Application of Collagen Scaffold in Tissue Engineering: Perspectives

Polymers

8, 42

DOI: 10.3390/polym8020042

Citation Report

#	Article	IF	CITATIONS
1	A scaffold-filter model for studying the chondrogenic differentiation of stem cells in vitro. Materials Science and Engineering C, 2017, 70, 962-968.	3.8	13
2	Oneâ€Pot Fabrication of Poly(εâ€Caprolactone)â€Incorporated Bovine Serum Albumin/Calcium Alginate/Hydroxyapatite Nanocomposite Scaffolds by High Internal Phase Emulsion Templates. Macromolecular Materials and Engineering, 2017, 302, 1600367.	1.7	18
3	Bioengineering Hearts: Simple yet Complex. Current Stem Cell Reports, 2017, 3, 35-44.	0.7	45
4	Tubular collagen scaffolds with radial elasticity for hollow organ regeneration. Acta Biomaterialia, 2017, 52, 1-8.	4.1	41
5	Understanding the relation between structural and mechanical properties of electrospun fiber mesh through uniaxial tensile testing. Journal of Applied Polymer Science, 2017, 134, .	1.3	20
6	Fabrication of a new physiological macroporous hybrid biomaterial/bioscaffold material based on polyphosphate and collagen by freeze-extraction. Journal of Materials Chemistry B, 2017, 5, 3823-3835.	2.9	16
7	In Vitro and in Vivo Analysis of Mineralized Collagen-Based Sponges Prepared by a Plasma- and Precursor-Assisted Biomimetic Process. ACS Applied Materials & Samp; Interfaces, 2017, 9, 22185-22194.	4.0	21
8	Immobilization of native type I collagen on polypropylene fabrics as a substrate for HepG2 cell culture. Journal of Biomaterials Applications, 2017, 32, 93-103.	1.2	16
9	3D Bioprinting for Organ Regeneration. Advanced Healthcare Materials, 2017, 6, 1601118.	3.9	385
10	Progress in development of bioderived materials for dermal wound healing. International Journal of Energy Production and Management, 2017, 4, 325-334.	1.9	42
11	A thermoreversible, photocrosslinkable collagen bio-ink for free-form fabrication of scaffolds for regenerative medicine. Technology, 2017, 05, 185-195.	1.4	54
12	Fish scale-derived collagen patch promotes growth of blood and lymphatic vessels in vivo. Acta Biomaterialia, 2017, 63, 246-260.	4.1	48
13	Biodegradable Polymers for Bone Tissue Engineering. , 2017, , 47-74.		7
14	Electrospun Collagen Scaffolds. , 2017, , 21-55.		3
15	Development of Multilayered Chlorogenate-Peptide Based Biocomposite Scaffolds for Potential Applications in Ligament Tissue Engineering - An <i>In Vitro</i> Study. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 0, 34, 37-56.	0.5	2
16	Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. Journal of Biological Engineering, 2017, 11, 31.	2.0	268
17	Chitin-Based Anisotropic Nanostructures of Butterfly Wings for Regulating Cells Orientation. Polymers, 2017, 9, 386.	2.0	18
18	Laminin-Coated Poly(Methyl Methacrylate) (PMMA) Nanofiber Scaffold Facilitates the Enrichment of Skeletal Muscle Myoblast Population. International Journal of Molecular Sciences, 2017, 18, 2242.	1.8	29

#	Article	IF	CITATIONS
19	In Vitro Evaluation of Essential Mechanical Properties and Cell Behaviors of a Novel Polylactic-co-Glycolic Acid (PLGA)-Based Tubular Scaffold for Small-Diameter Vascular Tissue Engineering. Polymers, 2017, 9, 318.	2.0	19
20	Collagen External Scaffolds Mitigate Intimal Hyperplasia and Improve Remodeling of Vein Grafts in a Rabbit Arteriovenous Graft Model. BioMed Research International, 2017, 2017, 1-9.	0.9	5
21	Analysis of the Comprehensive Tensile Relationship in Electrospun Silk Fibroin/Polycaprolactone Nanofiber Membranes. Membranes, 2017, 7, 67.	1.4	14
22	Collagen from Marine Biological Sources and Medical Applications. Chemistry and Biodiversity, 2018, 15, e1700557.	1.0	169
23	Application of minimally invasive injectable conductive hydrogels as stimulating scaffolds for myocardial tissue engineering. Polymer International, 2018, 67, 975-982.	1.6	15
24	Study on structure, mechanical property and cell cytocompatibility of electrospun collagen nanofibers crosslinked by common agents. International Journal of Biological Macromolecules, 2018, 113, 476-486.	3.6	62
25	Biodegradable Cell-Seeded Collagen Based Polymer Scaffolds for Wound Healing and Skin Reconstruction. Journal of Macromolecular Science - Physics, 2018, 57, 100-109.	0.4	20
26	Natural Origin Materials for Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1058, 3-30.	0.8	15
27	Ultraporous, Compressible, Wettable Polylactide/Polycaprolactone Sponges for Tissue Engineering. Biomacromolecules, 2018, 19, 1663-1673.	2.6	46
28	Eliminating glutaraldehyde from crosslinked collagen films using supercritical CO ₂ . Journal of Biomedical Materials Research - Part A, 2018, 106, 86-94.	2.1	19
29	Collagen: A review on its sources and potential cosmetic applications. Journal of Cosmetic Dermatology, 2018, 17, 20-26.	0.8	309
30	<i>In vitro</i> expansion of CD 133+ cells derived from umbilical cord blood in poly- <scp>L</scp> -lactic acid (PLLA) scaffold coated with fibronectin and collagen. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1025-1033.	1.9	31
31	Feasibility of the annulus fibrosus repair with in situ gelating hydrogels – A biomechanical study. PLoS ONE, 2018, 13, e0208460.	1.1	22
32	Tissue Engineering of Tendons. , 0, , .		0
33	Hepatocyte Aggregate Formation on Chitin-Based Anisotropic Microstructures of Butterfly Wings. Biomimetics, 2018, 3, 2.	1.5	7
34	In Vivo Investigation into Effectiveness of Fe3O4/PLLA Nanofibers for Bone Tissue Engineering Applications. Polymers, 2018, 10, 804.	2.0	26
35	Human Adipose-Derived Stem Cells for Tissue Engineering Approaches: Current Challenges and Perspectives. , $2018, $, .		2
36	Gold Nanoparticles for Tissue Engineering. Environmental Chemistry for A Sustainable World, 2018, , 343-390.	0.3	9

3

#	ARTICLE	IF	Citations
37	Synthesis of bioinspired collagen/alginate/fibrin based hydrogels for soft tissue engineering. Materials Science and Engineering C, 2018, 91, 236-246.	3.8	95
38	Reinforced Hybrid Collagen Sponges for Tissue Engineering. Bulletin of Experimental Biology and Medicine, 2018, 165, 142-147.	0.3	11
39	3Dâ€Printed Biomimetic Scaffold Simulating Microfibril Muscle Structure. Advanced Functional Materials, 2018, 28, 1800405.	7.8	67
40	Enhanced extracellular matrix synthesis using collagen dressings loaded with <i>Artemisia absinthium</i> plant extract. Journal of Bioactive and Compatible Polymers, 2018, 33, 516-528.	0.8	7
41	Injectable hydrogels: a new paradigm for osteochondral tissue engineering. Journal of Materials Chemistry B, 2018, 6, 5499-5529.	2.9	78
42	Hydroxyapatite nanowire/collagen elastic porous nanocomposite and its enhanced performance in bone defect repair. RSC Advances, 2018, 8, 26218-26229.	1.7	36
43	Building a Total Bioartificial Heart: Harnessing Nature to Overcome the Current Hurdles. Artificial Organs, 2018, 42, 970-982.	1.0	36
44	A Tensile Constitutive Relationship and a Finite Element Model of Electrospun Nanofibrous Mats. Nanomaterials, 2018, 8, 29.	1.9	16
45	Preparation, Physicochemical Properties and Hemocompatibility of Biodegradable Chitooligosaccharide-Based Polyurethane. Polymers, 2018, 10, 580.	2.0	19
46	Extraction and characterization of type I collagen from skin of tilapia (Oreochromis niloticus) and its potential application in biomedical scaffold material for tissue engineering. Process Biochemistry, 2018, 74, 156-163.	1.8	79
47	A novel, cellâ€permeable, collagenâ€based membrane promotes fibroblast migration. Journal of Periodontal Research, 2018, 53, 727-735.	1.4	6
48	Chitosan-Based Composite Materials for Prospective Hemostatic Applications. Marine Drugs, 2018, 16, 273.	2.2	181
49	The Role of Polymer Additives in Enhancing the Response of Calcium Phosphate Cement., 2018,, 345-379.		2
50	Natural Origin Materials for Bone Tissue Engineering. , 2019, , 535-558.		12
51	Hydrogels in Regenerative Medicine. , 2019, , 627-650.		6
52	Effect of fluid dynamics on decellularization efficacy and mechanical properties of blood vessels. PLoS ONE, 2019, 14, e0220743.	1.1	25
53	Marine-Based Biomaterials for Tissue Engineering Applications. Springer Series in Biomaterials Science and Engineering, 2019, , 99-111.	0.7	1
54	The advances in nerve tissue engineering: From fabrication of nerve conduit to <i>in vivo</i> nerve regeneration assays. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 2077-2100.	1.3	40

