Chemistry of Mesoporous Organosilica in Nanotechnolo Organic–Inorganic Hybridization into Frameworks

Advanced Materials 28, 3235-3272 DOI: 10.1002/adma.201505147

Citation Report

#	Article	IF	CITATIONS
1	Biodegradable Oxamideâ€Phenyleneâ€Based Mesoporous Organosilica Nanoparticles with Unprecedented Drug Payloads for Delivery in Cells. Chemistry - A European Journal, 2016, 22, 14806-14811.	1.7	81
2	Periodic Mesoporous Organosilica Nanoparticles with Controlled Morphologies and High Drug/Dye Loadings for Multicargo Delivery in Cancer Cells. Chemistry - A European Journal, 2016, 22, 9607-9615.	1.7	46
3	Nanosized inorganic porous materials: fabrication, modification and application. Journal of Materials Chemistry A, 2016, 4, 16756-16770.	5.2	43
4	Surfactant-free synthesis of hollow mesoporous organosilica nanoparticles with controllable particle sizes and diversified organic moieties. RSC Advances, 2016, 6, 90435-90445.	1.7	18
5	Micro/Nanoparticleâ€Augmented Sonodynamic Therapy (SDT): Breaking the Depth Shallow of Photoactivation. Advanced Materials, 2016, 28, 8097-8129.	11.1	607
6	Engineering Hydrophobic Organosilica Nanoparticle-Doped Nanofibers for Enhanced and Fouling Resistant Membrane Distillation. ACS Applied Materials & Interfaces, 2017, 9, 1737-1745.	4.0	61
7	Cellular Internalization and Biocompatibility of Periodic Mesoporous Organosilica Nanoparticles with Tunable Morphologies: From Nanospheres to Nanowires. ChemPlusChem, 2017, 82, 631-637.	1.3	24
8	Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. Advanced Materials, 2017, 29, 1604634.	11.1	565
9	New Insight into the Synthesis of Large-Pore Ordered Mesoporous Materials. Journal of the American Chemical Society, 2017, 139, 1706-1713.	6.6	274
10	Chitosanâ€Gated Magneticâ€Responsive Nanocarrier for Dualâ€Modal Optical Imaging, Switchable Drug Release, and Synergistic Therapy. Advanced Healthcare Materials, 2017, 6, 1601080.	3.9	26
11	Monodisperse mesoporous silica nanoparticles of distinct topology. Journal of Colloid and Interface Science, 2017, 495, 84-93.	5.0	27
12	Molecularly organic/inorganic hybrid hollow mesoporous organosilica nanocapsules with tumor-specific biodegradability and enhanced chemotherapeutic functionality. Biomaterials, 2017, 125, 23-37.	5.7	178
13	One-pot synthesis of redox-triggered biodegradable hybrid nanocapsules with a disulfide-bridged silsesquioxane framework for promising drug delivery. Journal of Materials Chemistry B, 2017, 5, 4455-4469.	2.9	46
14	Mesoporous organosilica nanoparticles with large radial pores via an assembly-reconstruction process in bi-phase. Journal of Materials Chemistry B, 2017, 5, 2625-2634.	2.9	27
15	The Transformation of Hybrid Silica Nanoparticles from Solid to Hollow or Yolkâ€ S hell Nanostructures. Chemistry - A European Journal, 2017, 23, 8066-8072.	1.7	9
16	Engineered doxorubicin-calcium@silica nanospheres with tunable degradability for controlled drug delivery. Inorganic Chemistry Frontiers, 2017, 4, 1135-1140.	3.0	5
17	Multiâ€shelled Dendritic Mesoporous Organosilica Hollow Spheres: Roles of Composition and Architecture in Cancer Immunotherapy. Angewandte Chemie, 2017, 129, 8566-8570.	1.6	16
18	Multiâ€shelled Dendritic Mesoporous Organosilica Hollow Spheres: Roles of Composition and Architecture in Cancer Immunotherapy. Angewandte Chemie - International Edition, 2017, 56, 8446-8450.	7.2	128

	CITATION	n Report	
#	Article	IF	CITATIONS
19	Site-specific sonocatalytic tumor suppression by chemically engineered single-crystalline mesoporous titanium dioxide sonosensitizers. Journal of Materials Chemistry B, 2017, 5, 4579-4586.	2.9	68
20	Size-controlled synthesis, characterization, and cytotoxicity study of monodisperse poly(dimethylsiloxane) nanoparticles. Journal of Industrial and Engineering Chemistry, 2017, 53, 177-182.	2.9	14
21	Surfactant-assisted selective etching strategy for generation of rattle-like mesoporous silica nanoparticles. Journal of Colloid and Interface Science, 2017, 490, 497-504.	5.0	25
22	Generic synthesis and versatile applications of molecularly organic–inorganic hybrid mesoporous organosilica nanoparticles with asymmetric Janus topologies and structures. Nano Research, 2017, 10, 3790-3810.	5.8	19
23	Two-dimensional black phosphorus nanosheets for theranostic nanomedicine. Materials Horizons, 2017, 4, 800-816.	6.4	155
24	Dopamine functionalized tannic-acid-templated mesoporous silica nanoparticles as a new sorbent for the efficient removal of Cu2+ from aqueous solution. Scientific Reports, 2017, 7, 45215.	1.6	31
25	Synthesis of Janus Au@periodic mesoporous organosilica (PMO) nanostructures with precisely controllable morphology: a seed-shape defined growth mechanism. Nanoscale, 2017, 9, 4826-4834.	2.8	42
26	Biodegradable Magnetic Silica@Iron Oxide Nanovectors with Ultra-Large Mesopores for High Protein Loading, Magnetothermal Release, and Delivery. Journal of Controlled Release, 2017, 259, 187-194.	4.8	81
27	Safe approaches for camptothecin delivery: Structural analogues and nanomedicines. Journal of Controlled Release, 2017, 247, 28-54.	4.8	80
28	Proton transfer assisted facile encapsulation of picric acid in sol-gel derived silica decorated with azo-azomethine hosts. Dyes and Pigments, 2017, 139, 635-643.	2.0	12
29	Metalloporphyrin-Encapsulated Biodegradable Nanosystems for Highly Efficient Magnetic Resonance Imaging-Guided Sonodynamic Cancer Therapy. Journal of the American Chemical Society, 2017, 139, 1275-1284.	6.6	535
30	Glucoseâ€Responsive Sequential Generation of Hydrogen Peroxide and Nitric Oxide for Synergistic Cancer Starvingâ€Like/Gas Therapy. Angewandte Chemie - International Edition, 2017, 56, 1229-1233.	7.2	505
31	Materials Chemistry of Nanoultrasonic Biomedicine. Advanced Materials, 2017, 29, 1604105.	11.1	76
32	Glucoseâ€Responsive Sequential Generation of Hydrogen Peroxide and Nitric Oxide for Synergistic Cancer Starvingâ€Like/Gas Therapy. Angewandte Chemie, 2017, 129, 1249-1253.	1.6	70
33	Supramolecular chemotherapy based on host–guest molecular recognition: a novel strategy in the battle against cancer with a bright future. Chemical Society Reviews, 2017, 46, 7021-7053.	18.7	556
34	Pore Modified FDU-12 as a Novel Container for Dendron Growth. Journal of Physical Chemistry C, 2017, 121, 22031-22039.	1.5	6
35	Integration of polymers in the pore space of mesoporous nanocarriers for drug delivery. Journal of Materials Chemistry B, 2017, 5, 8891-8903.	2.9	10
36	Biodegradable and biocompatible monodispersed hollow mesoporous organosilica with large pores for delivering biomacromolecules. Journal of Materials Chemistry B, 2017, 5, 8013-8025.	2.9	23

