"The Good, the Bad and the Ugly†of Chitosans

Marine Drugs 14, 99 DOI: 10.3390/md14050099

Citation Report

#	Article	IF	CITATIONS
1	Challenges in the valorisation of chitinous biomass within the biorefinery concept. Current Opinion in Green and Sustainable Chemistry, 2016, 2, 34-39.	3.2	34
2	Chitosan functionalized nanocochleates for enhanced oral absorption of cyclosporine A. Scientific Reports, 2017, 7, 41322.	1.6	31
3	Chitosan as coagulant on cyanobacteria in lake restoration management may cause rapid cell lysis. Water Research, 2017, 118, 121-130.	5.3	47
4	Penetration and toxicity of chitosan and its derivatives. European Polymer Journal, 2017, 93, 743-749.	2.6	56
5	Alginate/chitosan polyelectrolyte complexes: A comparative study of the influence of the drying step on physicochemical properties. Carbohydrate Polymers, 2017, 172, 142-151.	5.1	60
6	Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings. Biomacromolecules, 2017, 18, 1983-1992.	2.6	61
7	Designing chitosan-tripolyphosphate microparticles with desired size for specific pharmaceutical or forensic applications. International Journal of Biological Macromolecules, 2017, 95, 564-573.	3.6	33
8	In Situ Crosslinking of Highly Porous Chitosan Scaffolds for Bone Regeneration: Production Parameters and In Vitro Characterization. Macromolecular Materials and Engineering, 2017, 302, 1700147.	1.7	8
9	Influence of freezing temperature and deacetylation degree on the performance of freeze-dried chitosan scaffolds towards cartilage tissue engineering. European Polymer Journal, 2017, 95, 232-240.	2.6	46
10	Particle tracking analysis in food and hydrocolloids investigations. Food Hydrocolloids, 2017, 68, 90-101.	5.6	32
11	An Overview of the Protective Effects of Chitosan and Acetylated Chitosan Oligosaccharides against Neuronal Disorders. Marine Drugs, 2017, 15, 89.	2.2	54
12	Bioresponsive Materials for Drug Delivery Based on Carboxymethyl Chitosan/Poly(γ-Glutamic Acid) Composite Microparticles. Marine Drugs, 2017, 15, 127.	2.2	37
13	An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics, 2017, 9, 53.	2.0	864
14	Versatility of Chitosan-Based Biomaterials and Their Use as Scaffolds for Tissue Regeneration. Scientific World Journal, The, 2017, 2017, 1-25.	0.8	46
15	Marine Polysaccharides in Medicine. , 0, , .		11
16	Chitosan-based nanosystems and their exploited antimicrobial activity. European Journal of Pharmaceutical Sciences, 2018, 117, 8-20.	1.9	196
17	Optimization and characterization of nisin-loaded alginate-chitosan nanoparticles with antimicrobial activity in lean beef. LWT - Food Science and Technology, 2018, 91, 107-116.	2.5	80
18	The Microfluidic Technique and the Manufacturing of Polysaccharide Nanoparticles. Pharmaceutics, 2018, 10, 267.	2.0	73

#	Article	IF	CITATIONS
19	Application of Industrially Produced Chitosan in the Surface Treatment of Fibre-Based Material: Effect of Drying Method and Number of Coating Layers on Mechanical and Barrier Properties. Polymers, 2018, 10, 1232.	2.0	19
20	A Novel Complex of Chitosan–Sodium Carbonate and Its Properties. Marine Drugs, 2018, 16, 416.	2.2	8
21	A reaction–diffusion kinetic model for the heterogeneous N-deacetylation step in chitin material conversion to chitosan in catalytic alkaline solutions. Reaction Chemistry and Engineering, 2018, 3, 920-929.	1.9	18
22	Novel application of trimethyl chitosan as an adjuvant in vaccine delivery. International Journal of Nanomedicine, 2018, Volume 13, 7959-7970.	3.3	73
23	Functionalization of chitosan with carboxylic acids and derivatives of them: Synthesis issues and prospects of practical use: A review. EXPRESS Polymer Letters, 2018, 12, 1081-1105.	1.1	25
24	Prospects of Natural Polymeric Scaffolds in Peripheral Nerve Tissue-Regeneration. Advances in Experimental Medicine and Biology, 2018, 1077, 501-525.	0.8	18
25	Photo-Crosslinked Polymeric Matrix with Antimicrobial Functions for Excisional Wound Healing in Mice. Nanomaterials, 2018, 8, 791.	1.9	10
26	Chitosan-Stabilized Ag Nanoparticles with Superior Biocompatibility and Their Synergistic Antibacterial Effect in Mixtures with Essential Oils. Nanomaterials, 2018, 8, 826.	1.9	77
27	Synthesis of cationic alkylated chitosans and an investigation of their rheological properties and interaction with anionic surfactant. Carbohydrate Polymers, 2018, 201, 615-623.	5.1	18
28	Synthesis and Characterization of Stimuli-Responsive Poly(2-dimethylamino-ethylmethacrylate)-Grafted Chitosan Microcapsule for Controlled Pyraclostrobin Release. International Journal of Molecular Sciences, 2018, 19, 854.	1.8	41
29	Cosmetics and Cosmeceutical Applications of Chitin, Chitosan and Their Derivatives. Polymers, 2018, 10, 213.	2.0	255
30	Combinatorial Approach in Rationale Design of Polymeric Nanomedicines for Cancer. , 2018, , 371-398.		1
31	Magnetite/chitosan composite particles as adsorbents for Reactive Blue 19 dye. Green Materials, 2018, 6, 149-156.	1.1	6
32	Salicylic acid loaded chitosan microparticles applied to lettuce seedlings: Recycling shrimp fishing industry waste. Carbohydrate Polymers, 2018, 200, 321-331.	5.1	15
33	Hyaluronic Acid-Decorated Chitosan Nanoparticles for CD44-Targeted Delivery of Everolimus. International Journal of Molecular Sciences, 2018, 19, 2310.	1.8	58
34	Crustacean By-products. , 2019, , 33-38.		8
35	Chitosan-based nanoparticles as drug delivery systems: a review on two decades of research. Journal of Drug Targeting, 2019, 27, 379-393.	2.1	143
36	Electrospray for generation of drug delivery and vaccine particles applied in vitro and in vivo. Materials Science and Engineering C, 2019, 105, 110070.	3.8	57

