The Global Expansion of Quinoa: Trends and Limits

Frontiers in Plant Science 7, 622 DOI: 10.3389/fpls.2016.00622

Citation Report

#	Article	IF	CITATIONS
1	Development of a Worldwide Consortium on Evolutionary Participatory Breeding in Quinoa. Frontiers in Plant Science, 2016, 7, 608.	1.7	75
2	Worldwide Evaluations of Quinoa: Preliminary Results from Post International Year of Quinoa FAO Projects in Nine Countries. Frontiers in Plant Science, 2016, 7, 850.	1.7	118
3	Quinoa seed coats as an expanding and sustainable source of bioactive compounds: An investigation of genotypic diversity in saponin profiles. Industrial Crops and Products, 2017, 104, 156-163.	2.5	48
4	Comparing salt-induced responses at the transcript level in a salares and coastal-lowlands landrace of quinoa (Chenopodium quinoa Willd). Environmental and Experimental Botany, 2017, 139, 127-142.	2.0	25
5	Paclobutrazol improves salt tolerance in quinoa: Beyond the stomatal and biochemical interventions. Journal of Agronomy and Crop Science, 2017, 203, 315-322.	1.7	31
6	Translating knowledge about abiotic stress tolerance to breeding programmes. Plant Journal, 2017, 90, 898-917.	2.8	154
7	The scope for adaptation of quinoa in Northern Latitudes of Europe. Journal of Agronomy and Crop Science, 2017, 203, 603-613.	1.7	65
8	A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value. Cell Research, 2017, 27, 1327-1340.	5.7	170
9	Preliminary Studies of the Performance of Quinoa (Chenopodium quinoa Willd.) Genotypes under Irrigated and Rainfed Conditions of Central Malawi. Frontiers in Plant Science, 2017, 08, 227.	1.7	43
10	Hydrogen peroxide application improves quinoa performance by affecting physiological and biochemical mechanisms under waterâ€deficit conditions. Journal of Agronomy and Crop Science, 2018, 204, 541-553.	1.7	38
11	Suitability of unmalted quinoa for beer production. Journal of the Science of Food and Agriculture, 2018, 98, 5027-5036.	1.7	21
12	Smallholders' Preferences for Improved Quinoa Varieties in the Peruvian Andes. Sustainability, 2018, 10, 3735.	1.6	14
13	Evaluation of two groups of quinoa (Chenopodium quinoa Willd.) accessions with different seed colours for adaptation to the Mediterranean environment. Crop and Pasture Science, 2018, 69, 1264.	0.7	23
14	Developing naturally stress-resistant crops for a sustainable agriculture. Nature Plants, 2018, 4, 989-996.	4.7	186
16	Nitrogen physiology of contrasting genotypes of Chenopodium quinoa Willd. (Amaranthaceae). Scientific Reports, 2018, 8, 17524.	1.6	24
17	Quinoa Abiotic Stress Responses: A Review. Plants, 2018, 7, 106.	1.6	166
18	Yield and Quality Characteristics of Different Quinoa (Chenopodium quinoa Willd.) Cultivars Grown under Field Conditions in Southwestern Germany. Agronomy, 2018, 8, 197.	1.3	72
19	Are agricultural researchers working on the right crops to enable food and nutrition security under future climates?. Global Environmental Change, 2018, 53, 182-194.	3.6	65

