Deep Convolutional and LSTM Recurrent Neural Network Activity Recognition

Sensors

16, 115

DOI: 10.3390/s16010115

Citation Report

#	Article	IF	CITATIONS
1	Learning a Transferable Change Rule from a Recurrent Neural Network for Land Cover Change Detection. Remote Sensing, 2016, 8, 506.	1.8	240
2	How Accurately Can Your Wrist Device Recognize Daily Activities and Detect Falls?. Sensors, 2016, 16, 800.	2.1	95
3	Stereotypical Motor Movement Detection in Dynamic Feature Space., 2016, , .		10
4	Deep Learning-Based Fast Hand Gesture Recognition Using Representative Frames. , 2016, , .		38
5	Interacting with Soli., 2016,,.		289
6	Environment Simulation for the Promotion of the Open Data Initiative. , 2016, , .		8
7	Human activity recognition with inertial sensors using a deep learning approach. , $2016, , .$		74
8	Convolution neutral network enhanced binary sensor network for human activity recognition. , 2016,		15
9	Deep convolutional feature transfer across mobile activity recognition domains, sensor modalities and locations. , 2016 , , .		78
10	Exploring the Application of Hybrid Evolutionary Computation Techniques to Physical Activity Recognition. , $2016, $, .		1
11	Towards application of non-invasive environmental sensors for risks and activity detection., 2016,,.		12
12	Heterogeneous Sensor Data Fusion By Deep Multimodal Encoding. IEEE Journal on Selected Topics in Signal Processing, 2017, 11, 479-491.	7.3	40
13	Activity recognition in beach volleyball using a Deep Convolutional Neural Network. Data Mining and Knowledge Discovery, 2017, 31, 1678-1705.	2.4	108
14	Deep fusion of heterogeneous sensor data. , 2017, , .		11
15	SwallowNet: Recurrent neural network detects and characterizes eating patterns. , 2017, , .		10
16	A Temporal Order Modeling Approach to Human Action Recognition from Multimodal Sensor Data. ACM Transactions on Multimedia Computing, Communications and Applications, 2017, 13, 1-22.	3.0	11
17	Sensor-Based Gait Parameter Extraction With Deep Convolutional Neural Networks. IEEE Journal of Biomedical and Health Informatics, 2017, 21, 85-93.	3.9	139
18	Learning off-line vs. on-line models of interactive multimodal behaviors with recurrent neural networks. Pattern Recognition Letters, 2017, 100, 29-36.	2.6	5

#	Article	IF	Citations
19	Detecting State Changes of Indoor Everyday Objects using Wi-Fi Channel State Information. , 2017, 1 , 1 -28.		49
20	Learning representations for the early detection of sepsis with deep neural networks. Computers in Biology and Medicine, 2017, 89, 248-255.	3.9	156
21	Human Activity Recognition from Sensor-Based Large-Scale Continuous Monitoring of Parkinson's Disease Patients. , 2017, , .		28
22	Study of assessment of cognitive ability of human brain using deep learning. International Journal of Information Technology (Singapore), 2017, 9, 321-326.	1.8	17
23	Recognizing Grabbing Actions from Inertial and Video Sensor Data in a Warehouse Scenario. Procedia Computer Science, 2017, 110, 16-23.	1.2	4
24	Activity Recognition and Abnormal Behaviour Detection with Recurrent Neural Networks. Procedia Computer Science, 2017, 110, 86-93.	1.2	126
25	Learning multi-level features for sensor-based human action recognition. Pervasive and Mobile Computing, 2017, 40, 324-338.	2.1	26
26	Clustering of user activities based on adaptive threshold spiking neural networks. , 2017, , .		4
27	CiFi: Deep convolutional neural networks for indoor localization with 5 GHz Wi-Fi., 2017,,.		99
28	Quality prediction in injection molding. , 2017, , .		23
29	Learning to Generate Rock Descriptions from Multivariate Well Logs with Hierarchical Attention. , 2017, , .		3
30	Big Healthcare Data Analytics: Challenges and Applications. Scalable Computing and Communications, 2017, , 11-41.	0.5	43
31	A Hybrid Deep Representation Learning Model for Time Series Classification and Prediction., 2017,,.		12
32	Deep Multimodal Learning: A Survey on Recent Advances and Trends. IEEE Signal Processing Magazine, 2017, 34, 96-108.	4.6	509
33	Feature selection for physical activity recognition using genetic algorithms. , 2017, , .		10
34	Ensembles of Deep LSTM Learners for Activity Recognition using Wearables. , 2017, 1, 1-28.		332
35	Unsupervised deep representation learning to remove motion artifacts in free-mode body sensor networks. , 2017, , .		16
36	Dynamic Hand Gesture Recognition for Mobile Systems Using Deep LSTM. Lecture Notes in Computer Science, 2017, , 19-31.	1.0	15

#	ARTICLE	IF	CITATIONS
37	Convolutional neural networks (CNN) based human fall detection on Body Sensor Networks (BSN) sensor data. , $2017, \dots$		26
38	Semi-supervised convolutional neural networks for human activity recognition. , 2017, , .		47
39	Impact of Three-Dimensional Video Scalability on Multi-View Activity Recognition using Deep Learning. , 2017, , .		1
40	Deep Multimodal Representation Learning from Temporal Data. , 2017, , .		55
41	Hybrid spiking neural model for clustering smart environment activities. , 2017, , .		3
42	Multi-modal human action recognition using deep neural networks fusing image and inertial sensor data. , 2017, , .		14
43	Assessing impacts of data volume and data set balance in using deep learning approach to human activity recognition. , 2017 , , .		14
44	Privacy-Preserving Collaborative Deep Learning with Application to Human Activity Recognition. , 2017,		52
45	E-commerce Time Series Forecasting using LSTM Neural Network and Support Vector Regression. , 2017,		21
46	Daily Activity Sensing Technologies using Wearable Devices and Their Applications to Animal Behaviour Recognition. Journal of the Robotics Society of Japan, 2017, 35, 105-109.	0.0	O
47	Learning to judge like a human. , 2017, , .		15
48	A closed-loop deep learning architecture for robust activity recognition using wearable sensors. , 2017, , .		10
49	Modeling Temporal Dynamics and Spatial Configurations of Actions Using Two-Stream Recurrent Neural Networks., 2017,,.		264
50	Jointly Learning Energy Expenditures and Activities Using Egocentric Multimodal Signals. , 2017, , .		34
51	Learning inverse dynamics models in O(n) time with LSTM networks. , 2017, , .		40
52	Inertial-Vision: Cross-Domain Knowledge Transfer for Wearable Sensors. , 2017, , .		11
53	Influence of Video Quality on Multi-view Activity Recognition. , 2017, , .		1
54	An investigation of recurrent neural network for daily activity recognition using multi-modal signals. , 2017, , .		5

#	Article	IF	Citations
55	Two deep approaches for ADL recognition: A multi-scale LSTM and a CNN-LSTM with a 3D matrix skeleton representation. , 2017, , .		17
56	Deep Recurrent Neural Networks for Human Activity Recognition. Sensors, 2017, 17, 2556.	2.1	315
57	The Specificity of Observational Studies in Physical Activity and Sports Sciences: Moving Forward in Mixed Methods Research and Proposals for Achieving Quantitative and Qualitative Symmetry. Frontiers in Psychology, 2017, 8, 2196.	1.1	100
58	Driving behavior classification based on sensor data fusion using LSTM recurrent neural networks. , 2017, , .		80
59	A Comparison Study of Classifier Algorithms for Cross-Person Physical Activity Recognition. Sensors, 2017, 17, 66.	2.1	34
60	Time-Elastic Generative Model for Acceleration Time Series in Human Activity Recognition. Sensors, 2017, 17, 319.	2.1	17
61	DeepMap+: Recognizing High-Level Indoor Semantics Using Virtual Features and Samples Based on a Multi-Length Window Framework. Sensors, 2017, 17, 1214.	2.1	2
62	Novel Flexible Wearable Sensor Materials and Signal Processing for Vital Sign and Human Activity Monitoring. Sensors, 2017, 17, 1622.	2.1	81
63	Centralized Networks to Generate Human Body Motions. Sensors, 2017, 17, 2907.	2.1	5
64	UniMiB SHAR: A Dataset for Human Activity Recognition Using Acceleration Data from Smartphones. Applied Sciences (Switzerland), 2017, 7, 1101.	1.3	309
65	Towards a Semantic Web of Things: A Hybrid Semantic Annotation, Extraction, and Reasoning Framework for Cyber-Physical System. Sensors, 2017, 17, 403.	2.1	31
66	On the need of machine learning as a service for the internet of things. , 2017, , .		13
67	AirScript - Creating Documents in Air. , 2017, , .		18
68	Dynamic Vision Sensors for Human Activity Recognition. , 2017, , .		16
69	Predicting mortgage default using convolutional neural networks. Expert Systems With Applications, 2018, 102, 207-217.	4.4	100
70	Robust Human Activity Recognition using smartwatches and smartphones. Engineering Applications of Artificial Intelligence, 2018, 72, 190-202.	4.3	76
71	Human Activity Recognition from Body Sensor Data using Deep Learning. Journal of Medical Systems, 2018, 42, 99.	2.2	77
72	Extracting biological age from biomedical data via deep learning: too much of a good thing?. Scientific Reports, 2018, 8, 5210.	1.6	85

#	Article	IF	Citations
73	Recent trends in machine learning for human activity recognition—A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018, 8, e1254.	4.6	186
74	Web traffic anomaly detection using C-LSTM neural networks. Expert Systems With Applications, 2018, 106, 66-76.	4.4	224
75	Multi-View Hierarchical Bidirectional Recurrent Neural Network for Depth Video Sequence Based Action Recognition. International Journal of Pattern Recognition and Artificial Intelligence, 2018, 32, 1850033.	0.7	55
76	Inferring physical agitation in dementia using smartwatch and sequential behavior models., 2018,,.		26
77	LSTM-Based Analysis of Industrial IoT Equipment. IEEE Access, 2018, 6, 23551-23560.	2.6	90
78	Distilling the Knowledge From Handcrafted Features for Human Activity Recognition. IEEE Transactions on Industrial Informatics, 2018, 14, 4334-4342.	7.2	96
79	Efficient dense labelling of human activity sequences from wearables using fully convolutional networks. Pattern Recognition, 2018, 78, 252-266.	5.1	72
80	Bilateral LSTM: A Two-Dimensional Long Short-Term Memory Model With Multiply Memory Units for Short-Term Cycle Time Forecasting in Re-entrant Manufacturing Systems. IEEE Transactions on Industrial Informatics, 2018, 14, 748-758.	7.2	82
81	Genetic algorithms for hyperparameter optimization in predictive business process monitoring. Information Systems, 2018, 74, 67-83.	2.4	57
82	Real-Time Continuous Detection and Recognition of Subject-Specific Smart TV Gestures via Fusion of Depth and Inertial Sensing. IEEE Access, 2018, 6, 7019-7028.	2.6	26
83	Machine learning algorithms based on signals from a single wearable inertial sensor can detect surface- and age-related differences in walking. Journal of Biomechanics, 2018, 71, 37-42.	0.9	71
84	Prediction of vegetation dynamics using NDVI time series data and LSTM. Modeling Earth Systems and Environment, 2018, 4, 409-419.	1.9	97
85	Input quality aware convolutional LSTM networks for virtual marine sensors. Neurocomputing, 2018, 275, 2603-2615.	3.5	52
86	Evolutionary convolutional neural networks: An application to handwriting recognition. Neurocomputing, 2018, 283, 38-52.	3.5	133
87	Deep Fisher discriminant learning for mobile hand gesture recognition. Pattern Recognition, 2018, 77, 276-288.	5.1	62
88	Locomotion Activity Recognition Using Stacked Denoising Autoencoders. IEEE Internet of Things Journal, 2018, 5, 2085-2093.	5.5	78
89	Efficient light harvesting for accurate neural classification of human activities. , 2018, , .		9
90	Primitive activity recognition from short sequences of sensory data. Applied Intelligence, 2018, 48, 3748-3761.	3.3	13

#	Article	IF	CITATIONS
91	Evaluation of smartphoneâ€based testing to generate exploratory outcome measures in a phase 1 Parkinson's disease clinical trial. Movement Disorders, 2018, 33, 1287-1297.	2.2	196
92	Deep learning fusion conceptual frameworks for complex human activity recognition using mobile and wearable sensors. , 2018, , .		14
93	Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges. Expert Systems With Applications, 2018, 105, 233-261.	4.4	619
94	Distributed Convolutional Neural Networks for Human Activity Recognition in Wearable Robotics. Springer Proceedings in Advanced Robotics, 2018, , 619-631.	0.9	2
95	Deep recurrent neural network for mobile human activity recognition with high throughput. Artificial Life and Robotics, 2018, 23, 173-185.	0.7	184
96	The joint use of sequence features combination and modified weighted SVM for improving daily activity recognition. Pattern Analysis and Applications, 2018, 21, 119-138.	3.1	56
97	Detection of Nocturnal Scratching Movements in Patients with Atopic Dermatitis Using Accelerometers and Recurrent Neural Networks. IEEE Journal of Biomedical and Health Informatics, 2018, 22, 1011-1018.	3.9	39
98	Efficiency investigation of artificial neural networks in human activity recognition. Journal of Ambient Intelligence and Humanized Computing, 2018, 9, 1049-1060.	3.3	35
99	Recurrent neural system with minimum complexity: A deep learning perspective. Neurocomputing, 2018, 275, 1333-1349.	3.5	11
100	Deep learning for automatic stereotypical motor movement detection using wearable sensors in autism spectrum disorders. Signal Processing, 2018, 144, 180-191.	2.1	60
101	Real-time human activity recognition from accelerometer data using Convolutional Neural Networks. Applied Soft Computing Journal, 2018, 62, 915-922.	4.1	528
102	Latent feature learning for activity recognition using simple sensors in smart homes. Multimedia Tools and Applications, 2018, 77, 15201-15219.	2.6	25
103	HUMAN ACTIVITY CLASSIFICATION INCORPORATING EGOCENTRIC VIDEO AND INERTIAL MEASUREMENT UNIT DATA. , 2018, , .		4
104	Real-time Recognition of Interleaved Activities Based on Ensemble Classifier of Long Short-Term Memory with Fuzzy Temporal Windows. Proceedings (mdpi), 2018, 2, .	0.2	10
105	Human Activity Recognition Using Federated Learning. , 2018, , .		69
106	Deep Learning Applied to Scenario Classification for Lane-Keep-Assist Systems. Applied Sciences (Switzerland), 2018, 8, 2590.	1.3	14
107	A Complex User Activity Recognition Algorithm based on Convolutional Neural Networks. , 2018, , .		0
108	Pre-ignition Detection Using Deep Neural Networks: A Step Towards Data-driven Automotive Diagnostics. , 2018, , .		15

#	Article	IF	Citations
109	Subset Replay Based Continual Learning for Scalable Improvement of Autonomous Systems., 2018,,.		4
110	Recognizing Human Activities and Earthquake Vibration from Smartphone Accelerometers using LSTM Algorithm. , 2018, , .		2
111	Finger-Worn Device Based Hand Gesture Recognition Using Long Short-Term Memory. , 2018, , .		3
112	Learning Attribute Representation for Human Activity Recognition. , 2018, , .		14
113	Radar for assisted living in the context of Internet of Things for Health and beyond. , 2018, , .		10
114	Multi-Sensor Fusion Based Robot Self-Activity Recognition. , 2018, , .		1
115	Proactive Robot Assistants for Freeform Collaborative Tasks Through Multimodal Recognition of Generic Subtasks. , $2018, \ldots$		4
116	Human Brain Tissue Segmentation in fMRI using Deep Long-Term Recurrent Convolutional Network. , 2018, , .		5
117	Socialite: Social Activity Mining and Friend Auto-labeling. , 2018, , .		3
118	DeepWalking: Enabling Smartphone-Based Walking Speed Estimation Using Deep Learning. , 2018, , .		11
119	Learning the Group Structure of Deep Neural Networks with an Expectation Maximization Method. , 2018, , .		0
120	Body Pose and Context Information for Driver Secondary Task Detection. , 2018, , .		40
121	Smartphone-Based Traveled Distance Estimation Using Individual Walking Patterns for Indoor Localization. Sensors, 2018, 18, 3149.	2.1	33
122	Dynamic Neural Network Modelling of Soil Moisture Content for Predictive Irrigation Scheduling. Sensors, 2018, 18, 3408.	2.1	139
123	lss2Image: A Novel Signal-Encoding Technique for CNN-Based Human Activity Recognition. Sensors, 2018, 18, 3910.	2.1	47
124	HARNet., 2018,,.		14
125	Human activity recognition from inertial sensor time-series using batch normalized deep LSTM recurrent networks., 2018, 2018, 1-4.		63
126	ORSNet., 2018,,.		6

#	ARTICLE	IF	CITATIONS
127	A Robust Deep Learning Approach for Position-Independent Smartphone-Based Human Activity Recognition. Sensors, 2018, 18, 3726.	2.1	52
128	Children Activity Recognition: Challenges and Strategies. , 2018, 2018, 4331-4334.		9
129	Sensor Positioning and Data Acquisition for Activity Recognition using Deep Learning. , 2018, , .		7
130	A C-LSTM Neural Network for Human Activity Recognition Using Wearables. , 2018, , .		6
131	Activity Recognition Using Dual-ConvLSTM Extracting Local and Global Features for SHL Recognition Challenge. , 2018, , .		7
132	Deep Dissimilarity Measure for Trajectory Analysis. Communications in Computer and Information Science, 2018, , 129-139.	0.4	1
133	Forecasting user attention during everyday mobile interactions using device-integrated and wearable sensors. , 2018, , .		28
134	MV-Sports: A Motion and Vision Sensor Integration-Based Sports Analysis System. , 2018, , .		14
135	Human Activity Recognition based on Real Life Scenarios. , 2018, , .		13
136	Confidence-based Deep Multimodal Fusion for Activity Recognition. , 2018, , .		9
137	Deep Residual Bidir-LSTM for Human Activity Recognition Using Wearable Sensors. Mathematical Problems in Engineering, 2018, 2018, 1-13.	0.6	209
138	Sequential Human Activity Recognition Based on Deep Convolutional Network and Extreme Learning Machine Using Wearable Sensors. Journal of Sensors, 2018, 2018, 1-10.	0.6	51
139	Automatic Annotation of Unlabeled Data from Smartphone-Based Motion and Location Sensors. Sensors, 2018, 18, 2134.	2.1	9
140	A Real-time Multimodal Hand Gesture Recognition via 3D Convolutional Neural Network and Key Frame Extraction. , 2018, , .		8
141	Introducing Local Distance-Based Features to Temporal Convolutional Neural Networks. , 2018, , .		1
142	Wearable Nail Deformation Sensing for Behavioral and Biomechanical Monitoring and Human-Computer Interaction. Scientific Reports, 2018, 8, 18031.	1.6	21
143	Multi-Class Wheat Moisture Detection with 5GHz Wi-Fi: A Deep LSTM Approach., 2018,,.		12
144	Movement and Gesture Recognition Using Deep Learning and Wearable-sensor Technology. , 2018, , .		15

#	Article	IF	Citations
145	Residual Learning and LSTM Networks for Wearable Human Activity Recognition Problem. , 2018, , .		4
146	Deep Convolutional Bidirectional LSTM Based Transportation Mode Recognition. , 2018, , .		22
147	Designing, Developing, and Implementing a Forecasting Method for the Produced and Consumed Electricity in the Case of Small Wind Farms Situated on Quite Complex Hilly Terrain. Energies, 2018, 11, 2623.	1.6	3
148	DFTerNet: Towards 2-bit Dynamic Fusion Networks for Accurate Human Activity Recognition. IEEE Access, 2018, 6, 56750-56764.	2.6	33
149	Deep Dilation on Multimodality Time Series for Human Activity Recognition. IEEE Access, 2018, 6, 53381-53396.	2.6	27
150	Smartphone-sensors Based Activity Recognition Using IndRNN. , 2018, , .		8
151	Comparison of Different Algorithms for Calculating Velocity and Stride Length in Running Using Inertial Measurement Units. Sensors, 2018, 18, 4194.	2.1	38
152	On attention models for human activity recognition. , 2018, , .		71
153	Estimating Vehicle Movement Direction from Smartphone Accelerometers Using Deep Neural Networks. Sensors, 2018, 18, 2624.	2.1	11
154	Impact of Sliding Window Length in Indoor Human Motion Modes and Pose Pattern Recognition Based on Smartphone Sensors. Sensors, 2018, 18, 1965.	2.1	44
155	Action Detection and Recognition in Continuous Action Streams by Deep Learning-Based Sensing Fusion. IEEE Sensors Journal, 2018, 18, 9660-9668.	2.4	57
156	Framework for Human Activity Recognition on Smartphones and Smartwatches. Communications in Computer and Information Science, 2018, , 90-99.	0.4	0
157	Object-Centric Approach to Prediction and Labeling of Manipulation Tasks. , 2018, , .		1
158	Multi-Resident Activity Recognition in a Smart Home Using RGB Activity Image and DCNN. IEEE Sensors Journal, 2018, 18, 9718-9727.	2.4	47
159	On specialized window lengths and detector based human activity recognition. , 2018, , .		11
160	RapidHARe: A computationally inexpensive method for real-time human activity recognition from wearable sensors. Journal of Ambient Intelligence and Smart Environments, 2018, 10, 377-391.	0.8	8
161	Terahertz Image Detection with the Improved Faster Region-Based Convolutional Neural Network. Sensors, 2018, 18, 2327.	2.1	42
162	Towards Human Activity Recognition: A Hierarchical Feature Selection Framework. Sensors, 2018, 18, 3629.	2.1	32

#	Article	IF	CITATIONS
163	Human Motion Capturing and Activity Recognition Using Wearable Sensor Networks. Biosystems and Biorobotics, 2018, , 191-206.	0.2	2
164	Deep Dilated Convolution on Multimodality Time Series for Human Activity Recognition. , 2018, , .		22
165	Optimizing Activity Recognition in Stroke Survivors for Wearable Exoskeletons. , 2018, , .		5
166	Attributes' Importance for Zero-Shot Pose-Classification Based on Wearable Sensors. Sensors, 2018, 18, 2485.	2.1	15
167	A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition. PLoS ONE, 2018, 13, e0206049.	1.1	246
168	Human Activity Recognition Using Temporal Convolutional Network. , 2018, , .		26
169	Convolutional Neural Networks for Human Activity Recognition Using Body-Worn Sensors. Informatics, 2018, 5, 26.	2.4	113
170	Attribute Representation for Human Activity Recognition of Manual Order Picking Activities., 2018,,.		15
171	Analysis of Multi-Sensor Fusion for Mobile and Wearable Sensor Based Human Activity Recognition. , 2018, , .		15
172	Machine learning for intraoperative prediction of viability in ischemic small intestine. Physiological Measurement, 2018, 39, 105011.	1.2	9
173	Automated Lubrication Systems Prognostics Using Long - Term Recurrent Convolutional Networks. , 2018, , .		1
174	Large-Scale Continuous Mobility Monitoring of Parkinson's Disease Patients Using Smartphones. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2018, , 12-19.	0.2	6
175	Deep learning and low rank dictionary model for mHealth data classification. , 2018, , .		5
176	Smart electronic skin having gesture recognition function by LSTM neural network. Applied Physics Letters, 2018, 113, .	1.5	20
177	DeepML: Deep LSTM for Indoor Localization with Smartphone Magnetic and Light Sensors. , 2018, , .		58
178	Gait analysis in Spastic Hemiplegia and Diplegia cerebral palsy using a wearable activity tracking device - a data quality analysis for deep convolutional neural networks. , 2018, , .		3
179	A Real-Time Back-Analysis Technique to Infer Rheological Parameters from Field Monitoring. Rock Mechanics and Rock Engineering, 2018, 51, 3029-3043.	2.6	25
180	Using a deep learning network to recognise low back pain in static standing. Ergonomics, 2018, 61, 1374-1381.	1.1	36

#	Article	IF	Citations
181	Deep Learning for Human Activity Recognition in Mobile Computing. Computer, 2018, 51, 50-59.	1.2	70
182	Calorific Expenditure Estimation Using Deep Convolutional Network Features. , 2018, , .		1
183	Real time human activity recognition on smartphones using LSTM networks. , 2018, , .		30
184	Recurrent Transformation of Prior Knowledge Based Model for Human Motion Recognition. Computational Intelligence and Neuroscience, 2018, 2018, 1-12.	1.1	7
185	Shoulder physiotherapy exercise recognition: machine learning the inertial signals from a smartwatch. Physiological Measurement, 2018, 39, 075007.	1.2	64
186	A Hierarchical Approach in Food and Drink Intake Recognition Using Wearable Inertial Sensors. , 2018, ,		9
187	Ensemble classifier of long short-term memory with fuzzy temporal windows on binary sensors for activity recognition. Expert Systems With Applications, 2018, 114, 441-453.	4.4	53
188	Multi-Channels LSTM Networks for Fence Activity Classification. IEICE Transactions on Information and Systems, 2018, E101.D, 2173-2177.	0.4	1
189	Prediction of 8-state protein secondary structures by a novel deep learning architecture. BMC Bioinformatics, 2018, 19, 293.	1.2	92
190	IMU-to-Segment Assignment and Orientation Alignment for the Lower Body Using Deep Learning. Sensors, 2018, 18, 302.	2.1	75
191	TATC., 2018,,.		28
192	Survey on automatic lip-reading in the era of deep learning. Image and Vision Computing, 2018, 78, 53-72.	2.7	69
193	AROMA., 2018, 2, 1-16.		93
194	State-of-the-Art Mobile Intelligence: Enabling Robots to Move Like Humans by Estimating Mobility with Artificial Intelligence. Applied Sciences (Switzerland), 2018, 8, 379.	1.3	35
195	Deep feature learning and selection for activity recognition. , 2018, , .		10
196	A Comprehensive Study of Activity Recognition Using Accelerometers. Informatics, 2018, 5, 27.	2.4	98
197	Classifying Wheat Hyperspectral Pixels of Healthy Heads and Fusarium Head Blight Disease Using a Deep Neural Network in the Wild Field. Remote Sensing, 2018, 10, 395.	1.8	123
198	On the Comparison of Wearable Sensor Data Fusion to a Single Sensor Machine Learning Technique in Fall Detection. Sensors, 2018, 18, 592.	2.1	53