#	Article	IF	CITATIONS
37	Coordinationâ€Accelerated "lron Extraction―Enables Fast Biodegradation of Mesoporous Silicaâ€Based Hollow Nanoparticles. Advanced Healthcare Materials, 2017, 6, 1700720.	3.9	27
38	Evaluation of mesoporous silica nanoparticles for oral drug delivery – current status and perspective of MSNs drug carriers. Nanoscale, 2017, 9, 15252-15277.	2.8	177
39	Degradable gold core–mesoporous organosilica shell nanoparticles for two-photon imaging and gemcitabine monophosphate delivery. Molecular Systems Design and Engineering, 2017, 2, 380-383.	1.7	8
40	A highly selective dual-therapeutic nanosystem for simultaneous anticancer and antiangiogenesis therapy. Journal of Materials Chemistry B, 2017, 5, 8228-8237.	2.9	12
41	Facile Fabrication of Ordered Component-Tunable Heterobimetallic Self-Assembly Nanosheet for Catalyzing "Click―Reaction. ACS Omega, 2017, 2, 5415-5433.	1.6	12
42	Mesoporous Silica Thin Membranes with Large Vertical Mesochannels for Nanosizeâ€Based Separation. Advanced Materials, 2017, 29, 1702274.	11.1	87
43	Biphasic-to-monophasic successive Co-assembly approach to yolk–shell structured mesoporous organosilica nanoparticles. Journal of Colloid and Interface Science, 2017, 507, 242-249.	5.0	7
44	Construction of Silicaâ€Based Micro/Nanoplatforms for Ultrasound Theranostic Biomedicine. Advanced Healthcare Materials, 2017, 6, 1700646.	3.9	51
45	Endogenous Catalytic Generation of O ₂ Bubbles for <i>In Situ</i> Ultrasound-Guided High Intensity Focused Ultrasound Ablation. ACS Nano, 2017, 11, 9093-9102.	7.3	133
46	Insights into the unique functionality of inorganic micro/nanoparticles for versatile ultrasound theranostics. Biomaterials, 2017, 142, 13-30.	5.7	120
47	Talented Mesoporous Silica Nanoparticles. Chemistry of Materials, 2017, 29, 371-388.	3.2	181
48	Inorganic/Organic Multilayer Capsule Composition for Improved Functionality and External Triggering. Advanced Materials Interfaces, 2017, 4, 1600338.	1.9	53
49	Systematic study of dye loaded small mesoporous silica nanoparticles for detecting latent fingerprints on various substrates. Journal of Porous Materials, 2017, 24, 13-20.	1.3	35
50	Numerical study of the totally asymmetric simple exclusion process that consists of only a single site for modeling the dynamics of Coulomb blockade in 2D quantum dot. AIP Conference Proceedings, 2017, , .	0.3	0
51	Ordered Mesoporous/Nanoporous Inorganic Materials via Self-Assembly. , 2017, , 157-192.		3
52	Foundational techniques for catalyst design in the upgrading of biomass-derived multifunctional molecules. Progress in Energy and Combustion Science, 2018, 67, 1-30.	15.8	24
53	Photosensitive engineering plastics based on reaction development patterning. Polymer Journal, 2018, 50, 419-429.	1.3	7
54	Silica–Conjugated Polymer Hybrid Fluorescent Nanoparticles: Preparation by Surface-Initiated Polymerization and Spectroscopic Studies. Journal of Physical Chemistry C, 2018, 122, 6963-6975.	1.5	14

#	Article	IF	CITATIONS
55	Nanomaterials for Cancer Precision Medicine. Advanced Materials, 2018, 30, e1705660.	11.1	136
56	Designed synthesis of organosilica nanoparticles for enzymatic biodiesel production. Materials Chemistry Frontiers, 2018, 2, 1334-1342.	3.2	31
57	Timely coordinated phototherapy mediated by mesoporous organosilica coated triangular gold nanoprisms. Journal of Materials Chemistry B, 2018, 6, 3865-3875.	2.9	13
58	Porous Porphyrinâ€Based Organosilica Nanoparticles for NIR Twoâ€Photon Photodynamic Therapy and Gene Delivery in Zebrafish. Advanced Functional Materials, 2018, 28, 1800235.	7.8	50
59	Hierarchical Mesoporous Organosilica–Silica Core–Shell Nanoparticles Capable of Controlled Fungicide Release. Chemistry - A European Journal, 2018, 24, 7200-7209.	1.7	22
60	Ultrasmall mesoporous organosilica nanoparticles: Morphology modulations and redox-responsive biodegradability for tumor-specific drug delivery. Biomaterials, 2018, 161, 292-305.	5.7	127
61	Pendant/bridged/mesoporous silsesquioxane nanoparticles: Versatile and biocompatible platforms for smart delivery of therapeutics. Chemical Engineering Journal, 2018, 340, 125-147.	6.6	32
62	Dispersed Uniform Nanoparticles from a Macroscopic Organosilica Powder. Langmuir, 2018, 34, 2274-2281.	1.6	2
63	Biodegradable Hollow Mesoporous Organosilica Nanotheranostics for Mild Hyperthermia-Induced Bubble-Enhanced Oxygen-Sensitized Radiotherapy. ACS Nano, 2018, 12, 1580-1591.	7.3	172
64	Controlled synthesis and size effects of multifunctional mesoporous silica nanosystem for precise cancer therapy. Drug Delivery, 2018, 25, 293-306.	2.5	42
65	Hollow Mesoporous Silica@Metal–Organic Framework and Applications for pHâ€Responsive Drug Delivery. ChemMedChem, 2018, 13, 400-405.	1.6	57
66	Fabrication of a hyaluronic acid conjugated metal organic framework for targeted drug delivery and magnetic resonance imaging. RSC Advances, 2018, 8, 6581-6589.	1.7	83
67	Dual Drug Delivery System Based on Biodegradable Organosilica Core–Shell Architectures. ACS Applied Materials & Interfaces, 2018, 10, 5287-5295.	4.0	31
68	Deformable Hollow Periodic Mesoporous Organosilica Nanocapsules for Significantly Improved Cellular Uptake. Journal of the American Chemical Society, 2018, 140, 1385-1393.	6.6	168
69	Non-polymeric hybridization of a TEMPO derivative with activated carbon for high-energy-density aqueous electrochemical capacitor electrodes. Sustainable Energy and Fuels, 2018, 2, 558-565.	2.5	34
70	Synthesis of Silica Hollow Nanoreactors with Finely Engineered Inner/Outer Surface Properties. ChemistrySelect, 2018, 3, 544-549.	0.7	0
71	Conformal Nanocoatings with Uniform and Controllable Thickness on Microstructured Surfaces: A General Assembly Route. Advanced Materials, 2018, 30, 1704131.	11.1	7
72	Material Chemistry of Two-Dimensional Inorganic Nanosheets in Cancer Theranostics. CheM, 2018, 4, 1284-1313.	5.8	132