#	Article	IF	CITATIONS
20	Andean roots and tubers crops as sources of functional foods. Journal of Functional Foods, 2018, 51, 86-93.	1.6	38
21	Differential response of quinoa genotypes to drought and foliage-applied H2O2 in relation to oxidative damage, osmotic adjustment and antioxidant capacity. Ecotoxicology and Environmental Safety, 2018, 164, 344-354.	2.9	51
22	Yield potential and salt tolerance of quinoa on saltâ€degraded soils of Pakistan. Journal of Agronomy and Crop Science, 2019, 205, 13-21.	1.7	47
23	Investigation into the underlying regulatory mechanisms shaping inflorescence architecture in Chenopodium quinoa. BMC Genomics, 2019, 20, 658.	1.2	16
24	Effect of Drought, Nitrogen Fertilization, Temperature, and Photoperiodicity on Quinoa Plant Growth and Development in the Sahel. Agronomy, 2019, 9, 607.	1.3	22
25	Farmers' Knowledge and Practices in the Management of Insect Pests of Leafy Amaranth in Kenya. Journal of Integrated Pest Management, 2019, 10, .	0.9	14
26	Characterization of the complete chloroplast genome of Chenopodium sp. (Caryophyllales:) Tj ETQq0 0 0 rgBT /C	Verlock 1 0.2	0 Tf 50 502 T
27	Spectral Reflectance Indices and Physiological Parameters in Quinoa under Contrasting Irrigation Regimes. Crop Science, 2019, 59, 1927-1944.	0.8	33
28	Morpho-densitometric traits for quinoa (Chenopodium quinoa Willd.) seed phenotyping by two X-ray micro-CT scanning approaches. Journal of Cereal Science, 2019, 90, 102829.	1.8	21
29	Identification of volatile compounds and odour activity values in quinoa porridge by gas chromatography–mass spectrometry. Journal of the Science of Food and Agriculture, 2019, 99, 3957-3966.	1.7	22
30	A Systematic Review of Field Trials to Synthesize Existing Knowledge and Agronomic Practices on Protein Crops in Europe. Agronomy, 2019, 9, 292.	1.3	15
31	Impact of heat and drought stress on peroxisome proliferation in quinoa. Plant Journal, 2019, 99, 1144-1158.	2.8	33
32	Quinoa: In Perspective of Global Challenges. Agronomy, 2019, 9, 176.	1.3	49
33	Molecular characterization of Ecuadorian quinoa (Chenopodium quinoa Willd.) diversity: implications for conservation and breeding. Euphytica, 2019, 215, 1.	0.6	17
34	Livelihoods through the Lens of Telecoupling. , 2019, , 233-249.		3
35	Thinking Outside of the Cereal Box: Breeding Underutilized (Pseudo)Cereals for Improved Human Nutrition. Frontiers in Genetics, 2019, 10, 1289.	1.1	48
36	Effect of high temperature on pollen morphology, plant growth and seed yield in quinoa (<i>Chenopodium quinoa</i> Willd.). Journal of Agronomy and Crop Science, 2019, 205, 33-45.	1.7	78

37	Salt stress under the scalpel – dissecting the genetics of salt tolerance. Plant Journal, 2019, 97, 148-163.	2.8	219
----	--	-----	-----

#	Article	IF	CITATIONS
38	Mitochondrial and chloroplast genomes provide insights into the evolutionary origins of quinoa (Chenopodium quinoa Willd.). Scientific Reports, 2019, 9, 185.	1.6	37
39	Biological and Molecular Characterization of Chenopodium quinoa Mitovirus 1 Reveals a Distinct Small RNA Response Compared to Those of Cytoplasmic RNA Viruses. Journal of Virology, 2019, 93, .	1.5	63
40	Analysis of the quinoa genome reveals conservation and divergence of the flowering pathways. Functional and Integrative Genomics, 2020, 20, 245-258.	1.4	22
41	Modest improvement in CVD risk markers in older adults following quinoa (Chenopodium quinoa) Tj ETQq1 1 0.7 Journal of Nutrition, 2020, 59, 3313-3323.	784314 rg 1.8	BT /Overlock 18
42	Global expansion of quinoa and challenges for the Andean region. Global Food Security, 2020, 26, 100429.	4.0	100
43	Climate smart Dry Chain Technology for safe storage of quinoa seeds. Scientific Reports, 2020, 10, 12554.	1.6	23
44	Seed Composition and Amino Acid Profiles for Quinoa Grown in Washington State. Frontiers in Nutrition, 2020, 7, 126.	1.6	33
45	The genotype-dependent phenotypic landscape of quinoa in salt tolerance and key growth traits. DNA Research, 2020, 27, .	1.5	15
46	Orphan crops for future food security. Journal of Biosciences, 2020, 45, 1.	0.5	16
47	Phenotyping the Combined Effect of Heat and Water Stress on Quinoa. Environment & Policy, 2020, , 163-183.	0.4	2
48	Quinoa value chain, adoption, and market assessment in Morocco. Environmental Science and Pollution Research, 2021, 28, 46692-46703.	2.7	10
49	Agronomic performance of irrigated quinoa in desert areas: Comparing different approaches for early assessment of salinity stress. Agricultural Water Management, 2020, 240, 106205.	2.4	13
50	The potential of quinoa (Chenopodium quinoa) cultivation in Israel as a dual-purpose crop for grain production and livestock feed. Scientia Horticulturae, 2020, 272, 109534.	1.7	33
51	Characterization of Chenopodin Isoforms from Quinoa Seeds and Assessment of Their Potential Anti-Inflammatory Activity in Caco-2 Cells. Biomolecules, 2020, 10, 795.	1.8	25
52	Is the Application of Plant Probiotic Bacterial Consortia Always Beneficial for Plants? Exploring Synergies between Rhizobial and Non-Rhizobial Bacteria and Their Effects on Agro-Economically Valuable Crops. Life, 2020, 10, 24.	1.1	33
53	Mineral nutrient deficiencies in quinoa grown in hydroponics with single nutrient salt/acid/chelate sources. Journal of Plant Nutrition, 2020, 43, 1661-1673.	0.9	5
54	Polyphenolic profiles, antioxidant, and in vitro anticancer activities of the seeds of Puno and Titicaca quinoa cultivars. Cereal Chemistry, 2020, 97, 626-633.	1.1	23
55	Prospects for the accelerated improvement of the resilient crop quinoa. Journal of Experimental Botany, 2020, 71, 5333-5347.	2.4	49

