A Study of LoRa: Long Range & amp; Low Power Netwo

Sensors 16, 1466 DOI: 10.3390/s16091466

Citation Report

#	Article	IF	CITATIONS
1	Smart Pipe System for a Shipyard 4.0. Sensors, 2016, 16, 2186.	2.1	46
2	On the Limits of LoRaWAN Channel Access. , 2016, , .		131
3	Evaluation of LoRa LPWAN technology for remote health and wellbeing monitoring. , 2016, , .		108
4	Security for Cyber-Physical Systems in Healthcare. , 2017, , 233-251.		14
5	Evaluation of LoRa LPWAN Technology for Indoor Remote Health and Wellbeing Monitoring. International Journal of Wireless Information Networks, 2017, 24, 153-165.	1.8	104
6	Establishing transparent IPv6 communication on LoRa based low power wide area networks (LPWANS). , 2017, , .		21
7	Multi-hop communication in the uplink for LPWANs. Computer Networks, 2017, 123, 153-168.	3.2	42
8	Performance of a low-power wide-area network based on LoRa technology: Doppler robustness, scalability, and coverage. International Journal of Distributed Sensor Networks, 2017, 13, 155014771769941.	1.3	225
9	Low Power Wide Area Network Analysis: Can LoRa Scale?. IEEE Wireless Communications Letters, 2017, 6, 162-165.	3.2	521
10	Smart and Very Distant Objects. , 2017, , .		6
11	Practical limitations for deployment of LoRa gateways. , 2017, , .		17
12	Energy efficient LoRa GPS tracker for dementia patients. , 2017, 2017, 771-774.		28
13	DaRe. , 2017, , .		28
14	Evaluation of the IoT LoRaWAN Solution for Distributed Measurement Applications. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 3340-3349.	2.4	150
15	Smart water grid management using LPWAN IoT technology. , 2017, , .		44
16	Internet of Things and LoRaâ"¢ Low-Power Wide-Area Networks: A survey. , 2017, , .		135
17	GPS-free geolocation using LoRa in low-power WANs. , 2017, , .		112
18	Mathematical model of LoRaWAN channel access. , 2017, , .		43

TATION REPO

# 19	ARTICLE Using LoRa for industrial wireless networks. , 2017, , .	IF	CITATIONS 87
20	Power and spreading factor control in low power wide area networks. , 2017, , .		129
21	Dual-channel medium access control of low power wide area networks considering traffic characteristics in IoE. Cluster Computing, 2017, 20, 2375-2384.	3.5	5
22	Empowering Low-Power Wide Area Networks in Urban Settings. , 2017, , .		149
23	Capacity limits of LoRaWAN technology for smart metering applications. , 2017, , .		64
24	LVWNet: an hybrid simulation architecture for wireless sensor networks. Design Automation for Embedded Systems, 2017, 21, 139-155.	0.7	1
25	Analysis of the use of LoRaWan technology in a large-scale smart city demonstrator. , 2017, , .		22
26	Empirical propagation performance evaluation of LoRa for indoor environment. , 2017, , .		31
27	Design and implementation of site-specific rainfall-induced landslide early warning and monitoring system: a case study at Nam Dan landslide (Vietnam). Geomatics, Natural Hazards and Risk, 2017, 8, 1978-1996.	2.0	33
28	LoRa and LoRaWAN testbeds: A review. , 2017, , .		60
29	Evaluating existing wireless technologies for IoT data transferring. , 2017, , .		6
30	Analysis of Latency and MAC-Layer Performance for Class A LoRaWAN. IEEE Wireless Communications Letters, 2017, 6, 566-569.	3.2	81
31	Comparison of LoRaWAN classes and their power consumption. , 2017, , .		59
32	Performance of LoRa-Based IoT Applications on Campus. , 2017, , .		42
33	Multi-Technology Data Collection: Short and Long Range Communications. , 2017, , .		5
34	Advanced remote debugging of LoRa-enabled IoT sensor nodes. , 2017, , .		0
35	Wearable and autonomous computing for future smart cities: Open challenges. , 2017, , .		19
36	Smartphone based LoRa in-soil propagation measurement for wireless underground sensor networks. , 2017, , .		13

#	Article	IF	CITATIONS
37	CSSTag: Optical Nanoscale Radar and Particle Tracking for In-Body and Microfluidic Systems With Vibrating Graphene and Resonance Energy Transfer. IEEE Transactions on Nanobioscience, 2017, 16, 905-916.	2.2	8
38	Investigating interference between LoRa and IEEE 802.15.4g networks. , 2017, , .		34
39	Enabling RPL multihop communications based on LoRa. , 2017, , .		42
40	Scalability Analysis of Large-Scale LoRaWAN Networks in ns-3. IEEE Internet of Things Journal, 2017, 4, 2186-2198.	5.5	243
41	Collision and packet loss analysis in a LoRaWAN network. , 2017, , .		44
42	IoT devices and applications based on LoRa/LoRaWAN. , 2017, , .		115
43	Transmission Technologies Comparison for IoT Communications in Smart-Cities. , 2017, , .		20
44	LoRa indoor coverage and performance in an industrial environment: Case study. , 2017, , .		83
45	A LoRaWAN: Long range wide area networks study. , 2017, , .		36
46	Radio data infrastructure for remote monitoring system using lora technology. , 2017, , .		6
47	Mathematical model of LoRaWAN channel access with capture effect. , 2017, , .		59
48	Sensor node clutter distribution in LoRa LPWAN. , 2017, , .		3
49	On the impact of downlink feedback on LoRa performance. , 2017, , .		26
50	EXPLoRa: Extending the performance of LoRa by suitable spreading factor allocations. , 2017, , .		141
51	Design and implementation of a LoRa based wireless control for drip irrigation systems. , 2017, , .		21
52	Long range communications in urban and rural environments. , 2017, , .		36
53	Distributed wireless sensing for fugitive methane leak detection. , 2017, , .		12
54	Design of propagation testnode for LoRa based wireless underground sensor networks. , 2017, , .		10

#	Article	IF	CITATIONS
55	LoPy as a building block for Internet of Things in coastal marine applications. , 2017, , .		1
56	Lora propagation testing in soil for wireless underground sensor networks. , 2017, , .		23
57	Modeling the Energy Performance of LoRaWAN. Sensors, 2017, 17, 2364.	2.1	203
58	An Experimental Evaluation of the Reliability of LoRa Long-Range Low-Power Wireless Communication. Journal of Sensor and Actuator Networks, 2017, 6, 7.	2.3	157
59	Unmanned Aerial Vehicle Based Wireless Sensor Network for Marine-Coastal Environment Monitoring. Sensors, 2017, 17, 460.	2.1	128
60	LoRa Mobile-To-Base-Station Channel Characterization in the Antarctic. Sensors, 2017, 17, 1903.	2.1	33
61	Dynamic Spectrum Access for Internet of Things Service in Cognitive Radio-Enabled LPWANs. Sensors, 2017, 17, 2818.	2.1	38
62	Proposed Fuzzy-NN Algorithm with LoRaCommunication Protocol for Clustered Irrigation Systems. Future Internet, 2017, 9, 78.	2.4	13
63	LoRa Scalability: A Simulation Model Based on Interference Measurements. Sensors, 2017, 17, 1193.	2.1	210
64	Wireless Pick-by-Light: Usability of LPWAN to Achieve a Flexible Warehouse Logistics Infrastructure. Lecture Notes in Logistics, 2018, , 273-283.	0.6	6
65	A novel wireless visual sensor network protocol based on LoRa modulation. International Journal of Distributed Sensor Networks, 2018, 14, 155014771876598.	1.3	12
66	Low-power wide-area networks. , 2018, , .		62
67	On the feasibility of mobile sensing and tracking applications based on LPWAN. , 2018, , .		19
68	Remote Software Update in Trusted Connection of Long Range IoT Networking Integrated With Mobile Edge Cloud. IEEE Access, 2018, 6, 66831-66840.	2.6	14
69	From Micro to Macro IoT: Challenges and Solutions in the Integration of IEEE 802.15.4/802.11 and Sub-GHz Technologies. IEEE Internet of Things Journal, 2018, 5, 784-793.	5.5	71
70	Measurements and Observations in the XXI century (MOXXI): innovation and multi-disciplinarity to sense the hydrological cycle. Hydrological Sciences Journal, 2018, 63, 169-196.	1.2	151
71	Impact of foliage on LoRa 433MHz propagation in tropical environment. AIP Conference Proceedings, 2018, , .	0.3	17
72	Optimal Policy Derivation for Transmission Duty-Cycle Constrained LPWAN. IEEE Internet of Things Journal, 2018, 5, 3114-3125.	5.5	34

#	Article	IF	CITATIONS
73	Leveraging LoRa Spreading Factor Detection to Enhance Transmission Efficiency. , 2018, , .		8
74	LoRa network performance comparison between open area and tree farm based on PHY factors. , 2018, ,		6
75	Monitoring of Large-Area IoT Sensors Using a LoRa Wireless Mesh Network System: Design and Evaluation. IEEE Transactions on Instrumentation and Measurement, 2018, 67, 2177-2187.	2.4	307
76	Middleware and communication technologies for structural health monitoring of critical infrastructures: A survey. Computer Standards and Interfaces, 2018, 56, 83-100.	3.8	49
77	Planning a Smart City Sensor Network Based on LoRaWAN Technology. , 2018, , .		6
78	A Survey on Multi-hop Routing Protocols for Efficient Resource Allocation in IoTs. , 2018, , .		1
79	A Survey on Multi-hop Routing Protocols for Efficient Resource Allocation in IoTs. , 2018, , .		1
80	Performance Evaluation of LoRaWAN in North America Urban Scenario. , 2018, , .		3
81	SL-MAC: A Joint TDMA MAC Protocol for LEO Satellites Supported Internet of Things. , 2018, , .		1
82	IOT based Identification and Assessment of Industrial Assets. , 2018, , .		6
83	Comparison of three LoRa devices and its application on street light monitoring system. IOP Conference Series: Earth and Environmental Science, 2018, 195, 012066.	0.2	3
84	Feasibility Analysis of a LoRa-Based WSN Using Public Transport. Applied System Innovation, 2018, 1, 49.	2.7	16
85	An Energy Management Platform for Public Buildings. Electronics (Switzerland), 2018, 7, 294.	1.8	22
86	Extensions to LwM2M for Intermittent Connectivity and Improved Efficiency. , 2018, , .		5
87	Effects of Traffic Characteristics on Energy Consumption of IoT End Devices in Smart City. , 2018, , .		10
88	A QoS-Aware Adaptive Mobility Handling Approach for LoRa-Based IoT Systems. , 2018, , .		5
89	Method for Organizing Mesh Topology based on LoRa Technology. , 2018, , .		9
90	LoRa Parameter Choice for Minimal Energy Usage. , 2018, , .		5

#	Article	IF	CITATIONS
91	Adaptive Data Synchronization Algorithm for IoT-Oriented Low-Power Wide-Area Networks. Sensors, 2018, 18, 4053.	2.1	10
92	A Bio-Inspired Deployment Method for Data Collection Networks in Wide White Areas. , 2018, , .		2
93	Effect of Downlink Traffic on Performance of LoRaWAN LPWA Networks: Empirical Study. , 2018, , .		16
94	Joint Spreading Factor and Coding Rate Assignment in LoRaWAN Networks. , 2018, , .		21
95	Boosting Network Capacity in LoRaWAN Through Time-Power Multiplexing. , 2018, , .		10
96	Data Analytics of a Wearable Device for Heat Stroke Detection. Sensors, 2018, 18, 4347.	2.1	18
97	Experimental Evaluation of LoRaWAN in NS-3. , 2018, , .		12
98	LoRa QoS Performance Analysis on Various Spreading Factor in Indonesia. , 2018, , .		14
99	WiSH-WalT: A Framework for Controllable and Reproducible LoRa Testbeds. , 2018, , .		4
100	LouPe: LoRa Performance Measurement Tool. , 2018, , .		3
101	LoRaWAN based GPS tracking of city-buses for smart public transport system. , 2018, , .		8
102	Fundamentals of Wireless Communication Link Design for Networked Robotics. , 0, , .		5
103	Coast Panic-Emergency Situation Monitoring System on West and East Sailing Lane of Surabaya Using LORAWAN Technology. , 2018, , .		2
104	Research on Agricultural Environment Information Collection System Based on LoRa. , 2018, , .		5
105	LoRa technology MAC layer operations and Research issues. Procedia Computer Science, 2018, 130, 1096-1101.	1.2	18
106	IOT ready infrastructure for home security system in clustered housing complex. IOP Conference Series: Earth and Environmental Science, 2018, 195, 012049.	0.2	0
107	Experimental Performance Evaluation of the Collisions in LoRa Communications. , 2018, , .		2
108	Simulation and Modelling of LoRa and Sigfox Low Power Wide Area Network Technologies. , 2018, , .		13

	CITATION	Report	
#	ARTICLE	IF	CITATIONS
109	IoT Based Energy Consumption Monitoring Platform for Industrial Processes. , 2018, , .		9
110	A Survey of LoRaWAN for IoT: From Technology to Application. Sensors, 2018, 18, 3995.	2.1	351
111	Channel-Envelope Differencing Eliminates Secret Key Correlation: LoRa-Based Key Generation in Low Power Wide Area Networks. IEEE Transactions on Vehicular Technology, 2018, 67, 12462-12466.	3.9	52
112	A Real-Time Bus Positioning System Based on LoRa Technology. , 2018, , .		8
113	On the Use of LoRa Technology for Logic Selectivity in MV Distribution Networks. Energies, 2018, 11, 3079.	1.6	21
114	Hybrid RSSI-AoA Positioning System with Single Time-Modulated Array Receiver for LoRa IoT. , 2018, , .		14
115	Overcoming Limitations of LoRa Physical Layer in Image Transmission. Sensors, 2018, 18, 3257.	2.1	52
116	First Steps in the Development of a LoRaWAN Testbench. , 2018, , .		2
117	Low-Power Wide-Area technologies as building block for smart sensors in air quality measurements. Elektrotechnik Und Informationstechnik, 2018, 135, 416-422.	0.7	8
118	Industrial LoRa: A Novel Medium Access Strategy for LoRa in Industry 4.0 Applications. , 2018, , .		58
119	Energy/Reliability Trade-off of LoRa Communications over Fading Channels. , 2018, , .		15
120	Development of a Long-Range Marine Communication System for Fishery Buoy Searching. , 2018, , .		4
121	A Dataset for Performance Analysis of the Social Internet of Things. , 2018, , .		30
122	Towards reliable IoT: Testing LoRa communication. , 2018, , .		9
123	Energy Efficient Policies for Data Transmission in Disruption Tolerant Heterogeneous IoT Networks. Sensors, 2018, 18, 2891.	2.1	2
124	Low Power Wide Area Networks: A Survey of Enabling Technologies, Applications and Interoperability Needs. IEEE Access, 2018, 6, 77454-77473.	2.6	130
125	Evaluating the Scalability of LoRaWAN Gateways for Class B Communication in ns-3. , 2018, , .		13
126	In-field Remote Fingerprint Authentication using Human Body Communication and On-Hub Analytics. , 2018, 2018, 5398-5401.		3

#	Article	IF	CITATIONS
127	Channel Coding for Better QoS in LoRa Networks. , 2018, , .		11
128	Enhancing LoRa Capacity using Non-Binary Single Parity Check Codes. , 2018, , .		16
129	Implementation of Remote Residential-Electric-Meter Reading System Using LoRa. , 2018, , .		1
130	Wireless Sensor Node with Lightning and Atmospheric Pressure Detection for Severe Convective Weather Warning Networks. , 2018, , .		2
131	Military Uniform for Health Analytics for Field Intelligent Zone (MUHAFIZ) Protecting the ones that protect our land. , 2018, , .		1
132	Improving Intelligence and Efficiency of Salt Lake Production by Applying a Decision Support System Based on IOT for Brine Pump Management. Electronics (Switzerland), 2018, 7, 147.	1.8	5
133	Design Issues of Energy-Efficient Access Methods for Cellular IoT Networks. , 2018, , .		1
134	Measuring a LoRa Network: Performance, Possibilities and Limitations. Lecture Notes in Computer Science, 2018, , 116-128.	1.0	22
135	LoRa on the Move: Performance Evaluation of LoRa in V2X Communications. , 2018, , .		16
136	The Gigantium Smart City Living Lab: A Multi-Arena LoRa-based Testbed. , 2018, , .		5
137	A home automation architecture based on LoRa technology and Message Queue Telemetry Transfer protocol. International Journal of Distributed Sensor Networks, 2018, 14, 155014771880683.	1.3	23
138	On fast prototyping LoRaWAN: a cheap and open platform for daily experiments. IET Wireless Sensor Systems, 2018, 8, 237-245.	1.3	14
139	MoT: A Deterministic Latency MAC Protocol for Mission-Critical IoT Applications. , 2018, , .		15
140	Energy Efficiency Analysis of Centralized-Synchronous LoRa-based MAC Protocols. , 2018, , .		7
141	On Track of Sigfox Confidentiality with End-to-End Encryption. , 2018, , .		26
142	Enabling Runtime Adaptation of Physical Layer Settings for Dependable UWB Communications. , 2018, , .		5
143	Specificities of the LoRaâ,,¢ Physical Layer for the Development of New Ad Hoc MAC Layers. Lecture Notes in Computer Science, 2018, , 163-174.	1.0	3
144	An Internet of Things Infrastructure for Rainfall Monitoring in Dakar. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2018, , 175-186.	0.2	1