#	Article	IF	Citations
55	Hydrogels for Liver Tissue Engineering. Bioengineering, 2019, 6, 59.	1.6	60
56	Healing of Bone Defects in Pig's Femur Using Mesenchymal Cells Originated from the Sinus Membrane with Different Scaffolds. Stem Cells International, 2019, 2019, 1-10.	1.2	10
57	Hydrogel scaffolds based on blood plasma cryoprecipitate and collagen derived from various sources: Structural, mechanical and biological characteristics. Bioactive Materials, 2019, 4, 334-345.	8.6	25
58	Halloysite Nanoclay/Biopolymers Composite Materials in Tissue Engineering. Biotechnology Journal, 2019, 14, e1900055.	1.8	42
59	Preparation of collagen/carboxylated graphene oxide nanofibrous membranes by electrospinning and their hemocompatibilities. Materials Research Express, 2019, 6, 105415.	0.8	5
60	Fabrication and In Situ Cross-Linking of Carboxylic-Acid-Functionalized Poly(Ester Amide) Scaffolds for Tissue Engineering. ACS Applied Polymer Materials, 2019, 1, 2360-2369.	2.0	8
61	Modeling Analysis of Silk Fibroin/Poly(Î μ -caprolactone) Nanofibrous Membrane under Uniaxial Tension. Nanomaterials, 2019, 9, 1149.	1.9	9
62	The Role of Stiffness in Cell Reprogramming: A Potential Role for Biomaterials in Inducing Tissue Regeneration. Cells, 2019, 8, 1036.	1.8	72
63	3D Printing of Amino Resin-based Photosensitive Materials on Multi-parameter Optimization Design for Vascular Engineering Applications. Polymers, 2019, 11, 1394.	2.0	26
64	Chitosan films for regenerative medicine: fabrication methods and mechanical characterization of nanostructured chitosan films. Biophysical Reviews, 2019, 11, 807-815.	1.5	38
65	Combined Treatment with Three Natural Antioxidants Enhances Neuroprotection in a SH-SY5Y 3D Culture Model. Antioxidants, 2019, 8, 420.	2.2	31
66	Biomolecule-Conjugated Macroporous Hydrogels for Biomedical Applications. ACS Biomaterials Science and Engineering, 2019, 5, 6320-6341.	2.6	33
67	Protein-Polymer Matrices with Embedded Carbon Nanotubes for Tissue Engineering: Regularities of Formation and Features of Interaction with Cell Membranes. Materials, 2019, 12, 3083.	1.3	9
68	Osteogenic differentiation of BMSCs in collagen-based 3D scaffolds. New Journal of Chemistry, 2019, 43, 1980-1986.	1.4	1
69	Physicobiochemical Characteristics and Chondrogenic Differentiation of Bone Marrow Mesenchymal Stem Cells (hBM-MSCs) in Biodegradable Porous Sponge Bovine Cartilage Scaffold. International Journal of Biomaterials, 2019, 2019, 1-11.	1.1	12
70	Bioengineered cardiac patch scaffolds. , 2019, , 705-728.		2
71	Scaffolds for tissue engineering of the bronchi. , 2019, , 393-410.		1
72	Different Molecular Interaction between Collagen and α- or β-Chitin in Mechanically Improved Electrospun Composite. Marine Drugs, 2019, 17, 318.	2.2	13

#	ARTICLE	IF	Citations
73	Potential Natural Fiber-Reinforced Composite for Biomedical Application. IOP Conference Series: Materials Science and Engineering, 2019, 494, 012018.	0.3	3
74	Porous Alginate Scaffolds Assembled Using Vaterite CaCO3 Crystals. Micromachines, 2019, 10, 357.	1.4	48
75	Amorphous polyphosphate nanoparticles: application of the morphogenetically active inorganic polymer for personalized tissue regeneration. Journal Physics D: Applied Physics, 2019, 52, 363001.	1.3	6
76	Fucosylated umbilical cord blood hematopoietic stem cell expansion on selectinâ€coated scaffolds. Journal of Cellular Physiology, 2019, 234, 22593-22603.	2.0	2
77	Isolation and propagation of primary human cholangiocyte organoids for the generation of bioengineered biliary tissue. Nature Protocols, 2019, 14, 1884-1925.	5 . 5	67
78	Scaffolding polymeric biomaterials: Are naturally occurring biological macromolecules more appropriate for tissue engineering?. International Journal of Biological Macromolecules, 2019, 134, 673-694.	3.6	145
79	Design of biomimetic collagen matrices by reagent-free electron beam induced crosslinking: Structure-property relationships and cellular response. Materials and Design, 2019, 168, 107606.	3.3	40
80	Opportunities of Bacterial Cellulose to Treat Epithelial Tissues. Current Drug Targets, 2019, 20, 808-822.	1.0	41
81	Biomaterials and Applications. , 2019, , 199-287.		22
82	Biomaterials for Bone Tissue Engineering: Properties and Applications. , 2019, , 335-347.		1
83	Biocompatibility Investigation of Hybrid Organometallic Polymers for Sub-Micron 3D Printing via Laser Two-Photon Polymerisation. Materials, 2019, 12, 3932.	1.3	5
84	Obtaining and Characterization of the PLA/Chitosan Foams with Antimicrobial Properties Achieved by the Emulsification Combined with the Dissolution of Chitosan by CO2 Saturation. Molecules, 2019, 24, 4532.	1.7	16
85	Current progress in application of polymeric nanofibers to tissue engineering. Nano Convergence, 2019, 6, 36.	6.3	188
86	Cell-Electrospinning and Its Application for Tissue Engineering. International Journal of Molecular Sciences, 2019, 20, 6208.	1.8	106
87	Microgrooved collagen-based corneal scaffold for promoting collective cell migration and antifibrosis. RSC Advances, 2019, 9, 29463-29473.	1.7	12
88	Evaluation of the Osteogenic Potential of Different Scaffolds Embedded with Human Stem Cells Originated from Schneiderian Membrane: An <i> In Vitro</i> Study. BioMed Research International, 2019, 2019, 1-10.	0.9	20
89	Biomaterials, Current Strategies, and Novel Nano-Technological Approaches for Periodontal Regeneration. Journal of Functional Biomaterials, 2019, 10, 3.	1.8	114
90	Structural architectures with toughening mechanisms in Nature: A review of the materials science of Type-I collagenous materials. Progress in Materials Science, 2019, 103, 425-483.	16.0	78

#	ARTICLE	IF	Citations
91	Evaluation of astaxanthin incorporated collagen film developed from the outer skin waste of squid Doryteuthis singhalensis for wound healing and tissue regenerative applications. Materials Science and Engineering C, 2019, 95, 29-42.	3.8	52
92	Biomaterials for Personalized Cell Therapy. Advanced Materials, 2020, 32, e1902005.	11.1	76
93	Collagen/cellulose nanofiber hydrogel scaffold: physical, mechanical and cell biocompatibility properties. Cellulose, 2020, 27, 927-940.	2.4	63
94	Polymethyl methacrylate (PMMA) grafted collagen scaffold reinforced by PdO–TiO2 nanocomposites. Materials Science and Engineering C, 2020, 108, 110378.	3.8	37
95	Preparation and Optimization of a Biomimetic Triple-Layered Vascular Scaffold Based on Coaxial Electrospinning. Applied Biochemistry and Biotechnology, 2020, 190, 1106-1123.	1.4	12
96	Natural polypeptides-based electrically conductive biomaterials for tissue engineering. International Journal of Biological Macromolecules, 2020, 147, 706-733.	3.6	28
97	Molecular Dynamics Investigation of Self-Association of Synthetic Collagen and Spider Silk Composite System for Biomaterial Applications. MRS Advances, 2020, 5, 797-804.	0.5	0
98	On the electrical properties of collagen macromolecule solutions: Role of collagen-water interactions. Journal of Molecular Liquids, 2020, 300, 112344.	2.3	10
99	Bioactive yet antimicrobial structurally stable collagen/chitosan/lysine functionalized hyaluronic acid – based injectable hydrogels for potential bone tissue engineering applications. International Journal of Biological Macromolecules, 2020, 155, 938-950.	3.6	45
100	Therapeutic options and drug delivery strategies for the prevention of intrauterine adhesions. Journal of Controlled Release, 2020, 318, 25-37.	4.8	79
101	Type I Collagen Suspension Induces Neocollagenesis and Myodifferentiation in Fibroblasts <i>In Vitro</i> . BioMed Research International, 2020, 2020, 1-11.	0.9	3
102	Cardiac Stem Cell-Loaded Delivery Systems: A New Challenge for Myocardial Tissue Regeneration. International Journal of Molecular Sciences, 2020, 21, 7701.	1.8	18
103	Applications of PLA in modern medicine. Engineered Regeneration, 2020, 1, 76-87.	3.0	132
104	In Vitro Innovation of Tendon Tissue Engineering Strategies. International Journal of Molecular Sciences, 2020, 21, 6726.	1.8	39
105	Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering. Polymers, 2020, 12, 2230.	2.0	197
106	3D printing collagen/heparin sulfate scaffolds boost neural network reconstruction and motor function recovery after traumatic brain injury in canine. Biomaterials Science, 2020, 8, 6362-6374.	2.6	15
107	Biodegradable thermoresponsive polymers: Applications in drug delivery and tissue engineering. Polymer, 2020, 211, 123063.	1.8	84
108	Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. Nanomaterials, 2020, 10, 2019.	1.9	34

