Analysis of MABEL Bathymetry in Keweenaw Bay and I

Remote Sensing 8, 772

DOI: 10.3390/rs8090772

Citation Report

#	Article	IF	CITATIONS
1	Three-Dimensional Geographically Weighted Inverse Regression (3GWR) Model for Satellite Derived Bathymetry Using Sentinel-2 Observations. Marine Geodesy, 2018, 41, 1-23.	2.0	14
2	A Ground Elevation and Vegetation Height Retrieval Algorithm Using Micro-Pulse Photon-Counting Lidar Data. Remote Sensing, 2018, 10, 1962.	4.0	53
3	Estimating the vegetation canopy height using micro-pulse photon-counting LiDAR data. Optics Express, 2018, 26, A520.	3.4	72
4	Validation of ICESat-2 ATLAS Bathymetry and Analysis of ATLAS's Bathymetric Mapping Performance. Remote Sensing, 2019, 11, 1634.	4.0	174
5	River reconstruction using a conformal mapping method. Environmental Modelling and Software, 2019, 119, 197-213.	4.5	9
6	Leveraging Commercial High-Resolution Multispectral Satellite and Multibeam Sonar Data to Estimate Bathymetry: The Case Study of the Caribbean Sea. Remote Sensing, 2019, 11, 1830.	4.0	24
7	On the Feasibility of Water Surface Mapping with Single Photon LiDAR. ISPRS International Journal of Geo-Information, 2019, 8, 188.	2.9	10
8	A Simple Method for Extracting Water Depth From Multispectral Satellite Imagery in Regions of Variable Bottom Type. Earth and Space Science, 2019, 6, 527-537.	2.6	61
9	Preliminary Assessment of Turbidity and Chlorophyll Impact on Bathymetry Derived from Sentinel-2A and Sentinel-3A Satellites in South Florida. Remote Sensing, 2019, 11, 645.	4.0	78
10	Deriving Tidal Structure From Satellite Image Time Series. Earth and Space Science, 2020, 7, e2019EA000958.	2.6	5
11	Mapping forest height using photon-counting LiDAR data and Landsat 8 OLI data: A case study in Virginia and North Carolina, USA. Ecological Indicators, 2020, 114, 106287.	6.3	30
12	Combining geomorphometry, feature extraction techniques and Earth-surface processes research: The way forward. Geomorphology, 2020, 355, 107055.	2.6	64
13	Determining Bathymetry of Shallow and Ephemeral Desert Lakes Using Satellite Imagery and Altimetry. Geophysical Research Letters, 2020, 47, e2020GL087367.	4.0	36
14	Potential of laserâ€induced fluorescenceâ€light detection and ranging for future standâ€off virus surveillance. Microbial Biotechnology, 2021, 14, 126-135.	4.2	12
15	Refraction correction and coordinate displacement compensation in nearshore bathymetry using ICESat-2 lidar data and remote-sensing images. Optics Express, 2021, 29, 2411.	3 . 4	27
16	ICESatâ€2 Elevation Retrievals in Support of Satelliteâ€Derived Bathymetry for Global Science Applications. Geophysical Research Letters, 2021, 48, e2020GL090629.	4.0	48
17	A maximum bathymetric depth model to simulate satellite photon-counting lidar performance. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 174, 182-197.	11.1	28
18	A photon-counting LiDAR bathymetric method based on adaptive variable ellipse filtering. Remote Sensing of Environment, 2021, 256, 112326.	11.0	43

#	ARTICLE	IF	CITATIONS
19	Nearshore Bathymetry From Fusion of Sentinel-2 and ICESat-2 Observations. IEEE Geoscience and Remote Sensing Letters, 2021, 18, 900-904.	3.1	63
20	A semi-empirical scheme for bathymetric mapping in shallow water by ICESat-2 and Sentinel-2: A case study in the South China Sea. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 178, 1-19.	11.1	47
21	Deriving Highly Accurate Shallow Water Bathymetry From Sentinel-2 and ICESat-2 Datasets by a Multitemporal Stacking Method. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 6677-6685.	4.9	32
22	The Prospect of Global Coral Reef Bathymetry by Combining Ice, Cloud, and Land Elevation Satellite-2 Altimetry With Multispectral Satellite Imagery. Frontiers in Marine Science, 2021, 8, .	2.5	7
23	Improved Filtering of ICESat-2 Lidar Data for Nearshore Bathymetry Estimation Using Sentinel-2 Imagery. Remote Sensing, 2021, 13, 4303.	4.0	29
24	Accurate Refraction Correction—Assisted Bathymetric Inversion Using ICESat-2 and Multispectral Data. Remote Sensing, 2021, 13, 4355.	4.0	10
25	Nearshore Bathymetry Based on ICESat-2 and Multispectral Images: Comparison Between Sentinel-2, Landsat-8, and Testing Gaofen-2. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 2449-2462.	4.9	21
26	Refraction and coordinate correction with the JONSWAP model for ICESat-2 bathymetry. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 186, 285-300.	11.1	13
27	Estimating Reservoir Storage Variations by Combining Sentinel-2 and 3 Measurements in the Yliki Reservoir, Greece. Remote Sensing, 2022, 14, 1860.	4.0	7
28	Remote Sensing the Ocean Biosphere. Annual Review of Environment and Resources, 2022, 47, 823-847.	13.4	6
29	Performance Improvement for Single-Photon LiDAR with Dead Time Selection. International Journal of Aerospace Engineering, 2022, 2022, 1-9.	0.9	0
30	Investigating the Shallow-Water Bathymetric Capability of Zhuhai-1 Spaceborne Hyperspectral Images Based on ICESat-2 Data and Empirical Approaches: A Case Study in the South China Sea. Remote Sensing, 2022, 14, 3406.	4.0	8
31	Nearshore Bathymetry from ICESat-2 LiDAR and Sentinel-2 Imagery Datasets Using Deep Learning Approach. Remote Sensing, 2022, 14, 4229.	4.0	13
32	Spaceborne LiDAR Surveying and Mapping. , 0, , .		1
33	A novel bathymetry signal photon extraction algorithm for photon-counting LiDAR based on adaptive elliptical neighborhood. International Journal of Applied Earth Observation and Geoinformation, 2022, 115, 103080.	1.9	4
34	ICESat-2 Mission: Contributions of a spaceborne lidar to ocean science., 2022,,.		3
35	ICESat-2 Bathymetry: Advances in Methods and Science. , 2022, , .		5
36	Shallow Water Bathymetry Mapping from ICESat-2 and Sentinel-2 Based on BP Neural Network Model. Water (Switzerland), 2022, 14, 3862.	2.7	10