#	Article	IF	CITATIONS
37	Marine Polysaccharides: Biomedical and Tissue Engineering Applications. Springer Series in Biomaterials Science and Engineering, 2019, , 443-487.	0.7	7
38	Chitosan for gene, DNA vaccines, and drug delivery. , 2019, , 515-550.		9
39	Progress in the development of methods used for the abatement of microbial contaminants in ethanol fermentations: a review. Reviews in Environmental Science and Biotechnology, 2019, 18, 795-821.	3.9	2
40	Preparation and characterisation of novel water-soluble β-carotene-chitooligosaccharides complexes. Carbohydrate Polymers, 2019, 225, 115226.	5.1	38
41	Application of Chitosan in Bone and Dental Engineering. Molecules, 2019, 24, 3009.	1.7	163
42	Targeting tuberculosis infection in macrophages using chitosan oligosaccharide nanoplexes. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	4
43	Study of 3D-printed chitosan scaffold features after different post-printing gelation processes. Scientific Reports, 2019, 9, 362.	1.6	55
44	Chitosan-mediated facile green synthesis of size-controllable gold nanostars for effective photothermal therapy and photoacoustic imaging. European Polymer Journal, 2019, 118, 492-501.	2.6	29
45	Hyaluronic acid and chitosan-based nanosystems: a new dressing generation for wound care. Expert Opinion on Drug Delivery, 2019, 16, 715-740.	2.4	74
46	Cationic Cellulose Nanocrystals for Flocculation of Microalgae: Effect of Degree of Substitution and Crystallinity. ACS Applied Nano Materials, 2019, 2, 3394-3403.	2.4	35
47	Acid-Treated Water-Soluble Chitosan Suitable for Microneedle-Assisted Intracutaneous Drug Delivery. Pharmaceutics, 2019, 11, 209.	2.0	37
48	Chitosan-based films with incorporated supercritical CO2 hop extract: Structural, physicochemical, and antibacterial properties. Carbohydrate Polymers, 2019, 219, 261-268.	5.1	47
49	Effect of Chitosan Dispersion and Microparticles on Older Streptococcus mutans Biofilms. Molecules, 2019, 24, 1808.	1.7	15
50	A compendium of current developments on polysaccharide and protein-based microneedles. International Journal of Biological Macromolecules, 2019, 136, 704-728.	3.6	37
51	The use of chitosan-based metal catalysts in organic transformations. Coordination Chemistry Reviews, 2019, 388, 126-171.	9.5	112
52	Modification of Chitosan for the Generation of Functional Derivatives. Applied Sciences (Switzerland), 2019, 9, 1321.	1.3	102
53	Effect of an Experimental Formulation Containing Chlorhexidine on Pathogenic Biofilms and Drug Release Behavior in the Presence or Absence of Bacteria. Pharmaceutics, 2019, 11, 88.	2.0	3
54	Assessment of Oligo-Chitosan Biocompatibility toward Human Spermatozoa. ACS Applied Materials & Interfaces, 2019, 11, 46572-46584.	4.0	12

