N6-methyladenosine Modification of RNA: What Do We Know and What Lies Ahead?. Genes, 2022, 13, 340.

#	Article	IF	CITATIONS
452	METTL3 suppresses neuropathic pain via modulating N6-methyladenosine-dependent primary miR-150 processing. Cell Death Discovery, 2022, 8, 80.	2.0	16
453	N6-Methyladenosine Modification Profile in Bovine Mammary Epithelial Cells Treated with Heat-Inactivated Staphylococcus aureus. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-15.	1.9	3
454	An Overview of Epigenetic Methylation in Pancreatic Cancer Progression. Frontiers in Oncology, 2022, 12, 854773.	1.3	4
455	Role of N6-methyladenosine modification in pathogenesis of ischemic stroke. Expert Review of Molecular Diagnostics, 2022, 22, 295-303.	1.5	24
456	Targeted Manipulation of Cellular RNA m ⁶ A Methylation at the Single-Base Level. ACS Chemical Biology, 2022, 17, 854-863.	1.6	4
458	MIR210HG promotes breast cancer progression by IGF2BP1 mediated m6A modification. Cell and Bioscience, 2022, 12, 38.	2.1	19
459	MdMTAâ€mediated m ⁶ A modification enhances drought tolerance by promoting mRNA stability and translation efficiency of genes involved in lignin deposition and oxidative stress. New Phytologist, 2022, 234, 1294-1314.	3.5	38
460	Genetic Regulation of N6-Methyladenosine-RNA in Mammalian Gametogenesis and Embryonic Development. Frontiers in Cell and Developmental Biology, 2022, 10, 819044.	1.8	10
461	The regulatory role of <scp>N⁶</scp> â€methyladenosine modification in the interaction between host and microbes. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1725.	3.2	8
462	Emerging Roles and Mechanism of m6A Methylation in Cardiometabolic Diseases. Cells, 2022, 11, 1101.	1.8	19
463	N6â€methyladenosine modification participates in neoplastic immunoregulation and tumorigenesis. Journal of Cellular Physiology, 2022, 237, 2729-2739.	2.0	5
464	The XRN1-regulated RNA helicase activity of YTHDC2 ensures mouse fertility independently of m6A recognition. Molecular Cell, 2022, 82, 1678-1690.e12.	4.5	31
465	rtcisE2F promotes the self-renewal and metastasis of liver tumor-initiating cells via N6-methyladenosine-dependent E2F3/E2F6 mRNA stability. Science China Life Sciences, 2022, 65, 1840-1854.	2.3	12
467	MTA1â€mediated RNA m ⁶ A modification regulates autophagy and is required for infection of the rice blast fungus. New Phytologist, 2022, 235, 247-262.	3.5	19
469	Loss of Wtap results in cerebellar ataxia and degeneration of Purkinje cells. Journal of Genetics and Genomics, 2022, 49, 847-858.	1.7	5
470	Targeting the RNA m6A modification for cancer immunotherapy. Molecular Cancer, 2022, 21, 76.	7.9	78
471	m ⁶ A mRNA modification maintains colonic epithelial cell homeostasis via NF-κB–mediated antiapoptotic pathway. Science Advances, 2022, 8, eabl5723.	4.7	31
472	Dynamic control of chromatin-associated m6A methylation regulates nascent RNA synthesis. Molecular Cell, 2022, 82, 1156-1168.e7.	4.5	69

#	Article	IF	Citations
473	Eltrombopag as an Allosteric Inhibitor of the METTL3-14 Complex Affecting the m6A Methylation of RNA in Acute Myeloid Leukemia Cells. Pharmaceuticals, 2022, 15, 440.	1.7	24
474	RNA-binding proteins in regulating mRNA stability and translation: roles and mechanisms in cancer. Seminars in Cancer Biology, 2022, 86, 664-677.	4.3	29
475	The N6-methyladenosine:mechanisms, diagnostic value, immunotherapy prospec-ts and challenges in gastric cancer. Experimental Cell Research, 2022, 415, 113115.	1.2	8
476	RNA N6â€methyladenosine in nonocular and ocular disease. Journal of Cellular Physiology, 2022, 237, 1686-1710.	2.0	4
478	<scp>RNA</scp> nucleotide methylation: 2021 update. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1691.	3.2	39
479	Insights into roles of METTL14 in tumors. Cell Proliferation, 2022, 55, e13168.	2.4	21
480	Research development and potential therapeutic value of m6A modification in occurrence and progression of colorectal tumors. World Chinese Journal of Digestology, 2021, 29, 1373-1381.	0.0	0
481	METTL3 is a key regulator of milk synthesis in mammary epithelial cells. Cell Biology International, 2022, 46, 359-369.	1.4	7
482	Regulation of Methylase METTL3 on Fat Deposition. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2021, Volume 14, 4843-4852.	1.1	3