#	Article	IF	CITATIONS
73	Cisplatin and doxorubicin high-loaded nanodrug based on biocompatible thioether- and ethane-bridged hollow mesoporous organosilica nanoparticles. Journal of Colloid and Interface Science, 2018, 513, 214-221.	5.0	28
74	Small size mesoporous organosilica nanorods with different aspect ratios: Synthesis and cellular uptake. Journal of Colloid and Interface Science, 2018, 512, 134-140.	5.0	28
75	Gemcitabine Delivery and Photodynamic Therapy in Cancer Cells via Porphyrinâ€Ethyleneâ€Based Periodic Mesoporous Organosilica Nanoparticles. ChemNanoMat, 2018, 4, 46-51.	1.5	31
76	Mesoporous Silica and Organosilica Nanoparticles: Physical Chemistry, Biosafety, Delivery Strategies, and Biomedical Applications. Advanced Healthcare Materials, 2018, 7, 1700831.	3.9	415
77	Porphyrin/SiO ₂ /Cp*Rh(bpy)Cl Hybrid Nanoparticles Mimicking Chloroplast with Enhanced Electronic Energy Transfer for Biocatalyzed Artificial Photosynthesis. Advanced Functional Materials, 2018, 28, 1705083.	7.8	45
78	From Molecules to Silicon-Based Biohybrid Materials by Ball Milling. ACS Sustainable Chemistry and Engineering, 2018, 6, 511-518.	3.2	15
79	Disulfideâ€Bridged Organosilica Frameworks: Designed, Synthesis, Redoxâ€Triggered Biodegradation, and Nanobiomedical Applications. Advanced Functional Materials, 2018, 28, 1707325.	7.8	150
80	Casâ€Generating Nanoplatforms: Material Chemistry, Multifunctionality, and Gas Therapy. Advanced Materials, 2018, 30, e1801964.	11.1	225
81	Verification of Long-Term Genetic Stability of hMSCs during Subculture after Internalization of Sunflower-Type Nanoparticles (SF-NPs). Theranostics, 2018, 8, 5548-5561.	4.6	10
82	New insights into the structure–performance relationships of mesoporous materials in analytical science. Chemical Society Reviews, 2018, 47, 8766-8803.	18.7	136
83	Biodegradable Silicon-based Mesoporous Nanoparticles for Nanomedicine. Journal of Bioanalysis & Biomedicine, 2018, 10, .	0.1	1
84	Acidity/Reducibility Dual-Responsive Hollow Mesoporous Organosilica Nanoplatforms for Tumor-Specific Self-Assembly and Synergistic Therapy. ACS Nano, 2018, 12, 12269-12283.	7.3	86
85	Chemodrug-Gated Biodegradable Hollow Mesoporous Organosilica Nanotheranostics for Multimodal Imaging-Guided Low-Temperature Photothermal Therapy/Chemotherapy of Cancer. ACS Applied Materials & Interfaces, 2018, 10, 42115-42126.	4.0	80
86	Hollow Organosilica Nanoparticles for Drug Delivery. ChemistrySelect, 2018, 3, 10439-10442.	0.7	2
87	Mesoporous Silica-Based Nanoparticles for Light-Actuated Biomedical Applications via Near-Infrared Two-Photon Absorption. The Enzymes, 2018, 43, 67-99.	0.7	5
88	Coupling Photoluminescence and Ionic Conduction Properties Using the Different Coordination Sites of Ureasil–Polyether Hybrid Materials. ACS Applied Materials & Interfaces, 2018, 10, 37364-37373. 	4.0	14
89	Biodegradable Silica-Based Nanoparticles: Dissolution Kinetics and Selective Bond Cleavage. The Enzymes, 2018, 43, 181-214.	0.7	25
90	Therapeutic mesopore construction on 2D Nb ₂ C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow. Therapostics, 2018, 8, 4491-4508	4.6	158

#	Article	IF	CITATIONS
91	Stepwise Degradable Nanocarriers Enabled Cascade Delivery for Synergistic Cancer Therapy. Advanced Functional Materials, 2018, 28, 1800706.	7.8	96
92	Exogenous/Endogenousâ€Triggered Mesoporous Silica Cancer Nanomedicine. Advanced Healthcare Materials, 2018, 7, e1800268.	3.9	48
93	Sol gel synthesis of 3-n-propyl(4-aminomethyl)pyridinium silsesquioxane chloride and the enhanced electrocatalytic activity of LbL films. Journal of Sol-Gel Science and Technology, 2018, 87, 216-229.	1.1	16
94	Fe–Au Nanoparticleâ€Coupling for Ultrasensitive Detections of Circulating Tumor DNA. Advanced Materials, 2018, 30, e1801690.	11.1	49
95	Copper-gold nanoparticles encapsulated within surface-tethered dendrons as supported catalysts for the Click reaction. Applied Catalysis A: General, 2018, 563, 196-203.	2.2	12
96	Au ₃ Cu tetrapod nanocrystals: highly efficient and metabolizable multimodality imaging-guided NIR-II photothermal agents. Nanoscale Horizons, 2018, 3, 624-631.	4.1	26
97	Facile synthesis of mesoporous organosilica nanobowls with bridged silsesquioxane framework by one-pot growth and dissolution mechanism. Journal of Colloid and Interface Science, 2018, 528, 379-388.	5.0	19
98	Enzymatic Synthesis of Glycerol Carbonate Using a Lipase Immobilized on Magnetic Organosilica Nanoflowers as a Catalyst. ACS Omega, 2018, 3, 6642-6650.	1.6	48
99	Synergistic Sonodynamic/Chemotherapeutic Suppression of Hepatocellular Carcinoma by Targeted Biodegradable Mesoporous Nanosonosensitizers. Advanced Functional Materials, 2018, 28, 1800145.	7.8	131
100	Dispersity, mesoporous structure and particle size modulation of hollow mesoporous silica nanoparticles with excellent adsorption performance. Dalton Transactions, 2018, 47, 13345-13352.	1.6	3
101	New precursors for the preparation of pH-sensitive, targeting, and loaded non-porous bridged silsesquioxane nanoparticles. Journal of Sol-Gel Science and Technology, 2019, 89, 45-55.	1.1	7
102	Targeted and stimuli–responsive mesoporous silica nanoparticles for drug delivery and theranostic use. Journal of Biomedical Materials Research - Part A, 2019, 107, 2643-2666.	2.1	44
103	Raspberry-Like Polysilsesquioxane Particles with Hollow-Spheres-on-Sphere Structure: Rational Design, Controllable Synthesis, and Catalytic Application. Polymers, 2019, 11, 1350.	2.0	18
104	Mesoporous silica nanoparticles for tissueâ€engineering applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1573.	3.3	87
105	Nanocatalytic Medicine. Advanced Materials, 2019, 31, e1901778.	11.1	396
106	Inorganic Salt Assisted Self-Assembly of Periodic Mesoporous Organosilicas with Various Structures under Alkaline Conditions. European Journal of Inorganic Chemistry, 2019, 2019, 4063-4069.	1.0	3
107	Novel Thioacetal-Bridged Hollow Mesoporous Organosilica Nanoparticles with ROS-Responsive Biodegradability for Smart Drug Delivery. Nano, 2019, 14, 1950141.	0.5	3
108	Advances in nanomedicine for cancer starvation therapy. Theranostics, 2019, 9, 8026-8047.	4.6	151