#	Article	IF	CITATIONS
55	Synthesis, Bioapplications, and Toxicity Evaluation of Chitosan-Based Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 5776.	1.8	166
56	Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action. International Journal of Molecular Sciences, 2019, 20, 5889.	1.8	406
58	Comparative analysis of blend and bilayer films based on chitosan and gelatin enriched with LAE (lauroyl arginate ethyl) with antimicrobial activity for food packaging applications. Food Packaging and Shelf Life, 2019, 19, 31-39.	3.3	103
59	Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: A review. Progress in Materials Science, 2019, 103, 69-108.	16.0	237
60	Thermosensitive PNIPAM grafted alginate/chitosan PEC. Applied Surface Science, 2019, 467-468, 940-948.	3.1	19
61	Thermodynamic insight into the thermoresponsive behavior of chitosan in aqueous solutions: A differential scanning calorimetry study. Carbohydrate Polymers, 2020, 229, 115558.	5.1	15
62	Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110627.	2.5	139
63	Effect of pH on Molecular Structures and Network of Glycol Chitosan. ACS Biomaterials Science and Engineering, 2020, 6, 298-307.	2.6	21
64	Lipid-based nanodelivery approaches for dopamine-replacement therapies in Parkinson's disease: From preclinical to translational studies. Biomaterials, 2020, 232, 119704.	5.7	24
65	Chitosan as a coating material for nanoparticles intended for biomedical applications. Reactive and Functional Polymers, 2020, 147, 104459.	2.0	130
66	Chitosan reduces vitamin D bioaccessibility in food emulsions by binding to mixed micelles. Food and Function, 2020, 11, 187-199.	2.1	50
67	Quaternary ammonium salts of chitosan. A critical overview on the synthesis and properties generated by quaternization. European Polymer Journal, 2020, 139, 110016.	2.6	98
68	Effects of chitosan and oligochitosans on the phosphatidylinositol 3-kinase-AKT pathway in cancer therapy. International Journal of Biological Macromolecules, 2020, 164, 456-467.	3.6	26
69	Inkjetâ€based microreactor for the synthesis of silver nanoparticles on plasmonic paper decorated with chitosan nanoâ€wrinkles for efficient onâ€site Surfaceâ€enhanced Raman Scattering (SERS). Nano Select, 2020, 1, 499-509.	1.9	10
70	Drug delivery and tissue engineering applications of chitosan-based biomaterial systems. , 2020, , 555-588.		0
71	Influence of Chitin Source and Polymorphism on Powder Compression and Compaction: Application in Drug Delivery. Molecules, 2020, 25, 5269.	1.7	5
72	Deep eutectic solvent-assisted phase separation in chitosan solutions for the production of 3D monoliths and films with tailored porosities. International Journal of Biological Macromolecules, 2020, 164, 4084-4094.	3.6	14
73	Advances and limitations of drug delivery systems formulated as eye drops. Journal of Controlled Release, 2020, 321, 1-22.	4.8	175

	Сітаті	CITATION REPORT	
#	Article	IF	CITATIONS
74	Catechol-modified chitosan/hyaluronic acid nanoparticles as a new avenue for local delivery of doxorubicin to oral cancer cells. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111279.	2.5	63
75	Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules, 2020, 25, 3981.	1.7	246
76	Zein and PVOH-Based Bilayer Approach for Plastic-Free, Repulpable and Biodegradable Oil- and Water-Resistant Paper as a Replacement for Single-Use Plastics. Industrial & Engineering Chemistry Research, 2020, 59, 17856-17866.	1.8	21
77	Chitin and Chitosan Derivatives as Biomaterial Resources for Biological and Biomedical Applications. Molecules, 2020, 25, 5961.	1.7	59
78	Natural Polymeric Scaffolds in Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 474.	2.0	198
79	Chitosan: A promising therapeutic agent and effective drug delivery system in managing diabetes mellitus. Carbohydrate Polymers, 2020, 247, 116594.	5.1	68
80	Selection of Water-Soluble Chitosan by Microwave-Assisted Degradation and pH-Controlled Precipitation. Polymers, 2020, 12, 1274.	2.0	10
81	On-Chip Synthesis of Hyaluronic Acid-Based Nanoparticles for Selective Inhibition of CD44+ Human Mesenchymal Stem Cell Proliferation. Pharmaceutics, 2020, 12, 260.	2.0	19
82	Immunoactive drug carriers in cancer therapy. , 2020, , 53-94.		2
83	Chitosan-based Colloidal Polyelectrolyte Complexes for Drug Delivery: A Review. Carbohydrate Polymers, 2020, 238, 116126.	5.1	146
84	Poly(ethylene glycol)â€interpenetrated genipinâ€crosslinked chitosan hydrogels: Structure, pH responsiveness, gelation kinetics, and rheology. Journal of Applied Polymer Science, 2020, 137, 49259.	1.3	19
85	How the Lack of Chitosan Characterization Precludes Implementation of the Safe-by-Design Concept. Frontiers in Bioengineering and Biotechnology, 2020, 8, 165.	2.0	31
86	Developmental toxicity of iron oxide nanoparticles with different coatings in zebrafish larvae. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	15
87	New β-Carotene-Chitooligosaccharides Complexes for Food Fortification: Stability Study. Foods, 2020, 9, 765.	1.9	5
88	Deeper inside the specificity of lysozyme when degrading chitosan. A structural bioinformatics study. Journal of Molecular Graphics and Modelling, 2020, 100, 107676.	1.3	15
89	Aggregation of chitosan nanoparticles in cell culture: Reasons and resolutions. International Journal of Pharmaceutics, 2020, 578, 119119.	2.6	21
90	Cationic chitosan derivatives as potential antifungals: A review of structural optimization and applications. Carbohydrate Polymers, 2020, 236, 116002.	5.1	106
91	Cellulose Nanocrystal Reinforced Chitosan Based UV Barrier Composite Films for Sustainable Packaging. Polymers, 2020, 12, 202.	2.0	86