#	ARTICLE	IF	CITATIONS
109	Multiscale engineering of functional organic polymer interfaces for neuronal stimulation and recording. Materials Chemistry Frontiers, 2020, 4, 3444-3471.	3.2	6
110	Preparation and biological properties of collagen/nano-hydroxyapatite composite nanofibers based on ordered nano-hydroxyapatite ceramic fibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 124802.	2.3	13
111	Advances and prospects in biomimetic multilayered scaffolds for articular cartilage regeneration. International Journal of Energy Production and Management, 2020, 7, 527-542.	1.9	30
112	Neutral, water-soluble poly(ester amide) hydrogels for cell encapsulation. European Polymer Journal, 2020, 136, 109899.	2.6	6
113	Mesenchymal stromal cellâ€derived factors promote the colonization of collagen 3D scaffolds with human skin cells. Journal of Cellular and Molecular Medicine, 2020, 24, 9692-9704.	1.6	9
114	Collagen scaffold for mesencyhmal stem cell from stromal vascular fraction (biocompatibility and) Tj ETQq $1\ 1\ 0.7$	⁷ 84314 rg 0.5	BT ₃ /Overlock
115	Tooth-Supporting Hard Tissue Regeneration Using Biopolymeric Material Fabrication Strategies. Molecules, 2020, 25, 4802.	1.7	12
116	Characterization of Zinc Oxide Nanoparticle Cross-Linked Collagen Hydrogels. Gels, 2020, 6, 37.	2.1	5
117	Measuring and assessment of impedance spectrum of collagen thin films in the presence of deionized water. Journal of Molecular Liquids, 2020, 320, 114488.	2.3	5
118	Physicochemical Characterization of Bilayer Hybrid Nanocellulose-Collagen as a Potential Wound Dressing. Materials, 2020, 13, 4352.	1.3	14
119	Polyelectrolyte Multilayer Capsule (PEMC)-Based Scaffolds for Tissue Engineering. Micromachines, 2020, 11, 797.	1.4	9
120	Fibro-porous PLLA/gelatin composite membrane doped with cerium oxide nanoparticles as bioactive scaffolds for future angiogenesis. Journal of Materials Chemistry B, 2020, 8, 9110-9120.	2.9	33
121	Biodegradable engineered fiber scaffolds fabricated by electrospinning for periodontal tissue regeneration. Journal of Biomaterials Applications, 2021, 36, 55-75.	1.2	20
122	Blend-based fibers produced <i>via</i> centrifugal spinning and electrospinning processes: Physical and rheological properties. Journal of Materials Research, 2020, 35, 2905-2916.	1.2	9
123	Future Perspectives in Small-Diameter Vascular Graft Engineering. Bioengineering, 2020, 7, 160.	1.6	59
124	Graphene-based conductive fibrous scaffold boosts sciatic nerve regeneration and functional recovery upon electrical stimulation. Applied Materials Today, 2020, 21, 100870.	2.3	27
125	Engineering Biomaterials to Guide Heart Cells for Matured Cardiac Tissue. Coatings, 2020, 10, 925.	1.2	17
126	Obtaining, Evaluation, and Optimization of Doxycycline-Loaded Microparticles Intended for the Local Treatment of Infectious Arthritis. Coatings, 2020, 10, 990.	1.2	6

#	ARTICLE	IF	CITATIONS
127	Collagen/PCL Nanofibers Electrospun in Green Solvent by DOE Assisted Process. An Insight into Collagen Contribution. Materials, 2020, 13, 4698.	1.3	28
128	A Review of Zein as a Potential Biopolymer for Tissue Engineering and Nanotechnological Applications. Processes, 2020, 8, 1376.	1.3	55
129	Biodegradable ¹³¹ lodine‣abeled Microspheres: Potential Transarterial Radioembolization Biomaterial for Primary Hepatocellular Carcinoma Treatment. Advanced Healthcare Materials, 2020, 9, e2000028.	3.9	15
130	Tissue Integration and Degradation of a Porous Collagen-Based Scaffold Used for Soft Tissue Augmentation. Materials, 2020, 13, 2420.	1.3	27
131	Dexamethasone- loaded polymeric porous sponge as a direct pulp capping agent. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1689-1705.	1.9	7
132	Natural Polymeric Scaffolds in Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 474.	2.0	198
133	From cells-on-a-chip to organs-on-a-chip: scaffolding materials for 3D cell culture in microfluidics. Journal of Materials Chemistry B, 2020, 8, 6667-6685.	2.9	55
134	Thermal characterization of hydroxyapatite or carbonated hydroxyapatite hybrid composites with distinguished collagens for bone graft. Journal of Materials Research and Technology, 2020, 9, 7190-7200.	2.6	35
135	Isocyanate-terminated urethane-based methacrylate for in situ collagen scaffold modification. Materials Science and Engineering C, 2020, 112, 110902.	3.8	15
136	<p>Biodegradable Nanopolymers in Cardiac Tissue Engineering: From Concept Towards Nanomedicine</p> . International Journal of Nanomedicine, 2020, Volume 15, 4205-4224.	3.3	80
137	Hyaluronic acid biomaterial for human tissueâ€engineered skin substitutes: Preclinical comparative ⟨i⟩in vivo⟨ i⟩ study of wound healing. Journal of the European Academy of Dermatology and Venereology, 2020, 34, 2414-2427.	1.3	35
138	Biomimetic mineralizable collagen hydrogels for dynamic bone matrix formation to promote osteogenesis. Journal of Materials Chemistry B, 2020, 8, 3064-3075.	2.9	23
139	An insight on type I collagen from horse tendon for the manufacture of implantable devices. International Journal of Biological Macromolecules, 2020, 154, 291-306.	3.6	42
140	Biomimetic collagen-sodium alginate-titanium oxide (TiO2) 3D matrix supports differentiated periodontal ligament fibroblasts growth for periodontal tissue regeneration. International Journal of Biological Macromolecules, 2020, 163, 9-18.	3.6	26
141	Fundamentals and Current Strategies for Peripheral Nerve Repair and Regeneration. Advances in Experimental Medicine and Biology, 2020, 1249, 173-201.	0.8	25
142	Conductive carbon nanofibers incorporated into collagen bio-scaffold assists myocardial injury repair. International Journal of Biological Macromolecules, 2020, 163, 1136-1146.	3.6	46
143	Extracellular matrix-mimetic composite hydrogels of cross-linked hyaluronan and fibrillar collagen with tunable properties and ultrastructure. Carbohydrate Polymers, 2020, 236, 116042.	5.1	31
144	Antibacterial, mechanical and physical properties of collagen - chitosan sponges from aquatic source. Sustainable Chemistry and Pharmacy, 2020, 15, 100218.	1.6	17

#	Article	IF	Citations
145	Heart-on-chips screening based on photonic crystals. Bio-Design and Manufacturing, 2020, 3, 266-280.	3.9	25
146	Collagen-based 3D structures—versatile, efficient materials for biomedical applications. , 2020, , 881-906.		1
147	Enzymatic hydrolysis of collagen by pancreatin and thrombin as a step in the formation of scaffolds. Russian Chemical Bulletin, 2020, 69, 164-168.	0.4	5
148	Enhanced biological properties of collagen/chitosan-coated poly(Îμ-caprolactone) scaffold by surface modification with GHK-Cu peptide and 58S bioglass. Progress in Biomaterials, 2020, 9, 25-34.	1.8	8
149	Tissue-engineered cardiovascular products. , 2020, , 1521-1536.		2
150	Enzymatic Hydrolysis of Marine Collagen and Fibrinogen Proteins in the Presence of Thrombin. Marine Drugs, 2020, 18, 208.	2.2	9
151	Marine Collagen from Alternative and Sustainable Sources: Extraction, Processing and Applications. Marine Drugs, 2020, 18, 214.	2.2	165
152	Development and characterization of a photo-cross-linked functionalized type-I collagen (Oreochromis niloticus) and polyethylene glycol diacrylate hydrogel. International Journal of Biological Macromolecules, 2020, 155, 163-173.	3.6	14
153	Integrating eggshell-derived CaCO3/MgO nanocomposites and chitosan into a biomimetic scaffold for bone regeneration. Chemical Engineering Journal, 2020, 395, 125098.	6.6	60
154	Efficient smooth muscle cell differentiation of iPS cells on curcumin-incorporated chitosan/collagen/polyvinyl-alcohol nanofibers. In Vitro Cellular and Developmental Biology - Animal, 2020, 56, 313-321.	0.7	15
155	Marine collagen and its derivatives: Versatile and sustainable bio-resources for healthcare. Materials Science and Engineering C, 2020, 113, 110963.	3.8	102
156	Proteins and Peptides as Important Modifiers of the Polymer Scaffolds for Tissue Engineering Applications—A Review. Polymers, 2020, 12, 844.	2.0	116
157	A review on recent advances and applications of fish collagen. Critical Reviews in Food Science and Nutrition, 2021, 61, 1027-1037.	5.4	98
158	Coral-Derived Collagen Fibers for Engineering Aligned Tissues. Tissue Engineering - Part A, 2021, 27, 187-200.	1.6	8
159	Assessment of physico-chemical and biological properties of sericin-collagen substrates for PNS regeneration. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 403-413.	1.8	9
160	Collagen Membrane for Guided Bone Regeneration in Dental and Orthopedic Applications. Tissue Engineering - Part A, 2021, 27, 372-381.	1.6	32
161	Injectable thermoresponsive hydrogels as drug delivery system for the treatment of central nervous system disorders: A review. Journal of Controlled Release, 2021, 329, 16-35.	4.8	76
162	Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application. International Journal of Biological Macromolecules, 2021, 168, 175-186.	3.6	115

