An essential role of caffeoyl shikimate esterase in mono truncatula</i>

Plant Journal 86, 363-375 DOI: 10.1111/tpj.13177

Citation Report

#	Article	IF	CITATIONS
1	Improving total saccharification yield of Arabidopsis plants by vessel-specific complementation of caffeoyl shikimate esterase (cse) mutants. Biotechnology for Biofuels, 2016, 9, 139.	6.2	63
2	Active Sites of Reduced Epidermal Fluorescence1 (REF1) Isoforms Contain Amino Acid Substitutions That Are Different between Monocots and Dicots. PLoS ONE, 2016, 11, e0165867.	1.1	7
3	Developing Pericarp of Maize: A Model to Study Arabinoxylan Synthesis and Feruloylation. Frontiers in Plant Science, 2016, 7, 1476.	1.7	40
4	Building the wall: recent advances in understanding lignin metabolism in grasses. Acta Physiologiae Plantarum, 2016, 38, 1.	1.0	29
5	Characterization and purification of a bacterial chlorogenic acid esterase detected during the extraction of chlorogenic acid from arbuscular mycorrhizal tomato roots. Plant Physiology and Biochemistry, 2016, 109, 308-318.	2.8	6
6	Insights into temperature modulation of the Eucalyptus globulus and Eucalyptus grandis antioxidant and lignification subproteomes. Phytochemistry, 2017, 137, 15-23.	1.4	10
7	Expression atlas and comparative coexpression network analyses reveal important genes involved in the formation of lignified cell wall in <i>Brachypodium distachyon</i> . New Phytologist, 2017, 215, 1009-1025.	3.5	108
8	Silencing <i>CHALCONE SYNTHASE</i> in Maize Impedes the Incorporation of Tricin into Lignin and Increases Lignin Content. Plant Physiology, 2017, 173, 998-1016.	2.3	84
9	Characterization and Elimination of Undesirable Protein Residues in Plant Cell Wall Materials for Enhancing Lignin Analysis by Solution-State Nuclear Magnetic Resonance Spectroscopy. Biomacromolecules, 2017, 18, 4184-4195.	2.6	94
10	Different Routes for Conifer- and Sinapaldehyde and Higher Saccharification upon Deficiency in the Dehydrogenase CAD1. Plant Physiology, 2017, 175, 1018-1039.	2.3	99
11	Silencing <i>CAFFEOYL SHIKIMATE ESTERASE</i> Affects Lignification and Improves Saccharification in Poplar. Plant Physiology, 2017, 175, 1040-1057.	2.3	90
13	Artificial MicroRNAs Promote High-Level Production of Biomolecules Through Metabolic Engineering of Phenylpropanoid Pathway. Critical Reviews in Plant Sciences, 2017, 36, 353-366.	2.7	6
14	Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis. Nature Communications, 2018, 9, 1579.	5.8	162
15	Plant cell wall sugars: sweeteners for a bioâ€based economy. Physiologia Plantarum, 2018, 164, 27-44.	2.6	14
16	<scp>QTL</scp> mapping and <scp>GWAS</scp> reveal candidate genes controlling capsaicinoid content in <i>Capsicum</i> . Plant Biotechnology Journal, 2018, 16, 1546-1558.	4.1	123
17	Lignocellulosic Feedstock Improvement for Biofuel Production Through Conventional Breeding and Biotechnology. , 2018, , 107-140.		3
18	Lignin modification in planta for valorization. Phytochemistry Reviews, 2018, 17, 1305-1327.	3.1	67
19	Lignin and cellulose synthesis and antioxidative defense mechanisms are affected by light quality in Brachypodium distaction. Plant Cell Tissue and Organ Culture, 2018, 133, 1-14	1.2	20