#	Article	IF	CITATIONS
92	Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing. International Journal of Biological Macromolecules, 2020, 156, 153-170.	3.6	171
93	Patterns matter part 1: Chitosan polymers with non-random patterns of acetylation. Reactive and Functional Polymers, 2020, 151, 104583.	2.0	49
94	Antioxidant, Cytotoxic and Antimicrobial Activity of Chitosan Preparations Extracted from <i>Ganoderma Lucidum</i> Mushroom. Chemistry and Biodiversity, 2020, 17, e2000175.	1.0	35
95	Tailoring the Microbial Community for Improving the Biodegradation of Chitosan Films in Composting Environment. Journal of Polymers and the Environment, 2020, 28, 1548-1559.	2.4	8
96	Chemie der Chitosanâ€Aerogele: Lenkung der dreidimensionalen Poren für maßgeschneiderte Anwendungen. Angewandte Chemie, 2021, 133, 9913-9938.	1.6	0
97	Chemistry of Chitosan Aerogels: Threeâ€Dimensional Pore Control for Tailored Applications. Angewandte Chemie - International Edition, 2021, 60, 9828-9851.	7.2	98
98	Adsorption of eosin Y on polyelectrolyte complexes based on chitosan and arabinogalactan sulfate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125731.	2.3	9
99	Fe-chitosan complexes for oxidative degradation of emerging contaminants in water: Structure, activity, and reaction mechanism. Journal of Hazardous Materials, 2021, 408, 124662.	6.5	20
100	Synthesis, optical properties and photherapy applications of gold nanostars. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2021, 99, 23-31.	0.9	10
101	A comprehensive review of the strategies to improve oral drug absorption with special emphasis on the cellular and molecular mechanisms. Journal of Drug Delivery Science and Technology, 2021, 61, 102178.	1.4	8
102	Oral delivery of metformin by chitosan nanoparticles for polycystic kidney disease. Journal of Controlled Release, 2021, 329, 1198-1209.	4.8	49
103	Antibacterial Behavior of Chitosan-Sodium Hyaluronate-PEGDE Crosslinked Films. Applied Sciences (Switzerland), 2021, 11, 1267.	1.3	10
104	Green Synthesis of Chitosan Capped-Copper Nano Biocomposites: Synthesis, Characterization, and Biological Activity against Plant Pathogens. BioNanoScience, 2021, 11, 417-427.	1.5	15
105	Heparanized chitosans: towards the third generation of chitinous biomaterials. Materials Horizons, 2021, 8, 2596-2614.	6.4	14
106	Macrophage targeted theranostic strategy for accurate detection and rapid stabilization of the inflamed high-risk plaque. Theranostics, 2021, 11, 8874-8893.	4.6	26
107	Perspectives and Challenges of Using Chitosan in Various Biological Applications. Advances in Polymer Science, 2021, , 1-22.	0.4	7
108	Antimicrobial Activity of Chitosan Oligosaccharides with Special Attention to Antiparasitic Potential. Marine Drugs, 2021, 19, 110.	2.2	16
109	A Review on Production, Characterization and Application of Bacterial Cellulose and Its Biocomposites. Journal of Polymers and the Environment, 2021, 29, 2738-2755.	2.4	32