#	Article	IF	CITATIONS
145	Design and implementation of an Agricultural IoT based on LoRa. MATEC Web of Conferences, 2018, 189, 04011.	0.1	6
146	Humanoid Robot: A Survey on Communication, Tracking and Voice recognition. , 2018, , .		2
147	Powering the IoT through embedded machine learning and LoRa. , 2018, , .		35
148	Addressing scalable, optimal, and secure communications over LoRa networks: Challenges and research directions. Internet Technology Letters, 2018, 1, e54.	1.4	5
149	Towards low-energy, low-cost and high-performance IoT-based operation of interconnected systems. , 2018, , .		4
150	When Renewable Energy Meets LoRa: A Feasibility Analysis on Cable-Less Deployments. IEEE Internet of Things Journal, 2018, 5, 5097-5108.	5.5	28
151	LoRa â \in " A survey of recent research trends. , 2018, , .		73
152	Enhanced flexible LoRaWAN node for industrial IoT. , 2018, , .		18
153	Long-Term Performance Studies of a LoRaWAN-Based PM2.5 Application on Campus. , 2018, , .		7
154	Sensing, communication and security planes: A new challenge for a smart city system design. Computer Networks, 2018, 144, 163-200.	3.2	86
155	Flexible Multimodal Sub-Gigahertz Communication for Heterogeneous Internet of Things Applications. IEEE Communications Magazine, 2018, 56, 146-153.	4.9	51
156	Assessing the Impact of Mobility on LoRa Communications. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2018, , 75-81.	0.2	4
157	Sigfox and LoRaWAN Datasets for Fingerprint Localization in Large Urban and Rural Areas. Data, 2018, 3, 13.	1.2	104
158	Performance Evaluation of LoRa Considering Scenario Conditions. Sensors, 2018, 18, 772.	2.1	195
159	Smart City Pilot Projects Using LoRa and IEEE802.15.4 Technologies. Sensors, 2018, 18, 1118.	2.1	120
160	A Low Power IoT Sensor Node Architecture for Waste Management Within Smart Cities Context. Sensors, 2018, 18, 1282.	2.1	107
161	Smart Waste Collection System with Low Consumption LoRaWAN Nodes and Route Optimization. Sensors, 2018, 18, 1465.	2.1	60
162	Energy Consumption Model for Sensor Nodes Based on LoRa and LoRaWAN. Sensors, 2018, 18, 2104.	2.1	232

#	Article	IF	Citations
163	Adaptive configuration of lora networks for dense IoT deployments. , 2018, , .		172
164	SWARD., 2018,,.		6
165	LoRa Transceiver With Improved Characteristics. IEEE Wireless Communications Letters, 2018, 7, 1058-1061.	3.2	20
166	Design and Development of a Wearable Device for Heat Stroke Detection. Sensors, 2018, 18, 17.	2.1	43
167	Analyzing LoRa: A use case perspective. , 2018, , .		23
168	LoRa Performance under Variable Interference and Heavy-Multipath Conditions. Wireless Communications and Mobile Computing, 2018, 2018, 1-9.	0.8	47
169	A Compact Low-Power LoRa IoT Sensor Node with Extended Dynamic Range for Channel Measurements. Sensors, 2018, 18, 2137.	2.1	20
170	Simulation of LoRa in NS-3: Improving LoRa Performance with CSMA. , 2018, , .		86
171	UbeHealth: A Personalized Ubiquitous Cloud and Edge-Enabled Networked Healthcare System for Smart Cities. IEEE Access, 2018, 6, 32258-32285.	2.6	181
172	An analysis of packet fragmentation impact in LPWAN. , 2018, , .		11
173	Securing the Internet of Things in the Age of Machine Learning and Software-Defined Networking. IEEE Internet of Things Journal, 2018, 5, 4829-4842.	5.5	182
174	Is Fragmentation a Threat to the Success of the Internet of Things?. IEEE Internet of Things Journal, 2019, 6, 472-487.	5.5	33
175	Leveraging LoRaWAN to Support IoBT in Urban Environments. , 2019, , .		4
176	Performance optimization of LoRa nodes for the future smart city/industry. Eurasip Journal on Wireless Communications and Networking, 2019, 2019, .	1.5	25
177	Study of Data Transfer in a Heterogeneous LoRa-Satellite Network for the Internet of Remote Things. Sensors, 2019, 19, 3384.	2.1	25
178	Design, Deployment and Evolution of Heterogeneous Smart Public Lighting Systems. Applied Sciences (Switzerland), 2019, 9, 3281.	1.3	41
179	Location-Based Discovery and Vertical Handover in Heterogeneous Low-Power Wide-Area Networks. IEEE Internet of Things Journal, 2019, 6, 10150-10165.	5.5	22
180	Design Considerations for Packet Re-transmission in LoRaWAN deployments. , 2019, , .		0

#	Article	IF	CITATIONS
181	Internet of Things Technology based on LoRaWAN Revolution. , 2019, , .		18
182	Sensor-Based Daily Activity Understanding in Caregiving Center. , 2019, , .		9
183	Performance Measurements of IEEE 802.15.4g Wireless Networks. , 2019, , .		12
184	Capacity in LoRaWAN Networks: Challenges and Opportunities. , 2019, , .		7
185	Efficient Design of Chirp Spread Spectrum Modulation for Low-Power Wide-Area Networks. IEEE Internet of Things Journal, 2019, 6, 9503-9515.	5.5	57
186	Prospects of Distributed Wireless Sensor Networks for Urban Environmental Monitoring. IEEE Aerospace and Electronic Systems Magazine, 2019, 34, 44-52.	2.3	32
187	Emotion Detection IoT enabled Edge-node for Citizen Security. , 2019, , .		3
188	Improving Channel Utilization of LoRaWAN by using Novel Channel Access Mechanism. , 2019, , .		24
189	Optimizing and Updating LoRa Communication Parameters: A Machine Learning Approach. IEEE Transactions on Network and Service Management, 2019, 16, 884-895.	3.2	62
190	Propagation Model Evaluation for LoRaWAN: Planning Tool Versus Real Case Scenario. , 2019, , .		16
191	Performance Analysis of Data Recovery via Application Layer for LPWAN. , 2019, , .		2
192	LoBEMS—loT for Building and Energy Management Systems. Electronics (Switzerland), 2019, 8, 763.	1.8	54
193	An Integrated System for Real-Time Water Monitoring Based on Low Cost Unmanned Surface Vehicles. , 2019, , .		3
194	Performance Analysis of a Smart Street Lighting Application Using LoRa Wan. , 2019, , .		8
195	Improving LoRa Signal Coverage in Urban and Sub-Urban Environments with UAVs. , 2019, , .		26
196	The Design, Implementation, and Deployment of a Smart Lighting System for Smart Buildings. IEEE Internet of Things Journal, 2019, 6, 7266-7281.	5.5	53
197	A Novel Modulation for IoT: PSK-LoRa. , 2019, , .		29
198	Advanced Rainwater Harvesting through Smart Rain Barrels. , 2019, , .		7

#	Article	IF	CITATIONS
199	LoRa-based Mesh Network for IoT Applications. , 2019, , .		35
200	On the Evaluation of the NB-IoT Random Access Procedure in Monitoring Infrastructures. Sensors, 2019, 19, 3237.	2.1	28
201	Comparative Analysis of Channel Models for Industrial IoT Wireless Communication. IEEE Access, 2019, 7, 91627-91640.	2.6	43
202	Dual-Channel LoRa Gateway using Channel Assignment on Raspberry Pi. Journal of Physics: Conference Series, 2019, 1196, 012075.	0.3	2
203	A bridge between the smart grid and the Internet of Things: Theoretical and practical roles of LoRa. International Journal of Electrical Power and Energy Systems, 2019, 113, 971-981.	3.3	30
204	Low cost DSPâ€based educational embedded platform for realâ€time simulation and fast implementation of complex systems in Simulink. Computer Applications in Engineering Education, 2019, 27, 955-970.	2.2	2
205	Physical layer identification of LoRa devices using constellation trace figure. Eurasip Journal on Wireless Communications and Networking, 2019, 2019, .	1.5	34
206	A Long-Range 2.4G Network System and Scheduling Scheme for Aquatic Environmental Monitoring. Electronics (Switzerland), 2019, 8, 909.	1.8	11
207	Bit Error Rate Closed-Form Expressions for LoRa Systems under Nakagami and Rice Fading Channels. Sensors, 2019, 19, 4412.	2.1	20
208	Dual-Use Chirp Spread Spectrum Waveform With Ranging Capability. , 2019, , .		0
209	Investigation of Performance-Complexity Tradeoff in Filtering LoRa Signals. , 2019, , .		0
210	Evaluation of LoRa Performance in a City-wide Testbed. , 2019, , .		7
211	K-Means Spreading Factor Allocation for Large-Scale LoRa Networks. Sensors, 2019, 19, 4723.	2.1	25
212	Trace-Driven Simulation for LoRaWan868 MHz Propagation in an Urban Scenario. , 2019, , .		2
213	LoRa Performance Assessment in Dense Urban and Forest Areas for Environmental Monitoring. , 2019, ,		9
214	An Internet of Things (IoT) Application on Volcano Monitoring. Sensors, 2019, 19, 4651.	2.1	27
215	A Role-Based Software Architecture to Support Mobile Service Computing in IoT Scenarios. Sensors, 2019, 19, 4801.	2.1	6
216	WiFi Coverage Range Characterization for Smart Space Applications. , 2019, , .		6

#	Article	IF	Citations
217	Efficient Image Transmission Using LoRa Technology In Agricultural Monitoring IoT Systems. , 2019, , .		22
218	Implementation of IoT System for Securing Telecommunications Infrastructure Based on LoRaWAN Operator's Network. , 2019, , .		4
219	A Survey on Multi-unmanned Aerial Vehicle Communications for Autonomous Inspections. , 2019, , .		6
220	Indoor air quality monitors using IOT sensors and LPWAN. , 2019, , .		19
221	An Internet of Things-Based Low-Power Integrated Beekeeping Safety and Conditions Monitoring System. Inventions, 2019, 4, 52.	1.3	18
222	Reducing the Cost of Implementing Filters in LoRa Devices. Sensors, 2019, 19, 4037.	2.1	4
223	Evaluation of New Generation Communication Technologies for Deployments in Rural Exploitation. , 2019, , .		1
224	Smart Agriculture Using IoT Multi-Sensors: A Novel Watering Management System. Journal of Sensor and Actuator Networks, 2019, 8, 45.	2.3	88
225	A Rate Adaptation Scheme with Enhanced Loss Differentiation for LoRaWAN Communications. Journal of Physics: Conference Series, 2019, 1237, 032064.	0.3	1
226	Emerging LPWAN Technologies for Smart Environments: An Outlook. , 2019, , .		17
227	A Scalable Slotted Aloha for Massive IoT: A Throughput Analysis. , 2019, , .		3
228	Black Powder Flow Monitoring in Pipelines by Means of Multi-Hop LoRa Networks. , 2019, , .		10
229	A Wiener-Based RSSI Localization Algorithm Exploiting Modulation Diversity in LoRa Networks. IEEE Sensors Journal, 2019, 19, 12381-12388.	2.4	26
230	Comparative Performance Analysis of Empirical Propagation Models for LoRaWAN 868MHz in an Urban Scenario. , 2019, , .		31
231	Propagation measurements for a LoRa network in an urban environment. Journal of Electromagnetic Waves and Applications, 2019, 33, 2022-2036.	1.0	17
232	Supervision and energy management system for smart telecom tower based on the LoRaWAN protocol. , 2019, , .		0
233	Protection of MV smart grid based on IoT technology. , 2019, , .		5
234	A Reinforcement Learning-Based Framework for the Exploitation of Multiple RATs in the IoT. IEEE Access, 2019, 7, 123341-123354.	2.6	12

#	Article	IF	CITATIONS
235	Indoor Vehicles Geolocalization Using LoRaWAN. Future Internet, 2019, 11, 124.	2.4	22
236	LoRa-Hybrid: A LoRaWAN Based Multihop Solution for Regional Microgrid. , 2019, , .		19
237	Research on LoRa Communication Performance in Manhole Cover Monitoring. , 2019, , .		3
238	Effect of Event-Based Sensing on IoT Node Power Efficiency. Case Study: Air Quality Monitoring in Smart Cities. IEEE Access, 2019, 7, 132577-132586.	2.6	26
239	RT-LoRa: A Medium Access Strategy to Support Real-Time Flows Over LoRa-Based Networks for Industrial IoT Applications. IEEE Internet of Things Journal, 2019, 6, 10812-10823.	5.5	83
240	An Adaptive and Autonomous LoRa Gateway for Throughput Optimisation. , 2019, , .		1
241	A Multichannel Low-Power Wide-Area Network With High-Accuracy Synchronization Ability for Machine Vibration Monitoring. IEEE Internet of Things Journal, 2019, 6, 5040-5047.	5.5	35
242	Capacity Planning of LoRa Networks With Joint Noise-Limited and Interference-Limited Coverage Considerations. IEEE Sensors Journal, 2019, 19, 4340-4348.	2.4	39
243	Proposal for the Design of Monitoring and Operating Irrigation Networks Based on IoT, Cloud Computing and Free Hardware Technologies. Sensors, 2019, 19, 2318.	2.1	49
244	Time-Power Multiplexing for LoRa-Based IoT Networks: An Effective Way to Boost LoRaWAN Network Capacity. International Journal of Wireless Information Networks, 2019, 26, 308-318.	1.8	14
245	Synchronous LoRa Mesh Network to Monitor Processes in Underground Infrastructure. IEEE Access, 2019, 7, 57663-57677.	2.6	87
246	Internet of Fish: Integration of acoustic telemetry with LPWAN for efficient real-time monitoring of fish in marine farms. Computers and Electronics in Agriculture, 2019, 163, 104850.	3.7	22
247	Sensors and Systems for Wearable Environmental Monitoring Toward IoT-Enabled Applications: A Review. IEEE Sensors Journal, 2019, 19, 7771-7788.	2.4	90
248	Experimental Study of LoRa Modulation Immunity to Doppler Effect in CubeSat Radio Communications. IEEE Access, 2019, 7, 75721-75731.	2.6	67
249	Deep Learning architecture for temperature forecasting in an IoT LoRa based system. , 2019, , .		7
250	A Study on Long Range Radio Communication for Environmental Monitoring Applications. , 2019, , .		7
251	A LoRaWAN Testbed Design for Supporting Critical Situations: Prototype and Evaluation. Wireless Communications and Mobile Computing, 2019, 2019, 1-12.	0.8	10
252	The Implementation of a Campus Air Monitoring System Using LoRa Network. Lecture Notes in Electrical Engineering, 2019, , 388-397.	0.3	3