#	ARTICLE	IF	CITATIONS
163	Scale-up one-pot synthesis of waste collagen and apple pomace pectin incorporated pentapolymer biocomposites: Roles of waste collagen for elevations of properties and unary/ ternary removals of $Ti(IV)$, $As(V)$, and $V(V)$. Journal of Hazardous Materials, 2021, 409, 124873.	6.5	19
164	Biomimetic algal polysaccharide coated 3D nanofibrous scaffolds promote skin extracellular matrix formation. Materials Science and Engineering C, 2021, 119, 111580.	3.8	13
165	Biomimetic strategies for fabricating musculoskeletal tissue scaffolds: a review. International Journal of Advanced Manufacturing Technology, 2021, 112, 1211-1229.	1.5	7
166	Integrin $\hat{i}\pm2\hat{i}^21$ plays an important role in the interaction between human articular cartilage-derived chondrocytes and atelocollagen gel. Scientific Reports, 2021, 11, 1757.	1.6	8
167	Architectural and ultrastructural variations of human leukocyte-rich platelet-rich fibrin and injectable platelet-rich fibrin. Journal of Microscopy and Ultrastructure, 2023, 9, 76-80.	0.1	7
168	Macro and Microstructural Characteristics of North Atlantic Deep-Sea Sponges as Bioinspired Models for Tissue Engineering Scaffolding. Frontiers in Marine Science, 2021, 7, .	1.2	11
169	Development of temperature dependent oxygen releasable nanofilm by modulating oxidation state of myoglobin. Chemical Communications, 2021, 57, 5131-5134.	2.2	4
170	Influence of the Mechanical Environment on the Regeneration of Osteochondral Defects. Frontiers in Bioengineering and Biotechnology, 2021, 9, 603408.	2.0	43
171	Composites Based on Chitin Nanoparticles and Biodegradable Polymers for Medical Use: Preparation and Properties. Nanobiotechnology Reports, 2021, 16, 42-68.	0.2	3
172	The influence of animal species, gender and tissue on the structural, biophysical, biochemical and biological properties of collagen sponges. Journal of Materials Science: Materials in Medicine, 2021, 32, 12.	1.7	25
173	3D bioprinting., 2021,, 599-633.		5
174	Demineralized and decellularized bone extracellular matrix-incorporated electrospun nanofibrous scaffold for bone regeneration. Journal of Materials Chemistry B, 2021, 9, 6881-6894.	2.9	25
175	Inorganic–Organic Hybrids: Mimicking Native Bone. Inorganic Materials Series, 2021, , 134-179.	0.5	0
176	Hybrid Collagen Hydrogel/Chondroitin-4-Sulphate Fortified with Dermal Fibroblast Conditioned Medium for Skin Therapeutic Application. Polymers, 2021, 13, 508.	2.0	8
177	Materials for peripheral nerve repair constructs: Natural proteins or synthetic polymers?. Neurochemistry International, 2021, 143, 104953.	1.9	39
178	Recombinant human collagen/chitosan-based soft hydrogels as biomaterials for soft tissue engineering. Materials Science and Engineering C, 2021, 121, 111846.	3.8	34
179	Rapid Evaluation of Novel Therapeutic Strategies Using a 3D Collagen-Based Tissue-Like Model. Frontiers in Bioengineering and Biotechnology, 2021, 9, 574035.	2.0	2
180	New-generation osteoplastic materials based on biological and synthetic matrices. Fine Chemical Technologies, 2021, 16, 36-54.	0.1	6

#	ARTICLE	IF	CITATIONS
181	<scp>Mechanical</scp> and biological performance of rainbow trout collagenâ€boron nitride nanocomposite scaffolds for soft tissue engineering. Journal of Applied Polymer Science, 2021, 138, 50664.	1.3	4
182	Mechanical Properties of Soft Biological Membranes for Organ-on-a-Chip Assessed by Bulge Test and AFM. ACS Biomaterials Science and Engineering, 2021, 7, 2990-2997.	2.6	32
183	In Vivo Biological Behavior of Polymer Scaffolds of Natural Origin in the Bone Repair Process. Molecules, 2021, 26, 1598.	1.7	5
184	Optimization and evaluation of ciprofloxacin-loaded collagen/chitosan scaffolds for skin tissue engineering. 3 Biotech, 2021, 11, 160.	1.1	12
185	Preparation and characterization of a soluble eggshell membrane/agarose composite scaffold with possible applications in cartilage regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 375-387.	1.3	15
186	3D scaffolds in the treatment of diabetic foot ulcers: New trends vs conventional approaches. International Journal of Pharmaceutics, 2021, 599, 120423.	2.6	27
187	Vascularization Approaches in Tissue Engineering: Recent Developments on Evaluation Tests and Modulation. ACS Applied Bio Materials, 2021, 4, 2941-2956.	2.3	37
188	Mimicking the Hierarchical Organization of Natural Collagen: Toward the Development of Ideal Scaffolding Material for Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 2021, 9, 644595.	2.0	57
189	Biomimetic nanoengineered scaffold for enhanced full-thickness cutaneous wound healing. Acta Biomaterialia, 2021, 124, 191-204.	4.1	72
190	A Novel Bone Substitute Based on Recombinant Type I Collagen for Reconstruction of Alveolar Cleft. Materials, 2021, 14, 2306.	1.3	5
191	Materials for creating tissue-engineered constructs using 3D bioprinting: cartilaginous and soft tissue restoration. Vestnik Transplantologii I Iskusstvennykh Organov, 2021, 23, 60-74.	0.1	3
192	3D printed silica-gelatin hybrid scaffolds of specific channel sizes promote collagen Type II, Sox9 and Aggrecan production from chondrocytes. Materials Science and Engineering C, 2021, 123, 111964.	3.8	22
193	The Technique of Thyroid Cartilage Scaffold Support Formation for Extrusion-Based Bioprinting. International Journal of Bioprinting, 2021, 7, 348.	1.7	10
194	Thermally stable collagen from Piranha and Rohu with improved physical, biochemical, and morphological properties. Journal of Applied Polymer Science, 2021, 138, 50796.	1.3	3
195	Adhesion and proliferation of living cell on surface functionalized with glycine nanostructures. Nano Select, 2022, 3, 188-200.	1.9	3
196	Collagenâ€based biomaterials for biomedical applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 1986-1999.	1.6	120
197	Sustained Release Systems for Delivery of Therapeutic Peptide/Protein. Biomacromolecules, 2021, 22, 2299-2324.	2.6	24
198	A novel gene recombinant collagen hemostatic sponge with excellent biocompatibility and hemostatic effect. International Journal of Biological Macromolecules, 2021, 178, 296-305.	3.6	42

#	Article	IF	CITATIONS
199	Oral Bone Tissue Regeneration: Mesenchymal Stem Cells, Secretome, and Biomaterials. International Journal of Molecular Sciences, 2021, 22, 5236.	1.8	55
200	Approaches in Animal Proteins and Natural Polysaccharides Application for Food Packaging: Edible Film Production and Quality Estimation. Polymers, 2021, 13, 1592.	2.0	36
201	Healing and Angiogenic Properties of Collagen/Chitosan Scaffolds Enriched with Hyperstable FGF2-STAB® Protein: In Vitro, Ex Ovo and In Vivo Comprehensive Evaluation. Biomedicines, 2021, 9, 590.	1.4	16
202	Mesenchymal Stem Cells for Cardiac Regeneration: from Differentiation to Cell Delivery. Stem Cell Reviews and Reports, 2021, 17, 1666-1694.	1.7	17
203	Extracellular Matrix by Design: Native Biomaterial Fabrication and Functionalization to Boost Tissue Regeneration. Regenerative Engineering and Translational Medicine, 2022, 8, 55-74.	1.6	4
204	Collagen-based scaffolds: An auspicious tool to support repair, recovery, and regeneration post spinal cord injury. International Journal of Pharmaceutics, 2021, 601, 120559.	2.6	24
205	Polyesters based on aspartic acid and poly(ethylene glycol): Functional polymers for hydrogel preparation. European Polymer Journal, 2021, 152, 110456.	2.6	7
206	Cellular human tissue-engineered skin substitutes investigated for deep and difficult to heal injuries. Npj Regenerative Medicine, 2021, 6, 35.	2.5	58
207	Functionalizing biomaterials to promote neurovascular regeneration following skeletal muscle injury. American Journal of Physiology - Cell Physiology, 2021, 320, C1099-C1111.	2.1	6
208	Application of Fish Collagen-Nanochitosan-Henna Extract Composites for the Control of Skin Pathogens and Accelerating Wound Healing. International Journal of Polymer Science, 2021, 2021, 1-9.	1.2	6
209	Control Release of Adenosine Potentiate Osteogenic Differentiation within a Bone Integrative EGCG- <i>g</i> -NOCC/Collagen Composite Scaffold toward Guided Bone Regeneration in a Critical-Sized Calvarial Defect. Biomacromolecules, 2021, 22, 3069-3083.	2.6	10
210	Lumbar Interbody Fusion Conducted on a Porcine Model with a Bioresorbable Ceramic/Biopolymer Hybrid Implant Enriched with Hyperstable Fibroblast Growth Factor 2. Biomedicines, 2021, 9, 733.	1.4	5
211	Recent developments in bio-scaffold materials as delivery strategies for therapeutics for endometrium regeneration. Materials Today Bio, 2021, 11, 100101.	2.6	33
212	Applications of bacteria and their derived biomaterials for repair and tissue regeneration. Regenerative Medicine, 2021, 16, 581-605.	0.8	3
213	Current Natural Bioactive Materials in Bone and Tooth Regeneration in dentistry: A Comprehensive Overview. Journal of Materials Research and Technology, 2021, 13, 2078-2078.	2.6	38
214	Effects of different aperture-sized type I collagen/silk fibroin scaffolds on the proliferation and differentiation of human dental pulp cells. International Journal of Energy Production and Management, 2021, 8, rbab028.	1.9	22
215	A tuned gelatin methacryloyl (GelMA) hydrogel facilitates myelination of dorsal root ganglia neurons in vitro. Materials Science and Engineering C, 2021, 126, 112131.	3.8	15
216	Gene- and RNAi-activated scaffolds for bone tissue engineering: Current progress and future directions. Advanced Drug Delivery Reviews, 2021, 174, 613-627.	6.6	43