#	Article	IF	CITATIONS
110	Analysis of chitosan treatment on white and black sweet cherry. Progress in Agricultural Engineering Sciences, 2021, 16, 65-72.	0.5	0
111	Tyrosol-Enriched Tomatoes by Diffusion across the Fruit Peel from a Chitosan Coating: A Proposal of Functional Food. Foods, 2021, 10, 335.	1.9	6
112	Per―and polyfluoroalkyl substances and their alternatives in paper food packaging. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 2596-2625.	5.9	55
113	Antimicrobial Actions and Applications of Chitosan. Polymers, 2021, 13, 904.	2.0	260
114	Nanochitosan: Commemorating the Metamorphosis of an ExoSkeletal Waste to a Versatile Nutraceutical. Nanomaterials, 2021, 11, 821.	1.9	12
115	In vitro and In vivo Biocompatibility Evaluation of Freeze Dried Gelatin Haemostat. Fibers and Polymers, 2021, 22, 621-628.	1.1	9
116	Polymer-Drug Conjugates as Nanotheranostic Agents. Journal of Nanotheranostics, 2021, 2, 63-81.	1.7	20
117	Intriguing role of novel ionic liquids in stochastic degradation of chitosan. Carbohydrate Polymers, 2021, 260, 117828.	5.1	9
118	Sustainable Agriculture Systems in Vegetable Production Using Chitin and Chitosan as Plant Biostimulants. Biomolecules, 2021, 11, 819.	1.8	88
119	Genipinâ€crosslinked chitosan hydrogels: Preliminary evaluation of the in vitro biocompatibility and biodegradation. Journal of Applied Polymer Science, 2021, 138, 50848.	1.3	23
120	New Pickering emulsions stabilized with chitosan/collagen peptides nanoparticles: Synthesis, characterization and tracking of the nanoparticles after skin application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126327.	2.3	35
121	Preparation and Evaluation of Quinapyramine Sulphate-Docusate Sodium Ionic Complex Loaded Lipidic Nanoparticles and Its Scale Up Using Geometric Similarity Principle. Journal of Pharmaceutical Sciences, 2021, 110, 2241-2249.	1.6	6
122	Silver chitosan nanocomposites as a potential treatment for superficial candidiasis. Medical Mycology, 2021, 59, 993-1005.	0.3	11
123	Development of novel cocrystal-based active food packaging by a Quality by Design approach. Food Chemistry, 2021, 347, 129051.	4.2	25
124	A systematic review of carbohydrate-based microneedles: current status and future prospects. Journal of Materials Science: Materials in Medicine, 2021, 32, 89.	1.7	16
125	Functionalized Chitosan Nanomaterials: A Jammer for Quorum Sensing. Polymers, 2021, 13, 2533.	2.0	22
126	Functional properties of chitosan derivatives obtained through Maillard reaction: A novel promising food preservative. Food Chemistry, 2021, 349, 129072.	4.2	52
127	Reviewing Chitin/Chitosan Nanofibers and Associated Nanocomposites and Their Attained Medical Milestones. Polymers, 2021, 13, 2330.	2.0	17

#	Article	IF	Citations
128	Naturally Occurring Polyelectrolytes and Their Use for the Development of Complex-Based Mucoadhesive Drug Delivery Systems: An Overview. Polymers, 2021, 13, 2241.	2.0	35
129	Recent Advances in the Excipients Used for Modified Ocular Drug Delivery. Materials, 2021, 14, 4290.	1.3	9
130	Nanocarrier-Mediated Topical Insulin Delivery for Wound Healing. Materials, 2021, 14, 4257.	1.3	7
131	The effects of the molecular weight of chitosan on the tissue inflammatory response. Journal of Biomedical Materials Research - Part A, 2021, 109, 2556-2569.	2.1	16
132	Controlled release of enrofloxacin by vanillin-crosslinked chitosan-polyvinyl alcohol blends. Materials Science and Engineering C, 2021, 126, 112125.	3.8	24
133	Green Synthesized Chitosan/Chitosan Nanoforms/Nanocomposites for Drug Delivery Applications. Polymers, 2021, 13, 2256.	2.0	33
134	Electrospinning of chitosan-based nanofibers: from design to prospective applications. Reviews in Chemical Engineering, 2023, 39, 31-70.	2.3	29
136	Formulation of secondary compounds as additives of biopolymer-based food packaging: A review. Trends in Food Science and Technology, 2021, 114, 342-354.	7.8	50
137	Biocompatible 3D Printed Chitosan-Based Scaffolds Containing α-Tocopherol Showing Antioxidant and Antimicrobial Activity. Applied Sciences (Switzerland), 2021, 11, 7253.	1.3	9
138	Evaluating the Anticarcinogenic Activity of Surface Modified/Functionalized Nanochitosan: The Emerging Trends and Endeavors. Polymers, 2021, 13, 3138.	2.0	4
139	Hyaluronic Acid-Based Nanoparticles for Protein Delivery: Systematic Examination of Microfluidic Production Conditions. Pharmaceutics, 2021, 13, 1565.	2.0	12
140	Improving the Berry Quality and Antioxidant Potential of Flame Seedless Grapes by Foliar Application of Chitosan–Phenylalanine Nanocomposites (CS–Phe NCs). Nanomaterials, 2021, 11, 2287.	1.9	10
141	The polysaccharide chitosan facilitates the isolation of small extracellular vesicles from multiple biofluids. Journal of Extracellular Vesicles, 2021, 10, e12138.	5.5	14
142	Chitosan alginate nanoparticles as a platform for the treatment of diabetic and non-diabetic pressure ulcers: Formulation and in vitro/in vivo evaluation. International Journal of Pharmaceutics, 2021, 607, 120963.	2.6	16
143	Nanocarriers for oral delivery of biologics: small carriers for big payloads. Trends in Pharmacological Sciences, 2021, 42, 957-972.	4.0	35
144	Chitosan-Based Scaffold for Mineralized Tissues Regeneration. Marine Drugs, 2021, 19, 551.	2.2	51
145	Chitosan Nanoparticles-Insight into Properties, Functionalization and Applications in Drug Delivery and Theranostics. Molecules, 2021, 26, 272.	1.7	128
146	Chitin, chitosan, and their derivatives. , 2021, , 1045-1058.		0