#	Article	IF	CITATIONS
109	Tailoring cubic and dodecagonal quasicrystalline mesophases of mesoporous organosilica nanoparticles and core/shell structure. Materials Science and Engineering C, 2019, 98, 666-674.	3.8	3
110	<p>Smart nanomedicine agents for cancer, triggered by pH, glutathione, H₂O₂, or H₂S</p> . International Journal of Nanomedicine, 2019, Volume 14, 5729-5749.	3.3	36
111	Size effect of mesoporous organosilica nanoparticles on tumor penetration and accumulation. Biomaterials Science, 2019, 7, 4790-4799.	2.6	27
112	Nano-engineering and micromolecular science of polysilsesquioxane materials and their emerging applications. Journal of Materials Chemistry A, 2019, 7, 21577-21604.	5.2	64
113	Phthalocyanine-based mesoporous organosilica nanoparticles: NIR photodynamic efficiency and siRNA photochemical internalization. Chemical Communications, 2019, 55, 11619-11622.	2.2	19
114	Biodegradable, pH-Sensitive Hollow Mesoporous Organosilica Nanoparticle (HMON) with Controlled Release of Pirfenidone and Ultrasound-Target-Microbubble-Destruction (UTMD) for Pancreatic Cancer Treatment. Theranostics, 2019, 9, 6002-6018.	4.6	61
115	Single-micelle-directed synthesis of mesoporous materials. Nature Reviews Materials, 2019, 4, 775-791.	23.3	208
116	NH ₂ -MIL-125(Ti)-derived porous cages of titanium oxides to support Pt–Co alloys for chemoselective hydrogenation reactions. Chemical Science, 2019, 10, 2111-2117.	3.7	34
117	Bi ₂ SiO ₅ @g-SiO ₂ upconverting nanoparticles: a bismuth-driven core–shell self-assembly mechanism. Nanoscale, 2019, 11, 675-687.	2.8	31
118	Dendritic fibrous nano-particles (DFNPs): rising stars of mesoporous materials. Journal of Materials Chemistry A, 2019, 7, 5111-5152.	5.2	103
119	Electronetting. , 2019, , 249-282.		4
120	Large Pore Mesoporous Silica and Organosilica Nanoparticles for Pepstatin A Delivery in Breast Cancer Cells. Molecules, 2019, 24, 332.	1.7	24
121	Degradable Hollow Organosilica Nanoparticles for Antibacterial Activity. ACS Omega, 2019, 4, 1479-1486.	1.6	3
122	A Multifunctional Biodegradable Nanocomposite for Cancer Theranostics. Advanced Science, 2019, 6, 1802001.	5.6	72
123	Stimuli sensitive systems for camptothecin delivery. , 2019, , 391-428.		0
124	Ultrasound/Acidityâ€Triggered and Nanoparticleâ€Enabled Analgesia. Advanced Healthcare Materials, 2019, 8, e1801350.	3.9	15
125	Highly Thiolated Dendritic Mesoporous Silica Nanoparticles with High-Content Gold as Nanozymes: The Nano-Gold Size Matters. ACS Applied Materials & Interfaces, 2019, 11, 13264-13272.	4.0	36
126	Generic synthesis of small-sized hollow mesoporous organosilica nanoparticles for oxygen-independent X-ray-activated synergistic therapy. Nature Communications, 2019, 10, 1241.	5.8	112