483	Novel Insights Into the Multifaceted Functions of RNA n6-Methyladenosine Modification in Degenerative Musculoskeletal Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 766020.	1.8	13
485	Emerging role of m6A methylation modification in ovarian cancer. Cancer Cell International, 2021, 21, 663.	1.8	9
486	Recognition of G-quadruplex RNA by a crucial RNA methyltransferase component, METTL14. Nucleic Acids Research, 2022, 50, 449-457.	6.5	21
487	Inducible and reversible RNA N6-methyladenosine editing. Nature Communications, 2022, 13, 1958.	5.8	21
488	The role of m6A methylation in osteosarcoma biological processes and its potential clinical value. Human Genomics, 2022, 16, 12.	1.4	12
492	The Role of RNA Methyltransferase METTL3 in Normal and Malignant Hematopoiesis. Frontiers in Oncology, 2022, 12, 873903.	1.3	11
493	Structural and functional characterization of <scp>TrmM</scp> in <scp> m ⁶ A </scp> modification of bacterial <scp>tRNA</scp> . Protein Science, 2022, 31, e4319.	3.1	2
494	Role of main RNA modifications in cancer: N6-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduction and Targeted Therapy, 2022, 7, 142.	7.1	62
495	N6-Methyladenosine RNA Methylation in Cardiovascular Diseases. Frontiers in Cardiovascular Medicine, 2022, 9, 887838.	1.1	15

#	Article	IF	CITATIONS
496	Methyltransferase-like 14 silencing relieves the development of atherosclerosis via m ⁶ A modification of p65 mRNA. Bioengineered, 2022, 13, 11832-11843.	1.4	14
497	N6-methyladenosine-modified TRAF1 promotes sunitinib resistance by regulating apoptosis and angiogenesis in a METTL14-dependent manner in renal cell carcinoma. Molecular Cancer, 2022, 21, 111.	7.9	36
498	The crucial mechanism and therapeutic implication of RNA methylation in bone pathophysiology. Ageing Research Reviews, 2022, 79, 101641.	5.0	16
499	Deep learning modeling m6A deposition reveals the importance of downstream cis-element sequences. Nature Communications, 2022, 13, 2720.	5.8	12
500	The importance of N6-methyladenosine modification in tumor immunity and immunotherapy. Experimental Hematology and Oncology, 2022, 11, 30.	2.0	8
501	Role of m6A modification in female infertility and reproductive system diseases. International Journal of Biological Sciences, 2022, 18, 3592-3604.	2.6	28
503	The Progression of N6-methyladenosine Study and Its Role in Neuropsychiatric Disorders. International Journal of Molecular Sciences, 2022, 23, 5922.	1.8	6
504	Role of N ⁶ -Adenine DNA Methylation in Alternative Splicing and Endosymbiosis in the Unicellular Eukaryote <i>Paramecium bursaria</i> . SSRN Electronic Journal, 0, , .	0.4	0
505	Comprehensive Analysis of N6-Methyladenosine Regulatory Genes from Citrus grandis and Expression Profilings in the Fruits of "Huajuhong―(C. grandis "Tomentosaâ€) during Various Development Stages. Horticulturae, 2022, 8, 462.	1.2	3
506	Research progress on N6-methyladenosine in the human placenta. Journal of Perinatal Medicine, 2022, 50, 1115-1123.	0.6	3
507	The Potential Value of m6A RNA Methylation in the Development of Cancers Focus on Malignant Glioma. Frontiers in Immunology, 2022, 13, .	2.2	6
508	The genomic landscape of cholangiocarcinoma reveals the disruption of post-transcriptional modifiers. Nature Communications, 2022, 13, .	5.8	17
509	PDGF signaling inhibits mitophagy in glioblastoma stem cells through N-methyladenosine. Developmental Cell, 2022, 57, 1466-1481.e6.	3.1	30
511	Hidden codes in mRNA: Control of gene expression by m6A. Molecular Cell, 2022, 82, 2236-2251.	4.5	102
512	Structural basis for MTA1c-mediated DNA N6-adenine methylation. Nature Communications, 2022, 13, .	5.8	2
513	Role of the Demethylase AlkB Homolog H5 in the Promotion of Dentinogenesis. Frontiers in Physiology, 0, 13, .	1.3	3
514	Mechanisms and Strategies for Determining m ⁶ A RNA Modification Sites by Natural and Engineered m ⁶ A Effector Proteins. Chemistry - an Asian Journal, 2022, 17, .	1.7	3
515	Deletion of Mettl3 at the Pro-B Stage Marginally Affects B Cell Development and Profibrogenic Activity of B Cells in Liver Fibrosis. Journal of Immunology Research, 2022, 2022, 1-17.	0.9	3

#	Article	IF	CITATIONS
516	Mettl14-mediated m6A modification is essential for visual function and retinal photoreceptor survival. BMC Biology, 2022, 20, .	1.7	10
517	Role of m6A Methylation in the Occurrence and Development of Heart Failure. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	5