#	Article	IF	CITATIONS
147	Chitosan Nanoparticles: An Overview on Preparation, Characterization and Biomedical Applications. Environmental and Microbial Biotechnology, 2021, , 393-427.	0.4	1
148	Antimicrobial Hydrogels: Key Considerations and Engineering Strategies for Biomedical Applications. , 2020, , 511-542.		6
149	Electrospun chitosan materials and their potential use as scaffolds for bone and cartilage tissue engineering. , 2020, , 231-280.		4
150	Peptide-Modified Biopolymers for Biomedical Applications. ACS Applied Bio Materials, 2021, 4, 229-251.	2.3	13
151	Chitooligosaccharides as Antibacterial, Antibiofilm, Antihemolytic and Anti-Virulence Agent against Staphylococcus aureus. Current Pharmaceutical Biotechnology, 2019, 20, 1223-1233.	0.9	8
152	Biosecurity test of conjugated nanoparticles of chitosanprotoporphyrin IX-vitamin B9 for their use in photodynamic therapy. IEEE Transactions on Nanobioscience, 2021, PP, 1-1.	2.2	0
153	Chitosan and its Broad Applications: A Brief Review. Journal of Clinical and Experimental Investigations, 2021, 12, em00779.	0.1	16
154	Utilization of water-soluble chitosan as a sizing agent incorporated in a paper composite: effects of pulp weight and water-soluble chitosan concentration. Biomass Conversion and Biorefinery, 0, , 1.	2.9	1
155	Cyclic Peptide-Gadolinium Nanocomplexes as siRNA Delivery Tools. Pharmaceuticals, 2021, 14, 1064.	1.7	2
156	Genipin-crosslinked chitosan/alginate/alumina nanocomposite gels for 3D bioprinting. Bioprocess and Biosystems Engineering, 2022, 45, 171-185.	1.7	10
157	Thermoresponsive Chitosan-Grafted-Poly(N-vinylcaprolactam) Microgels via Ionotropic Gelation for Oncological Applications. Pharmaceutics, 2021, 13, 1654.	2.0	9
158	Chitosan-Based Systems for Theranostic Applications. , 2019, , 343-384.		1
159	Extraction and Characterization of Chitosan from Crab Shells: Kinetic and Thermodynamic Studies of Arsenic and Copper Adsorption from Electroplating Wastewater. Iraqi Journal of Science, 0, , 2156-2171.	0.3	7
160	Encapsulation of the Natural Product Tyrosol in Carbohydrate Nanosystems and Study of Their Binding with ctDNA. Polymers, 2021, 13, 87.	2.0	8
161	Chitosan-based nanoparticles in drug delivery. , 2022, , 55-82.		5
162	Development of a membrane for guided tissue regeneration: An in vitro study. Indian Journal of Dental Research, 2020, 31, 763.	0.1	4
163	Chitosan-Based Biocompatible Copolymers for Thermoresponsive Drug Delivery Systems: On the Development of a Standardization System. Pharmaceutics, 2021, 13, 1876.	2.0	10
164	D-Limonen ve Nanoselüloz İçeren Aktif Kitosan/Polikaprolakton İki Katmanlı Filmler. Journal of Natural and Applied Sciences, 0, , .	0.1	1