#	Article	IF	CITATIONS
217	Comparison of Different Methods for Spongin-like Collagen Extraction from Marine Sponges (Chondrilla caribensis and Aplysina fulva): Physicochemical Properties and In Vitro Biological Analysis. Membranes, 2021, 11, 522.	1.4	8
218	Biocompatible interpenetrating polymeric networks in hydrogel state comprised from jellyfish collagen and polyurethane. Journal of Polymer Research, 2021, 28, 1.	1.2	12
219	Bio-instructive hydrogel expands the paracrine potency of mesenchymal stem cells. Biofabrication, 2021, 13, 045002.	3.7	32
220	Bio-inspired multifunctional collagen/electrospun bioactive glass membranes for bone tissue engineering applications. Materials Science and Engineering C, 2021, 126, 111856.	3.8	21
221	Diversity Models and Applications of 3D Breast Tumor-on-a-Chip. Micromachines, 2021, 12, 814.	1.4	9
222	Improvement of Mechanical Strength of Tissue Engineering Scaffold Due to the Temperature Control of Polymer Blend Solution. Journal of Functional Biomaterials, 2021, 12, 47.	1.8	6
223	Strategies for constructing pluripotent stem cell―and progenitor cell―derived three―dimensional cardiac micro―issues. Journal of Biomedical Materials Research - Part A, 2022, 110, 488-503.	2.1	1
224	Milestones and current achievements in development of multifunctional bioscaffolds for medical application. Bioactive Materials, 2021, 6, 2412-2438.	8.6	52
225	A review on biomaterials for ovarian tissue engineering. Acta Biomaterialia, 2021, 135, 48-63.	4.1	33
226	Scaffold strategies combined with mesenchymal stem cells in vaginal construction: a review. Cell Regeneration, 2021, 10, 26.	1.1	3
227	A Review of Biomaterials and Scaffold Fabrication for Organ-on-a-Chip (OOAC) Systems. Bioengineering, 2021, 8, 113.	1.6	31
228	Laser Technology for the Formation of Bioelectronic Nanocomposites Based on Single-Walled Carbon Nanotubes and Proteins with Different Structures, Electrical Conductivity and Biocompatibility. Applied Sciences (Switzerland), 2021, 11, 8036.	1.3	7
229	Current Insights into Collagen Type I. Polymers, 2021, 13, 2642.	2.0	55
230	Uterine Tissue Engineering: Where We Stand and the Challenges Ahead. Tissue Engineering - Part B: Reviews, 2022, 28, 861-890.	2.5	11
231	Influences of the 3D microenvironment on cancer cell behaviour and treatment responsiveness: A recent update on lung, breast and prostate cancer models. Acta Biomaterialia, 2021, 132, 360-378.	4.1	25
232	Biofabrication Strategies for Musculoskeletal Disorders: Evolution towards Clinical Applications. Bioengineering, 2021, 8, 123.	1.6	9
233	Low-Molecular-Weight Collagen Peptide Ameliorates Osteoarthritis Progression through Promoting Extracellular Matrix Synthesis by Chondrocytes in a Rabbit Anterior Cruciate Ligament Transection Model. Journal of Microbiology and Biotechnology, 2021, 31, 1401-1408.	0.9	9
234	Nature-Based Biomaterials and Their Application in Biomedicine. Polymers, 2021, 13, 3321.	2.0	53

#	Article	IF	CITATIONS
235	Culturing astrocytes on substrates that mimic brain tumors promotes enhanced mechanical forces. Experimental Cell Research, 2021, 406, 112751.	1.2	4
236	Spontaneously Self-Assembled Microgel Film as Co-Delivery System for Skincare Applications. Pharmaceutics, 2021, 13, 1422.	2.0	3
237	Mechanotransducive Biomimetic Systems for Chondrogenic Differentiation In Vitro. International Journal of Molecular Sciences, 2021, 22, 9690.	1.8	23
238	Study of the physical and biological properties of nanocomposite materials obtained with laser radiation. SeÄenovskij Vestnik, 0, , .	0.3	0
239	Changes in the Molecular Characteristics of Bovine and Marine Collagen in the Presence of Proteolytic Enzymes as a Stage Used in Scaffold Formation. Marine Drugs, 2021, 19, 502.	2.2	7
240	Microfluidics meets layer-by-layer assembly for the build-up of polymeric scaffolds. Applied Surface Science Advances, 2021, 5, 100091.	2.9	11
241	The Characterization of Scaffolds Based on Dialdehyde Chitosan/Hyaluronic Acid. Materials, 2021, 14, 4993.	1.3	8
242	Cell guidance on peptide micropatterned silk fibroin scaffolds. Journal of Colloid and Interface Science, 2021, 603, 380-390.	5.0	19
243	4-Octyl itaconate modified demineralized bone matrix scaffold improves bone repair by regulating early inflammation. Chemical Engineering Journal, 2021, 425, 131490.	6.6	10
244	Natural Polymeric Hydrogels in Chondral/Osteochondral Tissue Engineering. , 2022, , 758-776.		3
245	Biopolymeric Scaffolds for Tissue Engineering Application. , 2019, , 249-274.		4
246	Current and Potential Uses of Marine Collagen for Regenerative Medicines. , 2020, , 437-458.		2
247	Mechanical characterization of nanofiber composites., 2017, , 117-155.		6
248	Peptide-Modified Biopolymers for Biomedical Applications. ACS Applied Bio Materials, 2021, 4, 229-251.	2.3	13
249	Manufacturing micropatterned collagen scaffolds with chemical-crosslinking for development of biomimetic tissue-engineered oral mucosa. Scientific Reports, 2020, 10, 22192.	1.6	25
250	Additive manufacturing of PLA-based scaffolds intended for bone regeneration and strategies to improve their biological properties. E-Polymers, 2020, 20, 571-599.	1.3	78
251	Modern opportunities of regenerative medicine: biofabrication of hollow organs. Vestnik Transplantologii I Iskusstvennykh Organov, 2019, 21, 92-103.	0.1	1
252	Recent Development in the Fabrication of Collagen Scaffolds for Tissue Engineering Applications: A Review. Current Pharmaceutical Biotechnology, 2019, 20, 992-1003.	0.9	28

#	Article	IF	CITATIONS
253	A Review of Evaluating Hematopoietic Stem Cells Derived from Umbilical Cord Blood's Expansion and Homing. Current Stem Cell Research and Therapy, 2020, 15, 250-262.	0.6	5
254	Pre-Culture of Human Mesenchymal Stromal Cells in Spheroids Reduces Hypertrophic Differentiation <i> in vitro</i> and Facilitates Chondrogenesis at a Low Total Cell Count Upon Embedding in Biomaterials. SSRN Electronic Journal, 0, , .	0.4	0
255	Osteosarcoma mechanobiology and therapeutic targets. British Journal of Pharmacology, 2022, 179, 201-217.	2.7	56
256	Advocating Electrically Conductive Scaffolds with Low Immunogenicity for Biomedical Applications: A Review. Polymers, 2021, 13, 3395.	2.0	13
257	Bioprinting of Cartilage with Bioink Based on High-Concentration Collagen and Chondrocytes. International Journal of Molecular Sciences, 2021, 22, 11351.	1.8	18
258	Thymosinâ \in $\hat{\mathbb{P}}^2$ 4, and Human Vitronectin peptides Grafted to Collagen Tune Adhesion or VEGF Gene Expression in Human Cell Lines**. ChemistrySelect, 2021, 6, 10160-10164.	0.7	0
259	Fused deposition modelling: Current status, methodology, applications and future prospects. Additive Manufacturing, 2021, 47, 102378.	1.7	99
260	First report on the swim bladder index, proximate composition, and fatty acid analysis of swim bladder from cultured Totoaba macdonaldi fed compound aquafeeds. Aquaculture Reports, 2021, 21, 100901.	0.7	3
261	Reduced Platelet Adhesion for Blended Electrospun Meshes with Low Amounts of Collagen Type I. Macromolecular Bioscience, 2021, , 2100267.	2.1	1
262	Potential bioactive coating system for high-performance absorbable magnesium bone implants. Bioactive Materials, 2022, 12, 42-63.	8.6	42
263	Ad-Dressing Stem Cells: Hydrogels for Encapsulation. Processes, 2021, 9, 11.	1.3	7
264	Characterization of Novel Hybrid Materials Conditioned as Sheets for Skin Repair. Proceedings (mdpi), 2019, 29, .	0.2	0
265	Green Chemistry Principles In Advancing Hierarchical Functionalization of Polymer-Based Nanomedicines. ACS Symposium Series, 2020, , 135-157.	0.5	0
267	Engineering Functional Skin Constructs: A Quantitative Comparison of Threeâ€Dimensional Bioprinting with Traditional Methods. Experimental Dermatology, 2021, , .	1.4	3
268	Dense collagen-based scaffolds for soft tissue engineering applications. , 2022, , 771-802.		3
269	Differentiation of Adipose Tissue-Derived Stem Cells into Cardiomyocytes: An Overview. Journal of Biomaterials and Tissue Engineering, 2022, 12, 427-431.	0.0	0
270	The inclusion of leukocytes into platelet rich plasma reduces scaffold stability and hinders extracellular matrix remodelling Annals of Anatomy, 2022, 240, 151853.	1.0	17
271	Genipin-Based Crosslinking of Jellyfish Collagen 3D Hydrogels. Gels, 2021, 7, 238.	2.1	16