518	Fear Stress During Pregnancy Affects Placental m6A-Modifying Enzyme Expression and Epigenetic Modification Levels. Frontiers in Genetics, 0, 13, .	1.1	6
519	Methyladenosine Modification in RNAs: From Regulatory Roles to Therapeutic Implications in Cancer. Cancers, 2022, 14, 3195.	1.7	8
520	BcMettl4-Mediated DNA Adenine N6-Methylation Is Critical for Virulence of Botrytis cinerea. Frontiers in Microbiology, 0, 13, .	1.5	3
521	Regulatory Role of N6-Methyladenosine (m6A) Modification in Osteoarthritis. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	14
522	Research advances of <scp>N6</scp> â€methyladenosine in diagnosis and therapy of pancreatic cancer. Journal of Clinical Laboratory Analysis, 2022, 36, .	0.9	12
523	Crosstalk among m6A RNA methylation, hypoxia and metabolic reprogramming in TME: from immunosuppressive microenvironment to clinical application. Journal of Hematology and Oncology, 2022, 15, .	6.9	31
524	The Role of RNA Modification in HIV-1 Infection. International Journal of Molecular Sciences, 2022, 23, 7571.	1.8	7
525	The methyltransferase METTL3 promotes tumorigenesis via mediating HHLA2 mRNA m6A modification in human renal cell carcinoma. Journal of Translational Medicine, 2022, 20, .	1.8	18
526	m6A-modified circRNAs: detections, mechanisms, and prospects in cancers. Molecular Medicine, 2022, 28, .	1.9	10
527	The role of N6-methyladenosine-modified non-coding RNAs in the pathological process of human cancer. Cell Death Discovery, 2022, 8, .	2.0	9
528	<i>N</i> 6 -Methyladenosine and Its Implications in Viruses. Genomics, Proteomics and Bioinformatics, 2023, 21, 695-706.	3.0	6
529	Sequence-specific targeting of RNA. Methods, 2022, 205, 73-82.	1.9	1
530	The Emerging Role of RNA N6-Methyladenosine Modification in Pancreatic Cancer. Frontiers in Oncology, 0, 12, .	1.3	2
531	The function of Wtap in N6-adenosine methylation of mRNAs controls T cell receptor signaling and survival of T cells. Nature Immunology, 2022, 23, 1208-1221.	7.0	32
532	Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. International Journal of Molecular Sciences, 2022, 23, 8122.	1.8	7
533	RNA m6A modification: Mapping methods, roles, and mechanisms in acute myeloid leukemia. Blood Science, 2022, 4, 116-124.	0.4	2

ARTICLE IF CITATIONS # Alternative splicing of METTL3 explains apparently METTL3-independent m6A modifications in mRNA. 534 2.6 31 PLoS Biology, 2022, 20, e3001683. Alphaherpesvirus US3 protein-mediated inhibition of the m6A mRNA methyltransferase complex. Cell Reports, 2022, 40, 111107. The role, mechanism, and application of RNA methyltransferase METTL14 in gastrointestinal cancer. 536 7.9 15 Molecular Cancer, 2022, 21, . FLT3LG and IFITM3P6 consolidate T cell activity in the bone marrow microenvironment and are 2.2 prognostic factors in acute myelocytic leukemía. Frontiers in Immunology, 0, 13, . Crosstalk between m6A regulators and mRNA during cancer progression. Oncogene, 2022, 41, 538 2.6 9 4407-4419. Localization-dictated function for METTL3. Nature Cell Biology, 2022, 24, 1188-1189. 4.6 Mettl3-mediated mRNA m6A modification controls postnatal liver development by modulating the 540 5.8 20 transcription factor Hnf4a. Nature Communications, 2022, 13, . The role of N6-methyladenosine methylation in environmental exposure-induced health damage. 2.7 Environmental Science and Pollution Research, 2022, 29, 69153-69175. N(6)-methyladenosine modification: A vital role of programmed cell death in myocardial ischemia/reperfusion injury. International Journal of Cardiology, 2022, 367, 11-19. 542 0.8 7 The <i>S. cerevisiae</i> m6A-reader Pho92 promotes timely meiotic recombination by controlling key 543 6.5 methylated transcripts. Nucleic Acids Research, 2023, 51, 517-535. METTL14 Regulates Osteogenesis of Bone Marrow Mesenchymal Stem Cells via Inducing Autophagy 544 21 1.6 Through m6Å/IGF2BPs/Beclin-1 Signal Axis. Stem Cells Translational Medicine, 2022, 11, 987-1001. Research progress of m6A regulation during animal growth and development. Molecular and Cellular Probes, 2022, 65, 101851. Dysregulation and implications of N6-methyladenosine modification in renal cell carcinoma. Current 546 0.4 1 Urology, 2023, 17, 45-51. Regulatory role of RNA N6-methyladenosine modifications during skeletal muscle development. 