#	Article	IF	CITATIONS
253	LoRa-based Visual Monitoring Scheme for Agriculture IoT. , 2019, , .		44
254	Increasing LPWAN Scalability by Means of Concurrent Multiband IoT Technologies: An Industry 4.0 Use Case. IEEE Access, 2019, 7, 46990-47010.	2.6	23
255	A review of LoRa technology and its potential use for rural development in Indonesia. AIP Conference Proceedings, 2019, , .	0.3	14
256	Monitoring of the Human Body Signal through the Internet of Things (IoT) Based LoRa Wireless Network System. Applied Sciences (Switzerland), 2019, 9, 1884.	1.3	79
257	Developing a Real-time Monitoring Traceability System for Cold Chain of Tricholoma matsutake. Electronics (Switzerland), 2019, 8, 423.	1.8	9
258	Wireless Middleware Solutions for Smart Water Metering. Sensors, 2019, 19, 1853.	2.1	39
259	Experiencing LoRa Network Establishment on a Smart Energy Campus Testbed. Sustainability, 2019, 11, 1917.	1.6	13
260	Computational Methods for Network-Aware and Network-Agnostic IoT Low Power Wide Area Networks (LPWANs). IEEE Internet of Things Journal, 2019, 6, 5732-5744.	5.5	18
261	LoRaWAN Network: Radio Propagation Models and Performance Evaluation in Various Environments in Lebanon. IEEE Internet of Things Journal, 2019, 6, 2366-2378.	5.5	116
262	Evaluating the LoRaWAN Protocol Using a Permanent Outdoor Testbed. IEEE Sensors Journal, 2019, 19, 4726-4733.	2.4	32
263	Standards for Cyber-Physical Energy Systems—Two Case Studies from Sensor Technology. Applied Sciences (Switzerland), 2019, 9, 435.	1.3	8
264	An Alternative Internet-of-Things Solution Based on LoRa for PV Power Plants: Data Monitoring and Management. Energies, 2019, 12, 881.	1.6	47
265	Known and Unknown Facts of LoRa. ACM Transactions on Sensor Networks, 2019, 15, 1-35.	2.3	226
266	Toward a Lightweight Intrusion Detection System for the Internet of Things. IEEE Access, 2019, 7, 42450-42471.	2.6	178
267	A Review on Performances Evaluation of Low Power Wide Area Networks Technology. Lecture Notes in Electrical Engineering, 2019, , 343-349.	0.3	3
268	Adaptive dynamic network slicing in LoRa networks. Future Generation Computer Systems, 2019, 98, 697-707.	4.9	46
269	Reception of LoRa Signals From LEO Satellites. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55, 3587-3602.	2.6	33
270	Collision Resolution Protocol for Delay and Energy Efficient LoRa Networks. IEEE Transactions on Green Communications and Networking, 2019, 3, 535-551.	3.5	35

#	Article	IF	CITATIONS
271	A Heterogeneous IoV Architecture for Data Forwarding in Vehicle to Infrastructure Communication. Mobile Information Systems, 2019, 2019, 1-12.	0.4	40
272	Improving the Capacity of a Mesh LoRa Network by Spreading-Factor-Based Network Clustering. IEEE Access, 2019, 7, 21584-21596.	2.6	70
273	Slotted ALOHA on LoRaWAN-Design, Analysis, and Deployment. Sensors, 2019, 19, 838.	2.1	122
274	Design optimization of WirelessHART networks in Cyber-Physical Systems. Journal of Systems Architecture, 2019, 97, 168-184.	2.5	7
275	DebriNet: An Opportunistic Software Defined Networking Framework over PSLV Debris. , 2019, , .		4
276	Scalability Analysis of a LoRa Network Under Imperfect Orthogonality. IEEE Transactions on Industrial Informatics, 2019, 15, 1425-1436.	7.2	153
277	Field Performance Test Using Long-Range Communication Device for Smart Meter Communication Module in Indonesia. , 2019, , .		1
278	Research on System Dynamics and Agent Hybrid Modeling Method for Multi-Energy Collaborative Control Under Ubiquitous Power Internet. , 2019, , .		0
279	Experimental Characterization of LoRaWAN Link Quality. , 2019, , .		17
280	Monitoring System in Lora Network Architecture using Smart Gateway in Simple LoRa Protocol. , 2019, , .		33
281	Advances in the Automated Test and Measurement Infrastructure of Narrowband Wireless WAN. , 2019, , .		2
282	Scalable Transport Mechanisms for Blockchain IoT Applications. , 2019, , .		12
283	A Comparative Study of LoRaWAN, SigFox, and NB-IoT for Smart Water Grid. , 2019, , .		26
284	Evaluation of the BER Performance of LoRa Communication using BICM Decoding. , 2019, , .		16
285	Work in Progress: A low cost geographical localization system for a more secure coastal artisanal fishery in Senegal. , 2019, , .		1
286	LoRa-based IoT Network Planning for Advanced Metering Infrastructure in Urban, Suburban and Rural Scenario. , 2019, , .		16
287	LoRa Gateway Placement at the University of Zululand: A Case Study. , 2019, , .		3
288	Model assisted compressive data gathering in dense IoT monitoring of water distribution networks. , 2019, , .		2

#	Article	IF	CITATIONS
289	Design of Intelligent Greenhouse Control System Based on Internet of Things. , 2019, , .		4
290	Vehicle Electrification: Technologies, Challenges, and a Global Perspective for Smart Grids. , 0, , .		5
291	Enabling Direct Messaging from LoRa to ZigBee in the 2.4 GHz Band for Industrial Wireless Networks. , 2019, , .		9
292	Low Power - Low Rate Vessel Tracking System (VTS) in Territorial Waters. , 2019, , .		4
293	Analysis of Spreading Factor Variations on LoRa in Rural Areas. , 2019, , .		5
294	Low Power Wide Area Network Technologies for Smart Cities Applications. , 2019, , .		8
295	Internet of Things and LoRaWAN-Enabled Future Smart Farming. IEEE Internet of Things Magazine, 2019, 2, 14-19.	2.0	52
296	Design and Implementation of IoT Solution for Air Pollution Monitoring. , 2019, , .		2
297	An Adaptation of IoT to Improve Parcel Delivery System. , 0, , .		3
298	QuakeSense, a LoRa-compliant Earthquake Monitoring Open System. , 2019, , .		16
299	Image Transmission Using LoRa Technology with Various Spreading Factors. , 2019, , .		9
300	Performance Analysis of Point-to-Point LoRa End Device Communication. Lontar Komputer, 0, , 140.	0.3	2
301	Prototype weather station uses LoRa wireless connectivity infrastructure. Journal of Physics: Conference Series, 2019, 1367, 012089.	0.3	10
302	Research on Dedicated Network of Distribution Electric Power IoT Based on LoRa Technology and Multi-fork tree Model. IOP Conference Series: Earth and Environmental Science, 0, 358, 032057.	0.2	1
303	Two Networking Algorithms Based on LoRa Communication Used for Private Network Construction in Energy Acquisition System. IOP Conference Series: Earth and Environmental Science, 2019, 358, 032058.	0.2	0
304	Dynamic and Non-Centric Networking Approach Using Virtual Gateway Platforms for Low Power Wide Area Systems. IEEE Access, 2019, 7, 186078-186090.	2.6	7
305	LST-MAC: A Low-Latency Hybrid MAC Protocol for LEO Satellite Supported IoT. , 2019, , .		1
306	Design of IoT-Based River Water Monitoring Robot Data Transmission Model Using Low Power Wide Area Network (LPWAN) Communication Technology. , 2019, , .		7

#	ARTICLE	IF	CITATIONS
 307	An IoT Architecture for Continuous Livestock Monitoring Using LoRa LPWAN. Electronics (Switzerland), 2019, 8, 1435.	1.8	55
308	Test and Measurement of LPWAN and Cellular IoT Networks in a Unified Testbed. , 2019, , .		4
309	Performance Analysis Comparison between LoRa and Frequency Hopping-based LPWAN. , 2019, , .		5
310	On the use of LoRa for Power Line Communication. , 2019, , .		3
311	Evacuation Supporting System Based on IoT Components â€. Proceedings (mdpi), 2019, 31, 38.	0.2	5
312	Performance and Long Distance Data Acquisition via LoRa Technology of a Tubular Plant Microbial Fuel Cell Located in a Paddy Field in West Kalimantan, Indonesia. Sensors, 2019, 19, 4647.	2.1	30
313	Feeding the World With Microwaves: How Remote and Wireless Sensing Can Help Precision Agriculture. IEEE Microwave Magazine, 2019, 20, 72-86.	0.7	17
314	Understanding the IoT technology LoRa and its interference vulnerability. , 2019, , .		5
315	Gateway Selection for Downlink Communication in LoRaWAN. , 2019, , .		11
316	Hybrid Localization techniques in LoRa-based WSN. , 2019, , .		3
317	Performance Evaluation of LoRaWAN for Green Internet of Things. IEEE Access, 2019, 7, 164102-164112.	2.6	25
318	Development, implementation and evaluation of a wireless sensor network and a web-based platform for the monitoring and management of a microgrid with renewable energy sources. , 2019, , .		7
319	A Sea Rescue Operation System Based On LoRa. , 2019, , .		7
320	Smart Sensing in Mobility: a LoRaWAN Architecture for Pervasive Environmental Monitoring. , 2019, , .		10
321	A Comprehensive Study of the Use of LoRa in the Development of Smart Cities. Applied Sciences (Switzerland), 2019, 9, 4753.	1.3	68
322	Survey and Performance Study of Emerging LPWAN Technologies for IoT Applications. , 2019, , .		12
323	Development of Water Temperature Measuring Application Based on LoRa/LoRWAN. , 2019, , .		2
324	A Survey on LPWAN Technologies in WBAN for Remote Health-Care Monitoring. Sensors, 2019, 19, 5268.	2.1	51

#	Article	IF	CITATIONS
325	An Evaluation of LoRa Communication Range in Urban and Forest Areas: A Case Study in Brazil and Portugal. , 2019, , .		8
326	Distributed Network Slicing in Large Scale IoT Based on Coalitional Multi-Game Theory. IEEE Transactions on Network and Service Management, 2019, 16, 1567-1580.	3.2	34
327	Gateway Planning for Hybrid LoRa Networks. , 2019, , .		5
328	System for Detecting and Forecasting PM2.5 Concentration Levels Using Long Short-Term Memory and LoRa. , 2019, , .		2
329	Energy Efficient Resource Allocation for M2M Devices in LTE/LTE-A. Sensors, 2019, 19, 5337.	2.1	4
330	Development of low power consumption manhole cover monitoring device using LoRa. , 2019, , .		4
331	Evaluation of LoRaWAN Transmission Range for Wireless Sensor Networks in Riparian Forests. , 2019, ,		10
332	Remote Monitoring of IoT Sensors and Communication Link Quality in Multisite mMTC Testbed. , 2019, ,		6
333	Coded LoRa Performance in Wireless Channels. , 2019, , .		12
334	A Model for Reliable Uplink Transmissions in LoRaWAN. , 2019, , .		5
335	Key technologies of ubiquitous power Internet of Things-aided smart grid. Journal of Renewable and Sustainable Energy, 2019, 11, 062702.	0.8	26
336	A Study on LoRaWAN for Wireless Sensor Networks. Advances in Intelligent Systems and Computing, 2019, , 245-252.	0.5	5
337	Low Overhead Scheduling of LoRa Transmissions for Improved Scalability. IEEE Internet of Things Journal, 2019, 6, 3097-3109.	5.5	102
338	Data Reduction in a Low-Cost Environmental Monitoring System Based on LoRa for WSN. IEEE Internet of Things Journal, 2019, 6, 3024-3030.	5.5	52
339	Internet of Things and data mining: From applications to techniques and systems. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2019, 9, e1292.	4.6	25
340	Interleaved Chirp Spreading LoRa-Based Modulation. IEEE Internet of Things Journal, 2019, 6, 3855-3863.	5.5	73
341	Evaluation of UAV Based Schemes for Forest Fire Monitoring. Mechanisms and Machine Science, 2019, , 143-150.	0.3	11
342	Low-Power Wide Area Network Technologies for Internet-of-Things: A Comparative Review. IEEE Internet of Things Journal, 2019, 6, 2225-2240.	5.5	206

#	Article	IF	CITATIONS
343	SEES: a scalable and energy-efficient scheme for green IoT-based heterogeneous wireless nodes. Journal of Ambient Intelligence and Humanized Computing, 2019, 10, 1571-1596.	3.3	36
344	Data Transmission Using K-Means Clustering in Low Power Wide Area Networks with Mobile Edge Cloud. Wireless Personal Communications, 2019, 105, 567-581.	1.8	9
345	Orchestration of heterogeneous wireless networks: State of the art and remaining challenges. Computer Communications, 2020, 149, 62-77.	3.1	12
346	Survey of the low power wide area network technologies. Journal of Network and Computer Applications, 2020, 149, 102459.	5.8	41
347	Direct Antenna Modulation for High-Order Phase Shift Keying. IEEE Transactions on Antennas and Propagation, 2020, 68, 111-120.	3.1	20
348	A Survey on LoRa Networking: Research Problems, Current Solutions, and Open Issues. IEEE Communications Surveys and Tutorials, 2020, 22, 371-388.	24.8	257
349	On the Use of LoRaWAN in Smart Cities: A Study With Blocking Interference. IEEE Internet of Things Journal, 2020, 7, 2806-2815.	5.5	28
350	The adoption of internet of things in a circular supply chain framework for the recovery of WEEE: the case of lithium-ion electric vehicle battery packs. Waste Management, 2020, 103, 32-44.	3.7	106
351	Novel Enhanced LoRaWAN Framework for Smart Home Remote Control Security. Wireless Personal Communications, 2020, 110, 2109-2130.	1.8	18
352	Rate Selection for Wireless Random Access Networks Over Block Fading Channels. IEEE Transactions on Communications, 2020, 68, 1604-1616.	4.9	11
353	A Low-Cost Unmanned Surface Vehicle for Pervasive Water Quality Monitoring. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 1433-1444.	2.4	55
354	LoRa Technology Demystified: From Link Behavior to Cell-Level Performance. IEEE Transactions on Wireless Communications, 2020, 19, 822-834.	6.1	39
355	Measurement, Characterization, and Modeling of LoRa Technology in Multifloor Buildings. IEEE Internet of Things Journal, 2020, 7, 298-310.	5.5	73
356	LoRaWAN Range Extender for Industrial IoT. IEEE Transactions on Industrial Informatics, 2020, 16, 5607-5616.	7.2	56
357	Two-Hierarchy Communication/Computation Hybrid Optimization Protocol for Railway Wireless Monitoring Systems. IEEE Transactions on Industrial Informatics, 2020, 16, 5723-5734.	7.2	2
359	Monitoring System of Transmission Line in Mountainous Area Based on LPWAN. Energies, 2020, 13, 4898.	1.6	4
360	The Merits of a Decentralized Pollution-Monitoring System Based on Distributed Ledger Technology. IEEE Access, 2020, 8, 189365-189381.	2.6	13
361	Adaptation of a Traditional Irrigation System of Micro-Plots to Smart Agri Development: A Case Study in Murcia (Spain). Agronomy, 2020, 10, 1365.	1.3	8

#	Article	IF	Citations
362	Network resource optimization with reinforcement learning for low power wide area networks. Eurasip Journal on Wireless Communications and Networking, 2020, 2020, .	1.5	21
363	Unsupervised Learning Clustering and Dynamic Transmission Scheduling for Efficient Dense LoRaWAN Networks. IEEE Access, 2020, 8, 191495-191509.	2.6	11
364	LoRaWAN security survey: Issues, threats and possible mitigation techniques. Internet of Things (Netherlands), 2020, 12, 100303.	4.9	64
365	A Two-Hop Real-Time LoRa Protocol for Industrial Monitoring and Control Systems. IEEE Access, 2020, 8, 126239-126252.	2.6	25
366	Performance Research of LoRa at High Transmission Rate. Journal of Physics: Conference Series, 2020, 1544, 012177.	0.3	1
367	Time-Modulated Antenna Array With Beam-Steering for Low-Power Wide-Area Network Receivers. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 1876-1880.	2.4	7
368	loT-based application for construction site safety monitoring. International Journal of Construction Management, 2023, 23, 58-74.	2.2	35
369	Experimental Evaluation of LoRa in Transit Vehicle Tracking Service Based on Intelligent Transportation Systems and IoT. Electronics (Switzerland), 2020, 9, 1950.	1.8	9
370	Exploiting Rateless Codes and Cross-Layer Optimization for Low-Power Wide-Area Networks. , 2020, , .		7
371	Wireless connectivity in Industrial sensor and control networks: Challenges and issues in a real implementation for a smart production use-case. , 2020, , .		3
372	Error probability performance of chirp modulation in uncoded and coded LoRa systems. , 2020, 106, 102828.		19
373	SateLoc: A Virtual Fingerprinting Approach to Outdoor LoRa Localization using Satellite Images. , 2020, , .		18
374	LoRa Gateway as Internet of Things (IoT) Infrastructure Components on Undip Vocational School. IOP Conference Series: Materials Science and Engineering, 2020, 771, 012009.	0.3	2
375	Experimental Parameter Optimization for Adaptive LoRa Modulation in Body-Centric Applications. , 2020, , .		6
376	Dynamic Spreading Factor Assignment in LoRa Wireless Networks. , 2020, , .		15
377	Towards 3-Lead Electrocardiogram Monitoring over LoRa: A Conceptual Design. , 2020, , .		4
378	Functional Qos Metric For Lorawan Applications In Challenging Industrial Environment. , 2020, , .		4
379	A study of the LoRa signal propagation in forest, urban, and suburban environments. Annales Des Telecommunications/Annals of Telecommunications, 2020, 75, 333-351.	1.6	38