	CITATION	Report	
#	Article	IF	CITATIONS
56	Effect of Substitution of Rice Flour with Quinoa Flour on the Chemical-Physical, Nutritional, Volatile and Sensory Parameters of Gluten-Free Ladyfinger Biscuits. Foods, 2020, 9, 808.	1.9	35
57	Healthy and Resilient Cereals and Pseudo-Cereals for Marginal Agriculture: Molecular Advances for Improving Nutrient Bioavailability. Frontiers in Genetics, 2020, 11, 49.	1.1	86
58	Physiological characteristics and irrigation water productivity of quinoa (<i>Chenopodium) Tj ETQq0 0 0 rgBT / from Southern Iran. Journal of Agronomy and Crop Science, 2020, 206, 390-404.</i>	Overlock 10 1.7) Tf 50 667 T 19
59	First adaptation of quinoa in the Bhutanese mountain agriculture systems. PLoS ONE, 2020, 15, e0219804.	1.1	18
60	Transcriptome profiling identifies transcription factors and key homologs involved in seed dormancy and germination regulation of Chenopodium quinoa. Plant Physiology and Biochemistry, 2020, 151, 443-456.	2.8	22
61	Sustainability of smallholder quinoa production in the Peruvian Andes. Journal of Cleaner Production, 2020, 264, 121657.	4.6	11
62	Soil sodicity is more detrimental than salinity for quinoa (<i>Chenopodium quinoa</i> Willd.): A multivariate comparison of physiological, biochemical and nutritional quality attributes. Journal of Agronomy and Crop Science, 2021, 207, 59-73.	1.7	41
63	Adaptation, grain yield and nutritional characteristics of quinoa (<i>Chenopodium quinoa</i>) genotypes in marginal environments of the Aral Sea basin. Journal of Plant Nutrition, 2021, 44, 1365-1379.	0.9	16
64	Food Systems, Food Environments, and Consumer Behavior. Palgrave Studies in Agricultural Economics and Food Policy, 2021, , 9-28.	0.2	1
65	Quinoa Diversity and Its Implications for Breeding. Compendium of Plant Genomes, 2021, , 107-118.	0.3	2
66	A Long Journey of CICA-17 Quinoa Variety to Salinity Conditions in Egypt: Mineral Concentration in the Seeds. Plants, 2021, 10, 407.	1.6	12
67	Impact of Fermentation on Phenolic Compounds and Antioxidant Capacity of Quinoa. Fermentation, 2021, 7, 20.	1.4	21
68	Functional Components and Anti-Nutritional Factors in Gluten-Free Grains: A Focus on Quinoa Seeds. Foods, 2021, 10, 351.	1.9	43
69	Development of Quinoa Value Chain to Improve Food and Nutritional Security in Rural Communities in Rehamna, Morocco: Lessons Learned and Perspectives. Plants, 2021, 10, 301.	1.6	18
70	Quinoa in Ecuador: Recent Advances under Global Expansion. Plants, 2021, 10, 298.	1.6	15
71	Molecular Evolution and Local Root Heterogeneous Expression of the Chenopodium quinoa ARF Genes Provide Insights into the Adaptive Domestication of Crops in Complex Environments. Journal of Molecular Evolution, 2021, 89, 287-301.	0.8	6
72	Insights into the nutritional value and bioactive properties of quinoa (<i>Chenopodium quinoa</i>): past, present and future prospective. International Journal of Food Science and Technology, 2021, 56, 3726-3741.	1.3	17
73	First Report on Chenopodium quinoa Willdenow (Amaranthaceae) Stem-Boring Damage by Athesapeuta dodonis (Marshall) (Coleoptera: Curculionidae) with Associated Fungal spp. Interactions in South Africa. African Entomology, 2021, 29, .	0.6	6