547 1.8 Frontiers in Cell and Developmental Biology, 0, 10, . Dynamic Alteration Profile and New Role of RNA m6A Methylation in Replicative and H2O2-Induced Premature Senescence of Human Embryonic Lung Fibroblasts. International Journal of Molecular 548 1.8 5 Sciences, 2022, 23, 9271. RNA binding protein RBM46 regulates mitotic-to-meiotic transition in spermatogenesis. Science 549 Advances, 2022, 8, . Physio-pathological effects of N6-methyladenosine and its therapeutic implications in leukemia. 550 2.8 3 Biomarker Research, 2022, 10, . Role of WTAP in Cancer: From Mechanisms to the Therapeutic Potential. Biomolecules, 2022, 12, 1224. 1.8

#	Article	IF	CITATIONS
552	Functional Characterization of Two RNA Methyltransferase Genes METTL3 and METTL14 Uncovers the Roles of m6A in Mediating Adaptation of Plutella xylostella to Host Plants. International Journal of Molecular Sciences, 2022, 23, 10013.	1.8	2
553	Role of <scp>m6A</scp> RNA methylation in the development of hepatitis B virusâ€associated hepatocellular carcinoma. Journal of Gastroenterology and Hepatology (Australia), 2022, 37, 2039-2050.	1.4	3
554	RNA methylation in immune cells. Advances in Immunology, 2022, , 39-94.	1.1	4
555	METTL16 Promotes Translation and Lung Tumorigenesis by Sequestering Cytoplasmic elF4E2. SSRN Electronic Journal, 0, , .	0.4	Ο
557	RNA m6A modification in liver biology and its implication in hepatic diseases and carcinogenesis. American Journal of Physiology - Cell Physiology, 2022, 323, C1190-C1205.	2.1	8
558	The Critical Role of RNA m6A Methylation in Gliomas: Targeting the Hallmarks of Cancer. Cellular and Molecular Neurobiology, 2023, 43, 1697-1718.	1.7	1
559	Reduced N6â€Methyladenosine Mediated by METTL3 Acetylation Promotes MTF1 Expression and Hepatocellular Carcinoma Cell Growth. Chemistry and Biodiversity, 2022, 19, .	1.0	10
560	N6-methyladenosine in hematological malignancies: a concise review. Current Opinion in Hematology, O, Publish Ahead of Print, .	1.2	Ο
561	The role and regulatory mechanism of m6A methylation in the nervous system. Frontiers in Genetics, 0, 13, .	1.1	3
562	Cryo-EM structures of human m6A writer complexes. Cell Research, 2022, 32, 982-994.	5.7	40
564	A programmable system to methylate and demethylate N6-methyladenosine (m6A) on specific RNA transcripts in mammalian cells. Journal of Biological Chemistry, 2022, 298, 102525.	1.6	6
565	RNA modifications: importance in immune cell biology and related diseases. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	74
566	The role of RNA modification in hepatocellular carcinoma. Frontiers in Pharmacology, 0, 13, .	1.6	6
567	M6A RNA Methylation-Based Epitranscriptomic Modifications in Plasticity-Related Genes via miR-124-C/EBPI±-FTO-Transcriptional Axis in the Hippocampus of Learned Helplessness Rats. International Journal of Neuropsychopharmacology, 2022, 25, 1037-1049.	1.0	1
568	Multilevel regulation of N6-methyladenosine RNA modifications: Implications in tumorigenesis and therapeutic opportunities. Genes and Diseases, 2022, , .	1.5	1
569	The regulation and potential roles of m6A modifications in early embryonic development and immune tolerance at the maternal-fetal interface. Frontiers in Immunology, 0, 13, .	2.2	5
570	METTLing in Stem Cell and Cancer Biology. Stem Cell Reviews and Reports, 2023, 19, 76-91.	1.7	11
571	Structural insights into molecular mechanism for N6-adenosine methylation by MT-A70 family methyltransferase METTL4. Nature Communications, 2022, 13, .	5.8	18

#	Article	IF	CITATIONS
573	Autophagy induction promoted by m6A reader YTHDF3 through translation upregulation of FOXO3 mRNA. Nature Communications, 2022, 13, .	5.8	29
574	LncNAP1L6 activates MMP pathway by stabilizing the m6A-modified NAP1L2 to promote malignant progression in prostate cancer. Cancer Gene Therapy, 2023, 30, 209-218.	2.2	7
575	Modulation of DNA/RNA Methylation by Small-Molecule Modulators and Their Implications in Cancer. Sub-Cellular Biochemistry, 2022, , 557-579.	1.0	0
576	The Mechanism and Role of N6-Methyladenosine (m6A) Modification in Atherosclerosis and Atherosclerotic Diseases. Journal of Cardiovascular Development and Disease, 2022, 9, 367.	0.8	3
577	Knockdown of METTL16 disrupts learning and memory by reducing the stability of MAT2A mRNA. Cell Death Discovery, 2022, 8, .	2.0	3