ARTICLE IF CITATIONS # From serendipity to sustainable green IoT: Technical, industrial and political perspective. Computer 380 3.2 23 Networks, 2020, 182, 107469. DyLoRa: Towards Energy Efficient Dynamic LoRa Transmission Control., 2020, , . 382 Evaluation of LoRa Technology in Flooding Prevention Scenarios. Sensors, 2020, 20, 4034. 2.1 24 Empowering Named Data Networks for Ad-Hoc Long-Range Communication., 2020,,. Multifunctional smart crib design. IOP Conference Series: Materials Science and Engineering, 2020, 384 0.3 1 784, 012027. Using Long-Range Wireless Sensor Network to Track the Illegal Cutting Log. Applied Sciences 1.3 (Switzerland), 2020, 10, 6992. Performance Analysis of Various LoRaWAN Frequencies For Optimal Data Transmission Of Water 386 3 Quality Parameter Measurement., 2020, , . Analysis of Coding and Transfer of Arien Video Sequences from H.264 Standard., 2020,,. 388 LORAWAN Internet of Things Network Planning for Smart Metering Services., 2020,,. 11 S-MAC: Achieving High Scalability via Adaptive Scheduling in LPWAN., 2020, , . 28 FTrack: Parallel Decoding for LoRa Transmissions. IEEE/ACM Transactions on Networking, 2020, 28, 390 2.6 52 2573-2586. DaRe:<u>Da</u>ta<u>Re</u>covery Through Application Layer Coding for LoRaWAN. IEEE Transactions on Mobile Computing, 2022, 21, 895-910. Performance Evaluation of Propagation Models for LoRaWAN in an Urban Environment., 2020,,. 392 7 Drone-aided Localization in LoRa IoT Networks., 2020, , . Spreading Factor Allocation in LoRa Networks through a Game Theoretic Approach., 2020,,. 394 4 On the Optimal Calculation of the Rice Coding Parameter. Algorithms, 2020, 13, 181. 1.2 Design and Implementation Monitoring and Booking Systems for Smart Parking at Engineering Faculty 396 0.3 2 Campus. IOP Conference Series: Materials Science and Engineering, 2020, 875, 012036. Image Transmission via LoRa Networks – A Survey. , 2020, , .

#	ARTICLE	IF	CITATIONS
398	Energy Consumption Analysis of LPWAN Technologies and Lifetime Estimation for IoT Application. Sensors, 2020, 20, 4794.	2.1	64
399	Optimal PHY Configuration in Wireless Networks. IEEE/ACM Transactions on Networking, 2020, 28, 2601-2614.	2.6	0
400	A Survey on Adaptive Data Rate Optimization in LoRaWAN: Recent Solutions and Major Challenges. Sensors, 2020, 20, 5044.	2.1	101
401	LoRa 2.4 GHz Communication Link and Range. Sensors, 2020, 20, 4366.	2.1	36
402	Adaptive Multi-Channels Allocation in LoRa Networks. IEEE Access, 2020, 8, 214177-214189.	2.6	12
403	Performance Evaluation of Low Power Wide Area (LPWA) LoRa 920 MHz Sensor Node to Medical Monitoring IoT Based. , 2020, , .		12
404	The Design of Application for Smart Home Base on LoRa. , 2020, , .		6
405	Success Probability Characterization of Long-Range in Low-Power Wide Area Networks. Sensors, 2020, 20, 6861.	2.1	4
406	LoRa Architecture for V2X Communication: An Experimental Evaluation with Vehicles on the Move. Sensors, 2020, 20, 6876.	2.1	26
407	A distributed and interconnected network of sensors for environmental radiological monitoring. Radiation Measurements, 2020, 139, 106488.	0.7	4
408	Design, Implementation, and Empirical Validation of an IoT Smart Irrigation System for Fog Computing Applications Based on LoRa and LoRaWAN Sensor Nodes. Sensors, 2020, 20, 6865.	2.1	46
409	Low-Cost IoT Remote Sensor Mesh for Large-Scale Orchard Monitorization. Journal of Sensor and Actuator Networks, 2020, 9, 44.	2.3	23
410	An IIoT System to Monitor 3D–Printed Artifacts via LoRaWAN Embedded Sensors. , 2020, , .		1
411	Design and Simulation in NS-3 of Radio Access Technology with Satellite Backhaul for Implementation in Rural Exploitations. , 2020, , .		0
412	Opportunistic and On-Demand Network Coding-Based Solutions for LPWAN Forwarding. Sensors, 2020, 20, 5792.	2.1	1
413	Model of Autonomous Unmanned On-Road and Aerial Vehicle Carriers For Precision Agricultural Transport 4.0 : A Literature Review. IOP Conference Series: Materials Science and Engineering, 2020, 879, 012019.	0.3	1
414	Unmanned Aerial Vehicle Identification Success Probability with LoRa Communication Approach. , 2020, , .		2
415	Characterization of LoRaWAN Wireless Sensors Network in Outdoor and Indoor Conditions. , 2020, , .		1

#	ARTICLE	IF	Citations
416	Monitoring. Wireless Personal Communications, 2020, 114, 1533-1555.	1.8	17
417	Edge Machine Learning for AI-Enabled IoT Devices: A Review. Sensors, 2020, 20, 2533.	2.1	211
418	Experimental evaluation of RSSI-based positioning system with low-cost LoRa devices. Ad Hoc Networks, 2020, 105, 102168.	3.4	30
419	Artificial Intelligence Applications in Telecommunications and other network industries. Telecommunications Policy, 2020, 44, 101977.	2.6	27
420	LTE and LoRa in the 2.4 GHz Band: Adjacent Channel Interference Issues. , 2020, , .		8
421	Experimental vs. simulation analysis of LoRa for vehicular communications. Computer Communications, 2020, 160, 299-310.	3.1	17
422	Improving Unwavering Quality and Adaptability Analysis of LoRaWAN. Procedia Computer Science, 2020, 171, 2334-2342.	1.2	6
423	Graph-Deep-Learning-Based Inference of Fine-Grained Air Quality From Mobile IoT Sensors. IEEE Internet of Things Journal, 2020, 7, 8943-8955.	5.5	25
424	BIIT: Standardization of Blockchain-based I ² oT Systems in the I4 Era. , 2020, , .		11
425	BIM in People2People and Things2People Interactive Process. Sensors, 2020, 20, 2982.	2.1	9
426	Home Security System with IOT Based Sensors Running On House Infra Structure Platform. IOP Conference Series: Earth and Environmental Science, 2020, 426, 012151.	0.2	1
427	Monitoring Floating Solar Tracker Based on Axis Coordinates using LoRa Network. International Journal of Renewable Energy Development, 2020, 9, 141-149.	1.2	2
428	Waste Management System Using IoT-Based Machine Learning in University. Wireless Communications and Mobile Computing, 2020, 2020, 1-13.	0.8	52
429	PcLoRa: Point-coordinating LoRa with new Channel Structure for massive, reliable and low- latency loT. , 2020, , .		3
430	Development of a low-cost UAV-based system for CH ₄ monitoring over oil fields. Environmental Technology (United Kingdom), 2021, 42, 3154-3163.	1.2	7
431	OODC: An Opportunistic and On-Demand Forwarding Mechanism for LPWA Networks. , 2020, , .		8
432	Water Management for Sustainable Irrigation Systems Using Internet-of-Things. Sensors, 2020, 20, 1402.	2.1	39
433	Design and Empirical Validation of a Bluetooth 5 Fog Computing Based Industrial CPS Architecture for Intelligent Industry 4.0 Shipyard Workshops. IEEE Access, 2020, 8, 45496-45511.	2.6	23

#	Article	IF	CITATIONS
434	A Study on Implementation of Multi-hop Network for LoRaWAN Communication. , 2020, , .		8
435	Upper Bound on LoRa Smart Metering Uplink Rate. , 2020, , .		5
436	A Novel Energy-Efficient Routing Scheme for LoRa Networks. IEEE Sensors Journal, 2020, 20, 8858-8866.	2.4	18
437	LoRa vs. WiFi Ad Hoc: A Performance Analysis and Comparison. , 2020, , .		14
438	Performance analysis of LoRa in the 2.4ÂGHz ISM band: coexistence issues with Wi-Fi. Telecommunication Systems, 2020, 74, 299-309.	1.6	28
439	Long range wide area network for agricultural wireless underground sensor networks. Journal of Ambient Intelligence and Humanized Computing, 2020, , 1.	3.3	9
440	A Method for Sensor-Based Activity Recognition in Missing Data Scenario. Sensors, 2020, 20, 3811.	2.1	21
441	Reliability and Availability Evaluation of Linear LoRaWAN Sensor Network Architectures for Pipeline Monitoring. , 2020, , .		2
442	Optimization of Spreading Factor Distribution in High Density LoRa Networks. , 2020, , .		7
443	Human Activity Sensing with Wireless Signals: A Survey. Sensors, 2020, 20, 1210.	2.1	49
444	A Survey on the Viability of Confirmed Traffic in a LoRaWAN. IEEE Access, 2020, 8, 9296-9311.	2.6	45
445	Joint Allocation Strategies of Power and Spreading Factors With Imperfect Orthogonality in LoRa Networks. IEEE Transactions on Communications, 2020, 68, 3750-3765.	4.9	43
446	Prediction of energy consumption for LoRa based wireless sensors network. Wireless Networks, 2020, 26, 3507-3520.	2.0	27
447	A Stepwise and Hybrid Trust Evaluation Scheme for Tactical Wireless Sensor Networks. Sensors, 2020, 20, 1108.	2.1	6
448	Internet of Things (IoT) and the Energy Sector. Energies, 2020, 13, 494.	1.6	373
449	A Design of a Parcel Delivery Systemfor Point to Point Delivery with IoT Technology. Future Internet, 2020, 12, 70.	2.4	5
450	Reliability Improvement of LoRa with ARQ and Relay Node. Symmetry, 2020, 12, 552.	1.1	10
451	A Visitor Assistance System Based on LoRa for Nature Forest Parks. Electronics (Switzerland), 2020, 9, 696.	1.8	5

	C	itation Report	
#	Article	IF	CITATIONS
452	An Autonomous Wireless Device for Real-Time Monitoring of Water Needs. Sensors, 2020, 20, 2078	. 2.1	26
453	LoRa-Based Medical IoT System Architecture and Testbed. Wireless Personal Communications, 2022 25-47.	, 126, 1.8	17
454	Optimizing the Lifetime of IoT-Based Star and Mesh Networks. IEEE Access, 2020, 8, 63090-63105.	2.6	4
455	A Theoretical and Experimental Evaluation on the Performance of LoRa Technology. IEEE Sensors Journal, 2020, 20, 9480-9489.	2.4	34
456	A–Z survey of Internet of Things: Architectures, protocols, applications, recent advances, future directions and recommendations. Journal of Network and Computer Applications, 2020, 163, 10266	3. 5.8	141
457	NB-IoT Versus LoRaWAN: An Experimental Evaluation for Industrial Applications. IEEE Transactions of Industrial Informatics, 2020, 16, 7802-7811.	n 7.2	52
458	LoRaFarM: A LoRaWAN-Based Smart Farming Modular IoT Architecture. Sensors, 2020, 20, 2028.	2.1	102
459	loT scheduling for higher throughput and lower transmission power. Wireless Networks, 2021, 27, 1701-1714.	2.0	22
460	Slope-Shift Keying LoRa-Based Modulation. IEEE Internet of Things Journal, 2021, 8, 211-221.	5.5	40
461	Offshore LoRaWAN Networking: Transmission Performances Analysis Under Different Environmenta Conditions. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-10.	2.4	20
462	LoRaMoto: A communication system to provide safety awareness among civilians after an earthquak Future Generation Computer Systems, 2021, 115, 150-170.	e. 4.9	22
463	Energy optimised IoT assisted multiple fuzzy aggravated energy scheduling approach for smart scheduling systems. Enterprise Information Systems, 2021, 15, 951-965.	3.3	8
464	Automatic Generation of IoT Device Platforms With AutoLink. IEEE Internet of Things Journal, 2021, 5893-5903.	8, 5.5	4
465	LoRa System for Search and Rescue: Path-Loss Models and Procedures in Mountain Scenarios. IEEE Internet of Things Journal, 2021, 8, 1985-1999.	5.5	53
466	Cantor: Improving Goodput in LoRa Concurrent Transmission. IEEE Internet of Things Journal, 2021, 1519-1532.	8, 5.5	2
467	Joint slice-based spreading factor and transmission power optimization in LoRa smart city networks. Internet of Things (Netherlands), 2021, 14, 100121.	4.9	15
468	Reliable and Delay Tolerant Transmission Protocols for LPWAN IoT Sensors. , 2021, , .		1
469	An Experimental Study on the Use of LoRa Technology in Vehicle Communication. IEEE Access, 2021 26633-26640.	, 9, <u>2.6</u>	22

#	Article	IF	CITATIONS
470	Reconfigurable TPM Implemented with Ultralow-Power Management in 28nm CMOS Process for IoT SoC Design. Journal of Hardware and Systems Security, 2021, 5, 32-44.	0.8	0
471	New Omnidirectional Sensor Based on Open-Source Software and Hardware for Tracking and Backtracking of Dual-Axis Solar Trackers in Photovoltaic Plants. Sensors, 2021, 21, 726.	2.1	5
472	An Overview of LoRaWAN. WSEAS Transactions on Communications, 2021, 19, 231-239.	0.1	4
473	A Self-organized Adaptation of Spreading Factor for LoRa Radio Layer Based on Experimental Study. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2021, , 25-36.	0.2	0
474	LoRa-RL: Deep Reinforcement Learning for Resource Management in Hybrid Energy LoRa Wireless Networks. IEEE Internet of Things Journal, 2022, 9, 6458-6476.	5.5	23
475	Exploiting voice recognition techniques to provide farm and greenhouse monitoring for elderly or disabled farmers, over Wi-Fi and LoRa interfaces. , 2021, , 247-263.		4
476	Neural Network Techniques for Detecting Intra-Domestic Water Leaks of Different Magnitude. IEEE Access, 2021, 9, 126135-126147.	2.6	4
477	Evaluation of Receiver-Feedback Techniques for Fragmentation Over LPWANs. IEEE Internet of Things Journal, 2022, 9, 6866-6878.	5.5	4
478	R-ARM: Retransmission-Assisted Resource Management in LoRaWAN for the Internet of Things. IEEE Internet of Things Journal, 2022, 9, 7347-7361.	5.5	22
479	Participatory Air Quality and Urban Heat Islands Monitoring System. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-14.	2.4	23
480	TinyLink. ACM Transactions on Sensor Networks, 2021, 17, 1-29.	2.3	3
481	LoRa System for Monitoring and Facial Recognition. Journal of Communication and Information Systems, 2021, 36, 1-16.	0.2	0
482	A Service Discovery Solution for Edge Choreography-Based Distributed Embedded Systems. Sensors, 2021, 21, 672.	2.1	2
483	Model Predictive Control for the Internet of Things. Lecture Notes in Control and Information Sciences, 2021, , 165-189.	0.6	2
484	Improving the Energy Efficiency of the Environmental Monitoring System Through the Use of Adaptive Algorithms. , 2021, , .		0
485	Assessing the Potential of LPWAN Communication Technologies for Near Real-Time Leak Detection in Water Distribution Systems. Sensors, 2021, 21, 293.	2.1	17
486	Problem-Driven and Technology-Enabled Solutions for Safer Communities. , 2021, , 1289-1316.		0
487	On the LoRa Chirp Spread Spectrum Modulation: Signal Properties and Their Impact on Transmitter and Receiver Architectures. IEEE Transactions on Wireless Communications, 2022, 21, 357-369.	6.1	12