#	Article	IF	Citations
272	Aligned and Oriented Collagen Nanocomposite Fibers as Substrates to Activate Fibroblasts. ACS Applied Bio Materials, 2021, 4, 8316-8324.	2.3	6
273	Tissue dermal equivalent – а cellular product based on human dermal keratinocytes and fibroblasts: the properties of equivalent components and perspectives of practical application. Vestsi Natsyianal'nai Akademii Navuk Belarusi Seryia Biialahichnykh Navuk, 2021, 66, 391-401.	0.2	0
274	Impresi \tilde{A}^3 n 3D por modelado por deposici \tilde{A}^3 n fundida: Manejo, funcionamiento y aplicaciones biom \tilde{A} ©dicas. Nereis, 2021, , 227-238.	0.1	0
275	Recent progress in biodegradable and bioresorbable materials: From passive implants to active electronics. Applied Materials Today, 2021, 25, 101257.	2.3	24
276	Use of biomaterials in corneal endothelial repair. Therapeutic Advances in Ophthalmology, 2021, 13, 251584142110582.	0.8	5
277	Effect of Chitosan Deacetylation on Its Affinity to Type III Collagen: A Molecular Dynamics Study. Materials, 2022, 15, 463.	1.3	7
278	Supercritical carbon dioxide dried double layer laponite XLS and alginate/polyacrylamide construct and immune response. Tissue and Cell, 2022, 74, 101712.	1.0	7
279	Engineering pro-angiogenic biomaterials via chemoselective extracellular vesicle immobilization. Biomaterials, 2022, 281, 121357.	5.7	20
280	Immuno-modulatory biomaterials as anti-inflammatory therapeutics. Biochemical Pharmacology, 2022, 197, 114890.	2.0	11
281	Advanced In Vitro Lung Models for Drug and Toxicity Screening: The Promising Role of Induced Pluripotent Stem Cells. Advanced Biology, 2022, 6, e2101139.	1.4	10
282	Three-layered PCL-collagen nanofibers containing melilotus officinalis extract for diabetic ulcer healing in a rat model. Journal of Diabetes and Metabolic Disorders, 2022, 21, 313-321.	0.8	14
283	A highly porous type II collagen containing scaffold for the treatment of cartilage defects enhances MSC chondrogenesis and early cartilaginous matrix deposition. Biomaterials Science, 2022, 10, 970-983.	2.6	9
284	Current Progress in Vascular Engineering and Its Clinical Applications. Cells, 2022, 11, 493.	1.8	11
285	Introduction of an efficient method for placenta decellularization with high potential to preserve ultrastructure and support cell attachment. Artificial Organs, 2022, 46, 375-386.	1.0	7
286	Dental tissue engineering. , 2022, , 493-529.		1
287	Current Advances in the Roles of Doped Bioactive Metal in Biodegradable Polymer Composite Scaffolds for Bone Repair: A Mini Review. Advanced Engineering Materials, 2022, 24, .	1.6	17
288	Translational tissue engineering. , 2022, , 557-573.		1
289	Composition of Collagen Extracted from the Skin of Three Different Varieties of Fish. Journal of the Korean Society of Food Science and Nutrition, 2022, 51, 71-81.	0.2	4

#	Article	IF	CITATIONS
290	Stem Cells and Tissue Engineering-Based Therapeutic Interventions: Promising Strategies to Improve Peripheral Nerve Regeneration. Cellular and Molecular Neurobiology, 2023, 43, 433-454.	1.7	7
291	Polymeric Fibers as Scaffolds for Spinal Cord Injury: A Systematic Review. Frontiers in Bioengineering and Biotechnology, 2021, 9, 807533.	2.0	6
292	In situ cell electrospun using a portable handheld electrospinning apparatus for the repair of wound healing in rats. International Wound Journal, 2022, 19, 1693-1704.	1.3	14
293	Collagen-Based Nanofibers for Skin Regeneration and Wound Dressing Applications. Polymers, 2021, 13, 4368.	2.0	53
294	Recent advances in renewable polymer/metal oxide systems used for tissue engineering. , 2022, , 395-445.		1
295	Recent Advances in Enhancement Strategies for Osteogenic Differentiation of Mesenchymal Stem Cells in Bone Tissue Engineering. Frontiers in Cell and Developmental Biology, 2022, 10, 824812.	1.8	14
296	A review of wound dressing materials and its fabrication methods: emphasis on three-dimensional printed dressings. Journal of Medical Engineering and Technology, 2022, 46, 318-334.	0.8	5
297	Development of Bioactive Glass-Collagen-Hyaluronic Acid-Polycaprolactone Scaffolds for Tissue Engineering Applications. Frontiers in Bioengineering and Biotechnology, 2022, 10, 825903.	2.0	5
298	Characterizing the Effect of Adding Boron Nitride Nanotubes on the Mechanical Properties of Electrospun Polymer Nanocomposite Microfibers Mesh. Materials, 2022, 15, 1634.	1.3	1
299	Mussel-inspired extracellular matrix-mimicking hydrogel scaffold with high cell affinity and immunomodulation ability for growth factor-free cartilage regeneration. Journal of Orthopaedic Translation, 2022, 33, 120-131.	1.9	24
300	Cod Gelatin as an Alternative to Cod Collagen in Hybrid Materials for Regenerative Medicine. Macromolecular Research, 2022, 30, 212-221.	1.0	9
301	Pre-culture of human mesenchymal stromal cells in spheroids facilitates chondrogenesis at a low total cell count upon embedding in biomaterials to generate cartilage microtissues. Acta Biomaterialia, 2022, 143, 253-265.	4.1	11
302	Addressing the Needs of the Rapidly Aging Society through the Development of Multifunctional Bioactive Coatings for Orthopedic Applications. International Journal of Molecular Sciences, 2022, 23, 2786.	1.8	12
304	Biomimetic approach to articular cartilage tissue engineering using carbon nanotube–coated and textured polydimethylsiloxane scaffolds. Annals of the New York Academy of Sciences, 2022, 1513, 48-64.	1.8	3
305	Collagen-Based Biomaterials in Periodontal Regeneration: Current Applications and Future Perspectives of Plant-Based Collagen. Biomimetics, 2022, 7, 34.	1.5	14
306	Xenoimplant of Collagen Matrix Scaffold in Liver Tissue as a Niche for Liver Cells. Frontiers in Medicine, 2022, 9, 808191.	1.2	1
307	Cu(II) metal-organic framework@Polydimethylsiloxane nanocomposite sponges coated by chitosan for antibacterial and tissue engineering applications. Microporous and Mesoporous Materials, 2022, 336, 111866.	2.2	13
308	Photo-crosslinked hydrogels for tissue engineering of corneal epithelium. Experimental Eye Research, 2022, 218, 109027.	1.2	8

#	Article	IF	CITATIONS
309	Tannin-reinforced iron substituted hydroxyapatite nanorods functionalized collagen-based composite nanofibrous coating as a cell-instructive bone-implant interface scaffold. Chemical Engineering Journal, 2022, 438, 135611.	6.6	28
310	A comparative in vitro and in vivo study on bone tissue engineering potential of the collagen/nano-hydroxyapatite scaffolds loaded with ginger extract and curcumin. Materials Today Communications, 2022, 31, 103339.	0.9	11
311	Chitosan-collagen hydrogel microparticles as edible cell microcarriers for cultured meat. Food Hydrocolloids, 2022, 129, 107632.	5.6	29
312	Advances in spray products for skin regeneration. Bioactive Materials, 2022, 16, 187-203.	8.6	27
313	The Effect of Collagen Coating on Surface Biocompatibility of the Titanium Alloys. , 2021, , .		0
315	Characterization of Composite Nano-Bioscaffolds Based on Collagen and Supercritical Fluids-Assisted Decellularized Fibrous Extracellular Matrix. Polymers, 2021, 13, 4326.	2.0	9
316	Application of Collagen and Mesenchymal Stem Cells in Regenerative Dentistry. Current Stem Cell Research and Therapy, 2022, 17, 606-620.	0.6	12
317	Adhesion and proliferation properties of type I collagenâ€derived peptide for possible use in skin tissue engineering application. Cell Biology International, 2022, 46, 391-402.	1.4	3
318	Screening of Self-Assembling of Collagen IV Fragments into Stable Structures Potentially Useful in Regenerative Medicine. International Journal of Molecular Sciences, 2021, 22, 13584.	1.8	2
319	Cross-linking methods of type I collagen-based scaffolds for cartilage tissue engineering American Journal of Translational Research (discontinued), 2022, 14, 1146-1159.	0.0	0
320	Human Adipose-Derived Stem Cell-Conditioned Medium Promotes Vascularization of Nanostructured Scaffold Transplanted into Nude Mice. Nanomaterials, 2022, 12, 1521.	1.9	3
321	3D porous scaffolds from wheat glutenin for cultured meat applications. Biomaterials, 2022, 285, 121543.	5.7	52
322	Multi-pin contact drawing enables production of anisotropic collagen fiber substrates for alignment of fibroblasts and monocytes. Colloids and Surfaces B: Biointerfaces, 2022, 215, 112525.	2.5	5
323	Latest Advances in 3D Bioprinting of Cardiac Tissues. Advanced Materials Technologies, 2022, 7, .	3.0	17
324	Berberine and its derivatives in collagen matrices as antimicrobial agents. MRS Communications, 2022, 12, 336-342.	0.8	3
325	Development of fish collagen in tissue regeneration and drug delivery. Engineered Regeneration, 2022, 3, 217-231.	3.0	56
326	Fabrication and Characterization of <i>Sargassum Glaucescens</i> Extract (SGE) Embedded in Marine-Derived Collagen for Burn Wound Healing. SSRN Electronic Journal, 0, , .	0.4	0
327	In Vitro Biocompatibility and Degradation Analysis of Mass-Produced Collagen Fibers. Polymers, 2022, 14, 2100.	2.0	3