578	WFDC21P promotes triple-negative breast cancer proliferation and migration through WFDC21P/miR-628/SMAD3 axis. Frontiers in Oncology, 0, 12, .	1.3	3
580	METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions. Nature Communications, 2022, 13, .	5.8	24
581	The Role of m6A Modification and m6A Regulators in Esophageal Cancer. Cancers, 2022, 14, 5139.	1.7	2
582	<scp>N6</scp> â€methyladenosine functions and its role in skin cancer. Experimental Dermatology, 0, , .	1.4	2
583	Methyltransferase like 3-mediated N6-methylatidin methylation inhibits vascular smooth muscle cells phenotype switching via promoting phosphatidylinositol 3-kinase mRNA decay. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	4
584	N6-methyladenosine RNA methylation: From regulatory mechanisms to potential clinical applications. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	6
585	Modulation of gene expression by YTH domain family (YTHDF) proteins in human physiology and pathology. Journal of Cellular Physiology, 2023, 238, 5-31.	2.0	5
586	Critical functions of N6-adenosine methylation of mRNAs in T cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2023, 1870, 119380.	1.9	1
587	Roles of m ⁶ A modification in oral cancer (Review). International Journal of Oncology, 2022, 62, .	1.4	2
588	Comparative Genomics and Functional Studies of Putative m6A Methyltransferase (METTL) Genes in Cotton. International Journal of Molecular Sciences, 2022, 23, 14111.	1.8	2
589	The emerging roles of N6-methyladenosine in osteoarthritis. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	4
590	The roles of RNA N6-methyladenosine in esophageal cancer. Heliyon, 2022, 8, e11430.	1.4	2
591	Research progress on N ⁶ -adenosylate methylation RNA modification in heart failure remodeling. Journal of Translational Internal Medicine. 2023. 10. 340-348.	1.0	10

#	Article	IF	CITATIONS
592	Role of N ⁶ ‑methyladenosine in the pathogenesis, diagnosis and treatment of pancreatic cancer (Review). International Journal of Oncology, 2022, 62, .	1.4	3
593	Metabolomic Study of a Rat Model of Retinal Detachment. Metabolites, 2022, 12, 1077.	1.3	3
594	METTL14 is required for exercise-induced cardiac hypertrophy and protects against myocardial ischemia-reperfusion injury. Nature Communications, 2022, 13, .	5.8	24
595	Al-empowered integrative structural characterization of m6A methyltransferase complex. Cell Research, 2022, 32, 1124-1127.	5.7	9
596	N6-methyladenosine modification governs liver glycogenesis by stabilizing the glycogen synthase 2 mRNA. Nature Communications, 2022, 13, .	5.8	7
597	METTL14 upregulates TCF1 through m6A mRNA methylation to stimulate osteogenic activity in osteoporosis. Human Cell, 2023, 36, 178-194.	1.2	2
598	Infection phaseâ€dependent dynamics of the viral and host N6â€methyladenosine epitranscriptome in the lifecycle of an oncogenic virus in vivo. Journal of Medical Virology, 2023, 95, .	2.5	3
599	Recent Development of Computational Methods in the Field of Epitranscriptomics. Springer Handbooks of Computational Statistics, 2022, , 285-309.	0.2	Ο
600	RNA methyltransferases in plants: Breakthroughs in function and evolution. Plant Physiology and Biochemistry, 2023, 194, 449-460.	2.8	1
601	Epigenetic modifications and metabolic memory in diabetic retinopathy: beyond the surface. Neural Regeneration Research, 2023, 18, 1441.	1.6	5
602	Antibody-free photoelectrochemical strategy for simultaneous detection of methylated RNA, METTL3/METTL14 protein and MazF protein based on enhanced photoactivity of MoSe2–BiOI nanocomposite. Biosensors and Bioelectronics, 2023, 222, 115015.	5.3	10
603	Photoperiod alters testicular methyltransferase complex mRNA expression in Siberian hamsters. General and Comparative Endocrinology, 2023, 333, 114186.	0.8	Ο
605	Regulation of follicular T helper cell differentiation in antitumor immunity. International Journal of Cancer, 2023, 153, 265-277.	2.3	3
606	RNA methylation in vascular disease: a systematic review. Journal of Cardiothoracic Surgery, 2022, 17, .	0.4	1
607	The regulation of m ⁶ A-related proteins during whole-body freezing of the freeze-tolerant wood frog. Biochemistry and Cell Biology, 2023, 101, 77-86.	0.9	1
608	<scp>N6</scp> â€methyladenosine promotes osteogenic differentiation of <scp>PDLSCs</scp> from periodontitis patients. Oral Diseases, 0, , .	1.5	2