#	Article	IF	Citations
74	Ozonation of quinoa seeds (Chenopodium quinoa Willd.): saturation and decomposition kinetics of ozone and physiological quality of seeds. Semina:Ciencias Agrarias, 2021, 42, 1019-1032.	0.1	3
75	Validation of suitable genes for normalization of diurnal gene expression studies in Chenopodium quinoa. PLoS ONE, 2021, 16, e0233821.	1.1	7
76	Morphological and Molecular Characterization of Quinoa Genotypes. Agriculture (Switzerland), 2021, 11, 286.	1.4	12
77	Yield and water productivity response of quinoa to various deficit irrigation regimes applied with surface and subsurface drip systems. Journal of Agricultural Science, 2021, 159, 116-127.	0.6	2
78	Hormonal Regulation in Different Varieties of Chenopodium quinoa Willd. Exposed to Short Acute UV-B Irradiation. Plants, 2021, 10, 858.	1.6	9
80	Identification of the specific long-noncoding RNAs involved in night-break mediated flowering retardation in Chenopodium quinoa. BMC Genomics, 2021, 22, 284.	1.2	8
81	Quinoa Productivity and Stability Evaluation through Varietal and Environmental Interaction. Plants, 2021, 10, 714.	1.6	16
82	Heat stress lowers yields, alters nutrient uptake and changes seed quality in quinoa grown under Mediterranean field conditions. Journal of Agronomy and Crop Science, 2021, 207, 481-491.	1.7	30
83	Free and Conjugated Phenolic Profiles and Antioxidant Activity in Quinoa Seeds and Their Relationship with Genotype and Environment. Plants, 2021, 10, 1046.	1.6	19
85	Studying the Impact of Different Field Environmental Conditions on Seed Quality of Quinoa: The Case of Three Different Years Changing Seed Nutritional Traits in Southern Europe. Frontiers in Plant Science, 2021, 12, 649132.	1.7	26
86	Effects of Agronomic Practices on <i>Lygus</i> spp. (Hemiptera: Miridae) Population Dynamics in Quinoa. Environmental Entomology, 2021, 50, 852-859.	0.7	2
87	Characterization of the yield components and selection of materials for breeding programs of quinoa (Chenopodium quinoa Willd.). Euphytica, 2021, 217, 1.	0.6	6
88	Early responses to salt stress in quinoa genotypes with opposite behavior. Physiologia Plantarum, 2021, 173, 1392-1420.	2.6	10
89	Teste de condutividade elétrica para avaliação do vigor em sementes de quinoa. Research, Society and Development, 2021, 10, e12510514682.	0.0	1
90	Heat Stress Impact on Yield and Composition of Quinoa Straw under Mediterranean Field Conditions. Plants, 2021, 10, 955.	1.6	10
91	Response of quinoa genotypes to sowing dates and sowing methods under agroclimatic condition of Dera Ismail Khan, KP Pakistan. Archives of Agronomy and Soil Science, 2022, 68, 1903-1913.	1.3	1
92	Comparative proteomic approach to study the salinity effect on the growth of two contrasting quinoa genotypes. Plant Physiology and Biochemistry, 2021, 163, 215-229.	2.8	11
93	Variation in quinoa roots growth responses to drought stresses. Journal of Agronomy and Crop Science, 2022, 208, 830-840.	1.7	3

		ITATION REPORT	
#	Article	IF	CITATIONS
94	How Does Mechanical Pearling Affect Quinoa Nutrients and Saponin Contents?. Plants, 2021, 10, 12	133. 1.6	9
95	Proteins in Food Systems—Bionanomaterials, Conventional and Unconventional Sources, Functior Properties, and Development Opportunities. Polymers, 2021, 13, 2506.	al 2.0	37
96	Seed weight determination in quinoa (<i>Chenopodium quinoa</i> Willd.). Journal of Agronomy and Crop Science, 2022, 208, 243-254.	1.7	9
97	Post-stress restorative response of two quinoa genotypes differing in their salt resistance after salinity release. Plant Physiology and Biochemistry, 2021, 164, 222-236.	2.8	10
98	Quinoa Phenotyping Methodologies: An International Consensus. Plants, 2021, 10, 1759.	1.6	24
99	Interspecies Evolution and Networks Investigation of the Auxin Response Protein (AUX/IAA) Family Reveals the Adaptation Mechanisms of Halophytes Crops in Nitrogen Starvation Agroecological Environments. Agriculture (Switzerland), 2021, 11, 780.	1.4	5
100	The functional ingredients of quinoa (<i>Chenopodium quinoa</i>) and physiological effects of consuming quinoa: A review. Food Frontiers, 2021, 2, 329-356.	3.7	28
101	Anti-Fungal Hevein-like Peptides Biosynthesized from Quinoa Cleavable Hololectins. Molecules, 202 26, 5909.	l, 1.7	18
102	Phytopathological Threats Associated with Quinoa (Chenopodium quinoa Willd.) Cultivation and Seed Production in an Area of Central Italy. Plants, 2021, 10, 1933.	1.6	8
103	Effects on Microbiota Composition after Consumption of Quinoa Beverage Fermented by a Novel Xylose-Metabolizing L. plantarum Strain. Nutrients, 2021, 13, 3318.	1.7	7
104	Comparative study of mycotoxin occurrence in Andean and cereal grains cultivated in South America and North Europe. Food Control, 2021, 130, 108260.	Э 2.8	12
105	Phenotypic diversity of agromorphological characteristics of quinoa (Chenopodium quinoa Willd.) germplasm in Colombia. Scientia Agricola, 2022, 79, .	0.6	2
106	<i>In vivo</i> acute toxicity and mutagenic analysis of crude saponins from <i>Chenopodium quinoa</i> Willd husks. RSC Advances, 2021, 11, 4829-4841.	1.7	9
107	Quinoa (Chenopodium quinoa Willd.) Breeding. , 2019, , 259-316.		15
108	The Contribution of Alternative Crops to Food Security in Marginal Environments. Environment & Policy, 2020, , 1-23.	0.4	7
109	The Extraordinary Salt Tolerance of Quinoa. Environment & Policy, 2020, , 125-143.	0.4	6
112	Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress. BMC Plant Biology, 2020, 20, 568.	1.6	27
113	Trends in Quinoa Adoption in Marginal Areas, Economic Viability, and Policy Outlook. Journal of Agribusiness and Rural Development, 2020, 57, .	0.1	3