#	Article	IF	CITATIONS
199	Comparison of Feature Learning Methods for Human Activity Recognition Using Wearable Sensors. Sensors, 2018, 18, 679.	2.1	196
200	Divide and Conquer-Based 1D CNN Human Activity Recognition Using Test Data Sharpening. Sensors, 2018, 18, 1055.	2.1	120
201	A Weighted Deep Representation Learning Model for Imbalanced Fault Diagnosis in Cyber-Physical Systems. Sensors, 2018, 18, 1096.	2.1	60
202	Evolutionary Design of Convolutional Neural Networks for Human Activity Recognition in Sensor-Rich Environments. Sensors, 2018, 18, 1288.	2.1	26
203	Deep Learning to Predict Falls in Older Adults Based on Daily-Life Trunk Accelerometry. Sensors, 2018, 18, 1654.	2.1	121
204	A sequence-to-sequence model-based deep learning approach for recognizing activity of daily living for senior care. Journal of Biomedical Informatics, 2018, 84, 148-158.	2.5	28
205	A CNN Based Transfer Learning Model for Automatic Activity Recognition from Accelerometer Sensors. Lecture Notes in Computer Science, 2018, , 302-315.	1.0	12
206	Deep learning based trajectory optimization for UAV aerial refueling docking under bow wave. Aerospace Science and Technology, 2018, 80, 392-402.	2.5	31
207	Integration of Multi-Gaussian fitting and LSTM neural networks for health monitoring of an automotive suspension component. Journal of Sound and Vibration, 2018, 428, 87-103.	2.1	21
208	Unobtrusive Activity Recognition of Elderly People Living Alone Using Anonymous Binary Sensors and DCNN. IEEE Journal of Biomedical and Health Informatics, 2018, 23, 1-1.	3.9	73
209	Automatic Annotation for Human Activity Recognition in Free Living Using a Smartphone. Sensors, 2018, 18, 2203.	2.1	43
210	deepGesture: Deep learning-based gesture recognition scheme using motion sensors. Displays, 2018, 55, 38-45.	2.0	7 5
211	Log-Viterbi algorithm applied on second-order hidden Markov model for human activity recognition. International Journal of Distributed Sensor Networks, 2018, 14, 155014771877254.	1.3	8
212	Converging blockchain and next-generation artificial intelligence technologies to decentralize and accelerate biomedical research and healthcare. Oncotarget, 2018, 9, 5665-5690.	0.8	315
213	PREDICTIVE MAINTENANCE OF PHOTOVOLTAIC PANELS VIA DEEP LEARNING., 2018,,.		29
214	Replacement AutoEncoder: A Privacy-Preserving Algorithm for Sensory Data Analysis. , 2018, , .		29
215	Deep Learning for IoT Big Data and Streaming Analytics: A Survey. IEEE Communications Surveys and Tutorials, 2018, 20, 2923-2960.	24.8	905
216	Deep Learning for Hand Gesture Recognition on Skeletal Data. , 2018, , .		100

#	Article	IF	CITATIONS
217	Detecting Hate Speech on Twitter Using a Convolution-GRU Based Deep Neural Network. Lecture Notes in Computer Science, 2018, , 745-760.	1.0	320
218	CORDIC Framework for Quaternion-based Joint Angle Computation to Classify Arm Movements. , 2018, ,		2
219	Data fusion and multiple classifier systems for human activity detection and health monitoring: Review and open research directions. Information Fusion, 2019, 46, 147-170.	11.7	265
220	SensorNet: A Scalable and Low-Power Deep Convolutional Neural Network for Multimodal Data Classification. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 274-287.	3.5	62
221	Attention-Based Convolutional and Recurrent Neural Networks for Driving Behavior Recognition Using Smartphone Sensor Data. IEEE Access, 2019, 7, 148031-148046.	2.6	30
222	On-Device Deep Learning Inference for Efficient Activity Data Collection. Sensors, 2019, 19, 3434.	2.1	9
223	Evolutionary Design of Recurrent Neural Network Architecture for Human Activity Recognition. , 2019, , .		7
224	A Deep LSTM Approach for Activity Recognition. , 2019, , .		12
225	Autonomous Human Activity Classification From Wearable Multi-Modal Sensors. IEEE Sensors Journal, 2019, 19, 11403-11412.	2.4	12
226	Distributed Communicating Neural Network Architecture for Smart Environments. , 2019, , .		2
227	Deep Learning for Monitoring of Human Gait: A Review. IEEE Sensors Journal, 2019, 19, 9575-9591.	2.4	96
228	Sensor-based activity recognition in the context of ambient assisted living systems: AÂreview. Journal of Ambient Intelligence and Smart Environments, 2019, 11, 301-322.	0.8	35
229	A Deformable Interface for Human Touch Recognition Using Stretchable Carbon Nanotube Dielectric Elastomer Sensors and Deep Neural Networks. Soft Robotics, 2019, 6, 611-620.	4.6	35
230	A Hybrid Deep Learning Model for Human Activity Recognition Using Multimodal Body Sensing Data. IEEE Access, 2019, 7, 99152-99160.	2.6	99
231	Gesture-based incident reporting through smart watches. , 2019, , .		3
232	Barrier Detection Using Sensor Data from Multiple Modes of Transportation with Data Augmentation. , 2019, , .		6
233	Projecting Australia's forest cover dynamics and exploring influential factors using deep learning. Environmental Modelling and Software, 2019, 119, 407-417.	1.9	45
234	Improved Humanoid Gait Using Learning-Based Analysis of a New Wearable 3D Force System: Work Programme. , 2019, , .		0

#	Article	IF	CITATIONS
235	Application of a long short-term memory neural network: a burgeoning method of deep learning in forecasting HIV incidence in Guangxi, China. Epidemiology and Infection, 2019, 147, e194.	1.0	22
236	Steganalysis of VoIP Streams with CNN-LSTM Network. , 2019, , .		12
237	Pedestrian and Cyclist Detection and Intent Estimation for Autonomous Vehicles: A Survey. Applied Sciences (Switzerland), 2019, 9, 2335.	1.3	56
238	Effective Indoor Robot Localization by Stacked Bidirectional LSTM Using Beacon-Based Range Measurements. Communications in Computer and Information Science, 2019, , 144-151.	0.4	1
239	Attention-Based Convolutional Neural Network for Weakly Labeled Human Activities' Recognition With Wearable Sensors. IEEE Sensors Journal, 2019, 19, 7598-7604.	2.4	125
240	A New Deep Hierarchical Neural Network Applied in Human Activity Recognition (HAR) Using Wearable Sensors. Lecture Notes in Computer Science, 2019, , 90-102.	1.0	0
241	Learning with Type-2 Fuzzy activation functions to improve the performance of Deep Neural Networks. Engineering Applications of Artificial Intelligence, 2019, 85, 372-384.	4.3	32
242	Using Recurrent Neural Networks to Compare Movement Patterns in ADHD and Normally Developing Children Based on Acceleration Signals from the Wrist and Ankle. Sensors, 2019, 19, 2935.	2.1	17
243	Multi-head CNN–RNN for multi-time series anomaly detection: An industrial case study. Neurocomputing, 2019, 363, 246-260.	3.5	213
244	A hybrid deep convolutional and recurrent neural network for complex activity recognition using multimodal sensors. Neurocomputing, 2019, 362, 33-40.	3.5	38
245	Power System Transient Stability Prediction Algorithm Based on ReliefF and LSTM. Lecture Notes in Computer Science, 2019, , 74-84.	1.0	6
246	Human Activity Recognition Using Inertial Sensors in a Smartphone: An Overview. Sensors, 2019, 19, 3213.	2.1	145
247	Human Activity Recognition for Production and Logistics—A Systematic Literature Review. Information (Switzerland), 2019, 10, 245.	1.7	37
248	Estimation of manual wheelchair-based activities in the free-living environment using a neural network model with inertial body-worn sensors. Journal of Electromyography and Kinesiology, 2022, 62, 102337.	0.7	16
249	Times-series data augmentation and deep learning for construction equipment activity recognition. Advanced Engineering Informatics, 2019, 42, 100944.	4.0	210
250	Granger-causality: An efficient single user movement recognition using a smartphone accelerometer sensor. Pattern Recognition Letters, 2019, 125, 576-583.	2.6	13
251	Detection of Basic Human Physical Activities With Indoor–Outdoor Information Using Sigma-Based Features and Deep Learning. IEEE Sensors Journal, 2019, 19, 7565-7574.	2.4	4
252	Learning the Orientation of a Loosely-Fixed Wearable IMU Relative to the Body Improves the Recognition Rate of Human Postures and Activities. Sensors, 2019, 19, 2845.	2.1	6

#	Article	IF	CITATIONS
253	Leveraging Machine Learning and Big Data for Smart Buildings: A Comprehensive Survey. IEEE Access, 2019, 7, 90316-90356.	2.6	125
254	A Wearable Fall Detection System Using Deep Learning. Lecture Notes in Computer Science, 2019, , 445-456.	1.0	11
255	A Deep Learning Framework for Construction Equipment Activity Analysis. , 2019, , .		3
256	Lower Limb Locomotion Activity Recognition of Healthy Individuals Using Semi-Markov Model and Single Wearable Inertial Sensor. Sensors, 2019, 19, 4242.	2.1	7
257	A Novel Human Activity Recognition and Prediction in Smart Home Based on Interaction. Sensors, 2019, 19, 4474.	2.1	60
258	Embedding Recurrent Neural Networks in Wearable Systems for Real-Time Fall Detection. Microprocessors and Microsystems, 2019, 71, 102895.	1.8	32
259	Enhancing Deep Learning with Semantics: an application to manufacturing time series analysis. Procedia Computer Science, 2019, 159, 437-446.	1.2	17
260	Sampling rate dependency in pedestrian walking speed estimation using DualCNN-LSTM., 2019, , .		6
261	Finger Gesture Sensing and Recognition Using a Wi-Fi-based Passive Radar., 2019,,.		4
262	Implementation of a batch normalized deep LSTM recurrent network on a smartphone for human activity recognition. , 2019, , .		3
263	Comparing Feature Learning Methods for Human Activity Recognition: Performance study in new user scenario. , $2019, \dots$		3
264	Application of IndRNN for human activity recognition. , 2019, , .		5
265	Fitness Movements Recognition and Evaluation Based on LSTM. Journal of Physics: Conference Series, 2019, 1302, 032057.	0.3	2
266	Advanced processing techniques and secure architecture for sensor networks in ubiquitous healthcare systems., 2019,, 3-29.		11
267	ActiPPG: Using deep neural networks for activity recognition from wrist-worn photoplethysmography (PPG) sensors. Smart Health, 2019, 14, 100082.	2.0	44
268	Attention-based LSTM Network for Wearable Human Activity Recognition. , 2019, , .		6
269	A dissimilarity measure estimation for analyzing trajectory data. Journal of Advanced Simulation in Science and Engineering, 2019, 6, 367-385.	0.1	0
270	A closer look at quality-aware runtime assessment of sensing models in multi-device environments. , 2019, , .		11

#	Article	IF	Citations
271	HDL: Hierarchical Deep Learning Model based Human Activity Recognition using Smartphone Sensors. , 2019, , .		12
272	A Random Forest-based Approach for Hand Gesture Recognition with Wireless Wearable Motion Capture Sensors. IFAC-PapersOnLine, 2019, 52, 128-133.	0.5	10
273	A Smart Home Simulation Tool to Support the Recognition of Activities of Daily Living. , $2019, \dots$		6
274	A Comparison of SVM and CNN-LSTM Based Approach for Detecting Smoke Inhalations from Respiratory signal., 2019, 2019, 3262-3265.		7
275	An Ultra-Low Energy Human Activity Recognition Accelerator for Wearable Health Applications. Transactions on Embedded Computing Systems, 2019, 18, 1-22.	2.1	26
276	EmbraceNet for activity., 2019, , .		13
277	Hierarchical multi-view aggregation network for sensor-based human activity recognition. PLoS ONE, 2019, 14, e0221390.	1,1	17
278	Long Text Analysis Using Sliced Recurrent Neural Networks with Breaking Point Information Enrichment., 2019,,.		7
279	Straightforward Recognition of Daily Objects in Smart Environments from Wearable Vision Sensor. , 2019, , .		0
280	Volleyball Setting Technique Assessment Using a Single Point Sensor. , 2019, , .		7
281	Activity recognition in manufacturing: The roles of motion capture and sEMG+inertial wearables in detecting fine vs. gross motion. , 2019 , , .		21
282	Spatiotemporal Modeling for Video Summarization Using Convolutional Recurrent Neural Network. IEEE Access, 2019, 7, 64676-64685.	2.6	33
283	RNN-Based Path Prediction of Obstacle Vehicles With Deep Ensemble. IEEE Transactions on Vehicular Technology, 2019, 68, 10252-10256.	3.9	48
284	Combining Symbolic Reasoning and Deep Learning for Human Activity Recognition., 2019,,.		7
285	A Framework For Mode-Free Prosthetic Control For Unstructured Terrains., 2019, 2019, 796-802.		11
286	Stable Electromyographic Sequence Prediction During Movement Transitions using Temporal Convolutional Networks. , 2019, , .		14
287	Acoustic Classification of Surface and Underwater Vessels in the Ocean Using Supervised Machine Learning. Sensors, 2019, 19, 3492.	2.1	32
288	A Fast and Robust Deep Convolutional Neural Networks for Complex Human Activity Recognition Using Smartphone. Sensors, 2019, 19, 3731.	2.1	79

#	Article	IF	CITATIONS
289	A Comparative Research on Human Activity Recognition Using Deep Learning., 2019,,.		10
290	Vision and Acceleration Modalities: Partners for Recognizing Complex Activities. , 2019, , .		2
291	Activity Recognition for IoT Devices Using Fuzzy Spatio-Temporal Features as Environmental Sensor Fusion. Sensors, 2019, 19, 3512.	2.1	30
292	On the role of features in human activity recognition. , 2019, , .		42
293	Design and Implementation of a Convolutional Neural Network on an Edge Computing Smartphone for Human Activity Recognition. IEEE Access, 2019, 7, 133509-133520.	2.6	59
294	Cross-dataset deep transfer learning for activity recognition. , 2019, , .		11
295	Transfer learning across human activities using a cascade neural network architecture. , 2019, , .		13
296	Handling annotation uncertainty in human activity recognition. , 2019, , .		32
297	Wearable-Based Affect Recognition—A Review. Sensors, 2019, 19, 4079.	2.1	114
298	A battery management strategy in microgrid for personalized customer requirements. Energy, 2019, 189, 116245.	4.5	20
299	WiCAR., 2019,,.		31
300	A dual-tree complex wavelet enhanced convolutional LSTM neural network for structural health monitoring of automotive suspension. Measurement: Journal of the International Measurement Confederation, 2019, 137, 14-27.	2.5	34
301	A Comparison of Machine Learning and Deep Learning Techniques for Activity Recognition using Mobile Devices. Sensors, 2019, 19, 521.	2.1	44
302	A motion-aware ConvLSTM network for action recognition. Applied Intelligence, 2019, 49, 2515-2521.	3.3	39
303	Online Recognition of Incomplete Gesture Data to Interface Collaborative Robots. IEEE Transactions on Industrial Electronics, 2019, 66, 9372-9382.	5. 2	29
304	A Cascade Ensemble Learning Model for Human Activity Recognition with Smartphones. Sensors, 2019, 19, 2307.	2.1	27
305	Diagnosis and monitoring of Alzheimer's patients using classical and deep learning techniques. Expert Systems With Applications, 2019, 136, 353-364.	4.4	57
306	Human Activity Recognition Based on Motion Sensor Using U-Net. IEEE Access, 2019, 7, 75213-75226.	2.6	66

#	Article	IF	Citations
307	Modified deep residual network architecture deployed on serverless framework of IoT platform based on human activity recognition application. Future Generation Computer Systems, 2019, 101, 14-28.	4.9	43
308	Action Recognition Using Single-Pixel Time-of-Flight Detection. Entropy, 2019, 21, 414.	1.1	8
309	Deep Learning architecture for temperature forecasting in an IoT LoRa based system. , 2019, , .		7
310	Outlier Detection in Wearable Sensor Data for Human Activity Recognition (HAR) Based on DRNNs. IEEE Access, 2019, 7, 74422-74436.	2.6	48
311	Asymmetric Residual Neural Network for Accurate Human Activity Recognition. Information (Switzerland), 2019, 10, 203.	1.7	27
312	Machine Learning-Based Pre-Impact Fall Detection Model to Discriminate Various Types of Fall. Journal of Biomechanical Engineering, 2019, 141, .	0.6	21
313	Smartphone Sensors for Health Monitoring and Diagnosis. Sensors, 2019, 19, 2164.	2.1	241
314	Exploiting Typicality for Selecting Informative and Anomalous Samples in Videos. IEEE Transactions on Image Processing, 2019, 28, 5214-5226.	6.0	5
315	Framework of Sequence Chunking for Human Activity Recognition Using Wearables. , 2019, , .		3
316	Coarse-Fine Convolutional Deep-Learning Strategy for Human Activity Recognition. Sensors, 2019, 19, 1556.	2.1	46
317	Image-Mediated Data Augmentation for Low-Resource Human Activity Recognition., 2019,,.		2
318	Sensor Data Acquisition and Multimodal Sensor Fusion for Human Activity Recognition Using Deep Learning. Sensors, 2019, 19, 1716.	2.1	119
319	Estimating Occupancy Using Interactive Learning With a Sensor Environment: Real-Time Experiments. IEEE Access, 2019, 7, 53932-53944.	2.6	21
320	Transferring activity recognition models for new wearable sensors with deep generative domain adaptation. , $2019, \ldots$		35
321	A Deep Learning Framework for Driving Behavior Identification on In-Vehicle CAN-BUS Sensor Data. Sensors, 2019, 19, 1356.	2.1	79
322	A Low Power Fall Sensing Technology Based on FD-CNN. IEEE Sensors Journal, 2019, 19, 5110-5118.	2.4	33
323	Recognizing Physical Activity of Older People from Wearable Sensors and Inconsistent Data. Sensors, 2019, 19, 880.	2.1	31
324	A Semi-Automatic Annotation Approach for Human Activity Recognition. Sensors, 2019, 19, 501.	2.1	28

#	Article	IF	CITATIONS
325	A State-of-the-Art Survey on Deep Learning Theory and Architectures. Electronics (Switzerland), 2019, 8, 292.	1.8	954
326	Gesture-based human-robot interaction for human assistance in manufacturing. International Journal of Advanced Manufacturing Technology, 2019, 101, 119-135.	1.5	95
327	Deep Learning in Mobile and Wireless Networking: A Survey. IEEE Communications Surveys and Tutorials, 2019, 21, 2224-2287.	24.8	1,010
328	A Two-Dimensional Feature Space-Based Approach for Human Locomotion Recognition. IEEE Sensors Journal, 2019, 19, 4271-4282.	2.4	20
329	Gesture Prediction Using Wearable Sensing Systems with Neural Networks for Temporal Data Analysis. Sensors, 2019, 19, 710.	2.1	17
330	Accelerometer-Based Human Fall Detection Using Convolutional Neural Networks. Sensors, 2019, 19, 1644.	2.1	157
331	A Narrative Analysis on Deep Learning in IoT based Medical Big Data Analysis with Future Perspectives. , 2019, , .		11
332	Hand Posture Detection of Smartphone Users Using LSTM Networks. Lecture Notes in Electrical Engineering, 2019, , 19-25.	0.3	1
333	Online Evolving Interval Type-2 Intuitionistic Fuzzy LSTM-Neural Networks for Regression Problems. IEEE Access, 2019, 7, 35544-35555.	2.6	22
334	Automated Stoichiometry Analysis of Single-Molecule Fluorescence Imaging Traces via Deep Learning. Journal of the American Chemical Society, 2019, 141, 6976-6985.	6.6	61
335	Combining deep neural networks and engineered features for cardiac arrhythmia detection from ECG recordings. Physiological Measurement, 2019, 40, 054009.	1.2	57
336	Offloading and Transmission Strategies for IoT Edge Devices and Networks. Sensors, 2019, 19, 835.	2.1	22
337	Empirical Study and Improvement on Deep Transfer Learning for Human Activity Recognition. Sensors, 2019, 19, 57.	2.1	42
338	A Mixed Deep Recurrent Neural Network for MEMS Gyroscope Noise Suppressing. Electronics (Switzerland), 2019, 8, 181.	1.8	40
339	Al Benchmark: Running Deep Neural Networks on Android Smartphones. Lecture Notes in Computer Science, 2019, , 288-314.	1.0	115
340	Detection of abnormal behaviour for dementia sufferers using Convolutional Neural Networks. Artificial Intelligence in Medicine, 2019, 94, 88-95.	3.8	81
341	A Hierarchical Deep Fusion Framework for Egocentric Activity Recognition Using a Wearable Hybrid Sensor System. Sensors, 2019, 19, 546.	2.1	12
342	Deep Learning for Sensor-Based Rehabilitation Exercise Recognition and Evaluation. Sensors, 2019, 19, 887.	2.1	26

#	Article	IF	CITATIONS
343	Deep learning for time series classification: a review. Data Mining and Knowledge Discovery, 2019, 33, 917-963.	2.4	1,656
344	EmbraceNet: A robust deep learning architecture for multimodal classification. Information Fusion, 2019, 51, 259-270.	11.7	89
345	Recognition and Repetition Counting for Complex Physical Exercises with Deep Learning. Sensors, 2019, 19, 714.	2.1	52
346	rloT: Enabling Seamless Context-Aware Automation in the Internet of Things. , 2019, , .		3
347	SHAD: Privacy-Friendly Shared Activity Detection and Data Sharing., 2019,,.		1
348	Intelligent System for the Prevention of Pressure Ulcers by Monitoring Postural Changes with Wearable Inertial Sensors. Proceedings (mdpi), 2019, 31, .	0.2	5
349	Improving CNN-based activity recognition by data augmentation and transfer learning., 2019,,.		12
350	Learning Temporal and Bodily Attention in Protective Movement Behavior Detection. , 2019, , .		21
351	Hybrid Model Featuring CNN and LSTM Architecture for Human Activity Recognition on Smartphone Sensor Data., 2019,,.		31
352	Applying Deep Learning and Wearable Devices for Educational Data Analytics. , 2019, , .		9
353	Heading Judgment for the Waist-Mounted MIMU Using LSTM. , 2019, , .		1
354	A Study of Action Recognition Using Pose Data Toward Distributed Processing Over Edge and Cloud. , 2019, , .		5
355	Temporal Approaches for Human Activity Recognition Using Inertial Sensors. , 2019, , .		8
356	Performance Analysis of Supervised Machine Learning Algorithms to Recognize Human Activity in Ambient Assisted Living Environment. , 2019 , , .		13
357	Wearable Sensors Based Automatic Box and Block Test System. , 2019, , .		2
358	Physical Workout Classification Using Wrist Accelerometer Data by Deep Convolutional Neural Networks. IEEE Access, 2019, 7, 182406-182414.	2.6	2
359	Anomaly Detection in Videos Using Optical Flow and Convolutional Autoencoder. IEEE Access, 2019, 7, 183914-183923.	2.6	52
360	Downsampling wearable sensor data packets by measuring their information value. , 2019, , .		0

#	Article	IF	CITATIONS
361	Individual Cattle Identification Using a Deep Learning Based Framework. IFAC-PapersOnLine, 2019, 52, 318-323.	0.5	47
362	Toward End-to-end Prediction of Future Wellbeing using Deep Sensor Representation Learning. , 2019, , .		4
363	Stacked Convolutional LSTM Models for Prognosis of Bearing Performance Degradation. , 2019, , .		4
364	Run-Time Efficient RNN Compression for Inference on Edge Devices. , 2019, , .		11
365	Al Benchmark: All About Deep Learning on Smartphones in 2019. , 2019, , .		134
366	Preliminary Investigation of Visualizing Human Activity Recognition Neural Network. , 2019, , .		7
367	Seeing and Hearing Egocentric Actions: How Much Can We Learn?., 2019, , .		13
368	GraphConvLSTM: Spatiotemporal Learning for Activity Recognition with Wearable Sensors. , 2019, , .		6
369	Human Activity Recognition using PCA and BiLSTM Recurrent Neural Networks. , 2019, , .		26
370	Research on Applications of Artificial Intelligence in Business Management of Power Grid Enterprises. , 2019, , .		7
371	Benchmarking Deep Learning for Time Series: Challenges and Directions. , 2019, , .		6
372	Driver Identification Based on Vehicle Telematics Data using LSTM-Recurrent Neural Network. , 2019, , .		30
373	A Deep Convolutional-Recurrent Neural Network for Freezing of Gait Detection in Patients with Parkinson's Disease. , $2019, \dots$		7
374	Convolutional Recurrent Neural Networks with a Self-Attention Mechanism for Personnel Performance Prediction. Entropy, 2019, 21, 1227.	1.1	12
375	Gait Activity Authentication Using LSTM Neural Networks with Smartphone Sensors. , 2019, , .		8
376	Comparing CNN and Human Crafted Features for Human Activity Recognition. , 2019, , .		11
377	Performance Analysis of Data Parallelism Technique in Machine Learning for Human Activity Recognition Using LSTM. , 2019, , .		3
378	Visualizing Inertial Data For Wearable Sensor Based Daily Life Activity Recognition Using Convolutional Neural Network., 2019, 2019, 2478-2481.		7

#	Article	IF	Citations
379	Detection of Tennis Activities with Wearable Sensors. Sensors, 2019, 19, 5004.	2.1	22
380	Multi-sensor fusion based on multiple classifier systems for human activity identification. Human-centric Computing and Information Sciences, 2019, 9, .	6.1	44
381	Swimming style recognition and lap counting using a smartwatch and deep learning. , 2019, , .		12
382	Fusing Object Information and Inertial Data for Activity Recognition. Sensors, 2019, 19, 4119.	2.1	5
383	Visual Representation of Online Handwriting Time Series for Deep Learning Parkinson's Disease Detection. , 2019, , .		9
384	Deep Convolutional Network with Long Short-Term Memory Layers for Dynamic Gesture Recognition. , 2019, , .		9
385	Motion Prediction with Artificial Neural Networks Using Wearable Strain Sensors Based on Flexible Thin Graphite Films. Key Engineering Materials, 2019, 826, 111-116.	0.4	0
386	A MEMS Gyroscope Noise Suppressing Method Using Neural Architecture Search Neural Network. Mathematical Problems in Engineering, 2019, 2019, 1-9.	0.6	12
387	Cross-Dataset Activity Recognition via Adaptive Spatial-Temporal Transfer Learning., 2019, 3, 1-25.		38
388	KPI-TSAD: A Time-Series Anomaly Detector for KPI Monitoring in Cloud Applications. Symmetry, 2019, 11, 1350.	1.1	24
389	High Precision Dimensional Measurement with Convolutional Neural Network and Bi-Directional Long Short-Term Memory (LSTM). Sensors, 2019, 19, 5302.	2.1	11
390	A Novel Ensemble ELM for Human Activity Recognition Using Smartphone Sensors. IEEE Transactions on Industrial Informatics, 2019, 15, 2691-2699.	7.2	110
391	Assessment of deep recurrent neural network-based strategies for short-term building energy predictions. Applied Energy, 2019, 236, 700-710.	5.1	220
392	User-Ranking Video Summarization With Multi-Stage Spatio–Temporal Representation. IEEE Transactions on Image Processing, 2019, 28, 2654-2664.	6.0	28
393	Parallel memetic algorithm for training recurrent neural networks for the energy efficiency problem. Applied Soft Computing Journal, 2019, 76, 356-368.	4.1	28
394	Convolutional long short term memory deep neural networks for image sequence prediction. Expert Systems With Applications, 2019, 122, 152-162.	4.4	34
395	Elderly Fall Detection Using Wearable Sensors: A Low Cost Highly Accurate Algorithm. IEEE Sensors Journal, 2019, 19, 3156-3164.	2.4	87
396	A Novel Semisupervised Deep Learning Method for Human Activity Recognition. IEEE Transactions on Industrial Informatics, 2019, 15, 3821-3830.	7.2	64