#	Article	IF	CITATIONS
20	A dynamic model of lignin biosynthesis in Brachypodium distachyon. Biotechnology for Biofuels, 2018, 11, 253.	6.2	11
21	Regulation of Lignin Biosynthesis and Its Role in Growth-Defense Tradeoffs. Frontiers in Plant Science, 2018, 9, 1427.	1.7	231
22	Model Legumes: Functional Genomics Tools in Medicago truncatula. Methods in Molecular Biology, 2018, 1822, 11-37.	0.4	10
23	Functional Genomics in the Study of Metabolic Pathways in Medicago truncatula: An Overview. Methods in Molecular Biology, 2018, 1822, 315-337.	0.4	9
24	Lignins: Biosynthesis and Biological Functions in Plants. International Journal of Molecular Sciences, 2018, 19, 335.	1.8	757
25	A high-quality genome of Eragrostis curvula grass provides insights into Poaceae evolution and supports new strategies to enhance forage quality. Scientific Reports, 2019, 9, 10250.	1.6	27
26	Should I stay or should I go: are chlorogenic acids mobilized towards lignin biosynthesis?. Phytochemistry, 2019, 166, 112063.	1.4	74
27	The lignin toolbox of the model grass Setaria viridis. Plant Molecular Biology, 2019, 101, 235-255.	2.0	28
28	Genomic resources for energy cane breeding in the post genomics era. Computational and Structural Biotechnology Journal, 2019, 17, 1404-1414.	1.9	38
29	Integrative Analysis of the Core Fruit Lignification Toolbox in Pear Reveals Targets for Fruit Quality Bioengineering. Biomolecules, 2019, 9, 504.	1.8	28
30	Linking phenylpropanoid metabolism, lignin deposition, and plant growth inhibition. Current Opinion in Biotechnology, 2019, 56, 202-208.	3.3	100
31	Does long-term cadmium exposure influence the composition of pectic polysaccharides in the cell wall of Medicago sativa stems?. BMC Plant Biology, 2019, 19, 271.	1.6	56
32	4-Coumarate 3-hydroxylase in the lignin biosynthesis pathway is a cytosolic ascorbate peroxidase. Nature Communications, 2019, 10, 1994.	5.8	171
33	Significant influence of lignin on axial elastic modulus of poplar wood at low microfibril angles under wet conditions. Journal of Experimental Botany, 2019, 70, 4039-4047.	2.4	29
34	Lignin engineering to improve saccharification and digestibility in grasses. Current Opinion in Biotechnology, 2019, 56, 223-229.	3.3	56
35	Biosynthesis and Regulation of Secondary Cell Wall. Progress in Botany Fortschritte Der Botanik, 2019, , 189-226.	0.1	1
36	Deposition of lignin in four species of Saccharum. Scientific Reports, 2019, 9, 5877.	1.6	41
37	Ectopic Defense Gene Expression Is Associated with Growth Defects in <i>Medicago truncatula</i> Lignin Pathway Mutants. Plant Physiology, 2019, 181, 63-84.	2.3	27

CITATION REPORT

	CITATION	Report	
#	Article	IF	CITATIONS
38	Lignin biosynthesis: old roads revisited and new roads explored. Open Biology, 2019, 9, 190215.	1.5	136
39	Functional Characteristics of Caffeoyl Shikimate Esterase in Larix Kaempferi and Monolignol Biosynthesis in Gymnosperms. International Journal of Molecular Sciences, 2019, 20, 6071.	1.8	13
40	Secondary cell wall biosynthesis. New Phytologist, 2019, 221, 1703-1723.	3.5	185
41	Root proteome and metabolome reveal a high nutritional dependency of aluminium in Qualea grandiflora Mart. (Vochysiaceae). Plant and Soil, 2020, 446, 125-143.	1.8	13
42	Genetic, transcriptional, and regulatory landscape of monolignol biosynthesis pathway in Miscanthus × giganteus. Biotechnology for Biofuels, 2020, 13, 179.	6.2	11
43	Xylem systems genetics analysis reveals a key regulator of lignin biosynthesis in <i>Populus deltoides</i> . Genome Research, 2020, 30, 1131-1143.	2.4	18
44	Integrated Analysis of the Transcriptome and Metabolome of Cecropia obtusifolia: A Plant with High Chlorogenic Acid Content Traditionally Used to Treat Diabetes Mellitus. International Journal of Molecular Sciences, 2020, 21, 7572.	1.8	10
45	An importinâ€betaâ€like protein mediates ligninâ€modificationâ€induced dwarfism in Arabidopsis. Plant Journal, 2020, 102, 1281-1293.	2.8	23
46	Grass secondary cell walls, <i>Brachypodium distachyon</i> as a model for discovery. New Phytologist, 2020, 227, 1649-1667.	3.5	40
47	The known unknowns in lignin biosynthesis and its engineering to improve lignocellulosic saccharification efficiency. Biomass Conversion and Biorefinery, 2023, 13, 2497-2515.	2.9	8
48	Characterization and functional analysis of the Hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (HCT) gene family in poplar. PeerJ, 2021, 9, e10741.	0.9	8
49	Function of the HYDROXYCINNAMOYL-CoA:SHIKIMATE HYDROXYCINNAMOYL TRANSFERASE is evolutionarily conserved in embryophytes. Plant Cell, 2021, 33, 1472-1491.	3.1	45
50	Targeting hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase for lignin modification in Brachypodium distachyon. Biotechnology for Biofuels, 2021, 14, 50.	6.2	17
52	Growth–defense tradeâ€offs and yield loss in plants with engineered cell walls. New Phytologist, 2021, 231, 60-74.	3.5	41
53	PbCSE1 promotes lignification during stone cell development in pear (Pyrus bretschneideri) fruit. Scientific Reports, 2021, 11, 9450.	1.6	10
54	Caffeoylquinic acids: chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity. Plant Journal, 2021, 107, 1299-1319.	2.8	87
55	The evolution of the phenylpropanoid pathway entailed pronounced radiations and divergences of enzyme families. Plant Journal, 2021, 107, 975-1002.	2.8	67
56	Phylogenetic Occurrence of the Phenylpropanoid Pathway and Lignin Biosynthesis in Plants. Frontiers in Plant Science, 2021, 12, 704697.	1.7	49