#	ARTICLE	IF	CITATIONS
328	A Review of Recent Advances in Natural Polymer-Based Scaffolds for Musculoskeletal Tissue Engineering. Polymers, 2022, 14, 2097.	2.0	22
329	Multifunctional PLA/Gelatin Bionanocomposites for Tailored Drug Delivery Systems. Pharmaceutics, 2022, 14, 1138.	2.0	7
330	The Role of Buckling Instabilities in the Global and Local Mechanical Response in Porous Collagen Scaffolds. Experimental Mechanics, 0, , .	1.1	2
331	Stepwise Proliferation and Chondrogenic Differentiation of Mesenchymal Stem Cells in Collagen Sponges under Different Microenvironments. International Journal of Molecular Sciences, 2022, 23, 6406.	1.8	4
332	Cardiovascular 3D bioprinting: A review on cardiac tissue development. Bioprinting, 2022, 28, e00221.	2.9	12
333	Collagen Membrane Derived from Fish Scales for Application in Bone Tissue Engineering. Polymers, 2022, 14, 2532.	2.0	10
334	Proportion-dependent osteogenic activity of electrospun nano-hydroxyapatite/polylactic acid fiber membrane in vitro and in vivo. Materials and Design, 2022, 219, 110834.	3.3	6
335	The Emerging Use of ASC/Scaffold Composites for the Regeneration of Osteochondral Defects. Frontiers in Bioengineering and Biotechnology, $0,10,10$	2.0	6
336	The role of nanotechnology based wearable electronic textiles in biomedical and healthcare applications. Materials Today Communications, 2022, 32, 104055.	0.9	19
337	Can a Scaffold Enriched with Mesenchymal Stem Cells Be a Good Treatment for Spinal Cord Injury?. International Journal of Molecular Sciences, 2022, 23, 7545.	1.8	7
338	A multidisciplinary perspective on the latest trends in artificial cartilage fabrication to mimic real tissue. Applied Materials Today, 2022, 29, 101603.	2.3	2
339	Cryogenically structured gelatin-based hydrogel as a resorbable macroporous matrix for biomedical technologies. Vestnik Transplantologii I Iskusstvennykh Organov, 2022, 24, 83-93.	0.1	2
340	Tissueâ€engineered tendon <scp>nanoâ€constructs</scp> for repair of chronic rotator cuff tears in <scp>large animal</scp> models. Bioengineering and Translational Medicine, 2023, 8, .	3.9	4
341	Porous cellulose-collagen scaffolds for soft tissue regeneration: influence of cellulose derivatives on mechanical properties and compatibility with adipose-derived stem cells. Cellulose, 2022, 29, 8329-8351.	2.4	4
342	Synthesis and Characterization of a Novel Composite Scaffold Based on Hyaluronic Acid and Equine Type I Collagen. Pharmaceutics, 2022, 14, 1752.	2.0	6
343	Electrospun Biomimetic Nanofibrous Scaffolds: A Promising Prospect for Bone Tissue Engineering and Regenerative Medicine. International Journal of Molecular Sciences, 2022, 23, 9206.	1.8	44
344	Novel 3D-Printed Cell Culture Inserts for Air–Liquid Interface Cell Culture. Life, 2022, 12, 1216.	1.1	2
345	Utilizing Fish Skin of Ikan Belida (Notopterus lopis) as a Source of Collagen: Production and Rheology Properties. Marine Drugs, 2022, 20, 525.	2.2	1

#	Article	IF	CITATIONS
346	Combination of mesenchymal stem cells and three-dimensional collagen scaffold preserves ventricular remodeling in rat myocardial infarction model. World Journal of Stem Cells, 2022, 14, 633-657.	1.3	2
347	3D printed scaffold for repairing bone defects in apical periodontitis. BMC Oral Health, 2022, 22, .	0.8	5
348	Collagen/pristine graphene as an electroconductive interface material for neuronal medical device applications. Applied Materials Today, 2022, 29, 101629.	2.3	3
349	Tissue Engineering with Stem Cell from Human Exfoliated Deciduous Teeth (SHED) and Collagen Matrix, Regulated by Growth Factor in Regenerating the Dental Pulp. Polymers, 2022, 14, 3712.	2.0	5
350	Layered scaffolds in periodontal regeneration. Journal of Oral Biology and Craniofacial Research, 2022, 12, 782-797.	0.8	7
351	A fish-scale derived multifunctional nanofiber membrane for infected wound healing. Biomaterials Science, 2022, 10, 5284-5300.	2.6	6
352	Customizable Collagen Vitrigel Membranes and Preliminary Results in Corneal Engineering. Polymers, 2022, 14, 3556.	2.0	1
353	Nano-material utilization in stem cells for regenerative medicine. Biomedizinische Technik, 2022, .	0.9	1
354	The application of collagen in the repair of peripheral nerve defect. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	7
355	Current Concepts and Methods in Tissue Interface Scaffold Fabrication. Biomimetics, 2022, 7, 151.	1.5	10
356	3D-Printed Hybrid Collagen/GelMA Hydrogels for Tissue Engineering Applications. Biology, 2022, 11, 1561.	1.3	8
357	Development of fibroblast/endothelial cellâ€seeded collagen scaffolds for in vitro prevascularization. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 0, , .	1.6	0
358	In vivo ligamentogenesis in embroidered poly(lactic-co-ε-caprolactone) / polylactic acid scaffolds functionalized by fluorination and hexamethylene diisocyanate cross-linked collagen foams. Histochemistry and Cell Biology, 2023, 159, 275-292.	0.8	6
359	Natural and Synthetic Polymer Scaffolds Comprising Upconversion Nanoparticles as a Bioimaging Platform for Tissue Engineering. Molecules, 2022, 27, 6547.	1.7	6
360	Recent Advances in the Application of Natural and Synthetic Polymer-Based Scaffolds in Musculoskeletal Regeneration. Polymers, 2022, 14, 4566.	2.0	20
361	Methodologies of Autologous Skin Cell Spray Graft. Cureus, 2022, , .	0.2	1
362	Incorporation of curcumin into collagen-multiwalled carbon nanotubes nanocomposite scaffold: an inÂvitro and inÂvivo study. Journal of Materials Research and Technology, 2022, 21, 4558-4576.	2.6	8
363	Current Trends on Bioengineering Approaches for Ovarian Microenvironment Reconstruction. Tissue Engineering - Part B: Reviews, 2023, 29, 260-298.	2.5	6

#	Article	IF	CITATIONS
364	Expression, characterization, and application potentiality evaluation of recombinant human-like collagen in Pichia pastoris. Bioresources and Bioprocessing, 2022, 9, .	2.0	6
365	3D Biocomposites Comprising Marine Collagen and Silica-Based Materials Inspired on the Composition of Marine Sponge Skeletons Envisaging Bone Tissue Regeneration. Marine Drugs, 2022, 20, 718.	2.2	10
366	Advanced application of collagen-based biomaterials in tissue repair and restoration. Journal of Leather Science and Engineering, 2022, 4, .	2.7	28
367	Lipoplexâ€Functionalized Thinâ€Film Surface Coating Based on Extracellular Matrix Components as Local Gene Delivery System to Control Osteogenic Stem Cell Differentiation. Advanced Healthcare Materials, 2023, 12, .	3.9	4
368	Decellularized tilapia fish skin: A novel candidate for tendon tissue engineering. Materials Today Bio, 2022, 17, 100488.	2.6	5
369	A review on biomaterials-based scaffold: An emerging tool for bone tissue engineering. Materials Today Communications, 2023, 34, 105124.	0.9	4
370	Collagen and Keratin as a Components of Hydrogels. Fibres and Textiles in Eastern Europe, 2022, 30, 61-69.	0.2	1
371	Modulation of the biophysical and biochemical properties of collagen by glycation for tissue engineering applications. Acta Biomaterialia, 2023, 155, 182-198.	4.1	10
372	Species-Based Differences in Mechanical Properties, Cytocompatibility, and Printability of Methacrylated Collagen Hydrogels. Biomacromolecules, 2022, 23, 5137-5147.	2.6	6
373	Development and Characterization of Functional Polylactic Acid/Chitosan Porous Scaffolds for Bone Tissue Engineering. Polymers, 2022, 14, 5079.	2.0	6
374	Clindamycin-Loaded Halloysite Nanotubes as the Antibacterial Component of Composite Hydrogel for Bone Repair. Polymers, 2022, 14, 5151.	2.0	7
375	Advances in Multifunctional Bioactive Coatings for Metallic Bone Implants. Materials, 2023, 16, 183.	1.3	12
376	Natural Biopolymers for Bone Tissue Engineering: A Brief Review. Engineered Regeneration, 2023, 4, 193-204.	3.0	12
377	Sources, extractions and applications of bio-maker collagen–A review. Biomedical Engineering Advances, 2022, 4, 100064.	2.2	9
378	3D printing of injury-preconditioned secretome/collagen/heparan sulfate scaffolds for neurological recovery after traumatic brain injury in rats. Stem Cell Research and Therapy, 2022, 13, .	2.4	4
379	Stem cell laden nano and micro collagen/PLGA bimodal fibrous patches for myocardial regeneration. Biomaterials Research, 2022, 26, .	3.2	9
380	The dermal papilla dilemma and potential breakthroughs in bioengineering hair follicles. Cell and Tissue Research, 2023, 391, 221-233.	1.5	2
381	Collagen-chitosan-hydroxyapatite composite scaffolds for bone repair in ovariectomized rats. Scientific Reports, 2023, 13, .	1.6	11