#	Article	IF	Citations
397	InnoHAR: A Deep Neural Network for Complex Human Activity Recognition. IEEE Access, 2019, 7, 9893-9902.	2.6	214
398	Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm. Journal of Cancer Research and Clinical Oncology, 2019, 145, 829-837.	1.2	196
399	Efficient cell classification of mitochondrial images by using deep learning. Journal of Optics (India), 2019, 48, 113-122.	0.8	26
400	Normal and pathological gait classification LSTM model. Artificial Intelligence in Medicine, 2019, 94, 54-66.	3.8	51
401	An overview of human activity recognition based on smartphone. Sensor Review, 2019, 39, 288-306.	1.0	36
402	Jointly network: a network based on CNN and RBM for gesture recognition. Neural Computing and Applications, 2019, 31, 309-323.	3.2	82
403	Accurate Step Length Estimation for Pedestrian Dead Reckoning Localization Using Stacked Autoencoders. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 2705-2713.	2.4	82
404	Weakly Supervised Human Activity Recognition From Wearable Sensors by Recurrent Attention Learning. IEEE Sensors Journal, 2019, 19, 2287-2297.	2.4	37
405	Hate speech detection: AÂsolved problem? The challenging case of long tail on Twitter. Semantic Web, 2019, 10, 925-945.	1.1	121
406	Deep learning analysis of mobile physiological, environmental and location sensor data for emotion detection. Information Fusion, 2019, 49, 46-56.	11.7	192
407	Methodology for improving classification accuracy using ontologies: application in the recognition of activities of daily living. Journal of Ambient Intelligence and Humanized Computing, 2019, 10, 2125-2142.	3.3	14
408	Deep learning of smartphone sensor data for personal health assistance. Microelectronics Journal, 2019, 88, 164-172.	1.1	22
409	Extreme Learning Machine-Based Deep Model for Human Activity Recognition With Wearable Sensors. Computing in Science and Engineering, 2019, 21, 16-25.	1.2	11
410	Deep learning for sensor-based activity recognition: A survey. Pattern Recognition Letters, 2019, 119, 3-11.	2.6	1,227
411	Accurate detection of sitting posture activities in a secure IoT based assisted living environment. Future Generation Computer Systems, 2019, 92, 745-757.	4.9	32
412	Improved convolutional neural network combined with rough set theory for data aggregation algorithm. Journal of Ambient Intelligence and Humanized Computing, 2020, 11, 647-654.	3.3	16
413	Deep Convolutional Neural Networks for Indoor Localization with CSI Images. IEEE Transactions on Network Science and Engineering, 2020, 7, 316-327.	4.1	142
414	Evaluating fusion of RGB-D and inertial sensors for multimodal human action recognition. Journal of Ambient Intelligence and Humanized Computing, 2020, 11, 189-208.	3.3	51

#	ARTICLE	IF	CITATIONS
415	Video spatiotemporal mapping for human action recognition by convolutional neural network. Pattern Analysis and Applications, 2020, 23, 265-279.	3.1	19
416	Making Sense of Spatio-Temporal Preserving Representations for EEG-Based Human Intention Recognition. IEEE Transactions on Cybernetics, 2020, 50, 3033-3044.	6.2	246
417	Evaluation of artificial intelligence techniques for the classification of different activities of daily living and falls. Neural Computing and Applications, 2020, 32, 747-758.	3.2	19
418	WiFi Fingerprinting Indoor Localization Using Local Feature-Based Deep LSTM. IEEE Systems Journal, 2020, 14, 3001-3010.	2.9	102
419	Indoor Localization Using Smartphone Magnetic and Light Sensors: a Deep LSTM Approach. Mobile Networks and Applications, 2020, 25, 819-832.	2.2	25
420	Unsupervised online change point detection in high-dimensional time series. Knowledge and Information Systems, 2020, 62, 719-750.	2.1	10
421	Efficient Activity Recognition in Smart Homes Using Delayed Fuzzy Temporal Windows on Binary Sensors. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 387-395.	3.9	54
422	Falls Risk Classification of Older Adults Using Deep Neural Networks and Transfer Learning. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 144-150.	3.9	20
423	Correlational Convolutional LSTM for human action recognition. Neurocomputing, 2020, 396, 224-229.	3.5	93
424	Human Activity Recognition Based on Wearable Sensor Using Hierarchical Deep LSTM Networks. Circuits, Systems, and Signal Processing, 2020, 39, 837-856.	1.2	67
425	Fall prediction using behavioural modelling from sensor data in smart homes. Artificial Intelligence Review, 2020, 53, 1071-1091.	9.7	35
426	Hierarchical Recurrent Deep Fusion Using Adaptive Clip Summarization for Sign Language Translation. IEEE Transactions on Image Processing, 2020, 29, 1575-1590.	6.0	33
427	Multi-Modal Deep Analysis for Multimedia. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30, 3740-3764.	5.6	20
428	Time series classification using local distance-based features in multi-modal fusion networks. Pattern Recognition, 2020, 97, 107024.	5.1	26
429	TSE-CNN: A Two-Stage End-to-End CNN for Human Activity Recognition. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 292-299.	3.9	85
430	Wearable Sensor Applications: Processing of Egocentric Videos and Inertial Measurement Unit Data. , 2020, , 149-173.		0
431	Using Auditory Features for WiFi Channel State Information Activity Recognition. SN Computer Science, 2020, 1, 1.	2.3	7
432	Time series based behavior pattern quantification analysis and prediction — A study on animal behavior. Physica A: Statistical Mechanics and Its Applications, 2020, 540, 122884.	1.2	4

#	Article	IF	CITATIONS
433	Database quality assessment for interactive learning: Application to occupancy estimation. Energy and Buildings, 2020, 209, 109578.	3.1	22
434	Deep learning approach on information diffusion in heterogeneous networks. Knowledge-Based Systems, 2020, 189, 105153.	4.0	37
435	Bi-LSTM Network for Multimodal Continuous Human Activity Recognition and Fall Detection. IEEE Sensors Journal, 2020, 20, 1191-1201.	2.4	149
436	A Multimodal Wearable System for Continuous and Real-Time Breathing Pattern Monitoring During Daily Activity. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 2199-2207.	3.9	87
437	Context-Aware Human Activity Recognition (CAHAR) in-the-Wild Using Smartphone Accelerometer. IEEE Sensors Journal, 2020, 20, 4361-4371.	2.4	36
438	Personalizing Activity Recognition Models Through Quantifying Different Types of Uncertainty Using Wearable Sensors. IEEE Transactions on Biomedical Engineering, 2020, 67, 2530-2541.	2.5	35
439	Impact of deep learning-based dropout on shallow neural networks applied to stream temperature modelling. Earth-Science Reviews, 2020, 201, 103076.	4.0	47
440	Spatial-temporal process simulation and prediction of chlorophyll-a concentration in Dianchi Lake based on wavelet analysis and long-short term memory network. Journal of Hydrology, 2020, 582, 124488.	2.3	77
441	Group behavior recognition based on deep hierarchical network. Neural Computing and Applications, 2020, 32, 5389-5398.	3.2	6
442	Deep Learning for Fall Risk Assessment With Inertial Sensors: Utilizing Domain Knowledge in Spatio-Temporal Gait Parameters. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 1994-2005.	3.9	61
443	Spatiotemporal neural networks for action recognition based on joint loss. Neural Computing and Applications, 2020, 32, 4293-4302.	3.2	22
444	A Survey on Anomalous Behavior Detection for Elderly Care Using Dense-Sensing Networks. IEEE Communications Surveys and Tutorials, 2020, 22, 352-370.	24.8	53
445	Accurate Ambulatory Gait Analysis in Walking and Running Using Machine Learning Models. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 191-202.	2.7	71
446	Design of a Wearable Wireless Multi-Sensor Monitoring System and Application for Activity Recognition Using Deep Learning. IEEE Access, 2020, 8, 169183-169195.	2.6	29
447	On-board Deep-learning-based Unmanned Aerial Vehicle Fault Cause Detection and Identification. , 2020, , .		20
448	Applications of Artificial Intelligence and Big Data Analytics in m-Health: A Healthcare System Perspective. Journal of Healthcare Engineering, 2020, 2020, 1-15.	1.1	86
449	A Hierarchical Learning Approach for Human Action Recognition. Sensors, 2020, 20, 4946.	2.1	15
450	Deep Learning in Gait Parameter Prediction for OA and TKA Patients Wearing IMU Sensors. Sensors, 2020, 20, 5553.	2.1	29

#	Article	IF	CITATIONS
451	Multi-Instance Learning Algorithm Based on LSTM for Chinese Painting Image Classification. IEEE Access, 2020, 8, 179336-179345.	2.6	5
452	A LSTM-RNN-Assisted Vector Tracking Loop for Signal Outage Bridging. International Journal of Aerospace Engineering, 2020, 2020, 1-11.	0.5	1
453	Enhanced Hand-Oriented Activity Recognition Based on Smartwatch Sensor Data Using LSTMs. Symmetry, 2020, 12, 1570.	1.1	60
454	Worker 4.0: The Future of Sensored Construction Sites. Buildings, 2020, 10, 169.	1.4	49
455	Deep neural network approach for fault detection and diagnosis during startup transient of liquid-propellant rocket engine. Acta Astronautica, 2020, 177, 714-730.	1.7	29
456	Human activity recognition adapted to the type of movement. Computers and Electrical Engineering, 2020, 88, 106822.	3.0	24
457	Real-Time Abnormal Event Detection for Enhanced Security in Autonomous Shuttles Mobility Infrastructures. Sensors, 2020, 20, 4943.	2.1	17
458	Convolutional long short-term memory model for recognizing construction workers' postures from wearable inertial measurement units. Advanced Engineering Informatics, 2020, 46, 101177.	4.0	50
459	Cognitive Intelligence for Monitoring Fractured Post-Surgery Ankle Activity Using Channel Information. IEEE Access, 2020, 8, 112113-112129.	2.6	16
460	A Study of Generalization and Fitness Landscapes for Neuroevolution. IEEE Access, 2020, 8, 108216-108234.	2.6	6
461	Corrections to "Unsupervised Anomaly Detection of Industrial Robots Using Sliding-Window Convolutional Variational Autoencoder†IEEE Access, 2020, 8, 117062-117062.	2.6	3
462	Dance Emotion Recognition Based on Laban Motion Analysis Using Convolutional Neural Network and Long Short-Term Memory. IEEE Access, 2020, 8, 124928-124938.	2.6	27
463	Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nature Reviews Neurology, 2020, 16, 440-456.	4.9	257
464	A Hybrid Deep Learning System for Real-World Mobile User Authentication Using Motion Sensors. Sensors, 2020, 20, 3876.	2.1	16
465	Discrete wavelet transform based data representation in deep neural network for gait abnormality detection. Biomedical Signal Processing and Control, 2020, 62, 102076.	3.5	26
466	A Novel Multichannel Dilated Convolution Neural Network for Human Activity Recognition. Mathematical Problems in Engineering, 2020, 2020, 1-10.	0.6	19
467	Recognition of Typical Locomotion Activities Based on the Sensor Data of a Smartphone in Pocket or Hand. Sensors, 2020, 20, 6559.	2.1	10
468	BiLSTM-based Individual Cattle Identification for Automated Precision Livestock Farming. , 2020, , .		17

#	Article	IF	CITATIONS
469	Improved Deep Learning Technique to Detect Freezing of Gait in Parkinson's Disease Based on Wearable Sensors. Electronics (Switzerland), 2020, 9, 1919.	1.8	27
470	Unsupervised End-to-End Deep Model for Newborn and Infant Activity Recognition. Sensors, 2020, 20, 6467.	2.1	15
471	Intelligent Calibration of Static FEA Computations Based on Terrestrial Laser Scanning Reference. Sensors, 2020, 20, 6439.	2.1	0
472	Short-term temperature forecasts using a convolutional neural network —ÂAn application to different weather stations in Germany. Machine Learning With Applications, 2020, 2, 100007.	3.0	35
473	Effect of Reduced Dimensionality on Deep learning for Human Activity Recognition. , 2020, , .		3
474	Advancing Biosensors with Machine Learning. ACS Sensors, 2020, 5, 3346-3364.	4.0	307
475	Accelerometer-Based Human Activity Recognition for Patient Monitoring Using a Deep Neural Network. Sensors, 2020, 20, 6424.	2.1	42
476	Iterative Learning Control for a Soft Exoskeleton with Hip and Knee Joint Assistance. Sensors, 2020, 20, 4333.	2.1	34
477	Enhanced Cyber-physical Security of Steering Stability Control System for Four-Wheel Independent Drive Electric Vehicles. , 2020, , .		8
478	Hand Gesture Recognition using Deep Feature Fusion Network based on Wearable Sensors. IEEE Sensors Journal, 2020, , 1-1.	2.4	36
479	Sensor-based and vision-based human activity recognition: A comprehensive survey. Pattern Recognition, 2020, 108, 107561.	5.1	243
480	Understanding Smartwatch Battery Utilization in the Wild. Sensors, 2020, 20, 3784.	2.1	5
481	Comparing Person-Specific and Independent Models on Subject-Dependent and Independent Human Activity Recognition Performance. Sensors, 2020, 20, 3647.	2.1	4
482	Joint Learning of Temporal Models to Handle Imbalanced Data for Human Activity Recognition. Applied Sciences (Switzerland), 2020, 10, 5293.	1.3	27
483	Applying deep neural networks for multi-level classification of driver drowsiness using Vehicle-based measures. Expert Systems With Applications, 2020, 162, 113778.	4.4	44
484	LARa: Creating a Dataset for Human Activity Recognition in Logistics Using Semantic Attributes. Sensors, 2020, 20, 4083.	2.1	33
485	A New Motion Data Structuring for Human Activity Recognition Using Convolutional Neural Network., 2020,,.		3
486	Physiological Data-Based Evaluation of a Social Robot Navigation System. , 2020, , .		4

#	Article	IF	Citations
487	Uncovering Human Multimodal Activity Recognition with a Deep Learning Approach. , 2020, , .		7
488	Heterogeneous Multi-Modal Sensor Fusion with Hybrid Attention for Exercise Recognition. , 2020, , .		3
489	Unveiling Parkinson's Disease Features from a Primate Model with Deep Neural Networks. , 2020, , .		3
490	Representing Temporal Dependencies in Smart Home Activity Recognition for Health Monitoring. , 2020, , .		2
491	Deep Learning-Based Human Activity Recognition for Continuous Activity and Gesture Monitoring for Schizophrenia Patients With Negative Symptoms. Frontiers in Psychiatry, 2020, 11, 574375.	1.3	11
492	A Deep Machine Learning Method for Concurrent and Interleaved Human Activity Recognition. Sensors, 2020, 20, 5770.	2.1	24
493	Online Fall Detection Using Recurrent Neural Networks on Smart Wearable Devices. IEEE Transactions on Emerging Topics in Computing, 2021, 9, 1276-1289.	3.2	46
494	Human Activity Recognition Based on Gramian Angular Field and Deep Convolutional Neural Network. IEEE Access, 2020, 8, 199393-199405.	2.6	50
495	Machine Learning for a Context Mining Facility., 2020,,.		1
496	Annotation Performance for multi-channel time series HAR Dataset in Logistics. , 2020, , .		7
497	SALON: Simplified Sensing System for Activity of Daily Living in Ordinary Home. Sensors, 2020, 20, 4895.	2.1	11
498	Identifying the knee joint angular position under neuromuscular electrical stimulation via long short-term memory neural networks. Research on Biomedical Engineering, 2020, 36, 511-526.	1.5	1
499	Deep Learning for Intake Gesture Detection From Wrist-Worn Inertial Sensors: The Effects of Data Preprocessing, Sensor Modalities, and Sensor Positions. IEEE Access, 2020, 8, 164936-164949.	2.6	13
500	Deep Transfer Learning for Time Series Data Based on Sensor Modality Classification. Sensors, 2020, 20, 4271.	2.1	37
501	A Tree-Structure Convolutional Neural Network for Temporal Features Exaction on Sensor-Based Multi-resident Activity Recognition. Communications in Computer and Information Science, 2020, , 513-525.	0.4	2
502	Wearable Sensor-Based Human Activity Recognition Using Hybrid Deep Learning Techniques. Security and Communication Networks, 2020, 2020, 1-12.	1.0	58
503	A Stacked Human Activity Recognition Model Based on Parallel Recurrent Network and Time Series Evidence Theory. Sensors, 2020, 20, 4016.	2.1	4
504	An Energy-Efficient Fall Detection Method Based on FD-DNN for Elderly People. Sensors, 2020, 20, 4192.	2.1	12

#	Article	IF	Citations
505	Badminton Activity Recognition Using Accelerometer Data. Sensors, 2020, 20, 4685.	2.1	29
506	Machine Learning-Based Activity Pattern Classification Using Personal PM2.5 Exposure Information. International Journal of Environmental Research and Public Health, 2020, 17, 6573.	1.2	5
507	Early versus Late Modality Fusion of Deep Wearable Sensor Features for Personalized Prediction of Tomorrow's Mood, Health, and Stress. , 2020, 2020, 5896-5899.		26
508	Incept_LSTM: Accession for human activity concession in automatic surveillance. Journal of Discrete Mathematical Sciences and Cryptography, 2022, 25, 2259-2273.	0.5	3
509	HAWAD: Hand Washing Detection using Wrist Wearable Inertial Sensors., 2020,,.		7
510	A Hybrid Deep Neural Networks for Sensor-based Human Activity Recognition. , 2020, , .		2
511	Beyond Mobile Apps: A Survey of Technologies for Mental Well-Being. IEEE Transactions on Affective Computing, 2022, 13, 1216-1235.	5.7	29
512	Latest Research Trends in Gait Analysis Using Wearable Sensors and Machine Learning: A Systematic Review. IEEE Access, 2020, 8, 167830-167864.	2.6	56
513	Detection of Parkinson's disease from handwriting using deep learning: a comparative study. Evolutionary Intelligence, 2023, 16, 1813-1824.	2.3	22
514	Machine Learning and Deep Neural Network Architectures for 3D Motion Capture Datasets. , 2020, 2020, 4827-4830.		2
515	Harmonic Loss Function for Sensor-Based Human Activity Recognition Based on LSTM Recurrent Neural Networks. IEEE Access, 2020, 8, 135617-135627.	2.6	17
516	Context-Aware Data Association for Multi-Inhabitant Sensor-Based Activity Recognition., 2020,,.		5
517	EspialCog: General, Efficient and Robust Mobile User Implicit Authentication in Noisy Environment. IEEE Transactions on Mobile Computing, 2022, 21, 555-572.	3.9	7
518	Sensors-based Human Activity Recognition with Convolutional Neural Network and Attention Mechanism. , 2020, , .		8
519	CNN-based Speed Detection Algorithm for Walking and Running using Wrist-worn Wearable Sensors. , 2020, , .		4
520	Human Activity Recognition Using Inertial, Physiological and Environmental Sensors: A Comprehensive Survey. IEEE Access, 2020, 8, 210816-210836.	2.6	182
521	Sensor-Based Human Activity Recognition Using Deep Stacked Multilayered Perceptron Model. IEEE Access, 2020, 8, 218898-218910.	2.6	41
522	Deep Learning Based Real-Time Recognition of Dynamic Finger Gestures Using a Data Glove. IEEE Access, 2020, 8, 219923-219933.	2.6	37

#	Article	IF	Citations
523	Random Search One Dimensional CNN for Human Activity Recognition. , 2020, , .		13
524	A Deep Learning Approach to Detect Real-Time Vehicle Maneuvers Based on Smartphone Sensors. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 3148-3157.	4.7	14
525	IMU-Based Movement Trajectory Heatmaps for Human Activity Recognition. Sensors, 2020, 20, 7179.	2.1	9
526	Real-Time Physical Activity Recognition on Smart Mobile Devices Using Convolutional Neural Networks. Applied Sciences (Switzerland), 2020, 10, 8482.	1.3	28
527	A Framework of Combining Short-Term Spatial/Frequency Feature Extraction and Long-Term IndRNN for Activity Recognition. Sensors, 2020, 20, 6984.	2.1	9
528	Multi-convLSTM neural network for sensor-based human activity recognition. Journal of Physics: Conference Series, 2020, 1682, 012062.	0.3	5
529	Recommendation system for human physical activities using smartphones. , 2020, , .		9
530	Deep Learning for Activity Recognition in Older People Using a Pocket-Worn Smartphone. Sensors, 2020, 20, 7195.	2.1	21
531	Gait identification and authentication using LSTM based on 3-axis accelerations of smartphone. Procedia Computer Science, 2020, 176, 3873-3880.	1.2	19
532	Deep learning for the internet of things: Potential benefits and use-cases. Digital Communications and Networks, 2021, 7, 526-542.	2.7	39
533	Comparative Analysis of Artificial Hydrocarbon Networks versus Convolutional Neural Networks in Human Activity Recognition. , 2020, , .		2
534	A Customized Convolutional Neural Network Model Integrated With Acceleration-Based Smart Insole Toward Personalized Foot Gesture Recognition. , 2020, 4, 1-4.		10
535	Transportation mode recognition fusing wearable motion, sound and vision sensors. IEEE Sensors Journal, 2020, , 1-1.	2.4	16
536	FilterNet: A Many-to-Many Deep Learning Architecture for Time Series Classification. Sensors, 2020, 20, 2498.	2.1	13
537	Human Activity Recognition. Algorithms for Intelligent Systems, 2020, , 479-487.	0.5	1
538	Improving Cross-Subject Activity Recognition via Adversarial Learning. IEEE Access, 2020, 8, 90542-90554.	2.6	8
539	SensCapsNet: Deep Neural Network for Non-Obtrusive Sensing Based Human Activity Recognition. IEEE Access, 2020, 8, 86934-86946.	2.6	36
540	Multitask LSTM Model for Human Activity Recognition and Intensity Estimation Using Wearable Sensor Data. IEEE Internet of Things Journal, 2020, 7, 8760-8768.	5. 5	39

#	ARTICLE	IF	CITATIONS
541	Unsupervised Human Activity Recognition Using the Clustering Approach: A Review. Sensors, 2020, 20, 2702.	2.1	31
542	Hand Gesture Recognition for Sign Language Using 3DCNN. IEEE Access, 2020, 8, 79491-79509.	2.6	90
543	Lower Limb Kinematics Trajectory Prediction Using Long Short-Term Memory Neural Networks. Frontiers in Bioengineering and Biotechnology, 2020, 8, 362.	2.0	35
544	Deep learning-based classification of work-related physical load levels in construction. Advanced Engineering Informatics, 2020, 45, 101104.	4.0	37
545	Classical and deep learning methods for recognizing human activities and modes of transportation with smartphone sensors. Information Fusion, 2020, 62, 47-62.	11.7	62
546	Improving physical activity recognition using a new deep learning architecture and post-processing techniques. Engineering Applications of Artificial Intelligence, 2020, 92, 103679.	4.3	37
547	Deep learning with 4D spatio-temporal data representations for OCT-based force estimation. Medical Image Analysis, 2020, 64, 101730.	7.0	16
548	A Comparison of Machine Learning Algorithms for Fall Detection using Wearable Sensors. , 2020, , .		15
549	The Effect of Axis-Wise Triaxial Acceleration Data Fusion in CNN-Based Human Activity Recognition. IEICE Transactions on Information and Systems, 2020, E103.D, 813-824.	0.4	4
550	Displacement prediction of water-induced landslides using a recurrent deep learning model. European Journal of Environmental and Civil Engineering, 2023, 27, 2460-2474.	1.0	18
551	Human activity recognition using improved complete ensemble EMD with adaptive noise and long short-term memory neural networks. Biocybernetics and Biomedical Engineering, 2020, 40, 901-909.	3.3	20
552	A study on IMU-Based Human Activity Recognition Using Deep Learning and Traditional Machine Learning. , 2020, , .		19
553	Human Activity Recognition Based on Improved Bayesian Convolution Network to Analyze Health Care Data Using Wearable IoT Device. IEEE Access, 2020, 8, 86411-86418.	2.6	63
554	A Novel Action Recognition Framework Based on Deep-Learning and Genetic Algorithms. IEEE Access, 2020, 8, 100631-100644.	2.6	25
555	Combining Residual and LSTM Recurrent Networks for Transportation Mode Detection Using Multimodal Sensors Integrated in Smartphones. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 5473-5485.	4.7	24
556	Enhanced Performance Real-Time Industrial Robot Programming by Demonstration using Stereoscopic Vision and an IMU sensor. , 2020, , .		1
557	Machine Learning Based Activity Recognition To Identify Wasteful Activities In Production. Procedia Manufacturing, 2020, 45, 171-176.	1.9	9
558	Posture Recognition Technology Based on Kinect. IEICE Transactions on Information and Systems, 2020, E103.D, 621-630.	0.4	5

#	Article	IF	CITATIONS
559	Human activity recognition in smart environments employing margin setting algorithm. Journal of Ambient Intelligence and Humanized Computing, 2022, 13, 3669-3681.	3.3	11
560	Characterizing Peaks in Acceleration Signals–Application to Physical Activity Detection Using Wearable Sensors. IEEE Sensors Journal, 2020, 20, 12384-12395.	2.4	8
561	SenseCrypt: A Security Framework for Mobile Crowd Sensing Applications. Sensors, 2020, 20, 3280.	2.1	9
562	Mcfly: Automated deep learning on time series. SoftwareX, 2020, 12, 100548.	1.2	27
563	The Layer-Wise Training Convolutional Neural Networks Using Local Loss for Sensor-Based Human Activity Recognition. IEEE Sensors Journal, 2020, 20, 7265-7274.	2.4	98
564	Towards augmenting cyber-physical-human collaborative cognition for human-automation interaction in complex manufacturing and operational environments. International Journal of Production Research, 2020, 58, 5089-5111.	4.9	39
565	Human activity recognition using magnetic induction-based motion signals and deep recurrent neural networks. Nature Communications, 2020, 11 , 1551 .	5.8	68
566	A study of deep neural networks for human activity recognition. Computational Intelligence, 2020, 36, 1113-1139.	2.1	37
567	Deep Learning-Based Gait Recognition Using Smartphones in the Wild. IEEE Transactions on Information Forensics and Security, 2020, 15, 3197-3212.	4.5	149
568	Multi-Sensor Time-Series Classification for Activity Tracking Under Variable Length. IEEE Sensors Journal, 2020, 20, 2701-2709.	2.4	7
569	A Study on the Application of Convolutional Neural Networks to Fall Detection Evaluated with Multiple Public Datasets. Sensors, 2020, 20, 1466.	2.1	64
570	Flexible Fashion Product Retrieval Using Multimodality-Based Deep Learning. Applied Sciences (Switzerland), 2020, 10, 1569.	1.3	5
571	Information Entropy-Based Intention Prediction of Aerial Targets under Uncertain and Incomplete Information. Entropy, 2020, 22, 279.	1.1	28
572	uMoDT: an unobtrusive multi-occupant detection and tracking using robust Kalman filter for real-time activity recognition. Multimedia Systems, 2020, 26, 553-569.	3.0	9
573	A bibliometric analysis on deep learning during 2007–2019. International Journal of Machine Learning and Cybernetics, 2020, 11, 2807-2826.	2.3	39
574	Activity Recognition using 1D convolution from Accelerometers Data. Journal of Physics: Conference Series, 2020, 1550, 032161.	0.3	0
575	Asymmetric Loss Functions for Contract Capacity Optimization. Energies, 2020, 13, 3123.	1.6	0
576	Mobile sensor based human activity recognition: distinguishing of challenging activities by applying long short-term memory deep learning modified by residual network concept. Biomedical Engineering Letters, 2020, 10, 419-430.	2.1	14