609	Exon junction complex shapes the m6A epitranscriptome. Nature Communications, 2022, 13, .	5.8	36
610	m6A epitranscriptomic modification regulates neural progenitor-to-glial cell transition in the retina. ELife, 0, 11, .	2.8	4

#	Article	IF	CITATIONS
611	METTL3-Mediated IncSNHG7 m6A Modification in the Osteogenic/Odontogenic Differentiation of Human Dental Stem Cells. Journal of Clinical Medicine, 2023, 12, 113.	1.0	2
612	Amentoflavone and methyl hesperidin, novel lead molecules targeting epitranscriptomic modulator in acute myeloid leukemia: in silico drug screening and molecular dynamics simulation approach. Journal of Molecular Modeling, 2023, 29, .	0.8	11
613	RNA N6-methyladenosine modification mediates downregulation of NR4A1 to facilitate malignancy of cervical cancer. Cell and Bioscience, 2022, 12, .	2.1	5
614	<scp>METTL3</scp> protects <scp>METTL14</scp> from <scp>STUB1</scp> â€mediated degradation to maintain <scp>m⁶A</scp> homeostasis. EMBO Reports, 2023, 24, .	2.0	16
615	IGFBP3 epigenetic promotion induced by METTL3 boosts cardiac fibroblast activation and fibrosis. European Journal of Pharmacology, 2023, 942, 175494.	1.7	6
616	Brute Force Virtual Drug Screening with Molecular Dynamics Simulation and MM/PBSA to Find Potent Inhibitors of METTL16. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20, 2356-2361.	1.9	4
617	The regulation of <scp>N6</scp> â€methyladenosine modification in <scp>PD‣1</scp> â€induced antiâ€ŧumo immunity. Immunology and Cell Biology, 0, , .	r 1.0	2
618	Novel Insights into The Roles of N ⁶ -methyladenosine (m ⁶ A) Modification and Autophagy in Human Diseases. International Journal of Biological Sciences, 2023, 19, 705-720.	2.6	6
619	Clinical and molecular significance of the RNA m6A methyltransferase complex in prostate cancer. Frontiers in Genetics, 0, 13, .	1.1	6
620	Three's a crowd – why did three N-terminal methyltransferases evolve for one job?. Journal of Cell Science, 2023, 136, .	1.2	4
621	NPTX2 Promotes Epithelial–Mesenchymal Transition in Cutaneous Squamous Cell Carcinoma through METTL3-Mediated N6-Methyladenosine Methylation of SNAIL. Journal of Investigative Dermatology, 2023, 143, 977-988.e2.	0.3	1
622	N6-methyladenosine in macrophage function: a novel target for metabolic diseases. Trends in Endocrinology and Metabolism, 2023, 34, 66-84.	3.1	11
623	The potential role of N6-methyladenosine modification of LncRNAs in contributing to the pathogenesis of chronic glomerulonephritis. Inflammation Research, 2023, 72, 623-638.	1.6	7
624	Roles of RNA m6A modification in nonalcoholic fatty liver disease. Hepatology Communications, 2023, 7, e0046-e0046.	2.0	0
625	RNA N6-methyladenosine methylation and skin diseases. Autoimmunity, 2023, 56, .	1.2	3
626	METTL3 from Target Validation to the First Small-Molecule Inhibitors: A Medicinal Chemistry Journey. Journal of Medicinal Chemistry, 2023, 66, 1654-1677.	2.9	14
629	Current Insights into m6A RNA Methylation and Its Emerging Role in Plant Circadian Clock. Plants, 2023, 12, 624.	1.6	1
631	Novel insights into the interplay between m6A modification and programmed cell death in cancer. International Journal of Biological Sciences, 2023, 19, 1748-1763.	2.6	4

ARTICLE IF CITATIONS METTL14 is a chromatin regulator independent of its RNA <i>N</i> <i>6</i> -methyladenosine 632 4.8 13 methyltransferase activity. Protein and Cell, 2023, 14, 683-697. RNA N6-methyladenosine modification in female reproductive biology and pathophysiology. Cell 2.7 Communication and Signaling, 2023, 21, . Multi-dimensional structural footprint identification for the design of potential scaffolds targeting 634 0.8 1 METTL3 in cancer treatment from natural compounds. Journal of Molecular Modeling, 2023, 29, . Aberrant RNA m6A modification in gastrointestinal malignancies: versatile regulators of cancer hallmarks and novel therapeutic opportunities. Cell Death and Disease, 2023, 14, . Controllable assembly of dendritic DNA nanostructures for ultrasensitive detection of METTL3-METTL14 m6A methyltransferase activity in cancer cells and human breast tissues. Biosensors 636 5.3 8 and Bioelectronics, 2023, 228, 115217. Role of N6-methyladenosine modification in central nervous system diseases and related therapeutic agents. Biomedicine and Pharmacotherapy, 2023, 162, 114583. 