#	Article	IF	CITATIONS
127	Biodegradable hybrid mesoporous silica nanoparticles for gene/chemo-synergetic therapy of breast cancer. Journal of Biomaterials Applications, 2019, 33, 1382-1393.	1.2	28
128	Structure rearrangement of periodic mesoporous organosilicas through a post-synthesis approach. Materials Letters, 2019, 245, 73-76.	1.3	2
129	Simultaneous T Cell Activation and Macrophage Polarization to Promote Potent Tumor Suppression by Iron Oxideâ€Embedded Largeâ€Pore Mesoporous Organosilica Core–Shell Nanospheres. Advanced Healthcare Materials, 2019, 8, e1900039.	3.9	26
130	Engineering the Distribution of Carbon in Silicon Oxide Nanospheres at the Atomic Level for Highly Stable Anodes. Angewandte Chemie, 2019, 131, 6741-6745.	1.6	16
131	Engineering the Distribution of Carbon in Silicon Oxide Nanospheres at the Atomic Level for Highly Stable Anodes. Angewandte Chemie - International Edition, 2019, 58, 6669-6673.	7.2	209
132	Controllable synthesis of hierarchical polysilsesquioxane surfaces: from spheres-on-sphere to bowls-on-sphere structure. Applied Surface Science, 2019, 481, 75-82.	3.1	8
133	Novel mesoporous SiO2 conjugated graphene oxide 2D layers: Frequency and temperature dependent dielectric properties. Materials Chemistry and Physics, 2019, 230, 337-346.	2.0	5
134	Organosilica Nanoparticles for Gemcitabine Monophosphate Delivery in Cancer Cells. ChemNanoMat, 2019, 5, 888-896.	1.5	12
135	Controlled PEGylation of periodic mesoporous organosilica nanospheres for improving their stability in physiological solutions. Chinese Chemical Letters, 2019, 30, 929-932.	4.8	8
136	Energyâ€Converting Nanomedicine. Small, 2019, 15, e1805339.	5.2	82
136 137	Energyâ€Converting Nanomedicine. Small, 2019, 15, e1805339. Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Materials Science and Engineering Reports, 2019, 137, 66-105.	5.2 14.8	82 119
136 137 138	 Energyâ€Converting Nanomedicine. Small, 2019, 15, e1805339. Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Materials Science and Engineering Reports, 2019, 137, 66-105. Self-assembly as a key player for materials nanoarchitectonics. Science and Technology of Advanced Materials, 2019, 20, 51-95. 	5.2 14.8 2.8	82 119 322
136 137 138 139	Energyâ€Converting Nanomedicine. Small, 2019, 15, e1805339. Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Materials Science and Engineering Reports, 2019, 137, 66-105. Self-assembly as a key player for materials nanoarchitectonics. Science and Technology of Advanced Materials, 2019, 20, 51-95. Enhanced Physiological Stability and Longâ€Term Toxicity/Biodegradation In Vitro/In Vivo of Monodispersed Glycerolphosphateâ€Functionalized Bioactive Glass Nanoparticles. Particle and Particle Systems Characterization, 2019, 36, 1800507.	5.2 14.8 2.8 1.2	82 119 322 26
136 137 138 139 140	Energyâ€Converting Nanomedicine. Small, 2019, 15, e1805339. Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Materials Science and Engineering Reports, 2019, 137, 66-105. Self-assembly as a key player for materials nanoarchitectonics. Science and Technology of Advanced Materials, 2019, 20, 51-95. Enhanced Physiological Stability and Longâ€Term Toxicity/Biodegradation In Vitro/In Vivo of Monodispersed Glycerolphosphateâ€Functionalized Bioactive Glass Nanoparticles. Particle and Particle Systems Characterization, 2019, 36, 1800507. Functional black phosphorus nanosheets for mitochondria-targeting photothermal/photodynamic synergistic cancer therapy. Chemical Science, 2019, 10, 3779-3785.	 5.2 14.8 2.8 1.2 3.7 	82 119 322 26 151
136 137 138 139 140	Energyâ€Converting Nanomedicine. Small, 2019, 15, e1805339. Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Materials Science and Engineering Reports, 2019, 137, 66-105. Self-assembly as a key player for materials nanoarchitectonics. Science and Technology of Advanced Materials, 2019, 20, 51-95. Enhanced Physiological Stability and Longâ€Term Toxicity/Biodegradation In Vitro/In Vivo of Monodispersed Glycerolphosphateâ€Functionalized Bioactive Glass Nanoparticles. Particle and Particle Systems Characterization, 2019, 36, 1800507. Functional black phosphorus nanosheets for mitochondria-targeting photothermal/photodynamic synergistic cancer therapy. Chemical Science, 2019, 10, 3779-3785. Facile Synthesis of Monodisperse Hollow Mesoporous Organosilica/Silica Nanospheres by an in Situ Dissolution and Reassembly Approach. ACS Applied Materials & amp; Interfaces, 2019, 11, 12063-12069.	 5.2 14.8 2.8 1.2 3.7 4.0 	 82 119 322 26 151 24
 136 137 138 139 140 141 142 	Energyâ€Converting Nanomedicine. Small, 2019, 15, e1805339. Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Materials Science and Engineering Reports, 2019, 137, 66-105. Self-assembly as a key player for materials nanoarchitectonics. Science and Technology of Advanced Materials, 2019, 20, 51-95. Enhanced Physiological Stability and Longâ€ferm Toxicity/Biodegradation In Vitro/In Vivo of Monodispersed Glycerolphosphateâ€Functionalized Bioactive Glass Nanoparticles. Particle and Particle Systems Characterization, 2019, 36, 1800507. Functional black phosphorus nanosheets for mitochondria-targeting photothermal/photodynamic synergistic cancer therapy. Chemical Science, 2019, 10, 3779-3785. Facile Synthesis of Monodisperse Hollow Mesoporous Organosilica/Silica Nanospheres by an in Situ Dissolution and Reassembly Approach. ACS Applied Materials & amp; Interfaces, 2019, 11, 12063-12069. Encapsulation of Upconversion Nanoparticles in Periodic Mesoporous Organosilicas. Molecules, 2019, 24, 4054.	 5.2 14.8 2.8 1.2 3.7 4.0 1.7 	 82 119 322 26 151 24 3
 136 137 138 139 140 141 142 143 	EnergyâCConverting Nanomedicine. Small, 2019, 15, e1805339. Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Materials Science and Engineering Reports, 2019, 137, 66-105. Self-assembly as a key player for materials nanoarchitectonics. Science and Technology of Advanced Materials, 2019, 20, 51-95. Enhanced Physiological Stability and LongâCTerm Toxicity/Biodegradation In Vitro/In Vivo of Monodispersed GlycerolphosphateâCFunctionalized Bioactive Glass Nanoparticles. Particle and Particle Systems Characterization, 2019, 36, 1800507. Functional black phosphorus nanosheets for mitochondria-targeting photothermal/photodynamic synergistic cancer therapy. Chemical Science, 2019, 10, 3779-3785. Facile Synthesis of Monodisperse Hollow Mesoporous Organosilica/Silica Nanospheres by an in Situ Dissolution and Reassembly Approach. ACS Applied Materials & amp; Interfaces, 2019, 11, 12063-12069. Encapsulation of Upconversion Nanoparticles in Periodic Mesoporous Organosilicas. Molecules, 2019, 24, 4054. Nanoparticles characterization using the CAM assay. The Enzymes, 2019, 46, 129-160.	 5.2 14.8 2.8 1.2 3.7 4.0 1.7 0.7 	 82 119 322 26 151 24 3 10

#	Article	IF	CITATIONS
145	Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications. Chemical Reviews, 2019, 119, 1666-1762.	23.0	299
146	Facile preparation of near-infrared fluorescence and magnetic resonance dual-modality imaging probes based on mesoporous organosilica nanoparticles. Journal of Colloid and Interface Science, 2019, 539, 277-286.	5.0	9
147	Studies on the structural diversity of MOFs containing octahedral siloxane-backboned connectors. Polyhedron, 2019, 157, 25-32.	1.0	4
148	Mesoporous Organosilica Hollow Nanoparticles: Synthesis and Applications. Advanced Materials, 2019, 31, e1707612.	11.1	179
149	In Situ Polymerized Hollow Mesoporous Organosilica Biocatalysis Nanoreactor for Enhancing ROSâ€Mediated Anticancer Therapy. Advanced Functional Materials, 2020, 30, 1907716.	7.8	136
150	Novel pH-responsive biodegradable organosilica nanoparticles as drug delivery system for cancer therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124133.	2.3	18
151	Fabrication of biodegradable Mn-doped mesoporous silica nanoparticles for pH/redox dual response drug delivery. Journal of Inorganic Biochemistry, 2020, 202, 110887.	1.5	24
152	Co-assembly strategy for uniform and tunable hollow carbon spheres with supercapacitor application. Journal of Colloid and Interface Science, 2020, 565, 245-253.	5.0	30
153	One-pot synthesis of chlorhexidine-templated biodegradable mesoporous organosilica nanoantiseptics. Colloids and Surfaces B: Biointerfaces, 2020, 187, 110653.	2.5	9
154	Inhibitor-self-gated stimuli-responsive anticorrosion system based on π-π stacking. Chemical Engineering Journal, 2020, 400, 125917.	6.6	11
155	Copolymerization of Mesoporous Styreneâ€Bridged Organosilica Nanoparticles with Functional Monomers for the Stimuliâ€Responsive Remediation of Water. ChemSusChem, 2020, 13, 5100-5111.	3.6	6
156	Highly ordered mesoporous functionalized pyridinium protic ionic liquids framework as efficient system in esterification reactions for biofuels production. Molecular Catalysis, 2020, 498, 111238.	1.0	11
157	Core-template-free synthesis of molecularly ethane-bridged hollow mesoporous silica spheres from acid-hydrolyzed precursor. New Journal of Chemistry, 2020, 44, 13997-14004.	1.4	6
158	Engineering of monosized lipid-coated mesoporous silica nanoparticles for CRISPR delivery. Acta Biomaterialia, 2020, 114, 358-368.	4.1	62
159	A pH-activated autocatalytic nanoreactor for self-boosting Fenton-like chemodynamic therapy. Nanoscale, 2020, 12, 17319-17331.	2.8	58
160	Synthesis of Cyclenâ€Functionalized Ethenyleneâ€Based Periodic Mesoporous Organosilica Nanoparticles and Metalâ€Ion Adsorption Studies. ChemNanoMat, 2020, 6, 1625-1634.	1.5	7
161	Reversible charge storage of ferrocene-adsorbed activated carbon using ionic liquid electrolytes. Chemical Physics Letters, 2020, 755, 137795.	1.2	8
162	Highly Active Ruthenium Catalyst Supported on Magnetically Separable Mesoporous Organosilica Nanoparticles. Applied Sciences (Switzerland), 2020, 10, 5769.	1.3	4