#	ARTICLE	IF	Citations
577	Deep Learning Based Advanced Spatio-Temporal Extraction Model in Medical Sports Rehabilitation for Motion Analysis and Data Processing. IEEE Access, 2020, 8, 115848-115856.	2.6	12
578	Using a Motion Sensor to Categorize Nonspecific Low Back Pain Patients: A Machine Learning Approach. Sensors, 2020, 20, 3600.	2.1	25
579	Activity recognition through interactive machine learning in a dynamic sensor setting. Personal and Ubiquitous Computing, 2020, , $1.$	1.9	3
580	Human Identification for Activities of Daily Living: A Deep Transfer Learning Approach. Journal of Management Information Systems, 2020, 37, 457-483.	2.1	33
581	Real-Time Human Activity Recognition System Based on Capsule and LoRa. IEEE Sensors Journal, 2020, , 1-1.	2.4	14
582	Implementation of a Classification System of EEG Signals Based on FPGA. , 2020, , .		6
583	Deep learning recognition of diseased and normal cell representation. Transactions on Emerging Telecommunications Technologies, 2021, 32, e4017.	2.6	31
584	PSDRNN: An Efficient and Effective HAR Scheme Based on Feature Extraction and Deep Learning. IEEE Transactions on Industrial Informatics, 2020, 16, 6703-6713.	7.2	29
585	Identification of Walker Identity Using Smartphone Sensors: An Experiment Using Ensemble Learning. IEEE Access, 2020, 8, 27435-27447.	2.6	11
586	Sensor Data Required for Automatic Recognition of Athletic Tasks Using Deep Neural Networks. Frontiers in Bioengineering and Biotechnology, 2019, 7, 473.	2.0	20
587	Effective inertial sensor quantity and locations on a body for deep learning-based worker's motion recognition. Automation in Construction, 2020, 113, 103126.	4.8	52
588	Motion-To-BMI: Using Motion Sensors to Predict the Body Mass Index of Smartphone Users. Sensors, 2020, 20, 1134.	2.1	7
589	Adversarial autoencoder for visualization and classification of human activity: Application to a low-cost commercial force plate. Journal of Biomechanics, 2020, 103, 109684.	0.9	4
590	Gated Recurrent Fusion to Learn Driving Behavior from Temporal Multimodal Data. IEEE Robotics and Automation Letters, 2020, 5, 1287-1294.	3.3	15
591	Human Action Recognition Using Deep Learning Methods on Limited Sensory Data. IEEE Sensors Journal, 2020, 20, 3101-3112.	2.4	63
592	Localization of Inspection Device Along Belt Conveyors With Multiple Branches Using Deep Neural Networks. IEEE Robotics and Automation Letters, 2020, 5, 2921-2928.	3.3	8
593	Interpretable and Accurate Convolutional Neural Networks for Human Activity Recognition. IEEE Transactions on Industrial Informatics, 2020, 16, 7190-7198.	7.2	46
594	Reviewâ€"Deep Learning Methods for Sensor Based Predictive Maintenance and Future Perspectives for Electrochemical Sensors. Journal of the Electrochemical Society, 2020, 167, 037552.	1.3	82

#	ARTICLE	IF	Citations
595	Convolutional and recurrent neural network for human activity recognition: Application on American sign language. PLoS ONE, 2020, 15, e0228869.	1.1	22
596	BAT: Deep Learning Methods on Network Intrusion Detection Using NSL-KDD Dataset. IEEE Access, 2020, 8, 29575-29585.	2.6	205
597	Photonic Switched Optically Connected Memory: An Approach to Address Memory Challenges in Deep Learning. Journal of Lightwave Technology, 2020, 38, 2815-2825.	2.7	11
598	Using Domain Knowledge for Interpretable and Competitive Multi-Class Human Activity Recognition. Sensors, 2020, 20, 1208.	2.1	6
599	Deep neural learning techniques with long short-term memory for gesture recognition. Neural Computing and Applications, 2020, 32, 16073-16089.	3.2	22
600	Construction activity recognition with convolutional recurrent networks. Automation in Construction, 2020, 113, 103138.	4.8	63
601	Feature learning for Human Activity Recognition using Convolutional Neural Networks. CCF Transactions on Pervasive Computing and Interaction, 2020, 2, 18-32.	1.7	87
602	Smartphone Location Recognition: A Deep Learning-Based Approach. Sensors, 2020, 20, 214.	2.1	24
603	Rapid Antibiotic Susceptibility Testing Based on Bacterial Motion Patterns With Long Short-Term Memory Neural Networks. IEEE Sensors Journal, 2020, 20, 4940-4950.	2.4	14
604	A Context Knowledge Map Guided Coarse-to-Fine Action Recognition. IEEE Transactions on Image Processing, 2020, 29, 2742-2752.	6.0	33
605	A Deep Learning Framework for Assessing Physical Rehabilitation Exercises. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 468-477.	2.7	102
606	Automatic Classification of Squat Posture Using Inertial Sensors: Deep Learning Approach. Sensors, 2020, 20, 361.	2.1	39
607	Real-time human behaviour monitoring using hybrid ambient assisted living framework. Journal of Reliable Intelligent Environments, 2020, 6, 95-106.	3.8	10
608	Estimation of Hand Motion from Piezoelectric Soft Sensor Using Deep Recurrent Network. Applied Sciences (Switzerland), 2020, 10, 2194.	1.3	11
609	Margin-Based Deep Learning Networks for Human Activity Recognition. Sensors, 2020, 20, 1871.	2.1	17
610	Wearable Sensor-Based Gait Analysis for Age and Gender Estimation. Sensors, 2020, 20, 2424.	2.1	35
611	A hybridization of deep learning techniques to predict and control traffic disturbances. Artificial Intelligence Review, 2020, 53, 5675-5704.	9.7	19
612	Human activity classification based on sound recognition and residual convolutional neural network. Automation in Construction, 2020, 114, 103177.	4.8	44

#	Article	IF	Citations
613	Pinning Synchronization via Intermittent Control for Memristive Cohen-Grossberg Neural Networks With Mixed Delays. IEEE Access, 2020, 8, 55676-55687.	2.6	10
614	LSTM-CNN Architecture for Human Activity Recognition. IEEE Access, 2020, 8, 56855-56866.	2.6	398
615	Deep Learning Framework for Vehicle and Pedestrian Detection in Rural Roads on an Embedded GPU. Electronics (Switzerland), 2020, 9, 589.	1.8	56
616	A Study of the Use of Gyroscope Measurements in Wearable Fall Detection Systems. Symmetry, 2020, 12, 649.	1.1	33
617	A Hybrid Network Based on Dense Connection and Weighted Feature Aggregation for Human Activity Recognition. IEEE Access, 2020, 8, 68320-68332.	2.6	16
618	Wearable Computing With Distributed Deep Learning Hierarchy: A Study of Fall Detection. IEEE Sensors Journal, 2020, 20, 9408-9416.	2.4	24
619	Deep Learning Approaches for Detecting Freezing of Gait in Parkinson's Disease Patients through On-Body Acceleration Sensors. Sensors, 2020, 20, 1895.	2.1	62
620	Multi-modal egocentric activity recognition using multi-kernel learning. Multimedia Tools and Applications, 2021, 80, 16299-16328.	2.6	7
621	An end-to-end deep learning model for human activity recognition from highly sparse body sensor data in Internet of Medical Things environment. Journal of Supercomputing, 2021, 77, 2237-2250.	2.4	28
622	Real-time multimodal ADL recognition using convolution neural networks. Visual Computer, 2021, 37, 1263-1276.	2.5	16
623	Fall risk assessment in the wild: A critical examination of wearable sensor use in free-living conditions. Gait and Posture, 2021, 85, 178-190.	0.6	30
624	Multi-Scale LSTM Model for BGP Anomaly Classification. IEEE Transactions on Services Computing, 2021, 14, 765-778.	3.2	33
625	Hybrid domain adaptation with deep network architecture for end-to-end cross-domain human activity recognition. Computers and Industrial Engineering, 2021, 151, 106953.	3.4	7
626	Multi-context embedding based personalized place semantics recognition. Information Processing and Management, 2021, 58, 102416.	5.4	6
627	Application of ensemble RNN deep neural network to the fall detection through IoT environment. AEJ - Alexandria Engineering Journal, 2021, 60, 199-211.	3.4	21
628	Physical Activity Recognition With Statistical-Deep Fusion Model Using Multiple Sensory Data for Smart Health. IEEE Internet of Things Journal, 2021, 8, 1533-1543.	5. 5	38
629	Cross-Subject and Cross-Modal Transfer for Generalized Abnormal Gait Pattern Recognition. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 546-560.	7.2	30
630	Multisensor-Based 3D Gesture Recognition for a Decision-Making Training System. IEEE Sensors Journal, 2021, 21, 706-716.	2.4	7

#	ARTICLE	IF	CITATIONS
631	Deep learning and case-based reasoning for predictive and adaptive traffic emergency management. Journal of Supercomputing, 2021, 77, 4389-4418.	2.4	26
632	Robust human position estimation in cooperative robotic cells. Robotics and Computer-Integrated Manufacturing, 2021, 67, 102035.	6.1	24
633	Wearables-based multi-task gait and activity segmentation using recurrent neural networks. Neurocomputing, 2021, 432, 250-261.	3.5	27
634	An automatic speed adaption neural network model for planetary gearbox fault diagnosis. Measurement: Journal of the International Measurement Confederation, 2021, 171, 108784.	2.5	23
635	Enhancing Representation of Deep Features for Sensor-Based Activity Recognition. Mobile Networks and Applications, 2021, 26, 130-145.	2.2	7
636	Activity classification using accelerometers and machine learning for complex construction worker activities. Journal of Building Engineering, 2021, 35, 102001.	1.6	31
637	PV power prediction in a peak zone using recurrent neural networks in the absence of future meteorological information. Renewable Energy, 2021, 173, 1098-1110.	4.3	48
638	Deep learning based multimodal complex human activity recognition using wearable devices. Applied Intelligence, 2021, 51, 4029-4042.	3.3	32
639	Deep learning for diagnosis and classification of faults in industrial rotating machinery. Computers and Industrial Engineering, 2021, 153, 107060.	3.4	78
640	Activities of Daily Living Recognition With Binary Environment Sensors Using Deep Learning: A Comparative Study. IEEE Sensors Journal, 2021, 21, 5423-5433.	2.4	21
641	Deep Learning to Predict Energy Expenditure and Activity Intensity in Free Living Conditions using Wrist-specific Accelerometry. Journal of Sports Sciences, 2021, 39, 683-690.	1.0	4
642	A deep learning approach for sepsis monitoring via severity score estimation. Computer Methods and Programs in Biomedicine, 2021, 198, 105816.	2.6	30
643	Lower body kinematics estimation from wearable sensors for walking and running: A deep learning approach. Gait and Posture, 2021, 83, 185-193.	0.6	43
644	Learning-Based Complex Motion Patterns Recognition for Pedestrian Dead Reckoning. IEEE Sensors Journal, 2021, 21, 4280-4290.	2.4	10
645	Layer-Wise Training Convolutional Neural Networks With Smaller Filters for Human Activity Recognition Using Wearable Sensors. IEEE Sensors Journal, 2021, 21, 581-592.	2.4	81
646	Transition-Aware Detection of Modes of Locomotion and Transportation Through Hierarchical Segmentation. IEEE Sensors Journal, 2021, 21, 3301-3313.	2.4	3
647	HierHAR: Sensor-Based Data-Driven Hierarchical Human Activity Recognition. IEEE Sensors Journal, 2021, 21, 3353-3365.	2.4	16
648	Waveform optimization of a two-axis smooth impact drive mechanism actuator. Journal of Intelligent Material Systems and Structures, 2021, 32, 156-168.	1.4	1

#	Article	IF	Citations
649	Identify Significant Phenomenon-Specific Variables for Multivariate Time Series. IEEE Transactions on Knowledge and Data Engineering, 2021, 33, 1019-1031.	4.0	7
650	HRNN4F: HYBRID DEEP RANDOM NEURAL NETWORK FOR MULTI-CHANNEL FALL ACTIVITY DETECTION. Probability in the Engineering and Informational Sciences, 2021, 35, 37-50.	0.6	18
651	Multistream Temporal Convolutional Network for Correct/Incorrect Patient Transfer Action Detection Using Body Sensor Network. IEEE Internet of Things Journal, 2021, , 1-1.	5 . 5	0
652	HARfog: An Ensemble Deep Learning Model for Activity Recognition Leveraging IoT and Fog Architectures. Studies in Computational Intelligence, 2021, , 127-136.	0.7	7
654	Hardware Failure Prediction on Imbalanced Times Series Data. Journal of Digital Imaging, 2021, 34, 182-189.	1.6	4
655	On-Device Lumbar-Pelvic Movement Detection Using Dual-IMU: A DNN-Based Approach. IEEE Access, 2021, 9, 62241-62254.	2.6	7
656	Monitoring Real-Time Personal Locomotion Behaviors Over Smart Indoor-Outdoor Environments Via Body-Worn Sensors. IEEE Access, 2021, 9, 70556-70570.	2.6	48
657	Data Fusion for Deep Learning on Transport Mode Detection: A Case Study. Proceedings of the International Neural Networks Society, 2021, , 141-152.	0.6	0
658	A Comparative Analysis on Sensor-Based Human Activity Recognition Using Various Deep Learning Techniques. Lecture Notes on Data Engineering and Communications Technologies, 2021, , 919-938.	0.5	4
659	A Deep Learning Method for Complex Human Activity Recognition Using Virtual Wearable Sensors. Lecture Notes in Computer Science, 2021, , 261-270.	1.0	7
660	Chances of Interpretable Transfer Learning for Human Activity Recognition in Warehousing. Lecture Notes in Computer Science, 2021, , 163-177.	1.0	1
661	A Survey of Deep Learning Techniques for Cybersecurity in Mobile Networks. IEEE Communications Surveys and Tutorials, 2021, 23, 1920-1955.	24.8	22
662	A Survey of Challenges and Opportunities in Sensing and Analytics for Risk Factors of Cardiovascular Disorders. ACM Transactions on Computing for Healthcare, 2021, 2, 1-42.	3.3	3
663	Octave Mix: Data Augmentation Using Frequency Decomposition for Activity Recognition. IEEE Access, 2021, 9, 53679-53686.	2.6	2
664	Deep Learning Shared Bandpass Filters for Resource-Constrained Human Activity Recognition. IEEE Access, 2021, 9, 39089-39097.	2.6	6
665	Sparse Feature Learning for Human Activity Recognition. , 2021, , .		2
666	Vehicular Trajectory Classification and Traffic Anomaly Detection in Videos Using a Hybrid CNN-VAE Architecture. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 11891-11902.	4.7	14
667	Smartphone Health Biomarkers: Positive Unlabeled Learning of In-the-Wild Contexts. IEEE Pervasive Computing, 2021, 20, 50-61.	1.1	5

#	Article	IF	CITATIONS
668	Non-invasive cuff-less blood pressure estimation using a hybrid deep learning model. Optical and Quantum Electronics, 2021, 53, 1.	1.5	23
669	A Machine Learning Multi-Class Approach for Fall Detection Systems Based on Wearable Sensors with a Study on Sampling Rates Selection. Sensors, 2021, 21, 938.	2.1	27
670	Smart architectures for evaluating the autonomy and behaviors of people with autism spectrum disorder in smart homes. , 2021, , 55-76.		1
671	IoT Device Onboarding, Monitoring, and Management. Advances in Web Technologies and Engineering Book Series, 2021, , 196-224.	0.4	2
672	Biometric User Identification Based on Human Activity Recognition Using Wearable Sensors: An Experiment Using Deep Learning Models. Electronics (Switzerland), 2021, 10, 308.	1.8	114
673	Towards Stroke Patients' Upper-Limb Automatic Motor Assessment Using Smartwatches. Lecture Notes in Computer Science, 2021, , 476-489.	1.0	4
674	Gesture Recognition Using Wearable Sensors With Bi-Long Short-Term Memory Convolutional Neural Networks. IEEE Sensors Journal, 2021, 21, 15065-15079.	2.4	19
675	Evaluation Model of Autonomous Vehicles' Speed Suitability Based on Overtaking Frequency. Sensors, 2021, 21, 371.	2.1	5
676	Deep Learning for Fire and Smoke Detection in Outdoor Spaces. Smart Innovation, Systems and Technologies, 2021, , 195-209.	0.5	0
677	Brain-Inspired Data Transmission in Dense Wireless Network. Sensors, 2021, 21, 576.	2.1	0
678	Feature learning using convolutional denoising autoencoder for activity recognition. Neural Computing and Applications, 2021, 33, 10909.	3.2	8
679	Hyper-Dimensional Computing Challenges and Opportunities for Al Applications. IEEE Access, 2022, 10, 97651-97664.	2.6	21
680	Recognizing Complex Activities by a Temporal Causal Network-Based Model. Lecture Notes in Computer Science, 2021, , 341-357.	1.0	0
681	The effect of hyperparameter search on artificial neural network in human activity recognition. Open Computer Science, 2021, 11, 411-422.	1.3	4
682	Machine and Deep Learning Algorithms for Wearable Health Monitoring. Health Information Science, 2021, , 105-160.	0.3	4
683	Hierarchical Self Attention Based Autoencoder for Open-Set Human Activity Recognition. Lecture Notes in Computer Science, 2021, , 351-363.	1.0	10
684	A Novel Multi-Stage Training Approach for Human Activity Recognition From Multimodal Wearable Sensor Data Using Deep Neural Network. IEEE Sensors Journal, 2021, 21, 1715-1726.	2.4	28
685	Shallow Convolutional Neural Networks for Human Activity Recognition Using Wearable Sensors. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-11.	2.4	45

#	Article	IF	CITATIONS
686	Deep Learning for SARS COV-2 Genome Sequences. IEEE Access, 2021, 9, 59597-59611.	2.6	28
687	Human Activity Recognition Using Deep Learning-Based Approach. Lecture Notes in Networks and Systems, 2021, , 813-830.	0.5	0
688	The Convolutional Neural Networks Training With Channel-Selectivity for Human Activity Recognition Based on Sensors. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 3834-3843.	3.9	23
689	Adapted Long Short-Term Memory (LSTM) for Concurrent\ Human Activity Recognition. Computers, Materials and Continua, 2021, 69, 1653-1670.	1.5	3
690	Deep Neural Networks for Sensor-Based Human Activity Recognition Using Selective Kernel Convolution. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-13.	2.4	43
691	Titchy: Online Time-Series Compression With Random Access for the Internet of Things. IEEE Internet of Things Journal, 2021, 8, 17568-17583.	5.5	4
692	Wi-PIGR: Path Independent Gait Recognition With Commodity Wi-Fi. IEEE Transactions on Mobile Computing, 2022, 21, 3414-3427.	3.9	6
693	Deep Learning for Human Activity Recognition Based on Causality Feature Extraction. IEEE Access, 2021, 9, 112257-112275.	2.6	9
694	Forest fire smoke detection under complex backgrounds using TRPCA and TSVB. International Journal of Wildland Fire, 2021, 30, 329-350.	1.0	17
695	Deep Learning-Based Activity Monitoring for Smart Environment Using Radar. EAI/Springer Innovations in Communication and Computing, 2021, , 91-123.	0.9	2
696	Machine learning for healthcare using wearable sensors. , 2021, , 137-149.		2
697	A Novel Sensor-Based Human Activity Recognition Method Based on Hybrid Feature Selection and Combinational Optimization. IEEE Access, 2021, 9, 107235-107249.	2.6	5
698	From Human Pose to On-Body Devices for Human-Activity Recognition. , 2021, , .		5
699	Driving Behavior Classification Based on Oversampled Signals of Smartphone Embedded Sensors Using an Optimized Stacked-LSTM Neural Networks. IEEE Access, 2021, 9, 4957-4972.	2.6	40
700	Improved LSTM-Based Abnormal Stream Data Detection and Correction System for Internet of Things. IEEE Transactions on Industrial Informatics, 2022, 18, 1282-1290.	7.2	12
701	Spherical DNNs and Their Applications in 360 Images and Videos. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 7235-7252.	9.7	13
702	Deep Learning for Detecting Human Activities From Piezoelectric-Based Kinetic Energy Signals. IEEE Internet of Things Journal, 2022, 9, 7545-7558.	5.5	6
703	IS-WARS: Intelligent and Stealthy Adversarial Attack to Wi-Fi-Based Human Activity Recognition Systems. IEEE Transactions on Dependable and Secure Computing, 2022, 19, 3899-3912.	3.7	6

#	Article	IF	Citations
705	Applying Deep Learning Techniques to Estimate Patterns of Musical Gesture. Frontiers in Psychology, 2020, 11, 575971.	1.1	4
706	Real-Time Driving Distraction Recognition Through a Wrist-Mounted Accelerometer. Human Factors, 2022, 64, 1412-1428.	2.1	7
707	Hybrid deep learning approaches for smartphone sensor-based human activity recognition. Multimedia Tools and Applications, 2021, 80, 35585-35604.	2.6	21
708	Fall Detection from Electrocardiogram (ECG) Signals and Classification by Deep Transfer Learning. Information (Switzerland), 2021, 12, 63.	1.7	14
709	Monitoring and analysis of athletes' local body movement status based on BP neural network. Journal of Intelligent and Fuzzy Systems, 2021, 40, 2325-2335.	0.8	4
711	Intelligent Brushing Monitoring Using a Smart Toothbrush with Recurrent Probabilistic Neural Network. Sensors, 2021, 21, 1238.	2.1	6
712	Efficiency of deep neural networks for joint angle modeling in digital gait assessment. Eurasip Journal on Advances in Signal Processing, 2021, 2021, .	1.0	18
713	Human Activity Recognition by Using Different Deep Learning Approaches for Wearable Sensors. Neural Processing Letters, 2021, 53, 1795-1809.	2.0	16
714	Wearable Inertial Measurement Unit Sensing System for Musculoskeletal Disorders Prevention in Construction. Sensors, 2021, 21, 1324.	2.1	18
715	A deep learning approach for lower back-pain risk prediction during manual lifting. PLoS ONE, 2021, 16, e0247162.	1.1	8
716	Few-shot pulse wave contour classification based on multi-scale feature extraction. Scientific Reports, 2021, 11, 3762.	1.6	1
717	Hand Gesture Recognition Using Single Patchable Six-Axis Inertial Measurement Unit via Recurrent Neural Networks. Sensors, 2021, 21, 1404.	2.1	22
718	Prediction of Wax Deposits for Crude Pipelines Using Time-Dependent Data Mining. SPE Journal, 2021, , 1-22.	1.7	3
719	Smartphone Sensor-Based Human Activity Recognition Robust to Different Sampling Rates. IEEE Sensors Journal, 2021, 21, 6930-6941.	2.4	18
720	Research on Fall Detection Algorithm Based on CNN and LSTM., 2021,,.		1
721	Recent progress in wearable tactile sensors combined with algorithms based on machine learning and signal processing. APL Materials, 2021, 9, .	2.2	8
722	Recognition of human activity and the state of an assembly task using vision and inertial sensor fusion methods. , $2021, , .$		5
723	Facilitating Human Activity Data Annotation via Context-Aware Change Detection on Smartwatches. Transactions on Embedded Computing Systems, 2021, 20, 1-20.	2.1	5

#	Article	IF	CITATIONS
724	ADELA., 2021,,.		1
725	Automatic Recognition of Workers' Motions in Highway Construction by Using Motion Sensors and Long Short-Term Memory Networks. Journal of Construction Engineering and Management - ASCE, 2021, 147, 04020184.	2.0	10
726	Data Augmentation Strategies for Human Activity Data Using Generative Adversarial Neural Networks. , 2021, , .		9
727	Deep Triplet Networks with Attention for Sensor-based Human Activity Recognition. , 2021, , .		26
728	Stick-Slip Classification Based on Machine Learning Techniques for Building Damage Assessment. Journal of Earthquake Engineering, 2022, 26, 5848-5865.	1.4	4
729	Image-based Activity Recognition from IMU Data. , 2021, , .		3
730	Towards Putting Deep Learning on the Wrist for Accurate Human Activity Recognition., 2021,,.		1
731	Deep ConvLSTM With Self-Attention for Human Activity Decoding Using Wearable Sensors. IEEE Sensors Journal, 2021, 21, 8575-8582.	2.4	82
732	Evaluation of deep learning model for human activity recognition. Evolving Systems, 2022, 13, 159-168.	2.4	7
733	High-Intensity Interval Training Exercise Recognition using Smartwatch. , 2021, , .		2
734	Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 2021, 8, 53.	6.9	2,200
735	Arı hastalıklarının hibrit bir derin öğrenme yöntemi ile tespiti. Journal of the Faculty of Engineering and Architecture of Gazi University, 2021, 36, 1715-1732.	0.3	5
736	Deep learning-based models for temporal satellite data processing: Classification of paddy transplanted fields. Ecological Informatics, 2021, 61, 101214.	2.3	14
737	Combining CNN and LSTM for activity of daily living recognition with a 3D matrix skeleton representation. Intelligent Service Robotics, 2021, 14, 175-185.	1.6	13
738	TapID: Rapid Touch Interaction in Virtual Reality using Wearable Sensing. , 2021, , .		33
739	An investigation of the utilisation of different data sources in manufacturing with application in injection moulding. International Journal of Production Research, 2021, 59, 4851-4868.	4.9	9
742	Benchmarking Annotation Procedures for Multi-channel Time Series HAR Dataset., 2021,,.		7
743	Sensor Based Human Activity Recognition by Multi-Headed ConvLSTM. , 2021, , .		1

#	Article	IF	CITATIONS
744	Attend and Discriminate., 2021, 5, 1-22.		33
745	Safety critical event prediction through unified analysis of driver and vehicle volatilities: Application of deep learning methods. Accident Analysis and Prevention, 2021, 151, 105949.	3.0	40
746	Statistical and Machine Learning Models for Classification of Human Wear and Delivery Days in Accelerometry Data. Sensors, 2021, 21, 2726.	2.1	2
747	From the Laboratory to the Field: IMU-Based Shot and Pass Detection in Football Training and Game Scenarios Using Deep Learning. Sensors, 2021, 21, 3071.	2.1	21
749	Designing a Sensor Glove Using Deep Learning. , 2021, , .		4
750	A novel algorithm to detect non-wear time from raw accelerometer data using deep convolutional neural networks. Scientific Reports, 2021, 11, 8832.	1.6	9
751	Robust Real-Time Group Activity Recognition of Robot Teams. IEEE Robotics and Automation Letters, 2021, 6, 2052-2059.	3.3	3
752	From Offline to Real-Time Distributed Activity Recognition in Wireless Sensor Networks for Healthcare: A Review. Sensors, 2021, 21, 2786.	2.1	9
753	Health Monitoring of Automotive Suspensions: A LSTM Network Approach. Shock and Vibration, 2021, 2021, 1-11.	0.3	4
754	IoT System Based on parameter optimization of Deep Learning using Genetic Algorithm. International Journal of Intelligent Engineering and Systems, 2021, 14, 220-235.	0.8	6
755	Deep ConvLSTM Network with Dataset Resampling for Upper Body Activity Recognition Using Minimal Number of IMU Sensors. Applied Sciences (Switzerland), 2021, 11, 3543.	1.3	9
756	Dilated causal convolution with multi-head self attention for sensor human activity recognition. Neural Computing and Applications, 2021, 33, 13705-13722.	3.2	42
757	Towards Detecting Pneumonia Progression in COVID-19 Patients by Monitoring Sleep Disturbance Using Data Streams of Non-Invasive Sensor Networks. Sensors, 2021, 21, 3030.	2.1	7
758	Human Action Recognition Using CNN-SVM Model. Advances in Science and Technology, 0, , .	0.2	12
759	New Sensor Data Structuring for Deeper Feature Extraction in Human Activity Recognition. Sensors, 2021, 21, 2814.	2.1	27
760	DNN-Based FES Control for Gait Rehabilitation of Hemiplegic Patients. Applied Sciences (Switzerland), 2021, 11, 3163.	1.3	7
761	A survey of cyber-physical system implementations of real-time personalized interventions. Journal of Ambient Intelligence and Humanized Computing, 2022, 13, 2325-2342.	3.3	6
762	Better Application of Bayesian Deep Learning to Diagnose Disease. , 2021, , .		2