2.5 The emerging importance role of m6A modification in liver disease. Biomedicine and Pharmacotherapy, 638 2.5 8 2023, 162, 114669. m6A-mediated nonhomologous end joining (NHEJ) pathway regulates senescence in Brachionus 1.4 plicatilis (Rotifera). Archives of Gerontology and Geriatrics, 2023, 111, 104994. The potential role of m6A modifications on immune cells and immunotherapy. Biomedicine and 640 2.5 5 Pharmacotherapy, 2023, 160, 114343. 643 Structural insights into DNA N6-adenine methylation by the MTA1 complex. Cell Discovery, 2023, 9, . 3.1 Interaction between N6-methyladenosine (m6A) modification and environmental chemical-induced 644 2 1.7 diseases in various organ systems. Chemico-Biological Interactions, 2023, 373, 110376. The Epigenetic Regulation of RNA N6-Methyladenosine Methylation in Glycolipid Metabolism. 1.8 Biomolecules, 2023, 13, 273. The development of small molecules targeting methyltransferase-like 3. Drug Discovery Today, 2023, 646 3.2 5 28, 103513. The Emerging Role of m6A Modification in Endocrine Cancer. Cancers, 2023, 15, 1033. 647 1.7 Emerging role of interaction between m6A and main ncRNAs in gastrointestinal (GI) cancers. Frontiers 650 2.2 0 in Immunology, 0, 14, . m6A Modificationâ€"Association with Oxidative Stress and Implications on Eye Diseases. Antioxidants, 2.2 Overview of m6A and circRNAs in human cancers. Journal of Cancer Research and Clinical Oncology, 654 1.2 3 2023, 149, 6769-6784. Roles of RNA Methylations in Cancer Progression, Autophagy, and Anticancer Drug Resistance. 1.8 International Journal of Molecular Sciences, 2023, 24, 4225

ARTICLE IF CITATIONS # Recent advance in nucleic acid amplification-integrated methods for DNA methyltransferase assay. 656 5.8 4 TrAC - Trends in Analytical Chemistry, 2023, 160, 116998. METTL16 promotes translation and lung tumorigenesis by sequestering cytoplasmic elF4E2. Cell Reports, 2023, 42, 112150. N6-methyladenosine (m6A) as a regulator of carcinogenesis and drug resistance by targeting 658 2 1.4 epithelial-mesenchymal transition and cancer stem cells. Heliyon, 2023, 9, e14001. The Role of m6A Modifications in B-Cell Development and B-Cell-Related Diseases. International 1.8 Journal of Molecular Sciences, 2023, 24, 4721. N6-methyladenosine of Spi2a attenuates inflammation and sepsis-associated myocardial dysfunction in 660 5.8 11 mice. Nature Communications, 2023, 14, . Effect of N6-methyladenosine methylation-related gene signature for predicting the prognosis of hepatocellular carcinoma patients. Frontiers in Surgery, 0, 10, . 0.6 Opposing regulation of the Nα-trimethylase METTL11A by its family members METTL11B and METTL13. 662 1.6 4 Journal of Biological Chemistry, 2023, 299, 104588. Optimizing purification and activity assays of N-terminal methyltransferase complexes. Methods in 0.4 Enzymology, 2023, , . METTL3-mediated m6A modification of has_circ_0007905 promotes age-related cataract progression 664 0.9 1 through miR-6749-3p/EIF4EBP1. PeerJ, 0, 11, e14863. The effects of N6-methyladenosine RNA methylation on the nervous system. Molecular and Cellular 1.4 Biochemistry, 2023, 478, 2657-2669. The role of RNA methyltransferase METTL3 in gynecologic cancers: Results and mechanisms. Frontiers 666 3 1.6 in Pharmacology, 0, 14, . N6-methyladenosine modifications in maternal-fetal crosstalk and gestational diseases. Frontiers in 1.8 Cell and Developmental Biology, 0, 11, . Vir1p, the yeast homolog of virilizer, is required for mRNA m6A methylation and meiosis. Genetics, 668 1.2 8 2023, 224, . METTL3 promotes chemoresistance in small cell lung cancer by inducing mitophagy. Journal of 3.5 Experimental and Clinical Cancer Research, 2023, 42, . <i>N ⁶ </i> ―Methyladenosine defines a new checkpoint in γÎ T cell development. BioEssays, 671 1.2 0 2023, 45, . RNA m6A reader YTHDF2 facilitates precursor miR-126 maturation to promote acute myeloid leukemia progression. Genes and Diseases, 2024, 11, 382-396. The essential roles of m6A modification in osteogenesis and common bone diseases. Genes and 673 1.51 Diseases, 2024, 11, 335-345. m6A methyltransferase METTL3 programs CD4+ T-cell activation and effector T-cell differentiation in 674 systemic lupus erythematosus. Molecular Medicine, 2023, 29, .