		CITATION REPORT		
#	Article		IF	CITATIONS
163	The Coppery Age: Copper (Cu)â€Involved Nanotheranostics. Advanced Science, 2020,	7, 2001549.	5.6	126
164	Biomimetic Diselenideâ€Bridged Mesoporous Organosilica Nanoparticles as an Xâ€ray Biodegradable Carrier for Chemoâ€Immunotherapy. Advanced Materials, 2020, 32, e2	â€Responsive 004385.	11.1	122
165	Fenton reaction-based nanomedicine in cancer chemodynamic and synergistic therapy Materials Today, 2020, 21, 100864.	. Applied	2.3	71
166	Platinumâ€Imidazolyl Schiff Base Complexes Immobilized in Periodic Mesoporous Org Frameworks as Catalysts for Hydrosilylation. Applied Organometallic Chemistry, 2020,	anosilica 34, e5697.	1.7	11
167	Controllable synthesis of versatile mesoporous organosilica nanoparticles as precision theranostics. Biomaterials, 2020, 256, 120191.	cancer	5.7	49
168	Novel photocatalytic performance of nanocage-like MIL-125-NH ₂ induced phenolic pollutants. Environmental Science: Nano, 2020, 7, 1525-1538.	by adsorption of	2.2	26
169	Recent developments of mesoporous silica nanoparticles in biomedicine. Emergent Ma 381-405.	aterials, 2020, 3,	3.2	25
170	Soft Mesoporous Organosilica Nanoplatforms Improve Blood Circulation, Tumor Accumulation/Penetration, and Photodynamic Efficacy. Nano-Micro Letters, 2020, 12,	137.	14.4	18
171	Porous Hybrid Materials Based on Mesotetrakis(Hydroxyphenyl) Porphyrins and TiO2 f Visible-Light-Driven Hydrogen Production. Catalysts, 2020, 10, 656.	or Efficient	1.6	12
172	Periodic Mesoporous Organosilica Nanoparticles with BOC Group, towards HIFU Response Molecules, 2020, 25, 974.	bnsive Agents.	1.7	10
173	Engine-Trailer-Structured Nanotrucks for Efficient Nano-Bio Interactions and Bioimagin Delivery. CheM, 2020, 6, 1097-1112.	g-Guided Drug	5.8	55
174	Single-template periodic mesoporous organosilica with organized bimodal mesoporosi Microporous and Mesoporous Materials, 2020, 297, 110042.	ty.	2.2	17
175	Tannic Acid-Assisted Synthesis of Biodegradable and Antibacterial Mesoporous Organo Nanoparticles Decorated with Nanosilver. ACS Sustainable Chemistry and Engineering 1695-1702.	osilica , 2020, 8,	3.2	31
176	Design of an alkaline pyridyl acceptor-based calix[4]arene dye and synthesis of stable calixarene–TiO ₂ porous hybrid materials for efficient photocatalysis. Jo Materials Chemistry A, 2020, 8, 8883-8891.	urnal of	5.2	24
177	Chemoreactive nanomedicine. Journal of Materials Chemistry B, 2020, 8, 6753-6764.		2.9	18
178	Preparation and Characterization of Novel Mixed Periodic Mesoporous Organosilica Na Materials, 2020, 13, 1569.	anoparticles.	1.3	5
179	Biodegradable hollow mesoporous organosilica-based nanosystems with dual stimuli-r drug delivery for efficient tumor inhibition by synergistic chemo- and photothermal the Materials Today, 2020, 19, 100655.	esponsive erapy. Applied	2.3	19
180	Dendritic organosilica nanospheres with large mesopores as multi-guests vehicle for photoacoustic/ultrasound imaging-guided photodynamic therapy. Journal of Colloid ar Science, 2021, 583, 166-177.	nd Interface	5.0	23

#	Article	IF	CITATIONS
181	Complex Hollow Bowlâ€Like Nanostructures: Synthesis, Application, and Perspective. Advanced Functional Materials, 2021, 31, 2007801.	7.8	35
182	Hollow Concave Zincâ€Doped Co ₃ O ₄ Nanosheets/Carbon Composites as Ultrahigh Capacity Anode Materials for Lithiumâ€lon Batteries. ChemElectroChem, 2021, 8, 172-178.	1.7	9
183	Synthesis of dendritic mesoporous organosilica nanoparticles under a mild acidic condition with homogeneous wall structure and near-neutral surface. Chemical Communications, 2021, 57, 4416-4419.	2.2	4
184	Efficient Fabrication of Diverse Mesostructured Materials from the Self-Assembly of Pyrrole-Containing Block Copolymers and Their Confined Chemical Transformation. Macromolecules, 2021, 54, 906-918.	2.2	8
185	Metal–Organic Framework-Based Enzyme Biocomposites. Chemical Reviews, 2021, 121, 1077-1129.	23.0	372
186	Intricately structured mesoporous organosilica nanoparticles: synthesis strategies and biomedical applications. Biomaterials Science, 2021, 9, 1609-1626.	2.6	13
187	Bipyridine-silica nanotubes with high bipyridine contents in the framework. Microporous and Mesoporous Materials, 2021, 313, 110854.	2.2	2
188	Benzene-Bridged Organosilica Modified Mesoporous Silica Nanoparticles via an Acid-Catalysis Approach. Langmuir, 2021, 37, 2780-2786.	1.6	6
189	Application of TiO2 hollow spheres and ZnS/SiO2 double-passivaiting layers in the photoanode of the CdS/CdSe QDs sensitized solar cells for the efficiency enhancement. Solar Energy, 2021, 216, 48-60.	2.9	6
190	Smart Cargo Delivery System based on Mesoporous Nanoparticles for Bone Disease Diagnosis and Treatment. Advanced Science, 2021, 8, e2004586.	5.6	28
191	Novel Organochlorinated Xerogels: From Microporous Materials to Ordered Domains. Polymers, 2021, 13, 1415.	2.0	3
192	Biotemplated Hollow Mesoporous Silica Particles as Efficient Carriers for Drug Delivery. ACS Applied Bio Materials, 2021, 4, 4201-4214.	2.3	15
193	Twoâ€Dimensional Silicene/Silicon Nanosheets: An Emerging Siliconâ€Composed Nanostructure in Biomedicine. Advanced Materials, 2021, 33, e2008226.	11.1	21
194	Recent advances in porous nanostructures for cancer theranostics. Nano Today, 2021, 38, 101146.	6.2	24
195	<scp>Nanobiotechnologyâ€enabled</scp> energy utilization elevation for augmenting <scp>minimallyâ€invasive</scp> and noninvasive oncology thermal ablation. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1733.	3.3	23
196	Coordination and Redox Dualâ€Responsive Mesoporous Organosilica Nanoparticles Amplify Immunogenic Cell Death for Cancer Chemoimmunotherapy. Small, 2021, 17, e2100006.	5.2	40
197	Hybridization of a Polymer inside the Pores of Activated Carbon and Pore Structural Characterization. ACS Applied Polymer Materials, 2021, 3, 3603-3611.	2.0	4
198	Periodic Mesoporous Ionosilica Nanoparticles for Green Light Photodynamic Therapy and Photochemical Internalization of siRNA. ACS Applied Materials & Interfaces, 2021, 13, 29325-29339.	4.0	21