#	Article	IF	CITATIONS
114	Quinoa and production rules: how are cooperatives contributing to governance of natural resources?. International Journal of the Commons, 2018, 12, 402-427.	0.6	16
115	Chemical, Antioxidant, Total Phenolic and Flavonoid Components and Antimicrobial Effects of Different Species of Quinoa Seeds. Egyptian Journal of Veterinary Science, 2020, 51, 43-54.	0.0	11
116	Agronomic Practices and Performances of Quinoa under Field Conditions: A Systematic Review. Plants, 2021, 10, 72.	1.6	25
117	Leaf Gas Exchange Performance of Ten Quinoa Genotypes under a Simulated Heat Wave. Plants, 2020, 9, 81.	1.6	17
118	Evaluating Growth and Yield Parameters of Five Quinoa (Chenopodium quinoa W.) Genotypes Under Different Salt Stress Conditions. Journal of Agricultural Science, 2020, 12, 128.	0.1	4
119	The impact of different agroecological conditions on the nutritional composition of quinoa seeds. PeerJ, 2018, 6, e4442.	0.9	67
120	Agronomic performance and strategies of promoting Quinoa (Chenopodium quinoa Willd) in Malawi. , 2019, 46, 82-99.		7
121	Cultivate biodiversity to harvest food security and sustainability. Current Biology, 2021, 31, R1154-R1158.	1.8	12
122	Genotype-Dependent Variation of Nutritional Quality-Related Traits in Quinoa Seeds. Plants, 2021, 10, 2128.	1.6	12
123	Structural Characterization and Antioxidant Capacity of Quinoa Cultivars Using Techniques of FT-MIR and UHPLC/ESI-Orbitrap MS Spectroscopy. Plants, 2021, 10, 2159.	1.6	17
124	Genome-Wide Transcriptomic and Proteomic Exploration of Molecular Regulations in Quinoa Responses to Ethylene and Salt Stress. Plants, 2021, 10, 2281.	1.6	9
125	Ciclo de vida y curvas en s aplicadas al cultivo de amaranto (Amaranthus spp.). Tecno Lógicas, 2019, 22, 61-76.	0.1	0
127	Effect of Lugus sp. feeding and a Saponin application on volatiles released by quinoa. Pakistan Journal of Botany, 2020, 52, .	0.2	1
128	Commercializing the "Lost Crop of the Incaâ€: Quinoa and the Politics of Agrobiodiversity in "Traditional―Crop Commercialization. The Latin American Studies Book Series, 2021, , 383-406.	0.1	1
129	Severidad de Peronospora variabilis GÃ u m. en cinco variedades de Chenopodium quinoa Willd. en condiciones de La Molina. Anales CientÃficos, 2020, 81, 415.	0.0	0
130	Kinetics and Quality of Quinoa Seeds After Drying and During Storage. Journal of Agricultural Science, 2020, 12, 71.	0.1	1
131	Production Efficiency and Total Protein Yield in Quinoa Grown under Water Stress. Agriculture (Switzerland), 2021, 11, 1089.	1.4	4
132	Introducing quinoa in Turkey - farmers perception in the region of Adana. Economia Agro-Alimentare, 2020, , 1-24.	0.1	0