#	Article	IF	CITATIONS
165	An Study to Determine the Physicochemical, Mechanical, and Antibacterial Properties of a Novel Spirulina Containing Controlled Release Intrapocket Drug Delivery System. Journal of Pharmacy and Bioallied Sciences, 2021, 13, 178-187.	0.2	0
166	Recent Advancement in Chitosan-Based Nanoparticles for Improved Oral Bioavailability and Bioactivity of Phytochemicals: Challenges and Perspectives. Polymers, 2021, 13, 4036.	2.0	31
167	Hydrophobization of hydrophilic alginate/chitosan <scp>PEC</scp> surfaces. Journal of Applied Polymer Science, 2022, 139, 51829.	1.3	2
168	Antimicrobial Properties of Chitosan and Chitosan Derivatives in the Treatment of Enteric Infections. Molecules, 2021, 26, 7136.	1.7	126
169	Support–Activity Relationship in Heterogeneous Catalysis for Biomass Valorization and Fine-Chemicals Production. Materials, 2021, 14, 6796.	1.3	5
170	Non-Chemical Treatments for the Pre- and Post-Harvest Elicitation of Defense Mechanisms in the Fungi–Avocado Pathosystem. Molecules, 2021, 26, 6819.	1.7	5
171	Synthesis of chitosan nanoparticles conjugated with protoporphyrin IX and vitamin B9 for their application in photodynamic therapy. IEEE Transactions on Nanobioscience, 2021, PP, 1-1.	2.2	1
172	Two-step demineralization of shrimp (<i>Pandalus Borealis</i>) shells using citric acid: an environmentally friendly, safe and cost-effective alternative to the traditional approach. Green Chemistry, 2022, 24, 1141-1151.	4.6	16
173	Gold nanostarâ€based complexes applied for cancer theranostics. View, 2022, 3, 20200171.	2.7	21
174	Characterization and cytotoxicity of low-molecular-weight chitosan and chito-oligosaccharides derived from tilapia fish scales. Journal of Advanced Pharmaceutical Technology and Research, 2021, 12, 373.	0.4	6
175	Microcarriers in application for cartilage tissue engineering: Recent progress and challenges. Bioactive Materials, 2022, 17, 81-108.	8.6	30
176	CD44-Targeted Carriers: The Role of Molecular Weight of Hyaluronic Acid in the Uptake of Hyaluronic Acid-Based Nanoparticles. Pharmaceuticals, 2022, 15, 103.	1.7	20
177	Design of Experiment Approach to Modeling the Effects of Formulation and Drug Loading on the Structure and Properties of Therapeutic Nanogels. Molecular Pharmaceutics, 2022, 19, 602-615.	2.3	7
178	Progress in preparation of thiolated, crosslinked, and imino-chitosan derivatives targeting specific applications. European Polymer Journal, 2022, 165, 110998.	2.6	16
179	Recent advances and future prospective of hybrid drug delivery systems. , 2022, , 357-374.		1
180	Antimicrobial Properties of Bionanocomposites. Composites Science and Technology, 2022, , 87-102.	0.4	1
181	Electrospun Chitosan Functionalized with C12, C14 or C16 Tails for Blood-Contacting Medical Devices. Gels, 2022, 8, 113.	2.1	1
182	Modulation of Chitosan-TPP Nanoparticle Properties for Plasmid DNA Vaccines Delivery. Polymers, 2022, 14, 1443.	2.0	9

#	Article	IF	CITATIONS
183	Silver Chitosan Nanocomposites are Effective to Combat Sporotrichosis. Frontiers in Nanotechnology, 2022, 4, .	2.4	6
184	3D printing of cell-laden visible light curable glycol chitosan bioink for bone tissue engineering. Carbohydrate Polymers, 2022, 287, 119328.	5.1	31
185	The Expanded Role of Chitosan in Localized Antimicrobial Therapy. Marine Drugs, 2021, 19, 697.	2.2	19
186	Nanobiotechnology with Therapeutically Relevant Macromolecules from Animal Venoms: Venoms, Toxins, and Antimicrobial Peptides. Pharmaceutics, 2022, 14, 891.	2.0	5
187	Phenytoin-loaded bioactive nanoparticles for the treatment of diabetic pressure ulcers: formulation and in vitro/in vivo evaluation. Drug Delivery and Translational Research, 2022, 12, 2936-2949.	3.0	5
188	An in vitro study to determine the physicochemical, mechanical, and antibacterial properties of a novel spirulina containing controlled release intrapocket drug delivery system. Journal of Pharmacy and Bioallied Sciences, 2021, 13, 178.	0.2	2
189	Application of chitosan-based nanoparticles in skin wound healing. Asian Journal of Pharmaceutical Sciences, 2022, 17, 299-332.	4.3	45
190	Synthesis of chitosan/SnO2 nanocomposites by chemical precipitation for enhanced visible light photocatalytic degradation efficiency of congo red and rhodamine-B dye molecules. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 430, 113972.	2.0	28
191	Harnessing chitosan and poly-(γ-glutamic acid)-based biomaterials towards cancer immunotherapy. Materials Today Advances, 2022, 15, 100252.	2.5	5
192	Multiple Roles of Chitosan in Mucosal Drug Delivery: An Updated Review. Marine Drugs, 2022, 20, 335.	2.2	40
193	Applications of Chitosan in Surgical and Post-Surgical Materials. Marine Drugs, 2022, 20, 396.	2.2	15
194	Biocontrol Potential of Endophytic Plant-Growth-Promoting Bacteria against Phytopathogenic Viruses: Molecular Interaction with the Host Plant and Comparison with Chitosan. International Journal of Molecular Sciences, 2022, 23, 6990.	1.8	3
195	Nano-chitosan: A novel material for glioblastoma treatment. International Journal of Surgery, 2022, 104, 106713.	1.1	3
196	Chitosan chemistry review for living organisms encapsulation. Carbohydrate Polymers, 2022, 295, 119877.	5.1	21
197	Expandable carboxymethyl chitosan/cellulose nanofiber composite sponge for traumatic hemostasis. Carbohydrate Polymers, 2022, 294, 119805.	5.1	17
199	Hydrothermal Synthesis of Chitosan and Tea Tree Oil on Plain and Satin Weave Cotton Fabrics. Materials, 2022, 15, 5034.	1.3	2
200	Immobilization Systems of Antimicrobial Peptide Ibâ^'M1 in Polymeric Nanoparticles Based on Alginate and Chitosan. Polymers, 2022, 14, 3149.	2.0	4
201	Fabrication of cell penetrating peptide labelled biodegradable poly(methacrylamide) nanoparticles for delivery of doxorubicin in HeLa cells. Materials Today Communications, 2022, 33, 104233.	0.9	1