#	Article	IF	CITATIONS
199	Defect Engineering of Mesoporous Silica Nanoparticles for Biomedical Applications. Accounts of Materials Research, 2021, 2, 581-593.	5.9	20
200	Biomimetic inorganic-organic hybrid nanoparticles from magnesium-substituted amorphous calcium phosphate clusters and polyacrylic acid molecules. Bioactive Materials, 2021, 6, 2303-2314.	8.6	14
201	Precise engineering of acorn-like Janus nanoparticles for cancer theranostics. Acta Biomaterialia, 2021, 130, 423-434.	4.1	7
202	Dendritic mesoporous organosilica nanoparticles (DMONs): Chemical composition, structural architecture, and promising applications. Nano Today, 2021, 39, 101231.	6.2	37
203	Stepwise drug release from a nanoplatform under MR-assisted focused ultrasound stimulation. Chemical Engineering Journal, 2021, 417, 128004.	6.6	4
204	Mitochondria-targeting and ROS-sensitive smart nanoscale supramolecular organic framework for combinational amplified photodynamic therapy and chemotherapy. Acta Biomaterialia, 2021, 130, 447-459.	4.1	32
205	Magnetic mesoporous embolic microspheres in transcatheter arterial chemoembolization for liver cancer. Acta Biomaterialia, 2021, 130, 374-384.	4.1	13
206	Effect of Elasticity of Silica Capsules on Cellular Uptake. Langmuir, 2021, 37, 11688-11694.	1.6	9
207	Enhanced Cancer Starvation Therapy Based on Glucose Oxidase/3-Methyladenine-Loaded Dendritic Mesoporous OrganoSilicon Nanoparticles. Biomolecules, 2021, 11, 1363.	1.8	7
208	Fabrication of AgNPs@Bowl-shaped structure with excellent antibacterial activity. Colloids and Interface Science Communications, 2021, 44, 100473.	2.0	2
209	Endogenous dual stimuli-activated NO generation in the conventional outflow pathway for precision glaucoma therapy. Biomaterials, 2021, 277, 121074.	5.7	14
210	Glutathione-mediated nanomedicines for cancer diagnosis and therapy. Chemical Engineering Journal, 2021, 426, 128880.	6.6	57
211	Biomedical applications. , 2022, , 277-323.		0
212	ROS-responsive organosilica nanocarrier for the targeted delivery of metformin against cancer with the synergistic effect of hypoglycemia. Journal of Materials Chemistry B, 2021, 9, 6044-6055.	2.9	11
213	Functionalized silica nanoparticles: classification, synthetic approaches and recent advances in adsorption applications. Nanoscale, 2021, 13, 15998-16016.	2.8	77
214	Design of BrÃnsted acidic ionic liquid functionalized mesoporous organosilica nanospheres for efficient synthesis of ethyl levulinate and levulinic acid from 5-hydroxymethylfurfural. Catalysis Science and Technology, 2021, 11, 1827-1842.	2.1	11
215	Silsesquioxane-Based Hierarchical and Hybrid Materials. , 2019, , 95-120.		1
216	Metal-Organic Framework (MOF)-Based Drug Delivery. Current Medicinal Chemistry, 2020, 27, 5949-5969.	1.2	152

#	Article	IF	CITATIONS
217	Polyaniline nanowire arrays generated through oriented mesoporous silica films: effect of pore size and spectroelectrochemical response. Faraday Discussions, 2021, 233, 77-99.	1.6	7
218	"Pincer movement― Reversing cisplatin resistance based on simultaneous glutathione depletion and glutathione S-transferases inhibition by redox-responsive degradable organosilica hybrid nanoparticles. Acta Pharmaceutica Sinica B, 2022, 12, 2074-2088.	5.7	14
219	Self-transformation synthesis of hierarchically porous benzene-bridged organosilica nanoparticles for efficient drug delivery. Journal of Colloid and Interface Science, 2022, 608, 1393-1400.	5.0	3
220	Silica-Based Tumor-targeted Systems. , 2020, , 271-292.		0
221	Self-amplification of oxidative stress with tumour microenvironment-activatable iron-doped nanoplatform for targeting hepatocellular carcinoma synergistic cascade therapy and diagnosis. Journal of Nanobiotechnology, 2021, 19, 361.	4.2	15
222	Identifying resonant dopants in BaCu2S2 for thermoelectric applications: A density functional theory based study. Solid State Communications, 2022, 342, 114592.	0.9	0
223	Drug Carrier Based on Mesoporous Borosilicate Glass Microspheres. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, , 621.	0.6	2
224	Chapter 4. Diagnostic and Theranostic Applications of Inorganic Materials. Inorganic Materials Series, 2021, , 194-241.	0.5	0
225	A Redoxâ€Active Microporous Organosiloxane Containing a Stable Neutral Radical, Trioxotriangulene. Chemistry - A European Journal, 2022, 28, .	1.7	3
226	Iron Nanoparticles Confined in Periodic Mesoporous Organosilicon as Nanoreactors for Efficient Nitrate Reduction. ACS Applied Nano Materials, 2022, 5, 5149-5157.	2.4	9
227	Biodegradable polydopamine and tetrasulfide bond co-doped hollowed mesoporous silica nanospheres as GSH-triggered nanosystem for synergistic chemo-photothermal therapy of breast cancer. Materials and Design, 2022, 215, 110467.	3.3	17
228	Surfactantâ€Inspired Coassembly Strategy to Integrate Aggregationâ€Induced Emission Photosensitizer with Organosilica Nanoparticles for Efficient Theranostics. Advanced Functional Materials, 2022, 32, .	7.8	23
229	Janus phenol–formaldehyde resin and periodic mesoporous organic silica nanoadsorbent for the removal of heavy metal ions and organic dyes from polluted water. Advanced Composites and Hybrid Materials, 2022, 5, 1180-1195.	9.9	100
230	The Role of Transmission Electron Microscopy in the Early Development of Mesoporous Materials for Tissue Regeneration and Drug Delivery Applications. Pharmaceutics, 2021, 13, 2200.	2.0	1
231	Interfacially Superâ€Assembled Benzimidazole Derivativeâ€Based Mesoporous Silica Nanoprobe for Sensitive Copper (II) Detection and Biosensing in Living Cells. Chemistry - A European Journal, 2022, 28, .	1.7	5
232	功能åŒ−二氧åŒ−çj…纳米ææ−™åœ¨è,¿ç~̃æ²»ç−−领域的应甔. Chinese Science Bulletin, 2022, , .	0.4	1
233	Tin-loaded mesoporous silica nanoparticles: Antineoplastic properties and genotoxicity assessment. , 2022, 137, 212819.		10
234	Green Synthesis of De Novo Bioinspired Porous Iron-Tannate Microstructures with Amphoteric Surface Properties. Sustainable Chemistry, 2022, 3, 192-204.	2.2	4