#	Article	IF	CITATIONS
133	Biplot analysis of test environments of quinoa (Chenopodium quinoa Willd.) in Burkina Faso. African Journal of Plant Science, 2020, 14, 358-371.	0.4	0
134	Biomolecules with Antioxidant Capacity from the Seeds and Sprouts of 20 Varieties of Chenopodium quinoa Willd. (Quinoa). Plants, 2021, 10, 2417.	1.6	10
135	Safety assessment of crude saponins from Chenopodium quinoa willd. husks: 90-day oral toxicity and gut microbiota & metabonomics study in rats. Food Chemistry, 2022, 375, 131655.	4.2	14
136	Productivity of Quinoa (Chenopodium quinoa L.) Genotypes Across Different Agro-Ecological Regions of Oman. Open Agriculture Journal, 2021, 15, 98-109.	0.3	3
137	Transcriptomic Analysis of Quinoa Reveals a Group of Germin-Like Proteins Induced by Trichoderma. Frontiers in Fungal Biology, 2021, 2, .	0.9	3
139	Advances of Biotechnology in Quinoa Production: A Global Perspective. , 2021, , 79-111.		2
140	Quinoa's Spreading at Global Level: State of the Art, Trends, and Challenges. , 2021, , 1-15.		1
141	Enriching Urea with Nitrogen Inhibitors Improves Growth, N Uptake and Seed Yield in Quinoa (Chenopodium quinoa Willd) Affecting Photochemical Efficiency and Nitrate Reductase Activity. Plants, 2022, 11, 371.	1.6	7
142	Innovative Pulses for Western European Temperate Regions: A Review. Agronomy, 2022, 12, 170.	1.3	8
143	Quinoa Soluble Fiber and Quercetin Alter the Composition of the Gut Microbiome and Improve Brush Border Membrane Morphology In Vivo (Gallus gallus). Nutrients, 2022, 14, 448.	1.7	10
144	Nutritional Composition and Bioactive Components in Quinoa (Chenopodium quinoa Willd.) Greens: A Review. Nutrients, 2022, 14, 558.	1.7	69
145	Morphological and Physiological Traits Associated with Yield under Reduced Irrigation in Chilean Coastal Lowland Quinoa. Plants, 2022, 11, 323.	1.6	6
146	When neglected species gain global interest: Lessons learned from quinoa's boom and bust for teff and minor millet. Global Food Security, 2022, 32, 100613.	4.0	18
147	Yield and morpho-physiological performance of quinoa (<i>Chenopodium quinoa</i>) genotypes as affected by phosphorus and zinc. Journal of Plant Nutrition, 2022, 45, 2432-2446.	0.9	5
148	An Overview of Plant-Based Protein Rich Products. , 2022, , 27-60.		1
149	Rethinking Rehabilitation of Salt-Affected Land: New Perspectives from Australian Experience. Earth, 2022, 3, 245-258.	0.9	3
150	Plant growth promoting traits of <i>Bacillus</i> species associated with quinoa (<i>Chenopodium) Tj ETQq0 0 (</i>) rgBT /Ov	erlock 10 Tf 5

151	Quinoa Response to Application of Phosphogypsum and Plant Growth-Promoting Rhizobacteria under Water Stress Associated with Salt-Affected Soil. Plants, 2022, 11, 872.	1.6	13
-----	--	-----	----