#	Article	IF	CITATIONS
488	An Overview of Internet of Things Technology Applied on Precision Agriculture Concept. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 47-70.	0.3	7
489	An Overview of Narrowband Internet of Things (NB-IoT) in the Modern Era. Advances in Wireless Technologies and Telecommunication Book Series, 2021, , 26-45.	0.3	3
490	Ultralow-Power Sensing Framework for Internet of Things: A Smart Gas Meter as a Case. IEEE Internet of Things Journal, 2022, 9, 7533-7544.	5.5	14
491	Energy harvested end nodes and performance improvement of LoRa networks. International Journal on Smart Sensing and Intelligent Systems, 2021, 14, 1-15.	0.4	4
492	Performance Evaluation of Spreading Factors in LoRa Networks. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2021, , 203-215.	0.2	0
493	An IoT LoRaWAN Network for Environmental Radiation Monitoring. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-12.	2.4	24
494	An Earthquake Monitoring System of LoRa Dynamic Networking Based on AODV. Lecture Notes in Electrical Engineering, 2021, , 628-633.	0.3	0
495	High-Density Resource-Restricted Pulse-Based IoT Networks. IEEE Transactions on Green Communications and Networking, 2021, 5, 1856-1868.	3.5	8
496	Energy Harvesting in Smart Cities. , 2021, , 593-620.		0
497	A Systematic Review on Cognitive Radio in Low Power Wide Area Network for Industrial IoT Applications. Sustainability, 2021, 13, 338.	1.6	83
498	Improving Energy Efficiency and QoS of LPWANs for IoT Using Q-Learning Based Data Routing. IEEE Transactions on Cognitive Communications and Networking, 2022, 8, 365-379.	4.9	13
499	A Review of Energy Harvesting in Localization for Wireless Sensor Node Tracking. IEEE Access, 2021, 9, 60108-60122.	2.6	8
500	A Survey on Coverage Enhancement in Cellular Networks: Challenges and Solutions for Future Deployments. IEEE Communications Surveys and Tutorials, 2021, 23, 1302-1341.	24.8	41
501	Analyzing Temporal Change in LoRa Communication Quality Using Massive Measurement Data. Lecture Notes in Computer Science, 2021, , 130-137.	1.0	0
502	LPWAN Technologies. Textbooks in Telecommunication Engineering, 2022, , 193-212.	0.2	2
503	Innovative Mini Ultralight Radioprobes to Track Lagrangian Turbulence Fluctuations within Warm Clouds: Electronic Design. Sensors, 2021, 21, 1351.	2.1	4
504	Review on Online Monitoring and Control in Industrial Automation–An IoT Perspective. IOP Conference Series: Materials Science and Engineering, 2021, 1055, 012034.	0.3	1
505	Research on the Innovation of College Basketball Information Teaching Mode under the Background of Internet. Journal of Physics: Conference Series, 2021, 1744, 042226.	0.3	4

#	Article	IF	CITATIONS
506	Clustering Optimization of LoRa Networks for Perturbed Ultra-Dense IoT Networks. Information (Switzerland), 2021, 12, 76.	1.7	7
507	Performance Analysis of Wi-Fi and LoRa Technology and its Implementation in Farm Monitoring System. IOP Conference Series: Materials Science and Engineering, 2021, 1055, 012051.	0.3	3
508	A Software Defined Radio-Based Prototype for Wireless Metrics Studies in IoT Applications. Wireless Personal Communications, 2021, 120, 2291-2306.	1.8	1
509	A Review of Applications and Communication Technologies for Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) Based Sustainable Smart Farming. Sustainability, 2021, 13, 1821.	1.6	115
510	LoRa Connectivity Analysis for Urban Coverage in Real Mobile Environments. , 2021, , .		2
511	Experimental Evaluation of the Packet Reception Performance of LoRa. Sensors, 2021, 21, 1071.	2.1	11
512	Swarm intelligence based localization in wireless sensor networks. , 2021, , .		9
513	Research on Data Secure Transmission and Processing Method of a LoRa IoT System. Journal of Physics: Conference Series, 2021, 1802, 032044.	0.3	2
514	Study of Lora Module Ra-02 For Long Range, Low Power, Low Rate Picture Transfer Applications. Journal of Physics: Conference Series, 2021, 1845, 012054.	0.3	2
515	Design and Development of Handheld Solar Powered Air Quality Measurement using LoRa. International Journal of Computer Applications, 2021, 174, 22-27.	0.2	0
516	Implementing cryptography in LoRa based communication devices for unmanned ground vehicle applications. SN Applied Sciences, 2021, 3, 1.	1.5	14
517	Study of SPDS-TDMA Time Slot Allocation Protocol Based on Multi-Channel Communication. , 2021, , .		5
518	Survey of Low-Power Wireless Network Technologies for the Internet of Things. Automatic Control and Computer Sciences, 2021, 55, 177-194.	0.4	5
519	Time-Multiplexed Self-Powered Wireless Current Sensor for Power Transmission Lines. Energies, 2021, 14, 1561.	1.6	4
520	Applications of the Internet of Things (IoT) in Smart Logistics: A Comprehensive Survey. IEEE Internet of Things Journal, 2021, 8, 4250-4274.	5.5	102
521	Investigation of Indoor LoRaWAN Signal Propagation for Real-World Applications. , 2021, , .		5
523	Energyâ€efficient fuzzy logicâ€based crossâ€layer hierarchical routing protocol for wireless Internetâ€ofâ€Things sensor networks. International Journal of Communication Systems, 2021, 34, e4808.	1.6	10
524	Cityscape LoRa Signal Propagation Predicted and Tested Using Real-World Building-Data Based O-FDTD Simulations and Experimental Characterization. Sensors, 2021, 21, 2717.	2.1	3

#	Article	IF	CITATIONS
525	Performance Analysis of IoT and Long-Range Radio-Based Sensor Node and Gateway Architecture for Solid Waste Management. Sensors, 2021, 21, 2774.	2.1	38
526	Experimental Evaluation of a LoRa Wildlife Monitoring Network in a Forest Vegetation Area. Future Internet, 2021, 13, 115.	2.4	29
527	A Tree-Structured LoRa Network for Energy Efficiency. IEEE Internet of Things Journal, 2021, 8, 6002-6011.	5.5	21
528	Experimental Link Quality Analysis for LoRa-Based Wireless Underground Sensor Networks. IEEE Internet of Things Journal, 2021, 8, 6565-6577.	5.5	29
529	A Sensor Data-Driven Decision Support System for Liquefied Petroleum Gas Suppliers. Applied Sciences (Switzerland), 2021, 11, 3474.	1.3	1
530	Current Status and Future Trends in the Operation and Maintenance of Offshore Wind Turbines: A Review. Energies, 2021, 14, 2484.	1.6	43
532	Variable Link Performance Due to Weather Effects in a Long-Range, Low-Power LoRa Sensor Network. Sensors, 2021, 21, 3128.	2.1	12
533	Beyond the Star of Stars: An Introduction to Multihop and Mesh for LoRa and LoRaWAN. IEEE Pervasive Computing, 2021, 20, 63-72.	1.1	31
536	Modelling of the packet delivery rate in an actual LoRaWAN network. Electronics Letters, 2021, 57, 460-462.	0.5	4
537	Hybrid LoRa-IEEE 802.11s Opportunistic Mesh Networking for Flexible UAV Swarming. Drones, 2021, 5, 26.	2.7	21
538	A novel Dual-Blockchained structure for contract-theoretic LoRa-based information systems. Information Processing and Management, 2021, 58, 102492.	5.4	15
539	Improving data communication on construction sites via LoRaWAN. Construction Robotics, 2021, 5, 87-100.	1.2	4
540	Low-Latency In-Band Integration of Multiple Low-Power Wide-Area Networks. , 2021, , .		2
541	Monitoring System of Key Technical Features of Male Tennis Players Based on Internet of Things Security Technology. Wireless Communications and Mobile Computing, 2021, 2021, 1-6.	0.8	5
542	Cyber-Physical System for Environmental Monitoring Based on Deep Learning. Sensors, 2021, 21, 3655.	2.1	6
543	Long Range (LoRa) Transmission Through Ice: Preliminary Results. , 2021, , .		0
544	Adaptive MAC Protocols for IoT Edge Computing Architectures with Event-Triggered Traffic. , 2021, , .		1
545	Empirical mapping for evaluating an LPWAN (LoRa) wireless network sensor prior to installation in a vineyard. Oeno One, 2021, 55, 301-313.	0.7	4

#	Article	IF	Citations
546	IoT Real-Time Soil Monitoring Based on LoRa for Palm Oil Plantation. Journal of Physics: Conference Series, 2021, 1874, 012047.	0.3	7
547	Channel Activity Detection with the Modified Backoff Algorithm for LoRaWAN. , 2021, , .		2
548	Analysis of Green IoT. Journal of Physics: Conference Series, 2021, 1874, 012012.	0.3	10
549	A LoRaWAN monitoring system for large buildings based on embedded edge computing in indoor environment. Concurrency Computation Practice and Experience, 0, , e6306.	1.4	0
550	Building an Information-Centric and LoRa-Based Sensing Platform for IoT. , 2021, , .		1
551	Throughput of distributed queueing-based LoRa for long-distance communication. Eurasip Journal on Advances in Signal Processing, 2021, 2021, .	1.0	1
552	Development of slope deformation monitoring system based on tilt sensors with low-power wide area network technology and its application. Journal of Civil Structural Health Monitoring, 2021, 11, 1037.	2.0	4
553	A New Annulus-based Distribution Algorithm for Scalable IoT-driven LoRa Networks. , 2021, , .		1
554	LORA in a Campus: Reliability and Stability Testing. IOP Conference Series: Materials Science and Engineering, 2021, 1105, 012034.	0.3	2
555	Feasibility of Standalone TDoA-based Localization Using LoRaWAN. , 2021, , .		5
556	Low-Cost Wireless Sensor Node for Smart Agriculture Applications. , 2021, , .		2
557	Energy conservation using ultra low power timers for sustainable environmental monitoring. , 2021, , \cdot		0
558	A comprehensive hybrid bit-level and packet-level LoRa-LPWAN simulation model. Internet of Things (Netherlands), 2021, 14, 100386.	4.9	4
560	Design and Implementation of an Energy-Efficient Weather Station for Wind Data Collection. Sensors, 2021, 21, 3831.	2.1	5
561	VHMM-based E-ADR for LoRaWAN networks with unknown mobility patterns. , 2021, , .		7
562	On Superior Reliability of Effective Signal Power versus RSSI in LoRaWAN. , 2021, , .		5
563	Measurements of LoRaWAN Technology in Urban Scenarios: A Data Descriptor. Data, 2021, 6, 62.	1.2	10
564	A LoRa-Based Mesh Network for Peer-to-Peer Long-Range Communication. Sensors, 2021, 21, 4314.	2.1	27

#	Article	IF	CITATIONS
565	Tikiri—Towards a lightweight blockchain for IoT. Future Generation Computer Systems, 2021, 119, 154-165.	4.9	44
566	Resource Management in Energy Harvesting Powered LoRa Wireless Networks. , 2021, , .		7
567	Characterizing the Impact of Doppler Effects on Body-Centric LoRa Links with SDR. Sensors, 2021, 21, 4049.	2.1	5
568	Unlocking the Beamforming Potential of LoRa for Long-range Multi-target Respiration Sensing. , 2021, 5, 1-25.		30
569	Beartooth Relay Protocol: Supporting Real-Time Application Streams with Dynamically Allocated Data Reservations over LoRa. , 2021, , .		1
570	New Model of Food Supply Chain Finance Based on the Internet of Things and Blockchain. Mobile Information Systems, 2021, 2021, 1-8.	0.4	2
571	Elderly Fall Detection and Warning System. IOP Conference Series: Earth and Environmental Science, 2021, 794, 012131.	0.2	2
572	Online and Offline Mixed Intelligent Teaching Assistant Mode of English Based on Mobile Information System. Mobile Information Systems, 2021, 2021, 1-6.	0.4	18
573	RLC: A Reinforcement Learning-Based Charging AlgorithmÂfor Mobile Devices. ACM Transactions on Sensor Networks, 2021, 17, 1-23.	2.3	14
574	On the Application of IoT: Slope Monitoring System for Open-cast Mines Based on LoRa Wireless Communication. Arabian Journal for Science and Engineering, 2022, 47, 1387-1398.	1.7	4
575	Rural Healthcare IoT Architecture Based on Low-Energy LoRa. International Journal of Environmental Research and Public Health, 2021, 18, 7660.	1.2	21
576	A Review of Monitoring Technologies for Solar PV Systems Using Data Processing Modules and Transmission Protocols: Progress, Challenges and Prospects. Sustainability, 2021, 13, 8120.	1.6	48
577	Optimizing the Performance of Pure ALOHA for LoRa-Based ESL. Sensors, 2021, 21, 5060.	2.1	17
578	SateLoc: A Virtual Fingerprinting Approach to Outdoor LoRa Localization Using Satellite Images. ACM Transactions on Sensor Networks, 2021, 17, 1-28.	2.3	18
579	Gateways LoRaWAN no Brasil. , 2021, , .		0
580	Reliable Data Transmission using Low Power Wide Area Networks (LPWAN) for Agricultural Applications. , 2021, , .		4
581	A Joint Optimization Scheme for Hybrid MAC Layer in LEO Satellite Supported IoT. IEEE Internet of Things Journal, 2021, 8, 11822-11833.	5.5	10
582	Clustering in LoRa Networks, an Energy-Conserving Perspective. Wireless Personal Communications, 2022, 122, 197-210.	1.8	6

#	Article	IF	CITATIONS
583	Concurrent interference cancellation., 2021,,.		34
584	An Efficient Two-Wheeler Anti-Theft System Based on Three-Layer Architecture. Lecture Notes in Electrical Engineering, 2022, , 393-403.	0.3	0
585	Refined Node Energy Consumption Modeling in a LoRaWAN Network. Sensors, 2021, 21, 6398.	2.1	12
586	Design and Performance Analysis of a New STBC-MIMO LoRa System. IEEE Transactions on Communications, 2021, 69, 5744-5757.	4.9	21
587	Light-Weight, Self-Powered Sensor Based on Triboelectric Nanogenerator for Big Data Analytics in Sports. Electronics (Switzerland), 2021, 10, 2322.	1.8	10
588	Wireless technologies, medical applications and future challenges in WBAN: a survey. Wireless Networks, 2021, 27, 5271-5295.	2.0	44
589	Impact of Inter-Gateway Distance on LoRaWAN Performance. Electronics (Switzerland), 2021, 10, 2197.	1.8	5
590	The SF12 Well in LoRaWAN: Problem and End-Device-Based Solutions. Sensors, 2021, 21, 6478.	2.1	4
591	Message Queuing Telemetry Transport Communication Infrastructure for Grid-Connected AC Microgrids Management. Energies, 2021, 14, 5610.	1.6	5
592	A review on communication protocols for autonomous unmanned aerial vehicles for inspection application. Microprocessors and Microsystems, 2021, 86, 104340.	1.8	14
593	Energy-Efficient Industrial Internet of Things: Overview and Open Issues. IEEE Transactions on Industrial Informatics, 2021, 17, 7225-7237.	7.2	84
594	IoE-Based Control and Monitoring of Electrical Grids. , 2022, , 843-868.		0
595	A LoRa sensor network for monitoring pastured livestock location and activity1. Translational Animal Science, 2021, 5, txab010.	0.4	20
596	LoRa IoT-Based Architecture for Advanced Metering Infrastructure in Residential Smart Grid. IEEE Access, 2021, 9, 124295-124312.	2.6	21
597	Self-Powered Flexible Sour Sensor for Detecting Ascorbic Acid Concentration Based on Triboelectrification/Enzymatic-Reaction Coupling Effect. Sensors, 2021, 21, 373.	2.1	9
598	Retrofitting for Energy Management. , 2021, , 96-119.		0
599	LoRa Signal Synchronization and Detection at Extremely Low Signal-to-Noise Ratios. IEEE Internet of Things Journal, 2022, 9, 8869-8882.	5.5	4
600	Adjacent Interference of LoRa for Large-scale Livestock Monitoring. International Journal of Networking and Computing, 2021, 11, 283-298.	0.3	0