#	Article	IF	CITATIONS
235	Semi-aromatic polyamide membrane incorporated with yolk-shell mesoporous hybrid nanospheres for ultrahigh permeability and improving comprehensive property. Journal of Membrane Science, 2022, 655, 120612.	4.1	5
236	Dual nanoenzymes loaded hollow mesoporous organotantalum nanospheres for chemo-radio sensitization. Journal of Controlled Release, 2022, 347, 369-378.	4.8	9
237	Constructing SiO2 nanohybrid to develop a strong soy protein adhesive with excellent flame-retardant and coating ability. Chemical Engineering Journal, 2022, 446, 137065.	6.6	41
238	"One Stone, Four Birds―Ion Engineering to Fabricate Versatile Core–Shell Organosilica Nanoparticles for Intelligent Nanotheranostics. ACS Nano, 2022, 16, 9785-9798.	7.3	19
239	Recent Progress on Catalyst Supports for Propane Dehydrogenation. Current Nanoscience, 2023, 19, 473-483.	0.7	2
240	PEGâ€Functionalized Hollow Multishelled Structures with Onâ€Off Switch and Rateâ€Regulation for Controllable Antimicrobial Release. Angewandte Chemie, 0, , .	1.6	0
241	Porous Silica Support for Immobilizing Chiral Metal Catalyst: Unravelling the Activity of Catalyst on Asymmetric Organic Transformations. ChemistrySelect, 2022, 7, .	0.7	4
242	PECâ€Functionalized Hollow Multishelled Structures with Onâ€Off Switch and Rateâ€Regulation for Controllable Antimicrobial Release. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
243	Direct Z-scheme photochemical hybrid systems: Loading porphyrin-based metal-organic cages on graphitic-C3N4 to dramatically enhance photocatalytic hydrogen evolution. Chinese Journal of Catalysis, 2022, 43, 2249-2258.	6.9	16
244	Preparation of a strong soy protein adhesive with mildew proof, flame-retardant, and electromagnetic shielding properties via constructing nanophase-reinforced organic–inorganic hybrid structure. Chemical Engineering Journal, 2022, 447, 137536.	6.6	31
245	Construction and Biological Evaluation of Multiple Modification Hollow Mesoporous Silicone Doxorubicin Nanodrug Delivery System. AAPS PharmSciTech, 2022, 23, .	1.5	1
246	One-pot synthesis of α-Linolenic acid nanoemulsion-templated drug-loaded silica mesocomposites as efficient bactericide against drug-resistant Mycobacterium tuberculosis. European Journal of Pharmaceutical Sciences, 2022, 176, 106261.	1.9	7
247	Bimetallic Pt-Ni Nanoparticles Confined in Porous Titanium Oxide Cage for Hydrogen Generation from NaBH4 Hydrolysis. Nanomaterials, 2022, 12, 2550.	1.9	11
248	Applications of metal–phenolic networks in nanomedicine: a review. Biomaterials Science, 2022, 10, 5786-5808.	2.6	8
249	A Smart Photothermal Nanosystem with an Intrinsic Temperature ontrol Mechanism for Thermostatic Treatment of Bacterial Infections. Advanced Materials, 2022, 34, .	11.1	15
250	A novel pH- and glutathione-responsive drug delivery system based on in situ growth of MOF199 on mesoporous organic silica nanoparticles targeting the hepatocellular carcinoma niche. Cancer Nanotechnology, 2022, 13, .	1.9	1
251	Recent advances in mesoporous silica nanoparticle-based targeted drug-delivery systems for cancer therapy. Nanomedicine, 2022, 17, 1253-1279.	1.7	6
252	Synthesis of mesoporous organosilica nanoparticles with a high tetrasulphide content and large pores. Microporous and Mesoporous Materials, 2022, 346, 112316.	2.2	2

#	Article	IF	CITATIONS
253	Nanoparticle-enabled concurrent modulation of phagocytosis and repolarization of macrophages for enhanced cancer immunotherapy. Nano Today, 2022, 47, 101651.	6.2	2
254	Blatter Radical-Decorated Silica as a Prospective Adsorbent for Selective NO Capture from Air. ACS Applied Materials & amp; Interfaces, 2023, 15, 5191-5197.	4.0	4
255	Facile synthesis of triple-hybrid organosilica/manganese dioxide hybrid nanoparticles for glutathione-adaptive shape-morphing and improving cellular drug delivery. Journal of the Taiwan Institute of Chemical Engineers, 2023, 142, 104669.	2.7	3
256	Alkynyl-anchored silver nanoclusters in lanthanide metal-organic framework for luminescent thermometer and CO2 cycloaddition. Nano Research, 2023, 16, 7452-7458.	5.8	4
257	EtOH/H ₂ O ratio modulation on carbon for high- <i>V</i> _{oc} (1.03 V) printable mesoscopic perovskite solar cells without any passivation. Materials Advances, 2023, 4, 1534-1545.	2.6	1
258	Radiation-Triggered Selenium-Engineered Mesoporous Silica Nanocapsules for RNAi Therapy in Radiotherapy-Resistant Glioblastoma. ACS Nano, 2023, 17, 4062-4076.	7.3	11
259	Preparation of superhydrophobic surface from raspberry like particles of bifunctional polyssesquioxane. Journal of Applied Polymer Science, 0, , .	1.3	0
260	Benzimidazole-based covalent organic polymer nanosheets incorporated in mesoporous organosilica nanoparticles with excitation-dependent fluorescence for sensing of Cu2+. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 441, 114742.	2.0	1
261	Au (III) cross-linked hollow organosilica capsules from 3-aminopropyltriethoxysilane. Journal of Colloid and Interface Science, 2023, 641, 428-436.	5.0	0
262	Periodic Mesoporous Ionosilica Nanoparticles for BODIPY Delivery and Photochemical Internalization of siRNA. ChemPlusChem, 2023, 88, .	1.3	1
263	Molecular-Level Hybridized Hydrophobic Geopolymer Ceramics for Corrosion Protection. Chemistry of Materials, 2023, 35, 1735-1744.	3.2	2
264	Mesoporous Organosilica Nanoparticles with Tetrasulphide Bond to Enhance Plasmid DNA Delivery. Pharmaceutics, 2023, 15, 1013.	2.0	1
265	Mesoporous Organosilica Nanoparticles to Fight Intracellular Staphylococcal Aureus Infections in Macrophages. Pharmaceutics, 2023, 15, 1037.	2.0	2
266	Direct coupling of CO2 with epoxides catalyzed by lanthanum(III) supported on magnetic mesoporous organosilica nanoparticles. Scientific Reports, 2023, 13, .	1.6	4
267	Regioselective Surface Assembly of Mesoporous Carbon on Zeolites Creating Anisotropic Wettability for Biphasic Interface Catalysis. Journal of the American Chemical Society, 2023, 145, 9021-9028.	6.6	17
268	Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chemical Reviews, 2023, 123, 5347-5420.	23.0	37
269	Emulsion-oriented assembly for Janus double-spherical mesoporous nanoparticles as biological logic gates. Nature Chemistry, 2023, 15, 832-840.	6.6	17
270	Accelerated Synthesis of Ordered Mesoporous Carbons Using Plasma. ACS Omega, 0, , .	1.6	0

#	Article	IF	CITATIONS
271	Dimensionally stable, flameâ€retardant, and leachâ€resistant furfurylated wood prepared by incorporating ammonium polyphosphate and <scp>nanoâ€silica</scp> . Polymers for Advanced Technologies, 2023, 34, 2501-2514.	1.6	4
284	Tumor Microenvironment-Responsive Degradable Silica Nanoparticles: Design Principles and Precision Theranostic Applications. Nanoscale Horizons, 0, , .	4.1	0
285	Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chemical Society Reviews, 2024, 53, 1167-1315.	18.7	1