#	Article	IF	CITATIONS
152	Physicochemical Characterization of Quinoa (Chenopodium quinoa cv. Nariño) Co-products Obtained by Wet Milling. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	2
153	Assessment of Phenotypic Diversity in the USDA Collection of Quinoa Links Genotypic Adaptation to Germplasm Origin. Plants, 2022, 11, 738.	1.6	15
154	Physiological and Morphological Characteristics of Drought-Stressed <i>Chenopodium quinoa</i> Willd, as Affected by Proline and Ascorbic Acid. Communications in Soil Science and Plant Analysis, 2022, 53, 1402-1410.	0.6	1
155	Biochar increases salt tolerance and grain yield of quinoa on saline-sodic soil: multivariate comparison of physiological and oxidative stress attributes. Journal of Soils and Sediments, 2022, 22, 1446-1459.	1.5	15
156	Quinoa (Chenopodium quinoa Willd.): Genetic Diversity According to ISSR and SCoT Markers, Relative Gene Expression, and Morpho-Physiological Variation under Salinity Stress. Plants, 2021, 10, 2802.	1.6	16
165	Accelerated Domestication of New Crops: Yield is Key. Plant and Cell Physiology, 2022, 63, 1624-1640.	1.5	16
166	Pseudocereals: Quinoa (Chenopodium quinoa Willd.). , 2023, , 141-149.		1
167	Trends and Limits for Quinoa Production and Promotion in Pakistan. Plants, 2022, 11, 1603.	1.6	9
168	Photosynthesis is not the unique useful trait for discriminating salt tolerance capacity between sensitive and tolerant quinoa varieties. Planta, 2022, 256, .	1.6	1
169	The polyamine "multiverse―and stress mitigation in crops: A case study with seed priming in quinoa. Scientia Horticulturae, 2022, 304, 111292.	1.7	5
170	Effect of plant growth promoting bacteria on the phenology of the Amarilla maranganÃ-quinoa cultivar. Revista Colombiana De Ciencias HortÃcolas, 2022, 16, .	0.2	0
171	Pest categorisation of Atalodera andina. EFSA Journal, 2022, 20, .	0.9	0
172	An Agrobacterium-mediated transient expression method contributes to functional analysis of a transcription factor and potential application of gene editing in Chenopodium quinoa. Plant Cell Reports, 2022, 41, 1975-1985.	2.8	6
173	Optimizing quinoa height to counter stem lodging risks in the three main production regions of China. Agricultural and Forest Meteorology, 2022, 323, 109084.	1.9	1
174	Production of antihypertensive and antidiabetic peptide fractions from quinoa (Chenopodium quinoa) Tj ETQq0 (1650-1659.	0 rgBT /0 2.2	Overlock 10 T 9
175	Optimizing quinoa growth cycle duration in northeast England by varying the sowing date. Agronomy Journal, 2022, 114, 2186-2199.	0.9	1
176	Legal Aspects of the Quinoa Imports Into the EU. EU Agrarian Law, 2022, 11, 13-21.	0.1	1
177	Physicochemical, rheological and structural properties of flours from six quinoa cultivars grown in Colombia. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	4

#	Article	IF	CITATIONS
178	Enhancing of nutritional properties of quinoa fermented by probiotics. , 2022, 2, .		3
179	Genome-Wide Identification of the PYL Gene Family in Chenopodium quinoa: From Genes to Protein 3D Structure Analysis. Stresses, 2022, 2, 290-307.	1.8	2
180	Effect of Row Spacing on Quinoa (Chenopodium quinoa) Growth, Yield, and Grain Quality under a Mediterranean Climate. Agriculture (Switzerland), 2022, 12, 1298.	1.4	7
181	Effects of variety and origin on the metabolic and texture characteristics of quinoa seeds based on ultrahigh-performance liquid chromatography coupled with high-field quadrupole-orbitrap high-resolution mass spectrometry. Food Research International, 2022, 162, 111693.	2.9	4
182	Plant density effects on quinoa yield, leaf anatomy, ultrastructure and gas exchange. Journal of Agricultural Science, 2022, 160, 349-359.	0.6	3
183	STUDY OF THE QUALITY OF QUINOA GRAIN DURING STORAGE. HarÄova Nauka ì Tehnologìâ, 2022, 16, .	0.2	0
184	Identification of Oxindoleacetic Acid Conjugates in Quinoa (Chenopodium quinoa Willd.) Seeds by High-Resolution UHPLC-MS/MS. Molecules, 2022, 27, 5629.	1.7	1
185	Adaptation of Quinoa (Chenopodium quinoa Willd.) to Australian Environments. Agronomy, 2022, 12, 2026.	1.3	1
186	The protective effect of quinoa on the gastric mucosal injury induced by absolute ethanol. Journal of the Science of Food and Agriculture, 2023, 103, 944-956.	1.7	3
187	Quinoa (Chenopodium quinoa) Root System Development as Affected By Phosphorus and Zinc Sulfate Application in an Alkaline Soil. Gesunde Pflanzen, 0, , .	1.7	0
188	Genome-Wide Analysis and Expression Profiles of the VOZ Gene Family in Quinoa (Chenopodium) Tj ETQq0 0 0 i	rgBT /Over 1.0	lock 10 Tf 50
189	Effect of the Altitude Gradient on the Physiological Performance of Quinoa in the Central Region of Colombia. Agronomy, 2022, 12, 2112.	1.3	5
190	Biochar Derived from Cow Bones and Corn Stalks Reduced the Release of Cd and Pb and the Human Health Risk Index of Quinoa Grown in Contaminated Soils. Journal of Soil Science and Plant Nutrition, 2022, 22, 4024-4034.	1.7	3
191	Molecular characterization of Peronospora variabilis isolates infecting Chenopodium quinoa and Chenopodium album in Spain. Plant Disease, 0, , .	0.7	0
192	Diversity of quinoa genetic resources for sustainable production: A survey on nutritive characteristics as influenced by environmental conditions. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	5
193	Changes in nutritional quality-related traits of quinoa seeds under different storage conditions. Frontiers in Nutrition, 0, 9, .	1.6	4
194	The Disease Progression and Molecular Defense Response in Chenopodium Quinoa Infected with Peronospora Variabilis, the Causal Agent of Quinoa Downy Mildew. Plants, 2022, 11, 2946.	1.6	0
195	Adaptation of Some Quinoa Genotypes (Chenopodium quinoa Willd.), Grown in a Saharan Climate in Algeria. Life, 2022, 12, 1854.	1.1	4