#	Article	IF	CITATIONS
601	System Performance of Wireless Sensor Network Using LoRa–Zigbee Hybrid Communication. Computers, Materials and Continua, 2021, 68, 1615-1635.	1.5	15
603	Application of Small Satellites for Low-Cost Remote Data Collection Using LoRa Transmitters. Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan, 2021, 19, 224-230.	0.1	2
604	Towards Lightweight Authentication and Batch Verification Scheme in IoV. IEEE Transactions on Dependable and Secure Computing, 2022, 19, 3244-3256.	3.7	11
606	Performance of LoRa-Based Schemes and Quadrature Chirp Index Modulation. IEEE Internet of Things Journal, 2022, 9, 7759-7772.	5.5	7
607	Interference Cancellation for LoRa Gateways and Impact on Network Capacity. IEEE Access, 2021, 9, 128133-128146.	2.6	17
608	Energy Harvesting in Smart Cities. , 2020, , 1-27.		4
609	Problem-Driven and Technology-Enabled Solutions for Safer Communities. , 2021, , 1-28.		5
610	Emerging Wireless Technologies for Internet of Things Applications: Opportunities and Challenges. , 2019, , 1-11.		8
611	Survey on LoRa Technology: Solution for Internet of Things. Advances in Intelligent Systems and Computing, 2020, , 259-271.	0.5	23
612	Survey on Low Power Wide Area Networks in IoT. , 2020, , .		1
613	LMAC. , 2020, , .		74
614	A Survey of Hierarchical Energy Optimization for Mobile Edge Computing. ACM Computing Surveys, 2021, 53, 1-44.	16.1	26
615	Combating packet collisions using non-stationary signal scaling in LPWANs. , 2020, , .		67
616	Approximate query service on autonomous IoT cameras. , 2020, , .		22
617	Exploring LoRa for Long-range Through-wall Sensing. , 2020, 4, 1-27.		51
618	Water Quality Monitoring System Based on LoRa. DEStech Transactions on Computer Science and Engineering, 2018, , .	0.1	4
619	BlockChain with IoT, an Emergent Routing Scheme for Smart Agriculture. International Journal of Advanced Computer Science and Applications, 2020, 11, .	0.5	26
620	A ST X-NUCLEO-BASED TELEMETRY UNIT FOR DETECTION AND WIFI TRANSMISSION OF COMPETITION CAR SENSORS DATA: FIRMWARE DEVELOPMENT, SENSORS TESTING AND REAL-TIME DATA ANALYSIS. International Journal on Smart Sensing and Intelligent Systems, 2017, 10, 793-828.	0.4	6

#	Article	IF	CITATIONS
621	Demand side management using the internet of energy based on LoRaWAN technology. Kurdistan Journal of Applied Research, 2017, 2, 112-119.	0.4	2
622	Adaptive Data Transmission Method According to Wireless State in Long Range Wide Area Networks. Computers, Materials and Continua, 2020, 64, 1-15.	1.5	6
623	An IoT and Fog Computing-Based Monitoring System for Cardiovascular Patients with Automatic ECG Classification Using Deep Neural Networks. Sensors, 2020, 20, 7353.	2.1	27
624	Network Support for IoT Ecosystems. Advances in Wireless Technologies and Telecommunication Book Series, 2019, , 197-213.	0.3	1
625	IoE-Based Control and Monitoring of Electrical Grids. Advances in Computer and Electrical Engineering Book Series, 2019, , 57-82.	0.2	3
626	Impact of Temperature Variations on the Reliability of LoRa. , 2018, , .		17
627	On An Exact Solution Of The Rate Matrix Of Quasi-Birth-Death Process With Small Number Of Phases. , 2017, , .		4
628	A New-Dynamic Adaptive Data Rate Algorithm of LoRaWAN in Harsh Environment. IEEE Internet of Things Journal, 2022, 9, 8989-9001.	5.5	14
629	Next Generation Auto-Identification and Traceability Technologies for Industry 5.0: A Methodology and Practical Use Case for the Shipbuilding Industry. IEEE Access, 2021, 9, 140700-140730.	2.6	37
630	LoRa-based Smart Grid Neighborhood Area Network Resource Access and Address Allocation Mechanism. , 2021, , .		0
631	Current and Future Trend Opportunities of Thermoelectric Generator Applications in Waste Heat Recovery. Gazi University Journal of Science, 2022, 35, 896-915.	0.6	6
632	Scalability Analysis and Performance Measurement of LoRa Network for Smart City Using Internet of Things. , 2021, , .		1
633	Long Range Wide Area Network Deployment for Smart Metering Infrastructure in Urban Area: Case Study of Bandung City. , 2021, , .		2
634	Comparative Analysis of Discrete Time Simulations and Stochastic Geometry Models of a Single Gateway LoRaWAN Network. , 2021, , .		0
635	New Sensor Nodes, Cloud, and Data Analytics: Case Studies on Large Scale SHM Systems. Structural Integrity, 2022, , 457-484.	0.8	8
636	A Propagation Study of LoRa P2P Links for IoT Applications: The Case of Near-Surface Measurements over Semitropical Rivers. Sensors, 2021, 21, 6872.	2.1	8
637	College Physical Education Teaching Aided by Virtual Reality Technology. Mobile Information Systems, 2021, 2021, 1-11.	0.4	7
638	Distributed solar radiation fast dynamic measurement for PV cells. , 2017, , .		0

#	Article	IF	CITATIONS
640	A Review of Low Power Wide Area Technology in Licensed and Unlicensed Spectrum for IoT Use Cases. Bulletin of Electrical Engineering and Informatics, 2018, 7, 183-190.	0.6	10
641	LoRa architecture for air quality monitoring. , 2018, , .		0
642	A New Method for Battery Lifetime Estimation Using Experimental Testbed for Zigbee Wireless Technology. International Journal on Advanced Science, Engineering and Information Technology, 2018, 8, 2654-2662.	0.2	2
643	Improving the Scalability of LoRa Networks Through Dynamical Parameter Set Selection. Communications in Computer and Information Science, 2019, , 3-18.	0.4	1
644	LoRattle - An Exploratory Game with a Purpose Using LoRa and IoT. Lecture Notes in Computer Science, 2019, , 263-277.	1.0	1
645	On the Performance of LoRaWAN in Smart City: End-Device Design and Communication Coverage. Lecture Notes in Computer Science, 2019, , 15-29.	1.0	6
646	Retrofitting for Energy Management. Advances in Environmental Engineering and Green Technologies Book Series, 2019, , 196-218.	0.3	0
647	Autonomous Vehicle Communication in V2X Network with LoRa Protocol. Lecture Notes in Computer Science, 2019, , 398-410.	1.0	4
648	Revised Gateway Selection for LoRa Radio Networks. Lecture Notes in Computer Science, 2019, , 228-240.	1.0	1
649	EL-CRP: An Energy and Location Aware Clustering Routing Protocol in Large Scale Wireless Sensor Networks. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2019, , 15-25.	0.2	0
650	A Review of Link Layer Protocols for Internet of Things. International Journal of Computer Applications, 2019, 182, 22-28.	0.2	1
652	Low-Power Wide Area Networks: Changes for Smart Grid. Lecture Notes in Electrical Engineering, 2020, , 967-974.	0.3	Ο
653	Cyber-Physical Control and Virtual Instrumentation. Lecture Notes in Networks and Systems, 2020, , 19-27.	0.5	0
654	Experimental Evaluation on NB-IoT and LoRaWAN for Industrial and IoT Applications. , 2019, , .		7
655	IoT Technologies and Applications. , 2020, , 1-37.		2
656	Spatial Data Infrastructures for Urban Governance Using High-Performance Computing for Smart City Applications. Smart Innovation, Systems and Technologies, 2020, , 585-592.	0.5	0
657	Bi-directional LoRaWAN Protocol and IoT Application on Smart Water Meters. Journal of Intelligent Systems Theory and Applications, 2019, 2, 32-36.	0.3	0
658	Omniconn: An Architecture for Heterogeneous Devices Interoperability on Industrial Internet of Things. Lecture Notes in Networks and Systems, 2020, , 329-339.	0.5	Ο

#	Article	IF	CITATIONS
659	An Hybrid Novel Layered Architecture and Case Study: IoT for Smart Agriculture and Smart LiveStock. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2020, , 71-82.	0.2	0
660	Trace-Driven Simulation of LoRaWAN Air Channel Propagation in an Urban Scenario. Advances in Science, Technology and Engineering Systems, 2020, 5, 211220.	0.4	0
661	FILLING LEVEL MEASUREMENTS OF MIXED WASTE BINS USING LOW POWER IOT SENSORS AND LORA WAN TECHNOLOGY. , 0, , .		0
662	A Communication Infrastructure for the Health and Social Care Internet of Things: Proof-of-Concept Study. JMIR Medical Informatics, 2020, 8, e14583.	1.3	6
663	Research on Performance of Indoor LoRaWAN Network based on NS3. , 2020, , .		0
664	CRAM: Robust Medium Access Control for LPWAN using Cryptographic Frequency Hopping. , 2020, , .		5
665	Simulations of the MAC Layer in the LoRaWAN Networks. Journal of Telecommunications and Information Technology, 2020, 2, 22-27.	0.3	2
666	Authentication by RSSI-Position Based Localization in a LoRa LPWAN. , 2020, , .		4
668	A Framework for Artificial Intelligence Assisted Smart Agriculture Utilizing LoRaWAN Wireless Sensor Networks. Advances in Intelligent Systems and Computing, 2021, , 408-421.	0.5	5
669	LPG Leak Detection System Using MQTT Protocol on LoRa Communication Module. , 2020, , .		4
670	Development of a Wireless System to Control a Trombe Wall for Poultry Brooding. AgriEngineering, 2021, 3, 853-867.	1.7	2
671	Performance of LoRa Network for IoT Applications. Lecture Notes in Electrical Engineering, 2020, , 313-323.	0.3	0
672	Long Range UAS Mission by LPWAN Communication. IOP Conference Series: Materials Science and Engineering, 0, 965, 012039.	0.3	2
673	Implementation of LoRa End-Device in Sensor Network System for Indoor Application. , 2020, , .		3
674	On High-Density Resource-Restricted Pulse-Based IoT Networks. , 2020, , .		4
675	Utilización de LoRa como soporte de sistemas colaborativos en turismo de montaña. , 2020, , .		0
676	The Preparations for Designing The LoRa LPWAN Based on The Regulations. , 2020, , .		0
677	Colmenas Inteligentes para la Apicultura de Precisión: Modelo Ciber-FÃsico. , 2020, , .		0

	Citation Rei	PORT	
Article		IF	Citations
Emerging Wireless Technologies for Internet of Things Applications: Opportunities and 2020, , 390-400.	l Challenges. ,		4
IoT enabled sensor node: a tutorial paper. International Journal on Smart Sensing and I Systems, 2020, 13, 1-18.	ntelligent	0.4	3
Design of Sensor Nodes based on Principles of LoRaPhy and LoRaWAN. International Jo Electronics Communications and Measurement Engineering, 2020, 9, 15-30.	ournal of	0.2	0
Design of Laboratory Control and Management System Based on Cloud Service. Lectu Electrical Engineering, 2020, , 893-901.	re Notes in	0.3	0
Development of a LoRa-Based System for Air Quality Measurement. Advances in Intelli Computing, 2020, , 242-251.	gent Systems and	0.5	0
Condition Monitoring of Fire Water Supply System Based on LoRa Wireless Network. A Intelligent Systems and Computing, 2020, , 593-602.	Advances in	0.5	1
A Fully Automatic Transport System with LoRa and Renewable Energy Solution. , 2020	,,.		3
Advances in Cloud Computing, Wireless Communications and the Internet of Things. ,	2020, , 71-94.		0
A study on LoRa Dynamic Image Transmission. , 2021, , .			2
The role of lowâ€power wideâ€area network technologies in Internet of Things: A syste comprehensive review. International Journal of Communication Systems, 2022, 35, e5	ematic and 036.	1.6	9
LoRa Enabled Smart Inverters for Microgrid Scenarios with Widespread Elements. Elect (Switzerland), 2021, 10, 2680.	tronics	1.8	2
Bleep. , 2020, , .			8
Frequency Detection and Variation with Smart-Sensor Data Analysis Using Artificial Ne and Cloud Computing. Lecture Notes in Networks and Systems, 2021, , 143-152.	ural Network	0.5	0
The development of the "Storm Tracker―and its applications for atmospheric higl upper-air observations. Atmospheric Measurement Techniques, 2020, 13, 5395-5406.	n-resolution	1.2	4

693	FILLING LEVEL MEASUREMENTS OF WASTE BINS USING LOW POWER SENSORS OF THE INTERNET OF THINGS AND LORAWAN TECHNOLOGY. Science: Future of Lithuania, 2020, 12, 1-5.	0.0	0
694	Effect of Vegetation Profile and Air Data Rate on Packet Loss Performance of LoRa E32-30dBm 433 MHz as a Wireless Data Transmission. Journal of Physics: Conference Series, 2020, 1655, 012015.	0.3	6

SLoRa., 2020,,. 695

20

Lessons from large scale campus deployment. , 2020, , . 696

#

678

679

680

682

685

687

689

691

		CITATION REPORT		
#	Article		IF	Citations
697	$ extsf{D}_i$ omparative Analysis of LPWAN technologies. Electronic and Acoustic Engineering, 20)20, 3, 40-44.	0.0	0
698	TEMSEP: Threshold-Oriented and Energy-Harvesting Enabled Multilevel SEP Protocol for Energy-Efficiency of Heterogeneous WSNs. IEEE Access, 2021, 9, 154975-155002.	Improving	2.6	10
699	LoRaWAN Testing for Military Communications in Urban Environments. , 2021, , .			1
700	Gateway Data Encoding, Packaging and Compression method for heterogeneous IoT-sa , 2021, , .	tellite network.		4
701	Performance Evaluation of LoRa Networks for Confirmed Messages. , 2021, , .			2
702	Design and Implementation of a Web Platform Prototype Based an IoT Gateway Using I Livestock Monitoring. , 2021, , .	Raspberry Pi for		0
703	Small Split-Ring Resonators as Efficient Antennas for Remote LoRa IOT Systems—A Pa Physical Interference. Sensors, 2021, 21, 7779.	th to Reduce	2.1	3
704	Energy Performance Analysis and Modelling of LoRa Prototyping Boards. Sensors, 2021	, 21, 7992.	2.1	8
705	A Case Study on Remote Instrumentation of Vibration and Temperature in Bearing Hou Low Power Electronics and Applications, 2021, 11, 44.	sings. Journal of	1.3	4
706	Internet of Things Platform for Advantageous Renewable Energy Generation. Advances Systems and Computing, 2022, , 107-117.	in Intelligent	0.5	3
708	Start of Packet Detection and Synchronization for LoraWAN Modulated Signals. IEEE Tr Wireless Communications, 2022, 21, 4608-4621.	ansactions on	6.1	2
709	Combating Packet Collisions Using Non-Stationary Signal Scaling in LPWANs. IEEE/ACM on Networking, 2022, 30, 1104-1117.	I Transactions	2.6	Ο
710	A Novel Network Architecture and MAC Protocol for Confirmed Traffic in LoRaWAN. IEE 9, 165145-165153.	E Access, 2021,	2.6	2
711	Fog-IoT-Based Slope Monitoring (FIoTSM) System With LoRa Communication in Open-C Transactions on Instrumentation and Measurement, 2021, 70, 1-11.	Cast Mine. IEEE	2.4	4
712	RESS-IoT: A Scalable Energy-Efficient MAC Protocol for Direct-to-Satellite IoT. IEEE Acces 164440-164453.	ss, 2021, 9,	2.6	8
713	A Survey on LoRaWAN Technology: Recent Trends, Opportunities, Simulation Tools and Directions. Electronics (Switzerland), 2022, 11, 164.	Future	1.8	83
714	Enabling Cross-technology Communication from LoRa to ZigBee in the 2.4 GHz Band. A on Sensor Networks, 2022, 18, 1-23.	CM Transactions	2.3	1
715	Modeling LoRa: a Complex Envelope Approach. , 2020, , .			3