#	Article	IF	CITATIONS
763	A Comparative Survey of Big Data Computing and HPC: From a Parallel Programming Model to a Cluster Architecture. International Journal of Parallel Programming, 2022, 50, 27-64.	1.1	8
764	Classification of Human Activities using data captured through a smartphone using deep learning techniques. , 2021, , .		3
765	Smartphone-Based Activity Recognition in a Pedestrian Navigation Context. Sensors, 2021, 21, 3243.	2.1	3
766	BeSafe B2.0 Smart Multisensory Platform for Safety in Workplaces. Sensors, 2021, 21, 3372.	2.1	10
767	An IoT-Based Smart Building Solution for Indoor Environment Management and Occupants Prediction. Energies, 2021, 14, 2959.	1.6	21
768	Action Recognition Using Pose Data in a Distributed Environment over the Edge and Cloud. IEICE Transactions on Information and Systems, 2021, E104.D, 539-550.	0.4	1
769	Personalized Human Activity Recognition using Hypergraph Learning with Fusion Features., 2021,,.		1
770	Deep Learning for Sensor-based Human Activity Recognition. ACM Computing Surveys, 2022, 54, 1-40.	16.1	141
771	Machine Learning Solutions for Bridge Scour Forecast Based on Monitoring Data. Transportation Research Record, 2021, 2675, 745-763.	1.0	9
772	A Method of Equipment Safety Certification Based on Daily Cycle Activity. , 2021, , .		2
773	A Survey of Deep Learning Based Models for Human Activity Recognition. Wireless Personal Communications, 2021, 120, 1593-1635.	1.8	25
774	A review of the evolution of scientific literature on technology-assisted approaches using RGB-D sensors for musculoskeletal health monitoring. Computers in Biology and Medicine, 2021, 132, 104316.	3.9	16
775	Inertial Measurement Unit based Human Action Recognition for Soft-Robotic Exoskeleton. IOP Conference Series: Materials Science and Engineering, 2021, 1140, 012020.	0.3	3
776	Optimal sensor channel selection for resource-efficient deep activity recognition. , 2021, , .		1
778	Demonstrating User Authentication via Electrical Muscle Stimulation., 2021,,.		1
779	User Authentication via Electrical Muscle Stimulation. , 2021, , .		8
780	Activity, Plan, and Goal Recognition: A Review. Frontiers in Robotics and AI, 2021, 8, 643010.	2.0	17
781	Pain Assessment based on fNIRS using Bi-LSTM RNNs. , 2021, , .		13

#	Article	IF	CITATIONS
782	Ultra-compact binary neural networks for human activity recognition on RISC-V processors. , 2021, , .		14
783	ANN-based automated scaffold builder activity recognition through wearable EMG and IMU sensors. Automation in Construction, 2021, 126, 103653.	4.8	57
784	A GRU Neural Network with attention mechanism for detection of risk situations on multimodal lifelog data. , 2021, , .		3
785	Combining skeleton and accelerometer data for human fine-grained activity recognition and abnormal behaviour detection with deep temporal convolutional networks. Multimedia Tools and Applications, 2021, 80, 28919-28940.	2.6	13
786	Understanding Driving Behavior Using fNIRS and Machine Learning., 2021,,.		2
787	Convolutional Neural Network with an Elastic Matching Mechanism for Time Series Classification. Algorithms, 2021, 14, 192.	1.2	4
788	MARS: Mixed Virtual and Real Wearable Sensors for Human Activity Recognition With Multidomain Deep Learning Model. IEEE Internet of Things Journal, 2021, 8, 9383-9396.	5 . 5	19
789	Hierarchical evolutionary classification framework for human action recognition using sparse dictionary optimization. Swarm and Evolutionary Computation, 2021, 63, 100873.	4.5	6
790	Combinatorial atomistic-to-Al prediction and experimental validation of heating effects in 350 F supercapacitor modules. International Journal of Heat and Mass Transfer, 2021, 171, 121075.	2.5	10
791	Digital twin-driven framework for improving self-management of ergonomic risks. Smart and Sustainable Built Environment, 2021, 10, 403-419.	2.2	28
792	A Spatio-Temporal Ensemble Deep Learning Architecture for Real-Time Defect Detection during Laser Welding on Low Power Embedded Computing Boards. Sensors, 2021, 21, 4205.	2.1	29
793	Contrastive Predictive Coding for Human Activity Recognition. , 2021, 5, 1-26.		51
794	Energy-efficient neural networks with near-threshold processors and hardware accelerators. Journal of Systems Architecture, 2021, 116, 102062.	2.5	4
795	A Review on Human Action Recognition Approaches. , 2021, , .		3
796	Fluid Intake Monitoring Systems for the Elderly: A Review of the Literature. Nutrients, 2021, 13, 2092.	1.7	23
797	A Real-Time Portable IoT System for Telework Tracking. Frontiers in Digital Health, 2021, 3, 643042.	1.5	2
798	Human Activity Recognition With Smartphone and Wearable Sensors Using Deep Learning Techniques: A Review. IEEE Sensors Journal, 2021, 21, 13029-13040.	2.4	182
799	Estimation of unloading relaxation depth of Baihetan Arch Dam foundation using long-short term memory network. Water Science and Engineering, 2021, 14, 149-158.	1.4	2

#	ARTICLE	IF	CITATIONS
800	Are Machine Learning Methods the Future for Smoking Cessation Apps?. Sensors, 2021, 21, 4254.	2.1	1
801	A Deep Learning Approach for Recognizing Activity of Daily Living (ADL) for Senior Care: Exploiting Interaction Dependency and Temporal Patterns. MIS Quarterly: Management Information Systems, 2021, 45, 859-896.	3.1	22
802	Temperature monitoring and prediction under different transmission modes. Computers and Electrical Engineering, 2021, 92, 107140.	3.0	7
803	Location-based Daily Human Activity Recognition using Hybrid Deep Learning Network. , 2021, , .		15
804	Adaptive Multi-Scale Wavelet Neural Network for Time Series Classification. Information (Switzerland), 2021, 12, 252.	1.7	5
805	Attention-Based Deep Learning Framework for Human Activity Recognition With User Adaptation. IEEE Sensors Journal, 2021, 21, 13474-13483.	2.4	30
806	Activity-Aware Vital Sign Monitoring Based on a Multi-Agent Architecture. Sensors, 2021, 21, 4181.	2.1	3
807	Hybrid deep neural model for hourly solar irradiance forecasting. Renewable Energy, 2021, 171, 1041-1060.	4.3	82
808	Analysis on change detection techniques for remote sensing applications: A review. Ecological Informatics, 2021, 63, 101310.	2.3	59
809	Ambient Sound Recognition of Daily Events by Means of Convolutional Neural Networks and Fuzzy Temporal Restrictions. Applied Sciences (Switzerland), 2021, 11, 6978.	1.3	5
810	SL-BiLSTM: A Signal-Based Bidirectional LSTM Network for Over-the-Horizon Target Localization. Mathematical Problems in Engineering, 2021, 2021, 1-9.	0.6	3
811	Early-Stage Gas Identification Using Convolutional Long Short-Term Neural Network with Sensor Array Time Series Data. Sensors, 2021, 21, 4826.	2.1	13
812	Recurrent Neural Network for Human Activity Recognition in Embedded Systems Using PPG and Accelerometer Data. Electronics (Switzerland), 2021, 10, 1715.	1.8	37
813	A Survey on Wearable Technology: History, State-of-the-Art and CurrentÂChallenges. Computer Networks, 2021, 193, 108074.	3.2	211
814	Inertial Measurement Unit Sensors in Assistive Technologies for Visually Impaired People, a Review. Sensors, 2021, 21, 4767.	2.1	8
815	The Contribution of Machine Learning in the Validation of Commercial Wearable Sensors for Gait Monitoring in Patients: A Systematic Review. Sensors, 2021, 21, 4808.	2.1	23
816	Blockchain technology: A <scp>DNN</scp> tokenâ€based approach in healthcare and <scp>COVID</scp> â€19 to generate extracted data. Expert Systems, 2022, 39, e12778.	2.9	25
817	A Generative Latent Space Approach for Real-Time Road Surveillance in Smart Cities. IEEE Transactions on Industrial Informatics, 2021, 17, 4872-4881.	7.2	10

#	ARTICLE	IF	CITATIONS
818	Domain models for data sources integration in HAR. Neurocomputing, 2021, 444, 244-259.	3.5	2
819	Deep learning analysis based on multi-sensor fusion data for hemiplegia rehabilitation training system for stoke patients. Robotica, 2022, 40, 780-797.	1.3	7
820	Interpretable deep learning for the remote characterisation of ambulation in multiple sclerosis using smartphones. Scientific Reports, 2021, 11, 14301.	1.6	5
821	Toward Understanding Acceleration-based Activity Recognition Neural Networks with Activation Maximization., 2021,,.		7
822	Deep Convolutional Neural Network with RNNs for Complex Activity Recognition Using Wrist-Worn Wearable Sensor Data. Electronics (Switzerland), 2021, 10, 1685.	1.8	62
823	Driver stress detection via multimodal fusion using attention-based CNN-LSTM. Expert Systems With Applications, 2021, 173, 114693.	4.4	7 3
824	Classical Machine Learning Versus Deep Learning for the Older Adults Free-Living Activity Classification. Sensors, 2021, 21, 4669.	2.1	15
825	Visualization of Multivariate Time-Series Characteristics of Ground Loss Caused by Shield Tunneling. Shock and Vibration, 2021, 2021, 1-17.	0.3	1
827	Unsupervised Learning for Product Use Activity Recognition: An Exploratory Study of a "Chatty Device†Sensors, 2021, 21, 4991.	2.1	7
828	Predicting the knowledge flow of social networks based on machine learning. Journal of Physics: Conference Series, 2021, 1963, 012096.	0.3	2
829	Activity recognition from smartphone data using weighted learning methods. Intelligenza Artificiale, 2021, 15, 1-15.	1.0	1
830	A review of multimodal human activity recognition with special emphasis on classification, applications, challenges and future directions. Knowledge-Based Systems, 2021, 223, 106970.	4.0	112
831	Ultra-short-term prediction of photovoltaic output based on an LSTM-ARMA combined model driven by EEMD. Journal of Renewable and Sustainable Energy, 2021, 13, .	0.8	19
832	No Interface, No Problem: Gesture Recognition on Physical Objects Using Radar Sensing. Sensors, 2021, 21, 5771.	2.1	7
833	Forecasting of Typhoon-Induced Wind-Wave by Using Convolutional Deep Learning on Fused Data of Remote Sensing and Ground Measurements. Sensors, 2021, 21, 5234.	2.1	12
834	Secchi depth inversion and its temporal and spatial variation analysisâ€"A case study of nine plateau lakes in Yunnan Province of China. International Journal of Applied Earth Observation and Geoinformation, 2021, 100, 102344.	1.4	7
835	Contrastive Self-supervised Learning for Sensor-based Human Activity Recognition. , 2021, , .		26
836	Wearable sensor-based pattern mining for human activity recognition: deep learning approach. Industrial Robot, 2022, 49, 21-33.	1.2	45

#	Article	IF	CITATIONS
837	A multibranch CNN-BiLSTM model for human activity recognition using wearable sensor data. Visual Computer, 2022, 38, 4095-4109.	2.5	114
838	Block-Wise Training Residual Networks on Multi-Channel Time Series for Human Activity Recognition. IEEE Sensors Journal, 2021, 21, 18063-18074.	2.4	11
840	Sequential Weakly Labeled Multiactivity Localization and Recognition on Wearable Sensors Using Recurrent Attention Networks. IEEE Transactions on Human-Machine Systems, 2021, 51, 355-364.	2.5	28
841	Continuous physical activity recognition for intelligent labour monitoring. Multimedia Tools and Applications, $0,1.$	2.6	0
842	Industrial robot programming by demonstration using stereoscopic vision and inertial sensing. Industrial Robot, 2022, 49, 96-107.	1.2	3
843	Digital forensics system based on dynamic path prediction and the competitiveness of cross-border e-commerce SMEs. Personal and Ubiquitous Computing, 0 , 1 .	1.9	4
844	COVID-19 Patient Count Prediction Using LSTM. IEEE Transactions on Computational Social Systems, 2021, 8, 974-981.	3.2	29
845	Smartphone Sensor Accelerometer Data for Human Activity Recognition Using Spiking Neural Network. International Journal of Machine Learning and Computing, 2021, 11, 298-303.	0.8	6
846	Spatio-temporal deep neural networks for accession classification of Arabidopsis plants using image sequences. Ecological Informatics, 2021, 64, 101334.	2.3	6
847	Real-time recognition of team behaviors by multisensory graph-embedded robot learning. International Journal of Robotics Research, 2022, 41, 798-811.	5 . 8	3
848	Approaching the Real-World. , 2021, 5, 1-32.		16
849	Classifying Goliath Grouper (Epinephelus itajara) Behaviors from a Novel, Multi-Sensor Tag. Sensors, 2021, 21, 6392.	2.1	3
850	DANA., 2021, 5, 1-27.		14
851	Recognizing human violent action using drone surveillance within real-time proximity. Journal of Real-Time Image Processing, 2021, 18, 1851-1863.	2.2	16
852	A Survey of Human Activity Recognition in Smart Homes Based on IoT Sensors Algorithms: Taxonomies, Challenges, and Opportunities with Deep Learning. Sensors, 2021, 21, 6037.	2.1	79
853	Inductive Gaussian representation of user-specific information for personalized stress-level prediction. Expert Systems With Applications, 2021, 178, 114912.	4.4	5
854	A Comparative Study of Time Frequency Representation Techniques for Freeze of Gait Detection and Prediction. Sensors, 2021, 21, 6446.	2.1	10
855	IGBT lifetime prediction based on EMD-LSTM. Journal of Physics: Conference Series, 2021, 2010, 012143.	0.3	0

#	Article	IF	CITATIONS
856	On the Role of Context Length for Feature Extraction and Sequence Modeling in Human Activity Recognition. , 2021, , .		2
857	Recognition of Fine-Grained Walking Patterns Using a Smartwatch with Deep Attentive Neural Networks. Sensors, 2021, 21, 6393.	2.1	12
858	Human Activity Recognition for Indoor Localization Using Smartphone Inertial Sensors. Sensors, 2021, 21, 6316.	2.1	12
859	State-of-the-art survey on activity recognition and classification using smartphones and wearable sensors. Multimedia Tools and Applications, 2022, 81, 1077-1108.	2.6	7
861	1D Convolution approach to human activity recognition using sensor data and comparison with machine learning algorithms. International Journal of Cognitive Computing in Engineering, 2021, 2, 130-143.	5.5	13
862	Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope. Biosensors, 2021, 11, 336.	2.3	175
863	An intelligent quantitative trading system based on intuitionistic-GRU fuzzy neural networks. Applied Soft Computing Journal, 2021, 108, 107471.	4.1	18
864	Human activity recognition using deep transfer learning of cross position sensor based on vertical distribution of data. Multimedia Tools and Applications, 2022, 81, 22307-22322.	2.6	8
865	A hybrid CNN and BLSTM network for human complex activity recognition with multi-feature fusion. Multimedia Tools and Applications, 2021, 80, 36159-36182.	2.6	6
866	An inertial sensing mechanism for measuring gait parameters and gait energy expenditure. Biomedical Signal Processing and Control, 2021, 70, 103056.	3.5	2
867	MoCapaci: Posture and gesture detection in loose garments using textile cables as capacitive antennas. , 2021, , .		10
868	Active Sense: Early Staging of Non-Insulin Dependent Diabetes Mellitus (NIDDM) Hinges upon Recognizing Daily Activity Pattern. Electronics (Switzerland), 2021, 10, 2194.	1.8	2
869	Convolutional neural network modeling strategy for fall-related motion recognition using acceleration features of a scaffolding structure. Automation in Construction, 2021, 130, 103857.	4.8	11
870	Attention induced multi-head convolutional neural network for human activity recognition. Applied Soft Computing Journal, 2021, 110, 107671.	4.1	74
871	Recognition of Musical Instrument Using Deep Learning Techniques. International Journal of Information Retrieval Research, 2021, 11, 41-60.	0.6	1
872	Applying incremental Deep Neural Networks-based posture recognition model for ergonomics risk assessment in construction. Advanced Engineering Informatics, 2021, 50, 101374.	4.0	23
873	A temperature compensated biaxial eFM accelerometer in Epi-seal process. Sensors and Actuators A: Physical, 2021, 330, 112860.	2.0	6
874	Skeleton-based human activity recognition using ConvLSTM and guided feature learning. Soft Computing, 2022, 26, 877-890.	2.1	34

#	Article	IF	Citations
875	DanHAR: Dual Attention Network for multimodal human activity recognition using wearable sensors. Applied Soft Computing Journal, 2021, 111, 107728.	4.1	78
876	hyper-sinh: An accurate and reliable function from shallow to deep learning in TensorFlow and Keras. Machine Learning With Applications, 2021, 6, 100112.	3.0	8
877	A visualized bibliometric analysis of mapping research trends of machine learning in engineering (MLE). Expert Systems With Applications, 2021, 186, 115728.	4.4	28
878	A sea clutter detection method based on LSTM error frequency domain conversion. AEJ - Alexandria Engineering Journal, 2022, 61, 883-891.	3.4	6
879	Factored Latent-Dynamic Conditional Random Fields for single and multi-label sequence modeling. Pattern Recognition, 2022, 122, 108236.	5.1	5
880	Recurrent Neural Networks Architectures for Accidental Fall Detection on Wearable Embedded Devices., 2021,, 81-98.		0
881	TransNet. ACM Transactions on Design Automation of Electronic Systems, 2021, 26, 1-31.	1.9	7
882	Learning Sensor Interdependencies for IMU-to-Segment Assignment. IEEE Access, 2021, 9, 116440-116452.	2.6	1
883	Deep Convolutional and LSTM Networks on Multi-Channel Time Series Data for Gait Phase Recognition. Sensors, 2021, 21, 789.	2.1	18
884	Deep Learning for Accelerometric Data Assessment and Ataxic Gait Monitoring. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 360-367.	2.7	24
885	Invariant Feature Learning for Sensor-based Human Activity Recognition. IEEE Transactions on Mobile Computing, 2021, , 1-1.	3.9	8
886	A Novel Human Activity Recognition Strategy Using Extreme Learning Machine Algorithm for Smart Health. Advances in Intelligent Systems and Computing, 2021, , 215-222.	0.5	3
887	Detection of Dementia-Related Abnormal Behaviour Using Recursive Auto-Encoders. Sensors, 2021, 21, 260.	2.1	4
888	Estimation of Blood Alcohol Concentration From Smartphone Gait Data Using Neural Networks. IEEE Access, 2021, 9, 61237-61255.	2.6	9
889	Transfer learning for wearable computers. , 2021, , 435-459.		0
890	LSTM Based Hybrid Method for Basin Water Level Prediction by Using Precipitation Data. Journal of Advanced Simulation in Science and Engineering, 2021, 8, 40-52.	0.1	4
891	A Novel Signal Localized Convolution Neural Network for Power Transformer Differential Protection. IEEE Transactions on Power Delivery, 2022, 37, 1242-1251.	2.9	8
892	Learning Disentangled Representation for Mixed-Reality Human Activity Recognition With a Single IMU Sensor. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-14.	2.4	18

#	Article	IF	CITATIONS
893	Activity Recognition for Ambient Assisted Living with Videos, Inertial Units and Ambient Sensors. Sensors, 2021, 21, 768.	2.1	36
894	PerceptionNet: A Deep Convolutional Neural Network for Late Sensor Fusion. Advances in Intelligent Systems and Computing, 2019, , 101-119.	0.5	10
895	Model Selection in Committees of Evolved Convolutional Neural Networks Using Genetic Algorithms. Lecture Notes in Computer Science, 2018, , 364-373.	1.0	6
896	Automated General Movement Assessment for Perinatal Stroke Screening in Infants. Computer Communications and Networks, 2020, , 167-187.	0.8	1
897	TSXplain: Demystification of DNN Decisions for Time-Series Using Natural Language and Statistical Features. Lecture Notes in Computer Science, 2019, , 426-439.	1.0	10
898	LSTM with Uniqueness Attention for Human Activity Recognition. Lecture Notes in Computer Science, 2019, , 498-509.	1.0	6
900	Reminder Care System: An Activity-Aware Cross-Device Recommendation System. Lecture Notes in Computer Science, 2019, , 207-220.	1.0	7
901	Detecting Human Activities Based on a Multimodal Sensor Data Set Using a Bidirectional Long Short-Term Memory Model: A Case Study. Studies in Systems, Decision and Control, 2020, , 31-51.	0.8	10
903	Deep Learning for Sensor-Based Activity Recognition: Recent Trends. Intelligent Systems Reference Library, 2021, , 149-173.	1.0	4
904	Deep Learning for Action and Gesture Recognition in Image Sequences: A Survey. The Springer Series on Challenges in Machine Learning, 2017, , 539-578.	10.4	31
905	Human Activity Recognition Using Place-Based Decision Fusion in Smart Homes. Lecture Notes in Computer Science, 2017, , 137-150.	1.0	7
906	A Dataset of Routine Daily Activities in an Instrumented Home. Lecture Notes in Computer Science, 2017, , 413-425.	1.0	25
907	Human Activity Recognition Using Radial Basis Function Neural Network Trained via a Minimization of Localized Generalization Error. Lecture Notes in Computer Science, 2017, , 498-507.	1.0	6
908	Food Intake Detection from Inertial Sensors Using LSTM Networks. Lecture Notes in Computer Science, 2017, , 411-418.	1.0	16
909	EEGNAS: Neural Architecture Search for Electroencephalography Data Analysis and Decoding. Communications in Computer and Information Science, 2019, , 3-20.	0.4	10
910	A CNN-LSTM neural network for recognition of puffing in smoking episodes using wearable sensors. Biomedical Engineering Letters, 2020, 10, 195-203.	2.1	34
911	Vision-based human action recognition: An overview and real world challenges. Forensic Science International: Digital Investigation, 2020, 32, 200901.	1.2	74
912	Research and comprehensive evaluation on delivery schemes of the Grand Inga hydropower station. Global Energy Interconnection, 2020, 3, 521-531.	1.4	3

#	Article	IF	Citations
913	Application of deep learning to improve sleep scoring of wrist actigraphy. Sleep Medicine, 2020, 74, 235-241.	0.8	17
915	A Deep Learning Approach for Human Activities Recognition From Multimodal Sensing Devices. IEEE Access, 2020, 8, 179028-179038.	2.6	53
916	Use of Wearable Technologies for Analysis of Activity recognition for sports. , 2020, , .		3
917	ALANet:Autoencoder-LSTM for pain and protective behaviour detection. , 2020, , .		3
918	Hierarchical Multi-Classification for Sensor-based Badminton Activity Recognition. , 2020, , .		7
919	WiFi-based Human Activity Recognition using Raspberry Pi. , 2020, , .		19
920	An Integrated ARMA-Based Deep Autoencoder and GRU Classifier System for Enhanced Recognition of Daily Hand Activities. International Journal of Pattern Recognition and Artificial Intelligence, 2021, 35, 2152006.	0.7	6
921	MANDOLA. ACM Transactions on Internet Technology, 2020, 20, 1-21.	3.0	36
922	Sensor-based Detection and Classification of Soccer Goalkeeper Training Exercises. ACM Transactions on Internet of Things, 2020, 1, 1-20.	3.4	10
923	METIER., 2020, 4, 1-18.		44
924	"Was that successful?" On Integrating Proactive Meta-Dialogue in a DIY-Assistant using Multimodal Cues. , 2020, , .		11
925	Augmenting DL with Adversarial Training for Robust Prediction of Epilepsy Seizures. ACM Transactions on Computing for Healthcare, 2020, 1, 1-18.	3.3	16
926	Employing a deep convolutional neural network for human activity recognition based on binary ambient sensor data., 2020,,.		11
927	Emotion Recognition using EEG and Physiological Data for Robot-Assisted Rehabilitation Systems. , 2020, , .		15
928	Extraction and Interpretation of Deep Autoencoder-based Temporal Features from Wearables for Forecasting Personalized Mood, Health, and Stress. , 2020, 4, 1-26.		49
929	Adversarial Multi-view Networks for Activity Recognition. , 2020, 4, 1-22.		26
930	Deep generative cross-modal on-body accelerometer data synthesis from videos. , 2020, , .		11
931	Masked reconstruction based self-supervision for human activity recognition. , 2020, , .		54

#	Article	IF	CITATIONS
932	Towards deep clustering of human activities from wearables. , 2020, , .		12
933	IMUTube., 2020, 4, 1-29.		74
934	Deep Recurrent Neural Networks for Edge Monitoring of Personal Risk and Warning Situations. Scientific Programming, 2019, 2019, 1-10.	0.5	26
935	A Review of Physical Human Activity Recognition Chain Using Sensors. Indonesian Journal of Electrical Engineering and Informatics, 2020, 8, .	0.3	3
936	CAPHAR: context-aware personalized human activity recognition using associative learning in smart environments. Human-centric Computing and Information Sciences, 2020, 10, .	6.1	23
937	Application of the Long Short-Term Memory Networks for Flood Forecast. Journal of Water Resources Research, 2019, 08, 24-32.	0.1	1
938	Survey on Human Activity Recognition based on Acceleration Data. International Journal of Advanced Computer Science and Applications, 2019, 10, .	0.5	43
939	Towards a Framework for Semi-Automated Annotation of Human Order Picking Activities Using Motion Capturing. , 0, , .		8
940	Daily Activity Recognition with Large-Scaled Real-Life Recording Datasets Based on Deep Neural Network Using Multi-Modal Signals. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2018, E101.A, 199-210.	0.2	11
941	A Trio Neural Model for Dynamic Entity Relatedness Ranking. , 2018, , .		2
942	Deep Learning Intervention for Health Care Challenges: Some Biomedical Domain Considerations. JMIR MHealth and UHealth, 2019, 7, e11966.	1.8	110
943	Development and Clinical Evaluation of a Web-Based Upper Limb Home Rehabilitation System Using a Smartwatch and Machine Learning Model for Chronic Stroke Survivors: Prospective Comparative Study. JMIR MHealth and UHealth, 2020, 8, e17216.	1.8	101
944	Hand Gesture Recognition in Video Sequences Using Deep Convolutional and Recurrent Neural Networks. Applied Computer Science, 2020, 25, 57-61.	0.3	13
945	Privacy Issues Regarding the Application of DNNs to Activity-Recognition using Wearables and Its Countermeasures by Use of Adversarial Training. , 2017, , .		23
946	AttnSense: Multi-level Attention Mechanism For Multimodal Human Activity Recognition., 2019,,.		95
947	A Novel Distribution-Embedded Neural Network for Sensor-Based Activity Recognition. , 2019, , .		25
948	Developing a Start-to-Finish Pipeline for Accelerometer-Based Activity Recognition Using Long Short-Term Memory Recurrent Neural Networks. , 2018, , .		2
949	Research on the Key Technologies of Motor Imagery EEG Signal Based on Deep Learning. Journal of Autonomous Intelligence, 2020, 2, .	0.1	2