#	Article	IF	CITATIONS
382	Review: Scaffold Characteristics, Fabrication Methods, and Biomaterials for the Bone Tissue Engineering. International Journal of Precision Engineering and Manufacturing, 2023, 24, 511-529.	1.1	10
383	Fabrication and Performance Evaluation of Gelatin/Sodium Alginate Hydrogel-Based Macrophage and MSC Cell-Encapsulated Paracrine System with Potential Application in Wound Healing. International Journal of Molecular Sciences, 2023, 24, 1240.	1.8	11
384	High-strength hydrogels: Fabrication, reinforcement mechanisms, and applications. Nano Research, 2023, 16, 3475-3515.	5.8	54
385	Growing Skin-Like Tissue. Springer Briefs in Molecular Science, 2023, , 45-102.	0.1	0
386	Progress of Microfluidic Hydrogelâ€Based Scaffolds and Organâ€onâ€Chips for the Cartilage Tissue Engineering. Advanced Materials, 2023, 35, .	11.1	26
387	Collagen scaffold impregnated with borosilicate bioactive glass for endometrial healing. Applied Materials Today, 2023, 30, 101727.	2.3	1
388	Extracellular matrix mimicking dynamic interpenetrating network hydrogel for skin tissue engineering. Chemical Engineering Journal, 2023, 457, 141362.	6.6	16
389	Photocatalytic Synthesis of Materials for Regenerative Medicine Using Complex Oxides with \hat{l}^2 -pyrochlore Structure. Life, 2023, 13, 352.	1.1	2
390	Hydrogel-based Treatment Strategies to Accelerate Diabetic Foot Ulcer Healing. Current Diabetes Reviews, 2023, 19, .	0.6	0
391	Collagen Derived from Fish Industry Waste: Progresses and Challenges. Polymers, 2023, 15, 544.	2.0	28
392	Microfluidic Organ-on-A-chip: A Guide to Biomaterial Choice and Fabrication. International Journal of Molecular Sciences, 2023, 24, 3232.	1.8	22
393	Novel biodegradable hydrogel scaffold based on hydroxyapatite eggshell, collagen, and epigallocatechin-3-gallate. Dental Research Journal, 2023, 20, 38.	0.2	1
394	The Osteogenic Role of Biomaterials Combined with Human-Derived Dental Stem Cells in Bone Tissue Regeneration. Tissue Engineering and Regenerative Medicine, 2023, 20, 251-270.	1.6	2
395	Effect of Electrospun PLGA/Collagen Scaffolds on Cell Adhesion, Viability, and Collagen Release: Potential Applications in Tissue Engineering. Polymers, 2023, 15, 1079.	2.0	8
396	A review on background, process and application of electrospun nanofibers for tissue regeneration. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 0, , 095441192311647.	1.0	3
397	Recent advances in biofabrication strategies based on bioprinting for vascularized tissue repair and regeneration. Materials and Design, 2023, 229, 111885.	3.3	4
398	Collagen type I cross-linked to gelatin/chitosan electrospun mats: Application for skin tissue engineering. Materials Today Communications, 2023, 35, 105889.	0.9	4
399	Current advancements in bio-ink technology for cartilage and bone tissue engineering. Bone, 2023, 171, 116746.	1.4	8

#	Article	IF	CITATIONS
400	Preparation, Characterization and ex vivo Skin Permeability Evaluation of Type I Collagen-Loaded Liposomes. International Journal of Nanomedicine, 0, Volume 18, 1853-1871.	3.3	2
401	A review on directional muscle cell growth in scaffolding biomaterials with aligned porous structures for cultivated meat production. Food Research International, 2023, 168, 112755.	2.9	5
402	Recent Developments in Biopolymer-Based Hydrogels for Tissue Engineering Applications. Biomolecules, 2023, 13, 280.	1.8	26
403	A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges. Bioengineering, 2023, 10, 204.	1.6	19
404	Conductive Polyaniline Particles Regulating In Vitro Hydrolytic Degradation and Erosion of Hydroxyapatite/Poly(lactide- <i>co</i> glycolide) Porous Scaffolds for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2023, 9, 1541-1557.	2.6	4
405	A nanofiber/sponge double-layered composite membrane capable of inhibiting infection and promoting blood coagulation during wound healing. Colloids and Surfaces B: Biointerfaces, 2023, 224, 113209.	2.5	5
406	An Update on the Clinical Efficacy and Safety of Collagen Injectables for Aesthetic and Regenerative Medicine Applications. Polymers, 2023, 15, 1020.	2.0	5
407	Collagen matrix scaffolds: Future perspectives for the management of chronic liver diseases. World Journal of Clinical Cases, 0, 11, 1224-1235.	0.3	O
408	Adjusting the physico-chemical properties of collagen scaffolds to accommodate primary osteoblasts and endothelial cells. Regenerative Biomaterials, 2023 , 10 , .	2.4	2
409	Microfluidic intestine-on-a-chip: Current progress and further perspectives of probiotic-foodborne pathogen interactions. Trends in Food Science and Technology, 2023, 134, 207-221.	7.8	2
410	Biodegradable Biopolymeric Nanoparticles for Biomedical Applications-Challenges and Future Outlook. Materials, 2023, 16, 2364.	1.3	11
411	Scaffold Using Chitosan, Agarose, Cellulose, Dextran and Protein for Tissue Engineering—A Review. Polymers, 2023, 15, 1525.	2.0	12
412	A Short Review on Nanostructured Carbon Containing Biopolymer Derived Composites for Tissue Engineering Applications. Polymers, 2023, 15, 1567.	2.0	1
413	Nanoformulations for cardiovascular therapy. , 2023, , 661-675.		0
414	Space habitats for bioengineering and surgical repair: addressing the requirement for reconstructive and research tissues during deep-space missions. Npj Microgravity, 2023, 9, .	1.9	1
415	Synthesis of Functionalized Triblock Copolyesters Derived from Lactic Acid and Macrolactones for Bone Tissue Regeneration. Macromolecular Bioscience, 0, , .	2.1	0
416	3D Printing of Green and Renewable Polymeric Materials: Toward Greener Additive Manufacturing. ACS Applied Polymer Materials, 2023, 5, 3201-3229.	2.0	9
417	Degradation of oligo[poly(ethylene glycol) fumarate] hydrogels through stimulus-mediated pendent group cyclization. European Polymer Journal, 2023, , 112080.	2.6	0

#	Article	IF	Citations
418	Functionalized nanofiber for wound healing and wound dressing applications., 2023,, 253-276.		0
425	Growth factor delivery for neural tissue engineering. , 2023, , 173-199.		O
427	Multicomponent Hydrogels in Clinical and Pharmaceutical Applications. , 2023, , 449-501.		0
442	Isolation and Characterization of Marine-Derived Collagens and Gelatins in the Perspective of Biomedical Application., 2023,, 1-28.		0
447	Advances in bioactive nanoparticles for wound healing, tissue engineering and drug delivery., 2023,,.		1
458	Nanoparticles in bone tissue engineering. , 2023, , 427-456.		0
463	lonic- and photo-crosslinked hydrogels. , 2024, , 181-198.		0
476	Development of Cardiovascular Biomaterials From Collagenous Tissues. Engineering Materials, 2023, , 521-534.	0.3	0
484	Stem Cells and Strategies for the Regeneration of the Nervous System. , 2023, , 1-27.		0
485	Fluid protein condensates for bio-inspired applications. , 0, , .		1
496	Silk biomaterials for tendon and tendon-to-bone enthesis tissue engineering., 2024,, 549-565.		0
497	Biomaterials to enhance adoptive cell therapy. , 0, , .		0
500	Antimicrobial Metal and Metal Oxide Nanoparticles in Bone Tissue Repair., 0, , .		0
502	Tissue Engineering Scaffolds: The Importance of Collagen. , 0, , .		0
507	Functional Role of Human-Derived Stem Cells in Bone Tissue Regeneration. , 2024, , .		0