#	Article	IF	CITATIONS
716	A Bayesian Game Framework for a Semi-Supervised Allocation of the Spreading Factors in LoRa Networks. , 2020, , .		0
717	Flomosys: A Flood Monitoring System. , 2020, , .		2
718	A Study on Adjacent Interference of LoRa. , 2020, , .		1
710	A Local LoRa Based Network Protocol with Low Power Redundant Base Stations Enabling Remote		0
/19	Environmental Monitoring. , 2020, , .		9
720	LoRaWAN: State of the Art, Challenges, Protocols and Research Issues. , 2020, , .		6
721	The Development of LoRa Image Transmission Based on Time Division Multiplexing. , 2020, , .		4
722	A Maximum-Likelihood-based Multi-User LoRa Receiver Implemented in GNU Radio. , 2020, , .		4
723	A LoRaWAN-MAC Protocol Based on WSN Residual Energy to Adjust Duty Cycle. , 2020, , .		1
724	Investigation of Coverage and Signal Quality of LoRaWAN Network in Urban Area. , 2020, , .		2
795	A Virtualized LoRa Testhed and Experimental Results for Resource Pooling 2021		0
720			Ŭ
726	LoRa and High-Altitude Platforms: Path Loss, Link Budget and Optimum Altitude. , 2021, , .		3
727	The Effect of Temperature and Humidity on Indoor LoRa Propagation Model. , 2021, , .		3
728	LoRa Based Water Quality Monitoring System in Symbiosis University's Lavale Campus. , 2021, , .		2
729	LoRa Evaluation for University Campus in Urban Conditions. , 2021, , .		2
-	A Turke Coded LoDe Index Medulation Cohere for Int Communication 2021		
730	A Turbo Coded Loka-Index Modulation Scheme for for Communication. , 2021, , .		I
731	Mobile Application for Unmanned Ship Monitoring Based on LoRA Communication 2021		0
732	Implementation Of Quail Cage Monitoring System Using Wireless Sensor Network with Lora Protocol.		0
	, 2021, , .		
733	Compromise of 915 MHz LoRa Transmission Parameters in A Single-hop Uplink. , 2021, , .		0

#	Article	IF	Citations
734	LoRa Based Framework to Detect Whitefly Infestation in Coconut Trees. , 2021, , .		4
735	AQUAMesh: A Low-Power Wide-Area Mesh Network protocol for Remote Monitoring Applications in Water Environments. , 2021, , .		1
736	LPWAN's – Overview, Market Scenario and Performance Analysis of Lora, Sigfox Using NB-Fi Range Calculator. , 2021, , .		1
737	Transmission policy design for critical services under different objectives. , 2021, , .		0
738	Early Fire Detection: A New Indoor Laboratory Dataset and Data Distribution Analysis. Fire, 2022, 5, 11.	1.2	8
739	Analysis of Web-Based IoT through Heterogeneous Networks: Swarm Computing over LoRaWAN. Sensors, 2022, 22, 664.	2.1	1
740	Grape Leaf Diseases Identification System Using Convolutional Neural Networks and LoRa Technology. IEEE Access, 2022, 10, 122-133.	2.6	13
741	Deep Reinforcement Learning-Based Long Short-Term Memory for Satellite IoT Channel Allocation. Intelligent Automation and Soft Computing, 2022, 33, 1-19.	1.6	2
743	Exploration of IoT Nodes Communication Using LoRaWAN in Forest Environment. Computers, Materials and Continua, 2022, 71, 6239-6256.	1.5	7
744	SSK-ICS LoRa: A LoRa-Based Modulation Scheme With Constant Envelope and Enhanced Data Rate. IEEE Communications Letters, 2022, 26, 1185-1189.	2.5	11
745	Research on an Online Monitoring System for Efficient and Accurate Monitoring of Mine Water. IEEE Access, 2022, 10, 18743-18756.	2.6	9
746	Evaluation of LoRa technology in 433-MHz and 868-MHz for underground to aboveground data transmission. Computers and Electronics in Agriculture, 2022, 194, 106770.	3.7	13
747	Performance Study of Lorawan, Loramesh, and Hybrid Networks for a Smart Farming Scenario at Ufpi. SSRN Electronic Journal, 0, , .	0.4	0
748	A Real-Time LoRa Protocol Using Logical Frame Partitioning for Periodic and Aperiodic Data Transmission. IEEE Internet of Things Journal, 2022, 9, 15401-15412.	5.5	3
751	Low-Power IoT Architecture, Challenges, and Future Aspects. Lecture Notes in Networks and Systems, 2022, , 553-560.	0.5	1
752	Performance of a Live Multi-Gateway LoRaWAN and Interference Measurement across Indoor and Outdoor Localities. Computers, 2022, 11, 25.	2.1	4
753	Sensitive Parameter Analysis for Solar Irradiance Short-Term Forecasting: Application to LoRa-Based Monitoring Technology. Sensors, 2022, 22, 1499.	2.1	4
754	Early warning of impending flash flood based on AloT. Eurasip Journal on Wireless Communications and Networking, 2022, 2022, .	1.5	8

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
755	IoT Based Water Quality Monitoring System Using Solar Powered and LoRaWAN. , 2022, , .			3
756	Compensation of the Frequency Offset in Communication Systems with LoRa Modulation. S 2022, 14, 747.	ymmetry,	1.1	0
757	An improved communication resource allocation strategy for wireless networks based on dec reinforcement learning. Computer Communications, 2022, 188, 90-98.	зb	3.1	6
758	Minimizing Power Consumption in Networks of Environmental Sensor Arrays using TDD LoRa Delta Encoding. , 2021, , .	a and		6
759	LoRa Based Wireless Network for Disaster Rescue Operations. , 2021, , .			0
760	Sniffing Prevention in LoRa Network Using Combination of Advanced Encryption Standard (A Message Authentication Code (MAC). , 2021, , .	AES) and		1
761	Smart Farming using IoT and LoRaWAN. , 2021, , .			6
762	A New Approach Towards LoRa Wireless Technology Parameters' Selection. , 2021, , .			2
763	A survey for UAV open-source telemetry protocols. , 2021, , .			0
764	Research on Collaboration Method of Edge IoT Agent Based on Actor Model. , 2021, , .			0
766	LoRaWAN Base Station Improvement for Better Coverage and Capacity. Journal of Low Powe Electronics and Applications, 2022, 12, 1.	۲.	1.3	2
767	Demystifying LoRa Wireless Technology for IoT Applications: Concept to Experiment. , 2021,	,.		5
768	Adjacent LoRa-based Network Analysis for Dense Application. , 2021, , .			0
769	Decentralized Adaptive Spectrum Learning in Wireless IoT Networks Based on Channel Quali Information. IEEE Internet of Things Journal, 2022, 9, 19660-19669.	ty	5.5	5
772	Recent Advances in Artificial Intelligence for Wireless Internet of Things and Cyber–Physica A Comprehensive Survey. IEEE Internet of Things Journal, 2022, 9, 12916-12930.	al Systems:	5.5	19
773	Enabling LPWAN Massive Access: Grant-Free Random Access with Massive MIMO. IEEE Wirel Communications, 2022, 29, 72-77.	ess	6.6	4
774	An Overview of Internet of Things Technology Applied on Precision Agriculture Concept. , 20 492-515.	22, ,		0
775	Efficient Energy Consumption Techniques for Cloud and IoT Systems. , 2022, , .			0

#	Article	IF	CITATIONS
776	Analysis and performance optimization of LoRa network using the CE & SC hybrid approach. International Journal of Hybrid Intelligent Systems, 2022, , 1-16.	0.9	0
777	6TiSCH – IPv6 Enabled Open Stack IoT Network Formation: A Review. ACM Transactions on Internet of Things, 2022, 3, 1-36.	3.4	5
778	Design and Implementation of a Multi-Hop Real-Time LoRa Protocol for Dynamic LoRa Networks. Sensors, 2022, 22, 3518.	2.1	11
779	A Perspective on Passive Human Sensing with Bluetooth. Sensors, 2022, 22, 3523.	2.1	12
780	Home Based Monitoring for Smart Health-Care Systems: A Survey. Wireless Communications and Mobile Computing, 2022, 2022, 1-10.	0.8	6
781	Deep Learning-Aided Downlink Beamforming Design and Uplink Power Allocation for UAV Wireless Communications with LoRa. Applied Sciences (Switzerland), 2022, 12, 4826.	1.3	1
782	A hybrid network architecture by integrating both 2.4ÂGHz network and Sub-GHz network and its application in field environment surveillance system. Microprocessors and Microsystems, 2022, 91, 104541.	1.8	1
783	Design of Noncoherent and Coherent Receivers for Chirp Spread Spectrum Systems. IEEE Internet of Things Journal, 2022, 9, 19988-20002.	5.5	1
784	Analysis of LoRaWAN 1.0 and 1.1 Protocols Security Mechanisms. Sensors, 2022, 22, 3717.	2.1	8
785	Dynamic LoRa Wireless Networks Powered by Hybrid Energy. , 2022, , .		0
786	Prototyping low-cost automatic weather stations for natural disaster monitoring. Digital Communications and Networks, 2023, 9, 941-956.	2.7	7
787	On Construction of a Campus Outdoor Air and Water Quality Monitoring System Using LoRaWAN. Applied Sciences (Switzerland), 2022, 12, 5018.	1.3	9
788	Long-Range wide-area network for secure network connections with increased sensitivity and coverage. AIP Conference Proceedings, 2022, , .	0.3	0
789	Data transmission. , 2022, , 81-99.		0
791	LoRa Modülasyon Tabanlı Saha Aydınlatma Sistemi Uygulaması. Gazi Üniversitesi Fen Bilimleri Dergisi, C , .	^{),} 0.2	0
792	LoRaCog: A Protocol for Cognitive Radio-Based LoRa Network. Sensors, 2022, 22, 3885.	2.1	4
793	Implementation of a Secure LoRaWAN System for Industrial Internet of Things Integrated With IPFS and Blockchain. IEEE Systems Journal, 2022, 16, 5455-5464.	2.9	13
794	A Novel LoRa LPWAN-Based Communication Architecture for Search & Rescue Missions. IEEE Access, 2022, 10, 57596-57607.	2.6	6

#	Article	IF	CITATIONS
795	Development and prospect of the nodal cable-free seismograph: a review. Measurement Science and Technology, 2022, 33, 102001.	1.4	4
796	Hybrid Architecture Based System for the Establishment of Sustainable Environment in a Construction Site with 433 MHz LoRa and 2.4 GHz Zigbee. Sustainability, 2022, 14, 6280.	1.6	10
797	A Communication Framework for Image Transmission through LPWAN Technology. Electronics (Switzerland), 2022, 11, 1764.	1.8	2
798	Internet-of-things-enabled serious games: A comprehensive survey. Future Generation Computer Systems, 2022, 136, 67-83.	4.9	7
799	LoRa support for long-range real-time inter-cluster communications over Bluetooth Low Energy industrial networks. Computer Communications, 2022, 192, 57-65.	3.1	14
802	LoRaCoin: Towards a blockchain-based platform for managing LoRa devices. , 2022, , .		3
803	Transforming the University Campus Into an Open-Lab: The SMART-UHA Project. , 2022, , .		0
804	Recent Advances in LoRa: A Comprehensive Survey. ACM Transactions on Sensor Networks, 2022, 18, 1-44.	2.3	22
805	Development And Research of A Two-Contour Solar System In The Lorawan Network. WSEAS Transactions on Mathematics, 2022, 21, 371-379.	0.2	0
806	A Maximum-Likelihood-Based Two-User Receiver for LoRa Chirp Spread-Spectrum Modulation. IEEE Internet of Things Journal, 2022, 9, 22993-23007.	5.5	3
807	An Efficient LoRa-Enabled Smart Fault Detection and Monitoring Platform for the Power Distribution System Using Self-Powered IoT Devices. IEEE Access, 2022, 10, 73403-73420.	2.6	10
808	An Energy-Efficient Information-Centric Model for Internet of Things Applications. , 2022, , .		1
809	An Exploration of LoRa Network in Tropical Farming Environment. , 2022, , .		0
810	Optimization Schemes for UAV Data Collection with LoRa 2.4 GHz Technology in Remote Areas without Infrastructure. Drones, 2022, 6, 173.	2.7	6
811	Deployment of a LoRa-based Network and Web Monitoring Application for a Smart Farm. , 2022, , .		3
813	Analysis of a novel media access control protocol for LoRa. IEEE Internet of Things Journal, 2022, , 1-1.	5.5	0
814	Measurements and Analysis of Large Scale LoRa Network Efficiency. , 2022, , .		2
815	EMU: Increasing the Performance and Applicability of LoRa through Chirp Emulation, Snipping, and Multiplexing. , 2022, , .		0

#	Article	IF	CITATIONS
816	Off-the-shelf LoRaWAN: Experimenting on the prospect of a low-cost rapid prototyping solution. , 2022, , .		1
817	Research on Multipath Reception and Soft Decision Algorithms for Frequency Shift Chirp Modulation. , 2022, , .		1
818	An IoT Measurement System Based on LoRaWAN for Additive Manufacturing. Sensors, 2022, 22, 5466.	2.1	7
819	Exploiting Rateless Codes and Cross-layer Optimization for Low-power Wide-area Networks. ACM Transactions on Sensor Networks, 2022, 18, 1-24.	2.3	2
820	A Design and Implementation of Visualization Platform for Intelligent Environmental Monitoring Based on IoT. , 2022, , .		0
821	A Reinforcement Learning Based Transmission Parameter Selection and Energy Management for Long Range Internet of Things. Sensors, 2022, 22, 5662.	2.1	1
822	Reducing Detrimental Communication Failure Impacts in Microgrids by Using Deep Learning Techniques. Sensors, 2022, 22, 6006.	2.1	1
823	Development and performance analysis of a ZigBee and LoRa-based smart building sensor network. Frontiers in Energy Research, 0, 10, .	1.2	8
824	Data Collection from Buried Sensor Nodes by Means of an Unmanned Aerial Vehicle. Sensors, 2022, 22, 5926.	2.1	7
826	A survey on ambient backscatter communications: Principles, systems, applications, and challenges. Computer Networks, 2022, 216, 109235.	3.2	15
827	Wireless communication protocols in smart agriculture: A review on applications, challenges and future trends. Ad Hoc Networks, 2022, 136, 102982.	3.4	18
828	Large-Scale Modeling and Analysis of Uplink and Downlink Channels for LoRa Technology in Suburban Environments. IEEE Internet of Things Journal, 2022, 9, 24477-24491.	5.5	5
829	First Flight-Testing of LoRa Modulation in Satellite Radio Communications in Low-Earth Orbit. IEEE Access, 2022, 10, 100006-100023.	2.6	7
830	Experimental Evaluation of End-to-End Delay in a Sigfox Network. IEEE Networking Letters, 2022, 4, 194-198.	1.5	2
831	A 919 MHz—923 MHz, 21 dBm CMOS Power Amplifier With Bias Modulation Linearization Technique Achieving PAE of 29% for LoRa Application. IEEE Access, 2022, 10, 79365-79378.	2.6	2
832	Investigation on Security Risk of LoRaWAN: Compatibility Scenarios. IEEE Access, 2022, 10, 101825-101843.	2.6	4
833	Network Architecture and Authentication Scheme for LoRa 2.4 GHz Smart Homes. IEEE Access, 2022, 10, 93212-93230.	2.6	2
834	Experimental test and performance of RSSI-based indoor localization in LoRa Networks. Procedia Computer Science, 2022, 203, 420-425.	1.2	4

#	Article	IF	CITATIONS
835	Sensing Wood Moisture in Heritage and Wooden Buildings: A New Sensing Unit With an Integrated LoRa-Based Monitoring System. IEEE Internet of Things Journal, 2022, 9, 25409-25423.	5.5	3
836	Prototype wireless network for internet of things based on DECT standard. Telfor Journal, 2022, 14, 8-11.	0.7	0
837	Interference issues in LoRaWAN: A comparative study using simulator and analytical model. , 2022, , .		2
838	Applying an Integrated System of Cloud Management and Wireless Sensing Network to Green Smart Environments—Green Energy Monitoring on Campus. Sensors, 2022, 22, 6521.	2.1	4
839	LoRa Network-Based System for Monitoring the Agricultural Sector in Andean Areas: Case Study Ecuador. Sensors, 2022, 22, 6743.	2.1	3
840	A Critical Review for Real-Time Continuous Soil Monitoring: Advantages, Challenges, and Perspectives. Environmental Science & Technology, 2022, 56, 13546-13564.	4.6	12
841	LoRaWAN Performance Analysis for a Water Monitoring and Leakage Detection System in a Housing Complex. Sensors, 2022, 22, 7188.	2.1	9
842	Design of a Robust MAC Protocol for LoRa. ACM Transactions on Internet of Things, 2023, 4, 1-25.	3.4	3
843	LMAC: Efficient Carrier-Sense Multiple Access for LoRa. ACM Transactions on Sensor Networks, 2023, 19, 1-27.	2.3	4
844	Deep Partial Updating: Towards Communication Efficient Updating forÂOn-Device Inference. Lecture Notes in Computer Science, 2022, , 137-153.	1.0	0
845	Data communication performance of multi-node wifi and LoRa by testing range and packet delivery. AIP Conference Proceedings, 2022, , .	0.3	0
846	Demonstration of a library prototype to build LoRa mesh networks for the IoT. , 2022, , .		0
847	De-Fence: LoRa based Hop-to-Hop Communication. , 2022, , .		1
848	Energy-Saving Routing Protocols for Smart Cities. Energies, 2022, 15, 7382.	1.6	8
849	Applying LoRa Technology in Unmanned Aircraft Systems. Lecture Notes in Mechanical Engineering, 2023, , 189-197.	0.3	0
850	Experimental Analysis of LoRa Transmission Parameters. , 2022, , .		0
851	Low-power LoRaWAN Extender Using Multiple Relays: Design and Evaluation. , 2022, , .		1
852	CONST: Exploiting Spatial-Temporal Correlation for Multi-Gateway based Reliable LoRa Reception. , 2022, , .		4