#	Article	IF	CITATIONS
950	LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes. Sensors, 2021, 21, 1636.	2.1	158
951	Human Activity Recognition and Embedded Application Based on Convolutional Neural Network. , 2021, 1, 51-60.		68
952	A Large-Scale Study in Predictability of Daily Activities and Places. , 2016, , .		13
953	Towards a Digital Personal Trainer for Health Clubs - Sport Exercise Recognition Using Personalized Models and Deep Learning. , 2018, , .		4
954	Deep learning approaches for human activity recognition using wearable technology. Medicinski Podmladak, 2018, 69, 14-24.	0.2	5
955	A hybrid model for photovoltaic power prediction of both convolutional and long short-term memory neural networks optimized by genetic algorithm. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 100701.	0.2	12
956	A Novel Attention-Based Convolution Neural Network for Human Activity Recognition. IEEE Sensors Journal, 2021, 21, 27015-27025.	2.4	13
957	Deep Crash Detection From Vehicular Sensor Data With Multimodal Self-Supervision. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 12480-12489.	4.7	1
958	CARTMAN: Complex Activity Recognition Using Topic Models for Feature Generation from Wearable Sensor Data., 2021,,.		2
959	Evaluation of Deep Learning Models for Smoking Recognition with Smartwatch and Smartphone Sensors. Balkan Journal of Electrical and Computer Engineering, 2021, 9, 354-364.	0.4	0
960	A Novel Approach for Gait Recognition Based on CC-LSTM-CNN Method., 2021,,.		3
961	Comparison of Keras Optimizers for Earthquake Signal Classification Based on Deep Neural Networks. , 2021, , .		6
962	Confidence-Calibrated Human Activity Recognition. Sensors, 2021, 21, 6566.	2.1	5
963	Wearable Assistive Robotics: A Perspective on Current Challenges and Future Trends. Sensors, 2021, 21, 6751.	2.1	15
964	Human Activity Recognition Using 1D Convolutional Neural Network. Advances in Intelligent Systems and Computing, 2022, , 691-702.	0.5	11
965	A lightweight neural network framework using linear grouped convolution for human activity recognition on mobile devices. Journal of Supercomputing, 2022, 78, 6696-6716.	2.4	13
966	Learning architecture for the recognition of walking and prediction of gait period using wearable sensors. Neurocomputing, 2022, 470, 1-10.	3.5	3
967	HARNAS: Human Activity Recognition Based on Automatic Neural Architecture Search Using Evolutionary Algorithms. Sensors, 2021, 21, 6927.	2.1	7

#	Article	IF	Citations
968	An Intelligent Metaheuristic Binary Pigeon Optimization-Based Feature Selection and Big Data Classification in a MapReduce Environment. Mathematics, 2021, 9, 2627.	1.1	26
969	A Many-Objective Simultaneous Feature Selection and Discretization for LCS-Based Gesture Recognition. Applied Sciences (Switzerland), 2021, 11, 9787.	1.3	2
970	Sabotage Detection Using DL Models on EEG Data From a Cognitive-Motor Integration Task. Frontiers in Human Neuroscience, 2021, 15, 662875.	1.0	2
971	Multiscale Bidirectional Input Convolutional and Deep Neural Network for Human Activity Recognition. Wireless Communications and Mobile Computing, 2021, 2021, 1-9.	0.8	O
972	Towards a Clustering Guided Hierarchical Framework for Sensor-Based Activity Recognition. Sensors, 2021, 21, 6962.	2.1	1
973	Application of Deep Learning for Quality of Service Enhancement in Internet of Things: A Review. Energies, 2021, 14, 6384.	1.6	8
974	Pragmatic Big Data and smart manufacturing., 2017,,.		0
975	Semi-Supervised Distillation: Personalizing Deep Neural Networks in Activity Recognition using Inertial Sensors. Transactions of the Japanese Society for Artificial Intelligence, 2017, 32, A-G82_1-11.	0.1	0
976	User-Adversarial Neural Networks:. Transactions of the Japanese Society for Artificial Intelligence, 2017, 32, A-GB5_1-12.	0.1	0
978	Development of a Holistic System for Activity Classification Based on Multimodal Sensor Data. , 0, , .		0
979	Detection of human respiration patterns using deep convolution neural networks. Eastern-European Journal of Enterprise Technologies, 2018, 4, 6-13.	0.3	8
980	Multimodal Egocentric Activity Recognition Using Multi-stream CNN. , 2018, , .		3
981	Deep Neural Networks for Human Behavior Understanding. , 2019, , 667-679.		0
982	Ubiquitous Wearable Healthcare Monitoring System Architectural Design for Prevention, Detection, and Monitoring of Chronic Diseases. Advances in Medical Diagnosis, Treatment, and Care, 2019, , 190-218.	0.1	0
983	Human Activity Recognition Using Deep Models and Its Analysis from Domain Adaptation Perspective. Lecture Notes in Computer Science, 2019, , 189-202.	1.0	2
984	Robustness of Deep LSTM Networks in Freehand Gesture Recognition. Lecture Notes in Computer Science, 2019, , 330-343.	1.0	5
986	Benchmark Performance for the Sussex-Huawei Locomotion and Transportation Recognition Challenge 2018. Springer Series in Adaptive Environments, 2019, , 153-170.	0.3	0
987	SWAP at SemEval-2019 Task 3: Emotion detection in conversations through Tweets, CNN and LSTM deep neural networks. , 2019, , .		1

#	Article	IF	CITATIONS
988	Using Deep Learning and Smartphone for Automatic Detection of Fall and Daily Activities. Lecture Notes in Computer Science, 2019, , 61-74.	1.0	5
989	Generation of Individual Activity Classifiers for the Use in Mobile Context-Aware Applications. Communications in Computer and Information Science, 2019, , 303-310.	0.4	0
990	Bayesian Optimization of Neural Architectures for Human Activity Recognition. Springer Series in Adaptive Environments, 2019, , 171-195.	0.3	1
991	Deep Modular Multimodal Fusion on Multiple Sensors for Volcano Activity Recognition. Lecture Notes in Computer Science, 2019, , 602-617.	1.0	0
993	Efficient Sparse Processing in Smart Home Applications. , 2019, , .		0
994	Recognition of Manual Driving Distraction Through Deep-Learning and Wearable Sensing. , 0, , .		7
995	Machine learning interpretation of inter-well radiowave survey data. Computer Research and Modeling, 2019, 11, 675-684.	0.2	1
996	Fluid intake recognition using inertial sensors. , 2019, , .		7
998	Latent Markov Chain Encoding for Abnormal Landing Event Detection. , 2019, , .		0
999	Acceleration classification of earthquake signals and linear signals of human activity using smartphone accelerometer based on support vector machine algorithm. Jurnal Teknologi Dan Sistem Komputer, 2019, 7, 166-171.	0.2	0
1000	AugToAct., 2019,,.		10
1001	Motion Monitoring for Limb Exercise. , 2019, , .		0
1002	A Brief View on Medical Diagnosis Applications with Deep Learning. Studies in Computational Intelligence, 2021, , 29-52.	0.7	1
1004	Machine Learning in 5G WirelessÂNetworks. Springer Series in Wireless Technology, 2021, , 391-410.	1.1	0
1005	1D Convolutional Neural Network with Long Short-Term Memory for Human Activity Recognition. , 2021, , .		3
1006	Are Microcontrollers Ready for Deep Learning-Based Human Activity Recognition?. Electronics (Switzerland), 2021, 10, 2640.	1.8	11
1007	Scoring Performance on the Y-Balance Test Using a Deep Learning Approach. Sensors, 2021, 21, 7110.	2.1	4
1008	Human Activity Recognition: A Dynamic Inductive Bias Selection Perspective. Sensors, 2021, 21, 7278.	2.1	5

#	Article	IF	CITATIONS
1009	Activity Recognition Analysis System and Application Based on Convolutional Neural Network. Computer Science and Application, 2020, 10, 1690-1697.	0.0	0
1010	Improved Human Activity Recognition Model based on Sequence Mixup., 2020,,.		0
1011	Effectiveness of multi-gated sequence model for the learning of kinematics and dynamics of an industrial robot. Industrial Robot, 2021, 48, 62-70.	1.2	2
1012	GAN-based Style Transformation to Improve Gesture-recognition Accuracy. , 2020, 4, 1-20.		13
1013	On-Device Deep Personalization for Robust Activity Data Collection. Sensors, 2021, 21, 41.	2.1	9
1014	Head-AR: Human Activity Recognition with Head-Mounted IMU Using Weighted Ensemble Learning. Smart Innovation, Systems and Technologies, 2021, , 153-167.	0.5	6
1016	Hybrid deep neural networks to infer state models of black-box systems. , 2020, , .		3
1017	Deriving Effective Human Activity Recognition Systems through Objective Task Complexity Assessment. , 2020, 4, 1-24.		9
1018	Deep Neural Network Sleep Scoring Using Combined Motion and Heart Rate Variability Data. Sensors, 2021, 21, 25.	2.1	12
1019	CRUFT: Context Recognition under Uncertainty using Fusion and Temporal Learning. , 2020, , .		5
1022	Dominance of Deep LSTM in Smartphone Sensor based Human Activity Classification. , 2020, , .		0
1023	Human Activity Recognition based on Acceleration sensor and Neural Network., 2020,,.		3
1024	Human activity recognition and classification using of convolutional neural networks and recurrent neural networks. International Journal of Applied Mathematics Electronics and Computers, 0, , 185-189.	0.6	2
1025	Action recognition for educational proposals applying concepts of Social Assistive Robotics. Cognitive Systems Research, 2022, 71, 1-8.	1.9	10
1026	A Machine Learning Approach for Walker Identification Using Smartphone Sensors. Studies in Computational Intelligence, 2020, , 229-247.	0.7	0
1027	Exploration of Sensor-Based Activity Recognition Based on Time Series Feature Extraction. , 2021, , .		1
1028	Barrier Detection Using Sensor Data from Multiple Transportation Modes. Journal of Information Processing, 2020, 28, 577-587.	0.3	0
1029	Knee Injured Recovery Analysis Using Extreme Learning Machine. Communications in Computer and Information Science, 2020, , 65-79.	0.4	0

#	Article	IF	CITATIONS
1030	Deep Learning for Next-Generation Inventive Wireless Networks. Advances in Computational Intelligence and Robotics Book Series, 2020, , 183-199.	0.4	0
1031	Personalised Meta-Learning for Human Activity Recognition with Few-Data. Lecture Notes in Computer Science, 2020, , 79-93.	1.0	4
1032	Multi-attention deep recurrent neural network for nursing action evaluation using wearable sensor. , 2020, , .		3
1033	Equipment data-based activity recognition of construction machinery., 2021,,.		2
1034	A research on stock forecasting based on principal component LSTM model. , 2021, , .		2
1035	Classifying In-Place Gestures with End-to-End Point Cloud Learning. , 2021, , .		3
1036	Research on Wearable Monitoring System for Freezing of Gait in Parkinson's Disease. , 2021, , .		1
1037	Predicting shortâ€term mobile Internet traffic from Internet activity using recurrent neural networks. International Journal of Network Management, 2022, 32, e2191.	1.4	4
1038	Sparse and dense matrix multiplication hardware for heterogeneous multi-precision neural networks. Array, 2021, 12, 100101.	2.5	1
1039	Spectrum-Guided Adversarial Disparity Learning. , 2020, , .		6
1041	Al at the Disco. , 2020, , .		1
1042	CausalBatch., 2020, , .		2
1043	Improving activity data collection with on-device personalization using fine-tuning. , 2020, , .		1
1044	Digging deeper., 2020,,.		11
1048	The Wearable Radar: Sensing Gestures Through Fabrics. , 2020, , .		6
1049	A Context-aware Hybrid Framework for Human Behavior Analysis. , 2020, , .		6
1050	Predicting Smoking Events with a Time-Varying Semi-Parametric Hawkes Process Model. Proceedings of Machine Learning Research, 2018, 85, 312-331.	0.3	2
1051	WEARABLE SENSOR-BASED GAIT CLASSIFICATION IN IDIOPATHIC TOE WALKING ADOLESCENTS. Biomedical Sciences Instrumentation, 2019, 55, 178-185.	0.2	2

#	Article	IF	CITATIONS
1052	Deep CHORES: Estimating Hallmark Measures of Physical Activity Using Deep Learning. AMIA Annual Symposium proceedings, 2020, 2020, 803-812.	0.2	1
1053	Hand Gesture Recognition on a Resource-Limited Interactive Wristband. Sensors, 2021, 21, .	2.1	0
1054	Human Activity Recognition Machine With an Anchor-Based Loss Function. IEEE Sensors Journal, 2022, 22, 741-756.	2.4	8
1055	Human Complex Activity Recognition With Sensor Data Using Multiple Features. IEEE Sensors Journal, 2022, 22, 757-775.	2.4	12
1056	Monitoring hand hygiene with commercial gas sensors: A pattern recognition approach. Sensors and Actuators B: Chemical, 2022, 352, 131027.	4.0	3
1057	Multi-sensor information fusion based on machine learning for real applications in human activity recognition: State-of-the-art and research challenges. Information Fusion, 2022, 80, 241-265.	11.7	264
1058	A Time Series Classification Method Based on 1DCNN-FNN. , 2021, , .		2
1059	Human Activity Recognition based on Smartphone Sensors- A Comparative Study. , 2021, , .		0
1060	NEAT Activity Detection using Smartwatch at Low Sampling Frequency., 2021,,.		1
1061	Study on Horizon Scanning with a Focus on the Development of Al-Based Medical Products: Citation Network Analysis. Therapeutic Innovation and Regulatory Science, 2022, 56, 263-275.	0.8	4
1062	Automated Individual Cattle Identification Using Video Data: A Unified Deep Learning Architecture Approach. Frontiers in Animal Science, 2021, 2, .	0.8	6
1063	An Overview of Machine Learning and 5G for People with Disabilities. Sensors, 2021, 21, 7572.	2.1	6
1064	Sensor-Based Human Activity Recognition Using Adaptive Class Hierarchy. Sensors, 2021, 21, 7743.	2.1	5
1065	Progress of Human Action Recognition Research in the Last Ten Years: A Comprehensive Survey. Archives of Computational Methods in Engineering, 2022, 29, 2309-2349.	6.0	10
1066	Wearable IMU-Based Human Activity Recognition Algorithm for Clinical Balance Assessment Using 1D-CNN and GRU Ensemble Model. Sensors, 2021, 21, 7628.	2.1	25
1067	Application of PSO-based LSTM Neural Network for Outpatient Volume Prediction. Journal of Healthcare Engineering, 2021, 2021, 1-9.	1.1	2
1069	Experience with an Affective Robot Assistant for Children with Hearing Disabilities. International Journal of Social Robotics, 2023, 15, 643-660.	3.1	10
1070	STranGAN: Adversarially-learnt Spatial Transformer for scalable human activity recognition. Smart Health, 2022, 23, 100226.	2.0	5

#	Article	IF	CITATIONS
1071	Design of a seniors and Alzheimer's disease caring service platform. BMC Medical Informatics and Decision Making, 2021, 21, 273.	1.5	4
1072	ADAM-sense: Anxiety-displaying activities recognition by motion sensors. Pervasive and Mobile Computing, 2021, 78, 101485.	2.1	8
1073	Driving Style-Based Conditional Variational Autoencoder for Prediction of Ego Vehicle Trajectory. IEEE Access, 2021, 9, 169348-169356.	2.6	6
1074	Gradient Boosted Neural Decision Forest. IEEE Transactions on Services Computing, 2021, , 1-1.	3.2	3
1075	Industry 4.0-Oriented Deep Learning Models for Human Activity Recognition. IEEE Access, 2021, 9, 150508-150521.	2.6	23
1076	Deep State Inference: Toward Behavioral Model Inference of Black-box Software Systems. IEEE Transactions on Software Engineering, 2021, , 1-1.	4.3	0
1077	Deep Convolutional Networks With Tunable Speed–Accuracy Tradeoff for Human Activity Recognition Using Wearables. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-12.	2.4	11
1079	Collaborative Forecasting and Analysis of Fish Catch in Hokkaido From Multiple Scales by Using Neural Network and ARIMA Model. IEEE Access, 2022, 10, 7823-7833.	2.6	3
1080	IMU Sensing–Based Hopfield Neuromorphic Computing for Human Activity Recognition. Frontiers in Communications and Networks, 2022, 2, .	1.9	0
1081	Emotions During Covid-19: LSTM Models for Emotion Detection in Tweets. Lecture Notes in Networks and Systems, 2022, , 133-148.	0.5	6
1082	C3D-ConvLSTM based cow behaviour classification using video data for precision livestock farming. Computers and Electronics in Agriculture, 2022, 193, 106650.	3.7	30
1083	Predicting Driving Conditions at Mountain Crossings Using Deep Learning. , 2020, , .		1
1084	Walking-posture Classification from Single-acceleration-sensor Data using Deep Learning., 2020,,.		0
1085	A Method of Lower Limb Gait Based on Multi-sensor Data Fusion for Rehabilitation Robot. , 2020, , .		0
1086	Multi-label Long Short-Term Memory for construction vehicle activity recognition with imbalanced supervision., 2020,,.		0
1087	Multi-Channel Deep Networks on Sequence Data for Multi-Action Recognition. , 2020, , .		0
1088	Maintaining Privacy and Utility in IoT System Analytics. , 2020, , .		2
1089	Context Analysis and Estimation of Mobile Users Considering the Time Series of Data. , 2020, , .		0

#	ARTICLE	IF	CITATIONS
1090	A Hybrid Approach for Human Activity Recognition with Support Vector Machine and 1D Convolutional Neural Network. , 2020, , .		22
1091	Systematic Evaluation of Deep Learning Models for Human Activity Recognition Using Accelerometer. , 2020, , .		0
1092	Comparative Study of Deep Learning Based Sleep Scoring Methods. , 2020, , .		0
1093	Machine Learning for Activity Recognition in Smart Buildings: A Survey., 2021,, 199-228.		1
1094	A GAN-Based Data Augmentation Approach for Sensor-Based Human Activity Recognition. International Journal of Computer and Communication Engineering, 2021, 10, 75-84.	0.2	4
1095	Hand Gesture Recognition on a Resource-Limited Interactive Wristband. Sensors, 2021, 21, 5713.	2.1	3
1096	Waveglove: Transformer-Based Hand Gesture Recognition Using Multiple Inertial Sensors. , 2021, , .		4
1097	Deep Neural Networks for Time Series Classification in Human Activity Recognition., 2021,,.		2
1098	Hybrid Analog-Digital Sensing Approach for Low-power Real-time Anomaly Detection in Drones. , 2021, , .		1
1099	Design of Ball Game Data Acquisition and Visualization Platform Supporting Mobile Terminal. , 2021, , .		0
1100	KDA based WKNN-SVM Method for Activity Recognition System from Smartphone Data. International Journal of Software Innovation, 2021, 9, 0-0.	0.3	0
1101	A Deep Convolutional LSTM for ADLs Classification of the Elderly. , 2021, , .		2
1102	Pluto: Motion Detection for Navigation in a VR Headset. , 2021, , .		2
1103	Wi-Adaptor: Fine-grained Domain Adaptation in WiFi-based Activity Recognition. , 2021, , .		5
1104	Finger-Gesture Recognition for Visible Light Communication Systems Using Machine Learning. Applied Sciences (Switzerland), 2021, 11, 11582.	1.3	7
1105	Upper Body Posture Recognition Using Inertial Sensors and Recurrent Neural Networks. Applied Sciences (Switzerland), 2021, 11, 12101.	1.3	6
1106	Deep-learning-based unobtrusive handedness prediction for one-handed smartphone interaction. Multimedia Tools and Applications, 2023, 82, 4941-4964.	2.6	1
1107	Activity Graph Based Convolutional Neural Network for Human Activity Recognition Using Acceleration and Gyroscope Data. IEEE Transactions on Industrial Informatics, 2022, 18, 6619-6630.	7.2	22

#	Article	IF	CITATIONS
1108	Quantum-Inspired Support Vector Machines for Human Activity Recognition in Industry 4.0. Lecture Notes on Data Engineering and Communications Technologies, 2022, , 281-290.	0.5	6
1109	Human activity recognition in artificial intelligence framework: a narrative review. Artificial Intelligence Review, 2022, 55, 4755-4808.	9.7	102
1110	Machine Learning Applied to Datasets of Human Activity Recognition: Data Analysis in Health Care. Current Medical Imaging, 2023, 19, 46-64.	0.4	9
1111	Triple Cross-Domain Attention on Human Activity Recognition Using Wearable Sensors. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 6, 1167-1176.	3.4	44
1112	Improving the prediction of continuous integration build failures using deep learning. Automated Software Engineering, 2022, 29, 1.	2.2	13
1113	AHAR: Adaptive CNN for Energy-Efficient Human Activity Recognition in Low-Power Edge Devices. IEEE Internet of Things Journal, 2022, 9, 13041-13051.	5. 5	44
1114	ConvAE-LSTM: Convolutional Autoencoder Long Short-Term Memory Network for Smartphone-Based Human Activity Recognition. IEEE Access, 2022, 10, 4137-4156.	2.6	28
1115	A Recognition Method of Aggressive Driving Behavior Based on Ensemble Learning. Sensors, 2022, 22, 644.	2.1	6
1116	Identifying and Monitoring the Daily Routine of Seniors Living at Home. Sensors, 2022, 22, 992.	2.1	16
1117	A Novel Deep Learning Bi-GRU-I Model for Real-Time Human Activity Recognition Using Inertial Sensors. IEEE Sensors Journal, 2022, 22, 6164-6174.	2.4	37
1118	Human activity recognition: suitability of a neuromorphic approach for on-edge AloT applications. Neuromorphic Computing and Engineering, 2022, 2, 014006.	2.8	8
1119	Population and Age-Based Cardiorespiratory Fitness Level Investigation and Automatic Prediction. Frontiers in Cardiovascular Medicine, 2021, 8, 758589.	1.1	4
1120	Noninvasive Human Activity Recognition Using Millimeter-Wave Radar. IEEE Systems Journal, 2022, 16, 3036-3047.	2.9	42
1121	Sensor-based human activity recognition using fuzzified deep CNN architecture with <i>i) v</i> i> _{max} method. Sensor Review, 2022, 42, 250-262.	1.0	2
1122	Learning to rank: An intelligent system for person reidentification. International Journal of Intelligent Systems, 2022, 37, 5924-5948.	3.3	12
1123	A Multivariate Time Series Streaming Classifier for Predicting Hard Drive Failures [Application Notes]. IEEE Computational Intelligence Magazine, 2022, 17, 102-114.	3.4	8
1124	Cooperative and Interactive Learning to estimate human behaviours for energy applications. Energy and Buildings, 2022, 258, 111727.	3.1	8
1125	The MARBLE Dataset: Multi-inhabitant Activities of Daily Living Combining Wearable and Environmental Sensors Data. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2022, , 451-468.	0.2	3

#	Article	IF	Citations
1127	Real-Time Human Activity Recognition Using Conditionally Parametrized Convolutions on Mobile and Wearable Devices. IEEE Sensors Journal, 2022, 22, 5889-5901.	2.4	39
1128	Comparing Sampling Strategies for Tackling Imbalanced Data in Human Activity Recognition. Sensors, 2022, 22, 1373.	2.1	9
1129	Proposing a Fuzzy Softâ€maxâ€based classifier in a hybrid deep learning architecture for human activity recognition. IET Biometrics, 2022, 11, 171-186.	1.6	5
1130	An End-to-End Deep Learning Pipeline for Football Activity Recognition Based on Wearable Acceleration Sensors. Sensors, 2022, 22, 1347.	2.1	9
1132	Multi-ResAtt: Multilevel Residual Network With Attention for Human Activity Recognition Using Wearable Sensors. IEEE Transactions on Industrial Informatics, 2023, 19, 144-152.	7.2	43
1133	Fine-Grained Activity Recognition Based on Features of Action Subsegments and Incremental Broad Learning. Lecture Notes in Computer Science, 2022, , 100-114.	1.0	0
1134	Recent Advances in Pedestrian Navigation Activity Recognition: A Review. IEEE Sensors Journal, 2022, 22, 7499-7518.	2.4	14
1135	Deformable Convolutional Networks for Multimodal Human Activity Recognition Using Wearable Sensors. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-14.	2.4	14
1136	RNN-based deep learning for physical activity recognition using smartwatch sensors: A case study of simple and complex activity recognition. Mathematical Biosciences and Engineering, 2022, 19, 5671-5698.	1.0	38
1137	ResNet-Like CNN Architecture and Saliency Map for Human Activity Recognition. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2022, , 129-143.	0.2	1
1138	Person Identification Based on Accelerations on Drawing Figures with a Smartphone., 2022,,.		0
1139	Predicting theÂMovement Intention andÂControlling theÂGrip ofÂaÂMyoelectrical Active Prosthetic Arm. Lecture Notes in Networks and Systems, 2022, , 1098-1109.	0.5	0
1140	Wearable multimode sensor with a seamless integrated structure for recognition of different joint motion states with the assistance of a deep learning algorithm. Microsystems and Nanoengineering, 2022, 8, 24.	3.4	26
1141	Deep Learning in Human Activity Recognition with Wearable Sensors: A Review on Advances. Sensors, 2022, 22, 1476.	2.1	141
1142	Smartphone Sensor-Based Human Locomotion Surveillance System Using Multilayer Perceptron. Applied Sciences (Switzerland), 2022, 12, 2550.	1.3	10
1143	Wearable Sensor-Based Human Activity Recognition in the Smart Healthcare System. Computational Intelligence and Neuroscience, 2022, 2022, 1-31.	1.1	38
1144	Impact of Wireless Sensor Data Mining with Hybrid Deep Learning for Human Activity Recognition. Wireless Communications and Mobile Computing, 2022, 2022, 1-8.	0.8	12
1145	Elderly Hajj pilgrims activity recognition based on candidate classification technique. Concurrency Computation Practice and Experience, 0, , .	1.4	0