#	Article	IF	CITATIONS
57	Genome-wide analysis of the lignin toolbox for <i>morus</i> and the roles of lignin related genes in response to zinc stress. PeerJ, 2021, 9, e11964.	0.9	10
58	CRISPR as9 editing of CAFFEOYL SHIKIMATE ESTERASE 1 and 2 shows their importance and partial redundancy in lignification in <i>Populus tremula</i> × <i>P. alba</i> . Plant Biotechnology Journal, 2021, 19, 2221-2234.	4.1	29
59	CRISPR-Knockout of CSE Gene Improves Saccharification Efficiency by Reducing Lignin Content in Hybrid Poplar. International Journal of Molecular Sciences, 2021, 22, 9750.	1.8	26
60	Behind the Scenes: The Impact of Bioactive Phenylpropanoids on the Growth Phenotypes of Arabidopsis Lignin Mutants. Frontiers in Plant Science, 2021, 12, 734070.	1.7	15
61	Engineering Alfalfa to Produce 2-O-Caffeoyl-L-Malate (Phaselic Acid) for Preventing Post-harvest Protein Loss via Oxidation by Polyphenol Oxidase. Frontiers in Plant Science, 2020, 11, 610399.	1.7	3
62	Genome-wide analysis of general phenylpropanoid and monolignol-specific metabolism genes in sugarcane. Functional and Integrative Genomics, 2021, 21, 73-99.	1.4	10
63	4-Coumarate:coenzyme A ligase isoform 3 from <i>Piper nigrum</i> (Pn4CL3) catalyzes the CoA thioester formation of 3,4-methylenedioxycinnamic and piperic acids. Biochemical Journal, 2020, 477, 61-74.	1.7	16
64	Transcriptome Profiling of the Elongating Internode of Cotton (Gossypium hirsutum L.) Seedlings in Response to Mepiquat Chloride. Frontiers in Plant Science, 2019, 10, 1751.	1.7	19
66	Rerouting of the lignin biosynthetic pathway by inhibition of cytosolic shikimate recycling in transgenic hybrid aspen. Plant Journal, 2022, 110, 358-376.	2.8	10
67	Transcriptome and metabolite profiling to identify genes associated with rhizome lignification and the function of ZoCSE in ginger (Zingiber officinale). Functional Plant Biology, 2022, , .	1.1	1
68	Synthesis of hydroxycinnamoyl shikimates and their role in monolignol biosynthesis. Holzforschung, 2022, 76, 133-144.	0.9	3
69	Systematic Analysis and Biochemical Characterization of the Caffeoyl Shikimate Esterase Gene Family in Poplar. International Journal of Molecular Sciences, 2021, 22, 13366.	1.8	7
70	Spatio-temporal regulation of lignification. Advances in Botanical Research, 2022, , 271-316.	0.5	6
85	The metabolic and proteomic repertoires of periderm tissue in skin of the reticulated Sikkim cucumber fruit. Horticulture Research, 2022, 9, .	2.9	10
87	Transcriptome Mining Provides Insights into Cell Wall Metabolism and Fiber Lignification in Agave tequilana Weber. Plants, 2022, 11, 1496.	1.6	2
88	Proteomic and metabolic disturbances in lignin-modified <i>Brachypodium distachyon</i> . Plant Cell, 2022, 34, 3339-3363.	3.1	14
89	Spatio-Temporal Modification of Lignin Biosynthesis in Plants: A Promising Strategy for Lignocellulose Improvement and Lignin Valorization. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	8
90	Lignin biosynthesis regulated by CsCSE1 is required for Cucumis sativus defence to Podosphaera xanthii. Plant Physiology and Biochemistry, 2022, 186, 88-98.	2.8	11

#	Article	IF	CITATIONS
91	Microbial Production of Caffeic Acid. , 2022, , 1-34.		0
92	Multi-omic characterization of bifunctional peroxidase 4-coumarate 3-hydroxylase knockdown in Brachypodium distachyon provides insights into lignin modification-associated pleiotropic effects. Frontiers in Plant Science, 0, 13, .	1.7	0
93	Lignin engineering in forest trees: From gene discovery to field trials. Plant Communications, 2022, 3, 100465.	3.6	18
94	Probable Biosynthetic Pathways of Silymarin Precursors. Korean Journal of Medicinal Crop Science, 2022, 30, 347-356.	0.1	0
95	A Chromosome-Level Reference Genome of African Oil Palm Provides Insights into Its Divergence and Stress Adaptation. Genomics, Proteomics and Bioinformatics, 2023, 21, 440-454.	3.0	3
96	Downregulation of barley ferulate 5-hydroxylase dramatically alters straw lignin structure without impact on mechanical properties. Frontiers in Plant Science, 0, 13, .	1.7	6
97	Plant Cell Factory for Production ofÂBiomolecules. , 2023, , 253-272.		0
98	Transcriptome analysis of fiber development under high-temperature stress in flax (Linum) Tj ETQq1 1 0.784314	rgBT_/Ove	rlock 10 Tf 50

Altered profile of floral volatiles and lignin content by down-regulation of Caffeoyl Shikimate Esterase in Petunia. BMC Plant Biology, 2023, 23, .

2

1.6