#	Article	IF	CITATIONS
196	Genomic Variation Underlying the Breeding Selection of Quinoa Varieties Longli-4 and CA3-1 in China. International Journal of Molecular Sciences, 2022, 23, 14030.	1.8	4
197	Materiality and the politics of seeds in the global expansion of quinoa. Food, Culture & Society, 2023, 26, 867-885.	0.6	2
198	Moringa leaves for improving the health benefits of quinoa fermented by probiotics. , 2022, 1, 264-275.		3
199	Abscisic Acid Perception and Signaling in Chenopodium quinoa. Stresses, 2023, 3, 22-32.	1.8	1
200	Functional analysis of CqPORB in the regulation of chlorophyll biosynthesis in Chenopodium quinoa. Frontiers in Plant Science, 0, 13, .	1.7	0
201	Diversity of the Biological and Proteinogenic Characteristics of Quinoa Genotypes as a Multi-Purpose Crop. Agronomy, 2023, 13, 279.	1.3	5
202	Identification and Characterization of Sources of Resistance to Peronospora variabilis in Quinoa. Agronomy, 2023, 13, 284.	1.3	0
203	Combined Use of Mycorrhizae and Green Compost for Reducing the Deleterious Effects of Salt Stress in Two Genotypes of Quinoa (Chenopodium quinoa). Journal of Soil Science and Plant Nutrition, 0, , .	1.7	1
204	Development of quinoa grain as a sustainable crop. , 2023, , 1-15.		0
205	Quinoa (Chenopodium quinoa Willd.)—a smart crop for food and nutritional security. , 2023, , 23-43.		0
206	Enhancing quinoa cultivation in the Andean highlands of Peru: a breeding strategy for improved yield and early maturity adaptation to climate change using traditional cultivars. Euphytica, 2023, 219, .	0.6	0
207	Adaptive mechanisms in quinoa for coping in stressful environments: an update. PeerJ, 0, 11, e14832.	0.9	8
208	Yield, growth development and grain characteristics of seven Quinoa (Chenopodium quinoa Willd.) genotypes grown in open-field production systems under hot-arid climatic conditions. Scientific Reports, 2023, 13, .	1.6	5
209	Changes of components and organizational structure induced by different milling degrees on the physicochemical properties and cooking characteristics of quinoa. Food Structure, 2023, 36, 100316.	2.3	2
210	A comprehensive characterization of agronomic and end-use quality phenotypes across a quinoa world core collection. Frontiers in Plant Science, 0, 14, .	1.7	4
211	Marketed Quinoa (Chenopodium quinoa Willd.) Seeds: A Mycotoxin-Free Matrix Contaminated by Mycotoxigenic Fungi. Pathogens, 2023, 12, 418.	1.2	0
212	Using proximal sensing parameters linked to the photosynthetic capacity to assess the nutritional status and yield potential in quinoa. Acta Horticulturae, 2023, , 373-379.	0.1	0
213	Inland dry season saline intrusion in the Vietnamese Mekong River Delta is driving the identification and implementation of alternative crops to rice. Agricultural Systems, 2023, 207, 103632.	3.2	6

#	Article	IF	CITATIONS
214	Nutritional Evaluation of Quinoa Genetic Resources Growing in the Climatic Conditions of Central Europe. Foods, 2023, 12, 1440.	1.9	3
215	A Cross-Sectional Survey of the Nutritional Quality of Quinoa Food Products Available in the Italian Market. Foods, 2023, 12, 1562.	1.9	3
216	Comparison of the nutritional value of minor and pseudocereal crops to major crops and the barriers in their breeding for developing healthy grains. , 2023, , 99-133.		0
232	Rethinking underutilized cereal crops: pan-omics integration and green system biology. Planta, 2023, 258, .	1.6	1
234	Global Trends in the Worldwide Expansion of Quinoa Cultivation. , 0, , .		0
253	Future Prospects: High-Altitude Crop Improvement via Genomics. , 2024, , 217-255.		0