#	Article	IF	CITATIONS
1146	A Survey on Deep Learning-Based Change Detection from High-Resolution Remote Sensing Images. Remote Sensing, 2022, 14, 1552.	1.8	90
1147	Enabling Eating Detection in a Free-living Environment: Integrative Engineering and Machine Learning Study. Journal of Medical Internet Research, 2022, 24, e27934.	2.1	1
1148	UAV surveillance for violence detection and individual identification. Automated Software Engineering, 2022, 29, 1.	2.2	14
1149	Learning Disentangled Behaviour Patterns for Wearable-based Human Activity Recognition. , 2022, 6, 1-19.		10
1150	Inception inspired CNN-GRU hybrid network for human activity recognition. Multimedia Tools and Applications, 2023, 82, 5369-5403.	2.6	43
1151	Artificial Intelligenceâ€Enabled Sensing Technologies in the 5G/Internet of Things Era: From Virtual Reality/Augmented Reality to the Digital Twin. Advanced Intelligent Systems, 2022, 4, .	3.3	146
1152	Deep Temporal Conv-LSTM for Activity Recognition. Neural Processing Letters, 2022, 54, 4027-4049.	2.0	8
1153	ColloSSL. , 2022, 6, 1-28.		33
1154	Automated classification of hand gestures using a wristband and machine learning for possible application in pill intake monitoring. Computer Methods and Programs in Biomedicine, 2022, 219, 106753.	2.6	4
1155	An active semi-supervised deep learning model for human activity recognition. Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 13049-13065.	3.3	7
1156	New LSTM Deep Learning Algorithm for Driving Behavior Classification. Cybernetics and Systems, 2023, 54, 387-405.	1.6	10
1157	A study of the influence of the sensor sampling frequency on the performance of wearable fall detectors. Measurement: Journal of the International Measurement Confederation, 2022, 193, 110945.	2.5	6
1158	Deep learning-based networks for automated recognition and classification of awkward working postures in construction using wearable insole sensor data. Automation in Construction, 2022, 136, 104181.	4.8	34
1159	MICAR: multi-inhabitant context-aware activity recognition in home environments. Distributed and Parallel Databases, 2023, 41, 571-602.	1.0	3
1160	Data driven turbulence modeling in turbomachinery â€" An applicability study. Computers and Fluids, 2022, 238, 105354.	1.3	3
1161	Domain Adaptation with Representation Learning and Nonlinear Relation for Time Series. ACM Transactions on Internet of Things, 2022, 3, 1-26.	3.4	5
1162	Machine learning in medical applications: A review of state-of-the-art methods. Computers in Biology and Medicine, 2022, 145, 105458.	3.9	155
1163	Interval type-2 fuzzy temporal convolutional autoencoder for gait-based human identification and authentication. Information Sciences, 2022, 597, 144-165.	4.0	9

#	Article	IF	CITATIONS
1164	Human activity recognition using wearable sensors by heterogeneous convolutional neural networks. Expert Systems With Applications, 2022, 198, 116764.	4.4	45
1165	Human Activity Recognition Based on Wavelet-CNN Architecture. , 2021, , .		0
1166	RestHAR: Residual Feature Learning Transformer for Human Activity Recognition from Multi-sensor Data., 2021,,.		2
1167	Robust Human Activity Recognition by Integrating Image and Accelerometer Sensor Data Using Deep Fusion Network. Sensors, 2022, 22, 174.	2.1	9
1168	MobileDLSearch: Ontology-based Mobile Platform for Effective Sharing and Reuse of Deep Learning Models., 2021,,.		1
1169	Recurrent Neural Networks for Learning Long-term Temporal Dependencies with Reanalysis of Time Scale Representation. , 2021, , .		2
1170	Discriminative multiscale CNN network for smartphone based robust gait recognition. , 2021, , .		2
1171	Fusion Models for Generalized Classification of Multi-Axial Human Movement: Validation in Sport Performance. Sensors, 2021, 21, 8409.	2.1	8
1172	Sensor-Based Human Activity Recognition for Elderly In-patients with a Luong Self-Attention Network. , 2021, , .		1
1173	An Information Gain-Based Model and an Attention-Based RNN for Wearable Human Activity Recognition. Entropy, 2021, 23, 1635.	1.1	9
1174	Complex Deep Neural Networks from Large Scale Virtual IMU Data for Effective Human Activity Recognition Using Wearables. Sensors, 2021, 21, 8337.	2.1	13
1175	Automatic Recognition and Analysis of Balance Activity in Community-Dwelling Older Adults: Algorithm Validation. Journal of Medical Internet Research, 2021, 23, e30135.	2.1	4
1176	An Immune Inspired Algorithm for Fault Tolerant Enhanced Multimodal Machine Learning., 2021,,.		1
1177	A Recurrent Neural Network-Based Method for Dynamic Load Identification of Beam Structures. Materials, 2021, 14, 7846.	1.3	12
1178	Opportunity++: A Multimodal Dataset for Video- and Wearable, Object and Ambient Sensors-Based Human Activity Recognition. Frontiers in Computer Science, 2021, 3, .	1.7	9
1179	A Real-time Activity Recognition System based on Dynamic Adaptive Windows using WiFi Signals. , 2021, , .		0
1180	Using Wearable IoT Devices to Analyze Healthcare Data for Human Activity Recognition. , 2021, , .		0
1181	My(o) Armband Leaks Passwords. , 2021, 5, 1-24.		2

#	Article	IF	CITATIONS
1182	A Hybrid Optimized LSTM Models for Human Activity Recognition with IOT Devices. International Journal of Advanced Research in Science, Communication and Technology, 0, , 182-189.	0.0	0
1185	Gait Recognition With Wearable Sensors Using Modified Residual Block-Based Lightweight CNN. IEEE Access, 2022, 10, 42577-42588.	2.6	12
1186	Improving Wearable-Based Activity Recognition Using Image Representations. Sensors, 2022, 22, 1840.	2.1	4
1187	Wi-Exercise: An Indoor Human Movement Detection Method Based on Bidirectional LSTM Attention. Mobile Information Systems, 2022, 2022, 1-14.	0.4	1
1188	Investigating classification performance of hybrid deep learning and machine learning architectures on activity recognition. Computational Intelligence, 0, , .	2.1	0
1189	Generation of Human Micro-Doppler Signature Based on Layer-Reduced Deep Convolutional Generative Adversarial Network. Computational Intelligence and Neuroscience, 2022, 2022, 1-8.	1.1	2
1190	CNN for Elderly Wandering Prediction in Indoor Scenarios. SN Computer Science, 2022, 3, 230.	2.3	3
1191	Foot-to-Ground Phases Detection: A Comparison of Data Representation Formatting Methods with Respect to Adaption of Deep Learning Architectures. Computers, 2022, 11, 58.	2.1	0
1192	Hybrid deep CNN-SVR algorithm for solar radiation prediction problems in Queensland, Australia. Engineering Applications of Artificial Intelligence, 2022, 112, 104860.	4.3	35
1195	Multiscale Deep Feature Learning for Human Activity Recognition Using Wearable Sensors. IEEE Transactions on Industrial Electronics, 2023, 70, 2106-2116.	5.2	60
1196	SALIENCE: An Unsupervised User Adaptation Model for Multiple Wearable Sensors Based Human Activity Recognition. IEEE Transactions on Mobile Computing, 2022, , 1-1.	3.9	3
1197	A Boundary Consistency-Aware Multitask Learning Framework for Joint Activity Segmentation and Recognition With Wearable Sensors. IEEE Transactions on Industrial Informatics, 2023, 19, 2984-2996.	7.2	3
1199	Using Human Body Capacitance Sensing to Monitor Leg Motion Dominated Activities with a Wrist Worn Device. Smart Innovation, Systems and Technologies, 2022, , 81-94.	0.5	4
1200	SensiX: A System for Best-effort Inference of Machine Learning Models in Multi-device Environments. IEEE Transactions on Mobile Computing, 2022, , 1-1.	3.9	3
1201	Adversarial Deep Feature Extraction Network for User Independent Human Activity Recognition. , 2022,		5
1202	A Public Repository to Improve Replicability and Collaboration in Deep Learning for HAR*., 2022,,.		0
1203	Slow Feature Preprocessing in Deep Neural Networks for Wearable Sensor-Based Locomotion Recognition. , 2022, , .		2
1204	Retrieval-based Annotation of Multi-channel Time-Series Data for HAR. , 2022, , .		0

#	Article	IF	Citations
1205	Comparative Analysis of Al-powered Approaches for Skeleton-based Child and Adult Action Recognition in Multi-person Environment. , 2022, , .		2
1206	CogAx: Early Assessment of Cognitive and Functional Impairment from Accelerometry. , 2022, , .		2
1207	Convolutional neural network and long short-term memory models for ice-jam predictions. Cryosphere, 2022, 16, 1447-1468.	1.5	10
1208	Resource-Efficient Continual Learning for Sensor-Based Human Activity Recognition. Transactions on Embedded Computing Systems, 2022, 21, 1-25.	2.1	2
1209	On the limits of Conditional Generative Adversarial Neural Networks to reconstruct the identification of inhabitants from IoT low-resolution thermal sensors. Expert Systems With Applications, 2022, 203, 117356.	4.4	4
1211	Real-time walking gait terrain classification from foot-mounted Inertial Measurement Unit using Convolutional Long Short-Term Memory neural network. Expert Systems With Applications, 2022, 203, 117306.	4.4	6
1212	What Actually Works for Activity Recognition in Scenarios with Significant Domain Shift: Lessons Learned from the 2019 and 2020 Sussex-Huawei Challenges. Sensors, 2022, 22, 3613.	2.1	3
1213	Prediction of the postâ€failure behavior of rocks: Combining artificial intelligence and acoustic emission sensing. International Journal for Numerical and Analytical Methods in Geomechanics, 2022, 46, 1874-1894.	1.7	5
1214	Channel-Equalization-HAR: A Light-weight Convolutional Neural Network for Wearable Sensor Based Human Activity Recognition. IEEE Transactions on Mobile Computing, 2022, , 1-1.	3.9	36
1215	Combined deep centralized coordinate learning and hybrid loss for human activity recognition. Concurrency Computation Practice and Experience, 2022, 34, .	1.4	1
1216	Hybrid Optimized GRU-ECNN Models for Gait Recognition with Wearable IOT Devices. Computational Intelligence and Neuroscience, 2022, 2022, 1-18.	1.1	4
1217	Design of a CNN based autonomous in-seat passenger anomaly detection system. , 2022, , .		2
1218	Activity recognition on smartphones using an AKNN based support vectors. Sensor Review, 2022, 42, 384-401.	1.0	1
1219	A Hybrid Deep Learning Model for Human Activity Recognition Using Wearable Sensors. Algorithms for Intelligent Systems, 2022, , 207-222.	0.5	1
1220	Cross-Subject Activity Detection for COVID-19 Infection Avoidance Based on Automatically Annotated IMU Data. IEEE Sensors Journal, 2022, 22, 13125-13135.	2.4	4
1221	MMNet: A Model-based Multimodal Network for Human Action Recognition in RGB-D Videos. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, , 1-1.	9.7	5
1222	Deep CNN-LSTM With Self-Attention Model for Human Activity Recognition Using Wearable Sensor. IEEE Journal of Translational Engineering in Health and Medicine, 2022, 10, 1-16.	2.2	64
1223	A Review on Deep Learning Techniques for IoT Data. Electronics (Switzerland), 2022, 11, 1604.	1.8	66

#	Article	IF	CITATIONS
1224	Marfusion: An Attention-Based Multimodal Fusion Model for Human Activity Recognition in Real-World Scenarios. Applied Sciences (Switzerland), 2022, 12, 5408.	1.3	4
1225	A Sensor-Independent Multimodal Fusion Scheme forÂHuman Activity Recognition. Lecture Notes in Computer Science, 2022, , 28-39.	1.0	1
1226	Cross-Domain Activity Recognition Using Shared Representation in Sensor Data. IEEE Sensors Journal, 2022, 22, 13273-13284.	2.4	0
1227	Inertial-Measurement-Unit-Based Novel Human Activity Recognition Algorithm Using Conformer. Sensors, 2022, 22, 3932.	2.1	18
1228	A Unified Local–Global Feature Extraction Network for Human Gait Recognition Using Smartphone Sensors. Sensors, 2022, 22, 3968.	2.1	2
1229	Big–Little Adaptive Neural Networks on Low-Power Near-Subthreshold Processors. Journal of Low Power Electronics and Applications, 2022, 12, 28.	1.3	1
1230	Opportunities for Smartphone Sensing in E-Health Research: A Narrative Review. Sensors, 2022, 22, 3893.	2.1	15
1231	Recent Machine Learning Progress in Lower Limb Running Biomechanics With Wearable Technology: A Systematic Review. Frontiers in Neurorobotics, 2022, 16, .	1.6	15
1232	A Wearable Fall Detection System Based on 1D CNN., 2021,,.		1
1233	Classifying Gas Data Measured Under Multiple Conditions Using Deep Learning. IEEE Access, 2022, 10, 68138-68150.	2.6	2
1234	A Multichannel CNN-GRU Model for Human Activity Recognition. IEEE Access, 2022, 10, 66797-66810.	2.6	21
1235	Human Action Recognition From Various Data Modalities: A Review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, , 1-20.	9.7	104
1237	Dynamic Temperature Scaling in Contrastive Self-Supervised Learning for Sensor-Based Human Activity Recognition. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2022, 4, 498-507.	3.8	5
1238	Smartphone-Aided Human Activity Recognition Method using Residual Multi-Layer Perceptron., 2022,,.		5
1239	Research on Hyper-Parameter Optimization of Activity Recognition Algorithm Based on Improved Cuckoo Search. Entropy, 2022, 24, 845.	1.1	5
1240	Move With the Theremin: Body Posture and Gesture Recognition Using the Theremin in Loose-Garment With Embedded Textile Cables as Antennas. Frontiers in Computer Science, 0, 4, .	1.7	1
1241	Daily life human activities recognition using a novel ARâ€ĐenseNet. Concurrency Computation Practice and Experience, 0, , .	1.4	0
1242	Semi-Supervised Adversarial Learning Using LSTM for Human Activity Recognition. Sensors, 2022, 22, 4755.	2.1	7

#	Article	IF	CITATIONS
1243	Human Activity Recognition Based on Embedded Sensor Data Fusion for the Internet of Healthcare Things. Healthcare (Switzerland), 2022, 10, 1084.	1.0	23
1244	Multivariate Passenger Flow Forecast Based on ACLB Model. Lecture Notes in Electrical Engineering, 2022, , 104-113.	0.3	1
1245	Understanding and Improving Channel Attention for Human Activity Recognition by Temporal-Aware and Modality-Aware Embedding. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-12.	2.4	4
1247	Sensors as Neural Computing Units. , 2022, , .		0
1249	Health Monitoring Methods in Heart Diseases Based on Data Mining Approach: A Directional Review. Studies in Big Data, 2022, , 115-159.	0.8	2
1251	Evaluating the Lottery Ticket Hypothesis to Sparsify Neural Networks for Time Series Classification., 2022,,.		0
1252	A Close Look into Human Activity Recognition Models using Deep Learning. , 2022, , .		8
1253	CROMOSim: A Deep Learning-based Cross-modality Inertial Measurement Simulator. , 2022, , .		0
1254	Smartphone-based gait recognition using convolutional neural networks and dual-tree complex wavelet transform. Multimedia Systems, 2022, 28, 2307-2317.	3.0	2
1255	Micro-activity recognition in industrial assembly process with IMU data and deep learning. , 2022, , .		1
1256	Sensor-based Activity Recognition using Deep Learning: A Comparative Study. , 2022, , .		5
1257	Scope of machine learning applications for addressing the challenges in nextâ€generation wireless networks. CAAI Transactions on Intelligence Technology, 2022, 7, 395-418.	3.4	23
1259	IF-ConvTransformer. , 2022, 6, 1-26.		6
1260	A Deep Learning Time Series Approach for Leaf and Wood Classification from Terrestrial LiDAR Point Clouds. Remote Sensing, 2022, 14, 3157.	1.8	8
1261	SPECIAL SESSION ON RECENT ADVANCES IN COMPUTATIONAL INTELLIGENCE & amp; TECHNOLOGYS (SS_10_RACIT). Lecture Notes in Networks and Systems, 2023, , 595-608.	0.5	2
1262	Quali-Mat. , 2022, 6, 1-45.		4
1263	GLMLP-TRANS: A transportation mode detection model using lightweight sensors integrated in smartphones. Computer Communications, 2022, , .	3.1	4
1264	Adaptive sequencing using nanopores and deep learning of mitochondrial DNA. Briefings in Bioinformatics, 2022, 23, .	3.2	6

#	Article	IF	CITATIONS
1265	Acceleration-based Activity Recognition of Repetitive Works with Lightweight Ordered-work Segmentation Network., 2022, 6, 1-39.		7
1266	Leveraging Sound and Wrist Motion to Detect Activities of Daily Living with Commodity Smartwatches., 2022, 6, 1-28.		10
1267	Auritus., 2022, 6, 1-34.		8
1268	A fusion of a deep neural network and a hidden Markov model to recognize the multiclass abnormal behavior of elderly people. Knowledge-Based Systems, 2022, 252, 109351.	4.0	15
1269	An intelligent collaboration framework of IoT applications based on event logic graph. Future Generation Computer Systems, 2022, 137, 31-41.	4.9	3
1270	Generating an Event Timeline About Daily Activities From a Semantic Concept Stream. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32, .	3.6	1
1271	Multi-Headed Deep Learning Models to Detect Abnormality of Alzheimer's Patients. Computer Systems Science and Engineering, 2023, 44, 367-390.	1.9	1
1272	Out-of-distribution in Human Activity Recognition. , 2022, , .		0
1273	Deep Ensemble Learning for Human Activity Recognition Using Wearable Sensors via Filter Activation. Transactions on Embedded Computing Systems, 2023, 22, 1-23.	2.1	22
1274	Elderly people activity monitoring with involved binary sensors and Deep Convolution Neural Network. Neural Computing and Applications, 2022, 34, 16605-16615.	3.2	1
1275	An Efficient ResNetSE Architecture for Smoking Activity Recognition from Smartwatch. Intelligent Automation and Soft Computing, 2023, 35, 1245-1259.	1.6	32
1276	An Automatic Feature Selection Model for Running Sprint Reorganization Using Wrist Accelerometers. , 2022, , .		0
1277	Towards Backdoor Attack on Deep Learning based Time Series Classification. , 2022, , .		3
1278	Mixing temporal experts for Human Activity Recognition. , 2022, , .		1
1279	Wearable Sensor-Based Human Activity Recognition with Hybrid Deep Learning Model. Informatics, 2022, 9, 56.	2.4	29
1280	A method of classification decision based on multi-BiLSTMs for physical loads hierarchy. Computer Methods in Biomechanics and Biomedical Engineering, 0, , 1-13.	0.9	0
1281	Adaptive Thresholding of CNN Features for Maize Leaf Disease Classification and Severity Estimation. Applied Sciences (Switzerland), 2022, 12, 8412.	1.3	9
1282	A comprehensive survey on human pose estimation approaches. Multimedia Systems, 2023, 29, 167-195.	3.0	8

#	Article	IF	CITATIONS
1283	Real-time Transformer Vandalism Detection by Application of Tuned Hyper Parameter Deep Learning Model. International Journal of Engineering and Advanced Technology, 2022, 11, 134-140.	0.2	1
1284	Construction Tasks Electronic Process Monitoring: Laboratory Circuit-Based Simulation Deployment. Buildings, 2022, 12, 1174.	1.4	3
1285	A deep learning approach for parkinson's disease severity assessment. Health and Technology, 2022, 12, 943-953.	2.1	14
1286	Multi-Branch Attention-Based Grouped Convolution Network for Human Activity Recognition Using Inertial Sensors. Electronics (Switzerland), 2022, 11, 2526.	1.8	2
1287	ConvNet-based performers attention and supervised contrastive learning for activity recognition. Applied Intelligence, 0, , .	3.3	0
1288	Recognising Cattle Behaviour with Deep Residual Bidirectional LSTM Model Using a Wearable Movement Monitoring Collar. Agriculture (Switzerland), 2022, 12, 1237.	1.4	7
1289	A review of machine learning-based human activity recognition for diverse applications. Neural Computing and Applications, 2022, 34, 18289-18324.	3.2	27
1290	Effects of sliding window variation in the performance of acceleration-based human activity recognition using deep learning models. PeerJ Computer Science, 0, 8, e1052.	2.7	13
1291	Predicting Coordination Variability of Selected Lower Extremity Couplings during a Cutting Movement: An Investigation of Deep Neural Networks with the LSTM Structure. Bioengineering, 2022, 9, 411.	1.6	4
1292	CNN-LSTM-Based Late Sensor Fusion for Human Activity Recognition in Big Data Networks. Wireless Communications and Mobile Computing, 2022, 2022, 1-16.	0.8	6
1293	Convolutional neural network model for gait classification of flexible lower limb exoskeleton., 2022,,.		0
1294	Context-Aware Complex Human Activity Recognition Using Hybrid Deep Learning Models. Applied Sciences (Switzerland), 2022, 12, 9305.	1.3	4
1295	COCOA. , 2022, 6, 1-28.		17
1296	FLAME. , 2022, 6, 1-29.		9
1297	Deep Transfer Learning Using Class Augmentation for Sensor-Based Human Activity Recognition. , 2022, 6, 1-4.		1
1298	Two-stream transformer network for sensor-based human activity recognition. Neurocomputing, 2022, 512, 253-268.	3.5	13
1299	Latent Independent Excitation for Generalizable Sensor-based Cross-Person Activity Recognition. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 11921-11929.	3.6	17
1300	A Survey on Intelligent Gesture Recognition Techniques. IEEE Access, 2022, 10, 87135-87156.	2.6	3

#	Article	IF	CITATIONS
1301	Human Activity Recognition Based on Multichannel Convolutional Neural Network With Data Augmentation. IEEE Access, 2022, 10, 76596-76606.	2.6	4
1302	<i>DeepContext:</i> Mobile Context Modeling and Prediction Via HMMs and Deep Learning. IEEE Transactions on Mobile Computing, 2022, , 1-16.	3.9	0
1303	PROMPT: Process Mining and Paravector Tensor-Based Physical Health Monitoring Framework. IEEE Sensors Journal, 2023, 23, 989-996.	2.4	2
1304	A Review of Animal Individual Recognition Based on Computer Vision. Communications in Computer and Information Science, 2022, , 287-309.	0.4	0
1305	A Lightweight andÂAccurate RNN inÂWearable Embedded Systems forÂHuman Activity Recognition. Smart Innovation, Systems and Technologies, 2022, , 459-468.	0.5	2
1306	Comparing Cross-Subject Performance on Human Activities Recognition Using Learning Models. IEEE Access, 2022, 10, 95179-95196.	2.6	2
1307	Acoustic Anomaly Detection of Mechanical Failure: Time-Distributed CNN-RNN Deep Learning Models. Lecture Notes in Electrical Engineering, 2022, , 662-672.	0.3	1
1308	Online Learning of Wearable Sensing for Human Activity Recognition. IEEE Internet of Things Journal, 2022, 9, 24315-24327.	5. 5	7
1309	Design of methods for impact detection in geotechnical protection fences using Machine Learning. IFAC-PapersOnLine, 2022, 55, 91-96.	0.5	1
1310	Machine Learning for Microcontroller-Class Hardware: A Review. IEEE Sensors Journal, 2022, 22, 21362-21390.	2.4	49
1311	Classifying Sport-Related Human Activity fromÂThermal Vision Sensors Using CNN andÂLSTM. Lecture Notes in Computer Science, 2022, , 38-48.	1.0	2
1312	Deep Hybrid Learning for Anomaly Detection in Behavioral Monitoring. , 2022, , .		1
1313	Activity recognition via correlation coefficients based graph with nodes updated by multi-aggregator approach. Biomedical Signal Processing and Control, 2023, 79, 104255.	3.5	3
1314	Sports activity recognition with UWB and inertial sensors using deep learning approach. , 2022, , .		6
1315	Transportation Mode Detection Combining CNN and Vision Transformer with Sensors Recalibration Using Smartphone Built-In Sensors. Sensors, 2022, 22, 6453.	2.1	2
1316	SemNet: Learning semantic attributes for human activity recognition with deep belief networks. Frontiers in Big Data, 0, 5, .	1.8	1
1317	A neurorobotics approach to behaviour selection based on human activity recognition. Cognitive Neurodynamics, 0, , .	2.3	0
1318	DynaLAP: Human Activity Recognition in Fixed Protocols via Semi-Supervised Variational Recurrent Neural Networks With Dynamic Priors. IEEE Sensors Journal, 2022, 22, 17963-17976.	2.4	1

#	Article	IF	CITATIONS
1319	Reading the Room. , 2022, 6, 1-26.		5
1320	Assessing the State of Self-Supervised Human Activity Recognition Using Wearables. , 2022, 6, 1-47.		17
1321	Lifelong Adaptive Machine Learning for Sensor-Based Human Activity Recognition Using Prototypical Networks. Sensors, 2022, 22, 6881.	2.1	2
1322	Activity-Free User Identification Using Wearables Based on Vision Techniques. Sensors, 2022, 22, 7368.	2.1	1
1323	Sensor-based Human Activity Recognition Using Graph LSTM and Multi-task Classification Model. ACM Transactions on Multimedia Computing, Communications and Applications, 2022, 18, 1-19.	3.0	7
1325	STAR-Lite: A light-weight scalable self-taught learning framework for older adults' activity recognition. Pervasive and Mobile Computing, 2022, , 101698.	2.1	1
1326	Bootstrapping Human Activity Recognition Systems for Smart Homes from Scratch., 2022, 6, 1-27.		9
1327	A Hierarchical Ensemble Deep Learning Activity Recognition Approach with Wearable Sensors Based on Focal Loss. International Journal of Environmental Research and Public Health, 2022, 19, 11706.	1.2	0
1328	Research on Data Cleaning Algorithm Based on Multi Type Construction Waste. Sustainability, 2022, 14, 12286.	1.6	2
1329	Towards a Dynamic Inter-Sensor Correlations Learning Framework for Multi-Sensor-Based Wearable Human Activity Recognition. , 2022, 6, 1-25.		6
1330	Predicting Performance Improvement of Human Activity Recognition Model by Additional Data Collection., 2022, 6, 1-33.		6
1331	Multi-Modal Deep Learning for Assessing Surgeon Technical Skill. Sensors, 2022, 22, 7328.	2.1	3
1332	Investigating (re)current state-of-the-art in human activity recognition datasets. Frontiers in Computer Science, 0, 4, .	1.7	2
1333	Temporal Convolutional Network with Wavelet Transform for Fall Detection. Journal of Sensors, 2022, 2022, 1-19.	0.6	1
1334	Dual-Branch Interactive Networks on Multichannel Time Series for Human Activity Recognition. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 5223-5234.	3.9	19
1335	MultiCNN-FilterLSTM: Resource-efficient sensor-based human activity recognition in IoT applications. Future Generation Computer Systems, 2023, 139, 196-209.	4.9	21
1336	Human Activity Recognition Using 1-Dimensional CNN and Comparison with LSTM. Lecture Notes in Electrical Engineering, 2022, , 1017-1030.	0.3	0
1337	Survey on Deep Learning Based Fusion Recognition of Multimodal Biometrics. Lecture Notes in Computer Science, 2022, , 511-518.	1.0	1