#	Article	IF	CITATIONS
676	The novel putative methyltransferase METTL7A as one prognostic biomarker potentially associated with immune infiltration in human renal cancer. Heliyon, 2023, 9, e15371.	1.4	1
677	The Regulatory Network of METTL3 in the Nervous System: Diagnostic Biomarkers and Therapeutic Targets. Biomolecules, 2023, 13, 664.	1.8	6
678	Potential role of N6-adenine DNA methylation in alternative splicing and endosymbiosis in Paramecium bursaria. IScience, 2023, 26, 106676.	1.9	4
679	The Proteins of mRNA Modification: Writers, Readers, and Erasers. Annual Review of Biochemistry, 2023, 92, 145-173.	5.0	21
680	Role of m6A methylation in retinal diseases. Experimental Eye Research, 2023, 231, 109489.	1.2	2
681	m6A modification on the fate of colorectal cancer: functions and mechanisms of cell proliferation and tumorigenesis. Frontiers in Oncology, 0, 13, .	1.3	4
689	Novel insights into the METTL3-METTL14 complex in musculoskeletal diseases. Cell Death Discovery, 2023, 9, .	2.0	2
690	The interplay betweenÂN6-methyladenosine andÂprecancerous liver disease: molecular functions andÂmechanisms. Discover Oncology, 2023, 14, .	0.8	1
708	Epigenetic regulation in the tumor microenvironment: molecular mechanisms and therapeutic targets. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	30
709	The roles and implications of RNA m6A modification in cancer. Nature Reviews Clinical Oncology, 2023, 20, 507-526.	12.5	34
712	N6-methyladenosine RNA methylation in liver diseases: from mechanism to treatment. Journal of Gastroenterology, 2023, 58, 718-733.	2.3	3
722	The therapeutic targets of N6-methyladenosine (m6A) modifications on tumor radioresistance. Discover Oncology, 2023, 14, .	0.8	1
761	RNA modification in cardiovascular disease: implications for therapeutic interventions. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	0
769	Epitranscriptomic modifications in mesenchymal stem cell differentiation: advances, mechanistic insights, and beyond. Cell Death and Differentiation, 2024, 31, 9-27.	5.0	1
784	RNA Modifications in Hematologic Malignancies. Cancer Treatment and Research, 2023, , 181-207.	0.2	0
785	The role of RNA modification in urological cancers: mechanisms and clinical potential. Discover Oncology, 2023, 14, .	0.8	0
789	RNA Modifications in Cancer Metabolism and Tumor Microenvironment. Cancer Treatment and Research, 2023, , 3-24.	0.2	0
797	RNA modification-mediated mRNA translation regulation in liver cancer: mechanisms and clinical perspectives. Nature Reviews Gastroenterology and Hepatology, 2024, 21, 267-281.	8.2	0

#	Article	IF	CITATIONS
802	N6-Methyladenosine RNA Modification in Normal and Malignant Hematopoiesis. Advances in Experimental Medicine and Biology, 2023, , 105-123.	0.8	0
806	Ubiquitination and deubiquitination in the regulation of N6-methyladenosine functional molecules. Journal of Molecular Medicine, 2024, 102, 337-351.	1.7	0
811	The Functions of N6-Methyladenosine in Nuclear RNAs. Biochemistry (Moscow), 2024, 89, 159-172.	0.7	0
812	M6A RNA methylation in biliary tract cancer: the function roles and potential therapeutic implications. Cell Death Discovery, 2024, 10, .	2.0	0