#	Article	IF	CITATIONS
37	Algorithm for Detection of Water Surface Height in UAV-Borne Photon-Counting LiDAR. IEEE Geoscience and Remote Sensing Letters, 2023, 20, 1-5.	3.1	0
38	Analysis and Correction of Water Forward-Scattering-Induced Bathymetric Bias for Spaceborne Photon-Counting Lidar. Remote Sensing, 2023, 15, 931.	4.0	2
39	High-resolution benthic habitat mapping from machine learning on PlanetScope imagery and ICESat-2 data. Geocarto International, 2023, 38, .	3.5	3
40	Satellite-derived bathymetry combined with Sentinel-2 and ICESat-2 datasets using machine learning. Frontiers in Earth Science, $0,11,.$	1.8	6
41	An Automatic Algorithm to Extract Nearshore Bathymetric Photons Using Pre-Pruning Quadtree Isolation for ICESat-2 Data. IEEE Geoscience and Remote Sensing Letters, 2023, 20, 1-5.	3.1	1
42	æ̃Ÿè½½å•å‰åæ¿€å‰é›·è¾¾æµæ°́测深技æœ⁻ç"究进展和展望. Hongwai Yu Jiguang Gor	ıgc loe ⊕ng/In	fra r ed and La
43	Semi-automated bathymetry using Sentinel-2 for coastal monitoring in the Western Mediterranean. International Journal of Applied Earth Observation and Geoinformation, 2023, 120, 103328.	1.9	0
44	A Robust Density Estimation Method for Glacier-Height Retrieval From ICESat-2 Photon-Counting Data. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-17.	6.3	0
45	Use of ICEsat-2 and Sentinel-2 Open Data for the Derivation of Bathymetry in Shallow Waters: Case Studies in Sardinia and in the Venice Lagoon. Remote Sensing, 2023, 15, 2944.	4.0	1
46	ICESAT-2 Shallow Bathymetric Mapping Based on a Size and Direction Adaptive Filtering Algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 6279-6295.	4.9	3
47	An Appraisal of Atmospheric Correction and Inversion Algorithms for Mapping High-Resolution Bathymetry Over Coral Reef Waters. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-11.	6.3	3
48	Exploring modern bathymetry: A comprehensive review of data acquisition devices, model accuracy, and interpolation techniques for enhanced underwater mapping. Frontiers in Marine Science, 0, 10, .	2.5	8
49	Global automated extraction of bathymetric photons from ICESat-2 data based on a PointNet++ model. International Journal of Applied Earth Observation and Geoinformation, 2023, 124, 103512.	1.9	1
50	An optimized denoising method for ICESat-2 photon-counting data considering heterogeneous density and weak connectivity. Optics Express, 2023, 31, 41496.	3.4	0
51	New Reference Bathymetric Point Cloud Datasets Derived from ICESat-2 Observations: A Case in the Caribbean Sea. IEEE Transactions on Geoscience and Remote Sensing, 2023, , 1-1.	6.3	0
52	Nearshore Bathymetry from ICESat-2 LiDAR and Sentinel-2 Imagery Datasets Using Physics-Informed CNN. Remote Sensing, 2024, 16, 511.	4.0	0
53	Analysis of ICESatâ€2 Data Acquisition Algorithm Parameter Enhancements to Improve Worldwide Bathymetric Coverage. Earth and Space Science, 2024, 11, .	2.6	0
54	Evaluating ICESat-2 Seafloor Photons by Underwater Light-Beam Propagation and Noise Modeling. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62, 1-18.	6.3	0