#	Article	IF	CITATIONS
1339	ResNet-based Network for Recognizing Daily and Transitional Activities based on Smartphone Sensors. , 2022, , .		1
1340	Enhancing Causal Estimation through Unlabeled Offline Data. , 2022, , .		3
1341	Can You Do That Again? Time Series Consolidation as a Robust Method of Tailoring Gesture Recognition to Individual Users. Sensors, 2022, 22, 7512.	2.1	0
1342	State Prediction Method for A-Class Insulation Board Production Line Based on Transfer Learning. Mathematics, 2022, 10, 3906.	1.1	0
1344	Speeding up deep neural architecture search for wearable activity recognition with early prediction of converged performance. Frontiers in Computer Science, 0, 4, .	1.7	1
1345	A neural network for the detection of soccer headers from wearable sensor data. Scientific Reports, 2022, 12, .	1.6	0
1346	Progressive Cross-modal Knowledge Distillation for Human Action Recognition. , 2022, , .		4
1347	Human activity recognition based on hybrid learning algorithm for wearable sensor data. Measurement: Sensors, 2022, 24, 100512.	1.3	1
1348	Accurate gait recognition with inertial sensors using a new FCN-BiLSTM architecture. Computers and Electrical Engineering, 2022, 104, 108428.	3.0	2
1349	Information fusion and artificial intelligence for smart healthcare: a bibliometric study. Information Processing and Management, 2023, 60, 103113.	5.4	18
1351	Sensor-Based Open-Set Human Activity Recognition Using Representation Learning With Mixup Triplets. IEEE Access, 2022, 10, 119333-119344.	2.6	1
1352	Sensor Data Augmentation by Resampling in Contrastive Learning for Human Activity Recognition. IEEE Sensors Journal, 2022, 22, 22994-23008.	2.4	17
1353	Toward Automated Feature Extraction for Deep Learning Classification of Electrocardiogram Signals. IEEE Access, 2022, 10, 118601-118616.	2.6	4
1354	Anomaly detection on MNIST stroke simulation dataset., 2022,,.		0
1355	<scp>Representativeâ€discriminative</scp> dictionary learning algorithm for human action recognition using smartphone sensors. Concurrency Computation Practice and Experience, 2023, 35, .	1.4	2
1356	A survey of identity recognition via data fusion and feature learning. Information Fusion, 2023, 91, 694-712.	11.7	20
1357	Hybrid Convolutional Neural Network-Multilayer Perceptron Model for Solar Radiation Prediction. Cognitive Computation, 2023, 15, 645-671.	3.6	10
1358	Machine Learning for Detection and Risk Assessment of Lifting Action. IEEE Transactions on Human-Machine Systems, 2022, 52, 1196-1204.	2.5	4

#	Article	IF	CITATIONS
1359	Classification of Motion Sickness Levels using Multimodal Biosignals in Real Driving Conditions. , 2022, , .		3
1360	Deep-Learning-Based Human Activity Recognition Using Wearable Sensors. IFAC-PapersOnLine, 2022, 55, 1-6.	0.5	4
1361	TASKED: Transformer-based Adversarial learning for human activity recognition using wearable sensors via Self-Knowledge Distillation. Knowledge-Based Systems, 2023, 260, 110143.	4.0	19
1362	CROMOSim: A Deep Learning-Based Cross-Modality Inertial Measurement Simulator. IEEE Transactions on Mobile Computing, 2022, , 1-12.	3.9	0
1363	Enhanced Prediction Model for Human Activity Using an End-to-End Approach. IEEE Internet of Things Journal, 2023, 10, 6031-6041.	5 . 5	0
1364	Contrastive Accelerometer–Gyroscope Embedding Model for Human Activity Recognition. IEEE Sensors Journal, 2023, 23, 506-513.	2.4	3
1365	Optimal Ensemble Scheme for Human Activity Recognition and Floor Detection Based on AutoML and Weighted Soft Voting Using Smartphone Sensors. IEEE Sensors Journal, 2023, 23, 2878-2890.	2.4	5
1366	Applied Sensor Technologies. , 2022, , 85-99.		1
1367	Inertial Measurement Unit based Human Action Recognition Dataset for Cyclic Overhead Car Assembly and Disassembly., 2022,,.		2
1368	Video-based Pose-Estimation Data as Source for Transfer Learning in Human Activity Recognition. , 2022, , .		0
1369	A deep learning model based on whole slide images to predict disease-free survival in cutaneous melanoma patients. Scientific Reports, 2022, 12, .	1.6	8
1370	Enhancing Health Monitoring using Efficient Hyperparameter Optimization. Journal of Artificial Intelligence and Capsule Networks, 2022, 4, 274-289.	2.1	0
1371	Assessment and Optimization of 1D CNN Model for Human Activity Recognition. , 2022, , .		1
1372	A multi-scale feature extraction fusion model for human activity recognition. Scientific Reports, 2022, 12, .	1.6	6
1373	Feature Selection Assists BLSTM for the Ultrasensitive Detection of Bioflavonoids in Different Biological Matrices Based on the 3D Fluorescence Spectra of Gold Nanoclusters. Analytical Chemistry, 2022, 94, 17533-17540.	3.2	3
1374	Effective Motion Sensors and Deep Learning Techniques for Unmanned Ground Vehicle (UGV)-Based Automated Pavement Layer Change Detection in Road Construction. Buildings, 2023, 13, 5.	1.4	3
1375	Automatic Assessment of Functional Movement Screening Exercises with Deep Learning Architectures. Sensors, 2023, 23, 5.	2.1	5
1376	A lightweight deep learning with feature weighting for activity recognition. Computational Intelligence, 2023, 39, 315-343.	2.1	1

#	Article	IF	CITATIONS
1377	Human Activity Recognition Based on an Efficient Neural Architecture Search Framework Using Evolutionary Multi-Objective Surrogate-Assisted Algorithms. Electronics (Switzerland), 2023, 12, 50.	1.8	2
1378	Machine Learning-Enabled Biosensors in Clinical Decision Making. , 2023, , 163-194.		0
1379	Diversion Detection in Small-Diameter HDPE Pipes Using Guided Waves and Deep Learning. Sensors, 2022, 22, 9586.	2.1	1
1380	GRU-INC: An inception-attention based approach using GRU for human activity recognition. Expert Systems With Applications, 2023, 216, 119419.	4.4	22
1381	Improving Inertial Sensor-Based Activity Recognition in Neurological Populations. Sensors, 2022, 22, 9891.	2.1	3
1382	Data Valuation Algorithm for Inertial Measurement Unit-Based Human Activity Recognition. Sensors, 2023, 23, 184.	2.1	4
1383	Catch Recognition in Automated American Football Training Using Machine Learning. Sensors, 2023, 23, 840.	2.1	0
1384	Hierarchical approach for fusion of electroencephalography and electromyography for predicting finger movements and kinematics using deep learning. Neurocomputing, 2023, 527, 184-195.	3 . 5	6
1386	Human Gait Activity Recognition Machine Learning Methods. Sensors, 2023, 23, 745.	2.1	10
1387	Federated Meta-Learning with Attention for Diversity-Aware Human Activity Recognition. Sensors, 2023, 23, 1083.	2.1	7
1388	A human activity recognition method using wearable sensors based on convtransformer model. Evolving Systems, 2023, 14, 939-955.	2.4	7
1389	Human activity recognition using marine predators algorithm with deep learning. Future Generation Computer Systems, 2023, 142, 340-350.	4.9	24
1390	Deep Learning Multi-Class Approach for Human Fall Detection Based on Doppler Signatures. International Journal of Environmental Research and Public Health, 2023, 20, 1123.	1.2	3
1391	Evaluating neurorehabilitation exercises captured with commodity sensors and machine-learning framework., 2022,,.		0
1392	TinyHAR: A Lightweight Deep Learning Model Designed for Human Activity Recognition., 2022,,.		6
1393	Learning from the Best: Contrastive Representations Learning Across Sensor Locations for Wearable Activity Recognition., 2022,,.		3
1394	Improving Human Activity Recognition Models by Learnable Sparse Wavelet Layer., 2022,,.		0
1395	Dataset and Methods for Recognizing Care Activities. , 2022, , .		1

#	Article	IF	CITATIONS
1396	AudioIMU: Enhancing Inertial Sensing-Based Activity Recognition with Acoustic Models. , 2022, , .		3
1397	Detecting Door Operations Using Wearable Devices. , 2022, , .		0
1398	Temporal Feature Alignment in Contrastive Self-Supervised Learning for Human Activity Recognition. , 2022, , .		2
1399	Multi-level Contrast Network for Wearables-based Joint Activity Segmentation and Recognition. , 2022, , .		0
1400	Complex Human Activities Recognition Based on High Performance 1D CNN Model., 2022,,.		3
1401	Deep learningâ€based multimodal fusion network for segmentation and classification of breast cancers using Bâ€mode and elastography ultrasound images. Bioengineering and Translational Medicine, 2023, 8,	3.9	2
1402	A Lightweight Adaptive Attention Based Transportation Mode Detection Model Using Sensors Integrated in Smartphones. , 2022, , .		0
1403	An effective swimming stroke recognition system utilizing deep learning based on inertial measurement units. Advanced Robotics, 2023, 37, 467-479.	1.1	2
1404	Self-Supervised WiFi-Based Activity Recognition. , 2022, , .		2
1405	RepHAR: Decoupling Networks With Accuracy-Speed Tradeoff for Sensor-Based Human Activity Recognition. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-11.	2.4	4
1406	DeepsmirUD: Prediction of Regulatory Effects on microRNA Expression Mediated by Small Molecules Using Deep Learning. International Journal of Molecular Sciences, 2023, 24, 1878.	1.8	3
1407	Ubi-Asthma: Toward Ubiquitous Asthma Detection Using the Smartwatch. IEEE Internet of Things Journal, 2023, 10, 11576-11587.	5.5	0
1408	The Human Continuity Activity Semi-Supervised Recognizing Model for Multi-View IoT Network. IEEE Internet of Things Journal, 2023, , 1-1.	5.5	1
1409	Artificial Intelligence Based Approach for Classification of Human Activities Using MEMS Sensors Data. Sensors, 2023, 23, 1275.	2.1	9
1410	Human Activity Recognition With Low-Resolution Infrared Array Sensor Using Semi-Supervised Cross-Domain Neural Networks for Indoor Environment. IEEE Internet of Things Journal, 2023, 10, 11761-11772.	5.5	1
1411	End-to-End Learning for Visual Navigation of Forest Environments. Forests, 2023, 14, 268.	0.9	1
1412	Accuracy Improvement of Complex Sensor-based Activity Recognition Using Hybrid CNN., 2022,,.		0
1413	An Efficient Diverse-Branch Convolution Scheme for Sensor-Based Human Activity Recognition. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-13.	2.4	0

#	Article	IF	Citations
1414	Smart Suspenders With Sensors and Machine Learning for Human Activity Monitoring. IEEE Sensors Journal, 2023, 23, 10159-10167.	2.4	1
1415	System-Identification-Based Activity Recognition Algorithms with Inertial Sensors. IEEE Journal of Biomedical and Health Informatics, 2023, , 1-11.	3.9	0
1416	Fine-Grained Intoxicated Gait Classification Using a Bilinear CNN. IEEE Sensors Journal, 2023, 23, 29733-29748.	2.4	0
1417	Do we need early exit networks in human activity recognition?. Engineering Applications of Artificial Intelligence, 2023, 121, 106035.	4.3	0
1418	PrecTime: A deep learning architecture for precise time series segmentation in industrial manufacturing operations. Engineering Applications of Artificial Intelligence, 2023, 122, 106078.	4.3	4
1419	Context-aware mutual learning for semi-supervised human activity recognition using wearable sensors. Expert Systems With Applications, 2023, 219, 119679.	4.4	11
1420	A Survey on Human Activity Recognition Using Deep Learning Techniques and Wearable Sensor Data. Communications in Computer and Information Science, 2022, , 52-71.	0.4	13
1421	Negative Selection by Clustering for Contrastive Learning in Human Activity Recognition. IEEE Internet of Things Journal, 2023, 10, 10833-10844.	5 . 5	8
1422	Real-time multimodal interaction in virtual reality - a case study with a large virtual interface. Multimedia Tools and Applications, 2023, 82, 25427-25448.	2.6	4
1423	Quality prediction of tractor rotary tillage based on BiConvLSTM with self-attention. Computers and Electronics in Agriculture, 2023, 206, 107643.	3.7	2
1424	An Explainable Spatial-Temporal Graphical Convolutional Network to Score Freezing of Gait in Parkinsonian Patients. Sensors, 2023, 23, 1766.	2.1	3
1425	Human Activity Recognition Based on a Modified Capsule Network. Mobile Information Systems, 2023, 2023, 1-17.	0.4	2
1426	A Social-Aware Deep Learning Approach forÂHate-Speech Detection. Lecture Notes in Computer Science, 2023, , 536-544.	1.0	0
1427	Pattern Recognition and Deep Learning Technologies, Enablers of Industry 4.0, and Their Role in Engineering Research. Symmetry, 2023, 15, 535.	1.1	8
1428	Hourly stepwise forecasting for solar irradiance using integrated hybrid models CNN-LSTM-MLP combined with error correction and VMD. Energy Conversion and Management, 2023, 280, 116804.	4.4	21
1429	2D Convolutional LSTM-Based Approach for Human Action Recognition on Various Sensor Data. Smart Innovation, Systems and Technologies, 2023, , 405-417.	0.5	2
1431	Clinical Study of a Wearable Remote Rehabilitation Training System for Patients With Stroke: Randomized Controlled Pilot Trial. JMIR MHealth and UHealth, 0, 11, e40416.	1.8	2
1432	A Method for Workflow Segmentation and Action Prediction from Video Data - AR Content. Communications in Computer and Information Science, 2023, , 341-353.	0.4	O

#	Article	IF	CITATIONS
1433	A Meta-learning System for Automatic Objects Tracking. , 2022, , .		1
1434	Comprehensive machine and deep learning analysis of sensor-based human activity recognition. Neural Computing and Applications, 2023, 35, 12793-12831.	3.2	6
1435	Traffic safety assessment method of the immersed tunnel based on small target visual recognition image. Frontiers in Physics, 0, 11 , .	1.0	0
1436	Rotating Stall Detection of Axial Compressors Based on Multi-source Heterogeneous Data Fusion. , 2022, , .		0
1437	Detection of Corona Faults in Switchgear by Using 1D-CNN, LSTM, and 1D-CNN-LSTM Methods. Sensors, 2023, 23, 3108.	2.1	10
1438	Using Gesture Recognition for AGV Control: Preliminary Research. Sensors, 2023, 23, 3109.	2.1	2
1439	Context Abstraction toÂlmprove Decentralized Machine Learning inÂStructured Sensing Environments. Lecture Notes in Computer Science, 2023, , 647-663.	1.0	0
1440	Human-Aware Collaborative Robots in the Wild: Coping with Uncertainty in Activity Recognition. Sensors, 2023, 23, 3388.	2.1	2
1441	Behavior recognition research based on reinforcement learning for dynamic key feature selection., 2022,,.		0
1442	ViSig. , 2022, 7, 1-27.		0
1443	X-CHAR. , 2022, 7, 1-28.		3
1444	Research on Transportation Mode Recognition Based on Multi-Head Attention Temporal Convolutional Network. Sensors, 2023, 23, 3585.	2.1	3
1445	Development of deep-learning models for a hybrid simulation of auscultation training on standard patients using an ECG-based virtual pathology stethoscope. Simulation, 2023, 99, 903-915.	1.1	1
1446	The Design of Intelligent Building Lighting Control System Based on CNN in Embedded Microprocessor. Electronics (Switzerland), 2023, 12, 1671.	1.8	1
1447	Advances in the Use of Artificial Intelligence and Sensor Technologies for Managing Industrial Workplace Safety. Lecture Notes in Networks and Systems, 2023, , 1-28.	0.5	0
1448	A Deep Learning Control Strategy of IMU-Based Joint Angle Estimation for Hip Power-Assisted Swimming Exoskeleton. IEEE Sensors Journal, 2023, 23, 15058-15070.	2.4	2
1449	SNN-AAD: Active Anomaly Detection Method forÂMultivariate Time Series withÂSparse Neural Network. Lecture Notes in Computer Science, 2023, , 253-269.	1.0	0
1450	3D Dynamic Image Modeling Based on Machine Learning in Film and Television Animation. Journal of Multimedia Information System, 2023, 10, 69-78.	0.4	0

#	Article	IF	CITATIONS
1451	CHAR: Composite Head-body Activities Recognition with A Single Earable Device. , 2023, , .		0
1452	ALAE-TAE-CutMix+: Beyond the State-of-the-Art for Human Activity Recognition Using Wearable Sensors., 2023,,.		0
1453	From Activity Recognition to Simulation: The Impact of Granularity on Production Models in Heavy Civil Engineering. Algorithms, 2023, 16, 212.	1.2	4
1454	Investigating Enhancements to Contrastive Predictive Coding for Human Activity Recognition. , 2023, , .		4
1455	Semisupervised Generative Adversarial Networks With Temporal Convolutions for Human Activity Recognition. IEEE Sensors Journal, 2023, 23, 12355-12369.	2.4	2
1456	Multimodal medical tensor fusion network-based DL framework for abnormality prediction from the radiology CXRs and clinical text reports. Multimedia Tools and Applications, 2023, 82, 44431-44478.	2.6	2
1457	A Trainable Open-Source Machine Learning Accelerometer Activity Recognition Toolbox: Deep Learning Approach., 0, 2, e42337.		0
1459	VALERIAN: Invariant Feature Learning for IMU Sensor-based Human Activity Recognition in the Wild. , 2023, , .		0
1461	Exploiting Video Classification Using Deep Learning Models for Human Activity Recognition. Algorithms for Intelligent Systems, 2023, , 169-179.	0.5	1
1463	Smart-Badge: A wearable badge with multi-modal sensors for kitchen activity recognition. , 2022, , .		1
1464	WashSpot: Real-Time Spotting and Detection of Enacted Compulsive Hand Washing with Wearable Devices. , 2022, , .		0
1466	Investigating Domain-agnostic Performance in Activity Recognition using Accelerometer Data., 2022,,.		0
1468	Modaldrop: Modality-Aware Regularization for Temporal-Spectral Fusion in Human Activity Recognition. , 2023, , .		0
1470	Self-attention-based Human Activity Detection Using Wearable Sensors. Lecture Notes in Electrical Engineering, 2023, , 629-636.	0.3	0
1481	Deep Learning Approaches for Recognizing Daily Human Activities Using Smart Home Sensors., 2023,,.		0
1487	OpenPack Challenge 2022 Report: Impact of Data Cleaning and Time Alignment on Activity Recognition. , 2023, , .		0
1488	Exploring Cross Modality Feature Fusion for Activity Recognition at OpenPack Challenge 2022. , 2023, , .		0
1489	On Training Strategies for LSTMs in Sensor-Based Human Activity Recognition. , 2023, , .		0

#	ARTICLE	IF	CITATIONS
1490	If only we had more data!: Sensor-Based Human Activity Recognition in Challenging Scenarios. , 2023, , .		0
1495	Developing an Automatic Evaluation of Exertion Using a Smart Phone. , 2023, , .		0
1499	A Hybrid Domain Adaptation-Based Method for State of Health Prediction of Lithium-Ion Batteries. Lecture Notes in Electrical Engineering, 2023, , 707-719.	0.3	0
1509	A Study on the Various Machine Learning Techniques Used in Predictions and Forecasting Related to Covid-19. Lecture Notes in Mechanical Engineering, 2023, , 447-454.	0.3	4
1510	A Critical Review on Risk Assessment Methods of Musculoskeletal Disorder (MSD). Lecture Notes in Mechanical Engineering, 2023, , 211-228.	0.3	0
1515	Deep Learning-based Fall Detection Algorithm Using Ensemble Model of Coarse-fine CNN and GRU Networks. , 2023, , .		0
1521	Data Sub-sampling Method for Developing Personalized Human Activity Model Based on Incremental Learning. Communications in Computer and Information Science, 2023, , 108-121.	0.4	0
1523	High-Level Features forÂHuman Activity Recognition andÂModeling. Communications in Computer and Information Science, 2023, , 141-163.	0.4	3
1527	Deep Learning Approach toÂRecognize Yoga Posture forÂtheÂAilment ofÂtheÂLow Back Pain. Lecture Notes in Electrical Engineering, 2023, , 263-274.	0.3	1
1529	Dual-Alignment Based Generalized Zero-shot Learning for Human Activity Recognition., 2022,,.		0
1530	Human Activity Recognition Based on Transformer via Smart-phone Sensors., 2023,,.		0
1533	Combining Public Human Activity Recognition Datasets to Mitigate Labeled Data Scarcity., 2023,,.		0
1537	Cattle Behavior Classification Based on Integration of Acceleration Sensor and Position Information. , 2023, , .		0
1538	Activity Recognition., 2023,, 659-680.		0
1545	Anime Character Identification and Tag Prediction by Multimodality Modeling: Dataset and Model. , 2023, , .		0
1551	Convolutional Neural Network and Long Short Term Memory on Inertial Measurement Unit Sensors for Gait Phase Detection. Communications in Computer and Information Science, 2023, , 62-76.	0.4	0
1552	Human Activity Recognition (HAR) Using Deep Learning: Review, Methodologies, Progress and Future Research Directions. Archives of Computational Methods in Engineering, 2024, 31, 179-219.	6.0	3
1553	Feature-Level Cross-Attentional PPG and Motion Signal Fusion for Heart Rate Estimation. , 2023, , .		1

#	Article	IF	Citations
1554	Fruit Picker Activity Recognition with Wearable Sensors and Machine Learning., 2023,,.		1
1560	On the Limits of Lossy Compression for Human Activity Recognition in Sensor Networks. , 2023, , .		0
1562	Bayesian Inference inÂlnfinite Multivariate McDonald's Beta Mixture Model. Lecture Notes in Computer Science, 2023, , 320-330.	1.0	0
1571	Sensor-Based Personal Activity Recognition Using Mixed 5-Layer CNN-LSTM and Hyperparameter Tunning. Algorithms for Intelligent Systems, 2023, , 15-26.	0.5	0
1572	GestureSet: Public Domain Dataset for Human Gesture Recognition using Wrist-worn Devices: A Preliminary Version., 2023,,.		0
1574	A Hybrid Deep Learning-Based Approach for Human Activity Recognition Using Wearable Sensors. Studies in Big Data, 2023, , 231-259.	0.8	0
1575	A Deep Transfer Learning Approach toÂSupport Opportunistic Wearable Activity Recognition. Lecture Notes in Computer Science, 2023, , 473-482.	1.0	0
1576	FieldHAR: A Fully Integrated End-to-End RTL Framework for Human Activity Recognition with Neural Networks from Heterogeneous Sensors. , 2023, , .		0
1578	On the Utility of Virtual On-body Acceleration Data for Fine-grained Human Activity Recognition. , 2023, , .		0
1582	A Hybrid Deep Learning Neural Network for Recognizing Exercise Activity Using Inertial Sensor and Motion Capture System. , 2023, , .		0
1583	Human Activity Recognition for Packing Processes using CNN-biLSTM., 2023,,.		0
1584	A Data-Driven Study on the Hawthorne Effect in Sensor-Based Human Activity Recognition. , 2023, , .		0
1585	Investigating the Effect of Orientation Variability in Deep Learning-based Human Activity Recognition., 2023,,.		0
1586	Solving the Sensor-based Activity Recognition Problem (SOAR): Self-supervised, Multi-modal Recognition of Activities from Wearable Sensors. , 2023, , .		0
1587	MMST-GCN+: A Multi-Modal ST-GCN+ for Computer-Aided Education by Introducing a Sensor Skeleton. , 2023, , .		0
1589	Exploring the Benefits of Time Series Data Augmentation for Wearable Human Activity Recognition , 2023, , .		0
1594	Application of Convolutional Neural Network in Feature Signal Recognition., 2023,,.		0
1598	Unleashing the Power of Shared Label Structures for Human Activity Recognition., 2023,,.		0

#	Article	IF	Citations
1599	Robust Finger Interactions with COTS Smartwatches via Unsupervised Siamese Adaptation. , 2023, , .		2
1606	Sensor Data Representation with Transformer-Based Contrastive Learning for Human Action Recognition and Detection., 2023, , .		0
1607	Transformer Based Driving Behavior Safety Prediction forÂNew Energy Vehicles. Lecture Notes in Computer Science, 2023, , 646-660.	1.0	0
1611	Inference VS. Explicitness. Do We Really Need the Perfect Predictor? The Human-Robot Collaborative Object Transportation Case., 2023,,.		0
1615	Human Activity Recognition in Logistics Using Wearable Sensors and Deep Residual Network., 2023,,.		0
1616	Deploying Machine Learning in Resource-Constrained Devices for Human Activity Recognition. , 2023, , .		0
1618	Predicting Adolescent Female Stress with Wearable Device Data Using Machine and Deep Learning. , 2023, , .		0
1620	GrooveMeter: Enabling Music Engagement-aware Apps by Detecting Reactions to Daily Music Listening via Earable Sensing. , 2023, , .		0
1621	A Novel Approach for Human Activity Recognition Using Vision Based Method., 2023,,.		1
1622	Double Doodles: Sketching Animation in Immersive Environment With 3+6 DOFs Motion Gestures. , 2023, , .		0
1624	Overcoming Data Scarcity in Human Activity Recognition < sup>*., 2023,,.		0
1627	Accurate Classification of Sport Activities Under Tiny Deployability Constraints. , 2023, , .		0
1629	Investigation of Transfer Learning for Electricity Load Forecasting., 2023,,.		0
1630	Improving Lower Limb Activity Recognition Based on Inertial Sensors Using CNN-LSTM Network. , 2023, ,		0
1636	Hierarchical Multi-Scale Adaptive Conv-LSTM Network for Human Action Recognition Based on Wearable Sensors. , 2023, , .		0
1637	Human Activity Recognition aÂComparison Between Residual Neural Network andÂRecurrent Neural Network. Lecture Notes in Networks and Systems, 2024, , 109-123.	0.5	0
1648	An approach for Lane Keeping Assist at higher speeds using Deep Neural Network. , 2023, , .		0
1649	Data augmentation for inertial sensor based human action recognition using deep learning. AIP Conference Proceedings, 2024, , .	0.3	0

#	Article	IF	CITATIONS
1650	Neural Networks Embedded in Wearable Devices: a Preliminary Digital vs. Analog Comparison. , 2023, , .		0
1654	Contrastive Learning Based Human Activity Recognition Using Body Sensors. , 2023, , .		O
1658	Human Activity Classification Using Recurrence Plot and Residual Network. , 2023, , .		0
1661	Inertial Sensor Based Human Activity Identification System Using CNN-LSTM Deep Learning Technique., 2023,,.		0
1664	Handle Dense Labeling in Human Activity Recognition Using Self Attention and BiLSTM., 2024, , .		0
1666	CroSSL: Cross-modal Self-Supervised Learning for Time-series through Latent Masking. , 2024, , .		O
1667	One-D Convolution Neural Network Models for Human Activity Recognition using mHealth Datasets. , 2023, , .		0
1676	A Survey onÂlntrusion Detection Systems forÂloT Networks Based onÂLong Short-Term Memory. Communications in Computer and Information Science, 2024, , 237-250.	0.4	O
1678	Multiple human activity recognition using iot sensors and machine learning in device-free environment: Feature extraction, classification, and challenges: A comprehensive review. AIP Conference Proceedings, 2024, , .	0.3	0