High-Resolution Classification of South Patagonian Pea Potential Gaps in Up-Scaled CH4 Fluxes by use of Unma Imagery

Remote Sensing 8, 173 DOI: 10.3390/rs8030173

Citation Report

#	Article	IF	CITATIONS
1	Structure from motion will revolutionize analyses of tidal wetland landscapes. Remote Sensing of Environment, 2017, 199, 14-24.	4.6	85
2	Analysis of methane emissions from paddy rice using Bayesian assimilation. , 2017, , .		0
3	Assessing the Value of UAV Photogrammetry for Characterizing Terrain in Complex Peatlands. Remote Sensing, 2017, 9, 715.	1.8	33
4	Low-Altitude Aerial Methane Concentration Mapping. Remote Sensing, 2017, 9, 823.	1.8	50
5	Open-Source Processing and Analysis of Aerial Imagery Acquired with a Low-Cost Unmanned Aerial System to Support Invasive Plant Management. Frontiers in Environmental Science, 2017, 5, .	1.5	60
6	Optimizing the Timing of Unmanned Aerial Vehicle Image Acquisition for Applied Mapping of Woody Vegetation Species Using Feature Selection. Remote Sensing, 2017, 9, 1130.	1.8	26
7	UAV Remote Sensing Can Reveal the Effects of Lowâ€Impact Seismic Lines on Surface Morphology, Hydrology, and Methane (CH ₄) Release in a Boreal Treed Bog. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1117-1129.	1.3	40
8	Greenhouse gas emissions in natural and managed peatlands of America: Case studies along a latitudinal gradient. Ecological Engineering, 2018, 114, 34-45.	1.6	26
9	Airborne Hyperspectral Evaluation of Maximum Gross Photosynthesis, Gravimetric Water Content, and CO2 Uptake Efficiency of the Mer Bleue Ombrotrophic Peatland. Remote Sensing, 2018, 10, 565.	1.8	23
10	An Object-Based Image Analysis Workflow for Monitoring Shallow-Water Aquatic Vegetation in Multispectral Drone Imagery. ISPRS International Journal of Geo-Information, 2018, 7, 294.	1.4	60
11	Comparing ultraâ€high spatial resolution remoteâ€sensing methods in mapping peatland vegetation. Journal of Vegetation Science, 2019, 30, 1016-1026.	1.1	23
12	Suitability of a Non-Dispersive Infrared Methane Sensor Package for Flux Quantification Using an Unmanned Aerial Vehicle. Sensors, 2019, 19, 4705.	2.1	10
13	Microtopographic Drivers of Vegetation Patterning in Blanket Peatlands Recovering from Erosion. Ecosystems, 2019, 22, 1035-1054.	1.6	24
14	Data and resolution requirements in mapping vegetation in spatially heterogeneous landscapes. Remote Sensing of Environment, 2019, 230, 111207.	4.6	74
15	Robinia pseudoacacia L. in Short Rotation Coppice: Seed and Stump Shoot Reproduction as well as UAS-based Spreading Analysis. Forests, 2019, 10, 235.	0.9	14
16	Zero to moderate methane emissions in a densely rooted, pristine Patagonian bog – biogeochemical controls as revealed from isotopic evidence. Biogeosciences, 2019, 16, 541-559.	1.3	19
17	Multisensor data to derive peatland vegetation communities using a fixed-wing unmanned aerial vehicle. International Journal of Remote Sensing, 2019, 40, 9103-9125.	1.3	24
18	Cushion bogs are stronger carbon dioxide net sinks than moss-dominated bogs as revealed by eddy covariance measurements on Tierra del Fuego, Argentina. Biogeosciences, 2019, 16, 3397-3423.	1.3	16

CITATION REPORT

#	Article	IF	CITATIONS
19	Detecting northern peatland vegetation patterns at ultraâ€high spatial resolution. Remote Sensing in Ecology and Conservation, 2020, 6, 457-471.	2.2	27
20	Peatland leaf-area index and biomass estimation with ultra-high resolution remote sensing. GIScience and Remote Sensing, 2020, 57, 943-964.	2.4	21
21	Investigating the Potential Use of RADARSAT-2 and UAS imagery for Monitoring the Restoration of Peatlands. Remote Sensing, 2020, 12, 2383.	1.8	11
22	Testing the near-field Gaussian plume inversion flux quantification technique using unmanned aerial vehicle sampling. Atmospheric Measurement Techniques, 2020, 13, 1467-1484.	1.2	26
23	MAPPING VEGETATION COMMUNITIES INSIDE WETLANDS USING SENTINEL-2 IMAGERY IN IRELAND. International Journal of Applied Earth Observation and Geoinformation, 2020, 88, 102083.	1.4	36
24	Towards a microbial process-based understanding of the resilience of peatland ecosystem service provisioning – A research agenda. Science of the Total Environment, 2021, 759, 143467.	3.9	15
25	The Ecosystem Services Provided by Peatlands in Patagonia. Natural and Social Sciences of Patagonia, 2021, , 155-186.	0.2	3
26	Predicting catchment-scale methane fluxes with multi-source remote sensing. Landscape Ecology, 2021, 36, 1177-1195.	1.9	19
27	Modelling and upscaling ecosystem respiration using thermal cameras and UAVs: Application to a peatland during and after a hot drought. Agricultural and Forest Meteorology, 2021, 300, 108330.	1.9	8
28	Local 3D scene fine detection analysis of circular landform on the southern edge of Dinosaur Valley. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	2
29	Methods for quantifying methane emissions using unmanned aerial vehicles: a review. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200450.	1.6	21
31	Advanced Leak Detection and Quantification of Methane Emissions Using sUAS. Drones, 2021, 5, 117.	2.7	13
32	Control of carbon and nitrogen accumulation by vegetation in pristine bogs of southern Patagonia. Science of the Total Environment, 2022, 810, 151293.	3.9	5
33	Assessment of the Applicability of UAV for the Creation of Digital Surface Model of a Small Peatland. Frontiers in Earth Science, 2022, 10, .	0.8	7
34	An Overview of Remote Sensing Data Applications in Peatland Research Based on Works from the Period 2010–2021. Land, 2022, 11, 24.	1.2	16
35	Can nitrogen input mapping from aerial imagery improve nitrous oxide emissions estimates from grazed grassland?. Precision Agriculture, 0, , .	3.1	0
36	Evaluation of the wider applications of the alkanol index BNA15 as temperature proxy in a broad distribution of peat deposits. Organic Geochemistry, 2022, 173, 104486.	0.9	0
38	There and back again: Forty years of change in vegetation patterns in Irish peatlands. Ecological Indicators, 2022, 145, 109731.	2.6	6

#	Article	IF	CITATIONS
39	Geomorphometric and Geophysical Constraints on Outlining Drained Shallow Mountain Mires. Geosciences (Switzerland), 2023, 13, 43.	1.0	0
40	Less is more: Optimizing vegetation mapping in peatlands using unmanned aerial vehicles (UAVs). International Journal of Applied Earth Observation and Geoinformation, 2023, 117, 103220.	0.9	3
41	RGB vs. Multispectral imagery: Mapping aapa mire plant communities with UAVs. Ecological Indicators, 2023, 148, 110140.	2.6	6