#	Article	IF	CITATIONS
853	ADR-Lite: A Low-Complexity Adaptive Data Rate Scheme for the LoRa Network. , 2022, , .		4
855	Analysis andÂDeployment ofÂaÂLoRaWAN Network atÂaÂUniversity Campus. Lecture Notes in Networks and Systems, 2023, , 493-504.	0.5	0
856	A Comprehensive Study on LPWANs With a Focus on the Potential of LoRa/LoRaWAN Systems. IEEE Communications Surveys and Tutorials, 2023, 25, 825-867.	24.8	15
857	Monitoring of tree tilt motion using lorawan-based wireless tree sensing system (IoTT) during super typhoon Mangkhut. Agricultural and Forest Meteorology, 2023, 329, 109282.	1.9	3
858	MRT-LoRa: A multi-hop real-time communication protocol for industrial IoT applications over LoRa networks. Computer Communications, 2023, 199, 72-86.	3.1	14
859	Energy and Throughput Management in Delay-Constrained Small-World UAV-IoT Network. IEEE Internet of Things Journal, 2023, 10, 7922-7935.	5.5	4
860	A Scheduled Cluster-Tree Topology to Enable Wide-Scale LoRaWAN Networks. , 2022, , .		0
861	SecLoRa: A Secure LoRa Based Communication System for Residential Smart-grids. , 2022, , .		0
862	A Novel Emergency Light Based Smart Building Solution: Design, Implementation, and Use Cases. , 2022, ,		0
863	SF-Partition-Based Clustering and Relaying Scheme for Resolving Near–Far Unfairness in IoT Multihop LoRa Networks. Sensors, 2022, 22, 9332.	2.1	5
864	LoRaWAN Coverage Analysis in the Transportation Sector: A Real-World Approach. , 0, , .		0
865	Self-Organizing Multi-hop LoRa Mesh Network for Wide Area Air Quality Monitoring. , 2022, , .		0
866	Communication Technologies Comparison for Electric Power Quality Monitoring - Fuse Sensor. , 2022, , .		1
867	Design of 3 Phase kWh Meter Communication Based on Internet of Things (IoT) Using LoRa. , 2022, , .		0
868	Estimating the number of gateways through placement strategies in a LoRaWAN network. , 2022, , .		2
869	Implementation of Lora for Controlling and Monitoring Broiler Cage Temperature. Journal of Physics: Conference Series, 2022, 2406, 012009.	0.3	2
870	Energy Consumption of IoT Devices: An Accurate Evaluation to Better Predict Battery Lifetime. Radio Science, 2022, 57, .	0.8	1
871	Recent Developments in Wireless Soil Moisture Sensing to Support Scientific Research and Agricultural Management. Sensors, 2022, 22, 9792.	2.1	6

#	Article	IF	CITATIONS
872	Prototyping the Symmetry-Based Chaotic Communication System Using Microcontroller Unit. Applied Sciences (Switzerland), 2023, 13, 936.	1.3	12
873	Requirements, Deployments, and Challenges of LoRa Technology: A Survey. Computational Intelligence and Neuroscience, 2023, 2023, 1-15.	1.1	5
874	A holistic survey of multipath wireless video streaming. Journal of Network and Computer Applications, 2023, 212, 103581.	5.8	3
875	Performance Study of LoRa IoT Technology. , 2022, , .		0
876	Implementing two methods to compute the area covered by watermelon plants using aerial RGB imagery. , 2022, , .		0
877	Experimental evaluation of LoRa for remote vehicle tracking and control in urban areas. , 2022, , .		2
878	Tracking Device for The Mountaineers Using GPS. , 2022, , .		1
879	Data Processing with Predictions in LoRaWAN. Energies, 2023, 16, 411.	1.6	Ο
880	A Survey on Evolved LoRa-Based Communication Technologies for Emerging Internet of Things Applications. , 0, , 4-19.		34
881	System of Remote Weight Monitoring for Beekeeping. Mìkrosistemi, Elektronìka Ta Akustika, 2022, 27, .	0.2	Ο
882	A Review of Wireless Positioning Techniques and Technologies: From Smart Sensors to 6G. Signals, 2023, 4, 90-136.	1.2	4
883	An Intelligent Modular Water Monitoring IoT System for Real-Time Quantitative and Qualitative Measurements. Sustainability, 2023, 15, 2127.	1.6	12
884	Optimizing Resources and Increasing the Coverage of Internet-of-Things (IoT) Networks: An Approach Based on LoRaWAN. Sensors, 2023, 23, 1239.	2.1	4
885	Open-Source Hardware-Based Three-Dimensional Positioning Device for Indoor Measurement and Positioning. IEEE Access, 2023, 11, 11254-11267.	2.6	Ο
886	RSSI Improved for LoRa Wireless Communication, Field-Tested in the Wide-Open Area. IEEE Access, 2023, , 1-1.	2.6	0
887	Simulative Assessment of the Listen before Talk Adaptive Frequency Agility Medium Access Control Protocol for LoRaWAN Networks in IoT Scenarios. Applied System Innovation, 2023, 6, 16.	2.7	2
888	LoRa Performance in Industrial Environments: Analysis of Different ADR Algorithms. IEEE Transactions on Industrial Informatics, 2023, 19, 10501-10511.	7.2	4
889	Correlating the Ambient Conditions and Performance Indicators of the LoRaWAN via Surrogate Gaussian Process-Based Bidirectional LSTM Stacked Autoencoder. IEEE Transactions on Network and Service Management, 2023, 20, 3413-3427.	3.2	4

#	Article	IF	CITATIONS
890	AlignTrack: Push the SNR Limit of LoRa Collision Decoding. IEEE/ACM Transactions on Networking, 2023, 31, 2070-2085.	2.6	0
891	LoRaWAN Downlink Policies for Improved Fairness. , 2022, , .		0
892	Massive Data Storage Solution for IoT Devices Using Blockchain Technologies. Sensors, 2023, 23, 1570.	2.1	9
893	LP-MAB: Improving the Energy Efficiency of LoRaWAN Using a Reinforcement-Learning-Based Adaptive Configuration Algorithm. Sensors, 2023, 23, 2363.	2.1	6
894	Map Coverage ofÂLoRaWAN Signal's Employing GPS fromÂMobile Devices. Communications in Computer and Information Science, 2022, , 589-603.	0.4	0
895	LoRa SNR Evaluation as Portable Sensor. , 2022, , .		0
896	Introductory Chapter: An Overview to the Internet of Things. , 0, , .		2
897	Shrimp Farming Water Parameter Monitoring System using LoRa. , 2022, , .		1
898	Machine Learning Applied to LoRaWAN Network for Improving Fingerprint Localization Accuracy in Dense Urban Areas. Network, 2023, 3, 199-217.	1.5	1
899	Combined Use of LoRaWAN Medium Access Control Protocols for IoT Applications. Applied Sciences (Switzerland), 2023, 13, 2341.	1.3	3
900	DisasChat: An End-to-End Encrypted Off-Grid LoRa-Based Smartphone Communication System for Disaster and Crisis Scenarios. , 2022, , .		0
901	LoRa - IoT based Industrial Automation Motor Speed Control Monitoring System. , 2023, , .		3
902	LoRaWAN Gateway Placement in Smart Agriculture: An Analysis of Clustering Algorithms and Performance Metrics. Energies, 2023, 16, 2356.	1.6	3
903	Classification of LoRa Signals With Real-Time Validation Using the Xilinx Radio Frequency System-on-Chip. IEEE Access, 2023, 11, 26211-26223.	2.6	0
904	IRIS: A low duty cycle cross-layer protocol for long-range wireless sensor networks with low power budget. Computer Networks, 2023, 225, 109666.	3.2	0
905	GridShield—Optimizing the Use of Grid Capacity during Increased EV Adoption. World Electric Vehicle Journal, 2023, 14, 68.	1.6	1
906	A Compact Dual Band Microstrip Patch Antenna for LoRa IoT Applications. , 2022, , .		2
907	TDD LoRa and Delta Encoding in Low-Power Networks of Environmental Sensor Arrays for Temperature and Deformation Monitoring. Journal of Signal Processing Systems, 2023, 95, 831-843.	1.4	3

#	Article	IF	CITATIONS
908	Smart meter for residential electricity consumption with TLBO algorithm for LoRaWAN. Electrical Engineering, 0, , .	1.2	0
909	Use-Case-Oriented Evaluation of Wireless Communication Technologies for Advanced Underground Mining Operations. Sensors, 2023, 23, 3537.	2.1	2
910	Mobile Device-to-Device Communication for Crisis Scenarios Using Low-Cost LoRa Modems. Public Administration and Information Technology, 2023, , 235-268.	0.6	1
911	Large Screen Wireless Notice Board with P10 Led Matrix Modules using LoRa. , 2023, , .		0
912	Distributed Gateway-based Security Scheme for Guaranteeing LoRaWAN Networks Availability. , 2022, , .		0
913	Internet of Underground Things in Agriculture 4.0: Challenges, Applications and Perspectives. Sensors, 2023, 23, 4058.	2.1	6
914	Woes, Workarounds, and Wishes of Users Living in a Multinetwork Reality. , 2023, , .		0
915	Boosting Reliability and Energy-Efficiency in Indoor LoRa. , 2023, , .		1
917	Long-Range Network (LoRa) Behavior inÂtheÂAmazon Region inÂaÂFluvial Environment. Smart Innovation, Systems and Technologies, 2023, , 391-398.	0.5	0
918	IoT-Based Temperature Monitoring for Milk Collection Tank in Remote Area. , 2023, , 227-234.		0
922	Exploring IoT Networks. , 2023, , 105-201.		0
927	ESP32 Based Low-Power and Low-Cost Wireless Sensor Network. Studies in Systems, Decision and Control, 2023, , 275-285.	0.8	2
929	Security Challenges and Wireless Technology Choices in IoT-Based Smart Grids. Smart Sensors, Measurement and Instrumentation, 2023, , 139-167.	0.4	0
930	Real Time Experimental Calibration of Ultrasonic Sensor and LoRa Communication module in LoRaWAN Architecture. , 2023, , .		3
931	Performance Modelling of IoT in Smart Agriculture. , 2023, , .		1
932	Ground water flow monitoring systems using permeability tank experiment. AIP Conference Proceedings, 2023, , .	0.3	0
933	AR-Enabled Interface for IoT Water Management Systems in Smart Cities. Lecture Notes in Computer Science, 2023, , 147-155.	1.0	0
935	LoRa based remote expendable radiosonde network for environmental observations. , 2023, , .		0

#	Article	IF	CITATIONS
936	Evaluating Energy Consumption and Maximum Communication Distance for SX1280 LoRa Transceiver at 2.4 GHz towards Adaptive Networks. , 2023, , .		0
937	CRT-LoRa: An efficient and reliable MAC scheme for real-time industrial applications. , 2023, , .		0
938	Secure Data Aggregation in Cultural Heritage Monitoring: NMEC Case Study. , 2023, , .		0
939	Adaptive Robot Control Based on Wireless Undergroud Sensor Network in Agriculture 4.0. , 2023, , .		1
940	The Campus Localization System Based on LoRa. , 2023, , .		0
942	A Comprehensive Study on Smart Farming for Transforming Agriculture Through Cloud and IoT. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 67-99.	0.3	1
943	Demo: a LoRaWAN Emulator Testbed. , 2023, , .		0
944	LigBee: Symbol-Level Cross-Technology Communication from LoRa to ZigBee. , 2023, , .		0
945	Infrastructure-Less Long-Range Train-Arrival Notification System. , 2023, , .		1
946	Push the Limit of LPWANs with Concurrent Transmissions. , 2023, , .		0
952	Investigating Gesture Control of Robotic Arm via Lora Technology for Smart Cities. Advanced Sciences and Technologies for Security Applications, 2023, , 71-101.	0.4	0
954	Application of IoT Technology in Healthcare: A Case Study of LoRa Technology. , 2023, , .		0
955	Energy Management of Sustainable Smart Cities Using Internet-of-Energy. , 2023, , 143-173.		0
959	Design of an Analog Wireless Communication for Radiation Monitoring System with Inherent Encryption. , 2023, , .		0
960	Sunlight-based Framework: An Approach for Energy Efficiency in IoT Systems. Lecture Notes in Electrical Engineering, 2023, , 273-286.	0.3	0
961	The Research on Network Optimization of Power Internet of Things System. , 2023, , .		0
962	Integration of a UHF Fractal Antenna into a 1U CubeSat for Low-Earth Orbit Mission. Lecture Notes in Networks and Systems, 2023, , 93-104.	0.5	0
963	Empirically Investigating the Impact of Antenna Polarization and Modulation Parameters on Subsoil Communication Range in LoRa Networks. , 2023, , .		0

#	Article	IF	CITATIONS
964	LoRa-Based Environmental Monitoring System for Commercial Farming. , 2023, , .		0
965	Application and Performance Analysis of LoRa End Devices for Monitoring of Indoor Lighting Systems. , 2023, , .		0
966	Design and Implementation of Scalable WSN Beyond WiFi for Precision Farming. , 2023, , .		0
971	Carrier Sensing of LoRa@FIIT Devices. , 2023, , .		0
972	Wireless Sensor Networks and Real-Time Slope Monitoring: A Brief Review. , 2023, , 1307-1317.		0
973	Digitization of Feeding Processes in Pond Aquaculture Using a Cyber-Physical System for Analyzing Monitoring Data and Transmitting Information Using LoRaWAN Technology. Lecture Notes in Networks and Systems, 2023, , 17-26.	0.5	0
976	Research and Design a Low Power Electronic Shelf Label Based on E-paper Display and LoRa Technology. , 2023, , .		0
978	ML-based RF Fingerprinting for LoRaWAN Device Identification. , 2023, , .		0
979	An OMNeT++-Based Approach to Narrowband-IoT Traffic Generation for Machine Learning-Based Anomaly Detection. , 2023, , .		0
980	SLoRa: A Systematic Framework for Synergic Interference Resilience In LPWAN. , 2023, , .		0
981	LoRa Radius Coverage Map on Urban and Rural Areas: Case Study of Athens' Northern Suburbs and Tinos Island, Greece. , 0, , .		0
982	RSSI and Machine Learning-Based Indoor Localization Systems for Smart Cities. , 2023, , .		0
984	The Implementaion of MICKEY Cipher in Securing Constrained Devices Based on LoRa. , 2023, , .		0
985	5G-Wi-SUN for Building Management System. , 2023, , .		0
986	A LoRa-Based Monitoring System for Agriculture. , 2023, , .		0
993	A comprehensive survey on IoT development modules and its applications. AIP Conference Proceedings, 2024, , .	0.3	0
994	Power Efficient Long Range Drone Networking System for UAV Detection. , 2023, , .		0
996	3D Printing as an Enabler of Innovation in Universities. Tellus UPM Ecosystem Case. Communications in Computer and Information Science, 2024, , 263-276.	0.4	0

IF CITATIONS ARTICLE # Design of Water Level and Drainage Monitoring System Based on Internet of Things., 2023,,. 0 998 Image data compression using fast Fourier transform (FFT) technique for wireless sensor network. AIP Conference Proceedings, 2024, , . 999 Security and Privacy Challenges in IoT Applications. Advances in Business Information Systems and 1001 0.3 0 Analytics Book Series, 2024, , 180-208. Implementation of IoT Device for Efficient Communication Using LoRa Module for distinct 1002 Applications., 2023,,. A Comprehensive Review of the Application of Greenhouse Using the Internet of Things. Lecture Notes 1004 0.5 0 in Networks and Systems, 2024, , 103-114. 1006 A Monitoring System for Complex Forest Environment Based on Wireless Sensor Network., 2023,,.

CITATION REPORT