ARTICLE

IF CITATIONS

202 Characteristics and antibacterial activity of chitosan nanoparticles from mangrove crab shell (Scylla) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

203	Microencapsulation of Gac Aril Oil. , 2022, , 123-142.		0
204	Recent development in nanoencapsulation and delivery of natural bioactives through chitosan scaffolds for various biological applications. International Journal of Biological Macromolecules, 2022, 220, 537-572.	3.6	24
205	Small extracellular vesicles isolation and separation: Current techniques, pending questions and clinical applications. Theranostics, 2022, 12, 6548-6575.	4.6	54
206	Preparation and Application of Chitosan Derivatives. Engineering Materials and Processes, 2022, , 103-155.	0.2	2
207	Chitosanâ€based nanoscale systems for doxorubicin delivery: Exploring biomedical application in cancer therapy. Bioengineering and Translational Medicine, 2023, 8, .	3.9	32
209	Advances in Biomaterials for Promoting Vascularization. Current Stem Cell Reports, 2022, 8, 184-196.	0.7	3
210	Chitin and its derivatives: Functional biopolymers for developing bioproducts for sustainable agriculture—A reality?. Carbohydrate Polymers, 2023, 299, 120196.	5.1	7
211	Antibiofilm Effect of Cinnamaldehyde-Chitosan Nanoparticles against the Biofilm of Staphylococcus aureus. Antibiotics, 2022, 11, 1403.	1.5	13
212	Chitosan based architectures as biomedical carriers. Carbohydrate Research, 2022, 522, 108703.	1.1	4
213	Sustained and targeted delivery of hydrophilic drug compounds: A review of existing and novel technologies from bench to bedside. Journal of Drug Delivery Science and Technology, 2022, 78, 103936.	1.4	12
214	Induction of a strong and long-lasting neutralizing immune response by dPreS1-TLR2 agonist nanovaccine against hepatitis B virus. Antiviral Research, 2023, 209, 105483.	1.9	1
215	Study on the chitinase-induced efficiency against anthracnose on soybean plant by oligochitosan-Zn2+ complexes. Case Studies in Chemical and Environmental Engineering, 2023, 7, 100285.	2.9	0
216	Formulation of Lipid-Based Nanoparticles for Simultaneous Delivery of Lapatinib and Anti-Survivin siRNA for HER2+ Breast Cancer Treatment. Pharmaceuticals, 2022, 15, 1452.	1.7	2
217	Biotechnologically produced chitosans with nonrandom acetylation patterns differ from conventional chitosans in properties and activities. Nature Communications, 2022, 13, .	5.8	8
218	Chitin and Chitosan Binding to the α-Chitin Crystal: A Molecular Dynamics Study. ACS Omega, 2023, 8, 3470-3477.	1.6	7
219	Characteristics and activity of chitosan from mud crab shells on acne bacteria: Staphylococcus aureus, S. epidermidis and Propionibacterium acnes. Biodiversitas, 2022, 23, .	0.2	3
220	Chitosan-Based Molecularly Imprinted Polymers for Effective Trapping of the Nerve Agent Simulant Dimethyl Methylphosphonate. ACS Applied Polymer Materials, 2023, 5, 935-942.	2.0	4

#	Article	IF	CITATIONS
221	Silk-Based Biomaterials for Designing Bioinspired Microarchitecture for Various Biomedical Applications. Biomimetics, 2023, 8, 55.	1.5	8
222	Bacterial Cellulose-Based Materials as Dressings for Wound Healing. Pharmaceutics, 2023, 15, 424.	2.0	14
223	The Preparation and Physiochemical Characterization of Tenebrio molitor Chitin Using Alcalase. Molecules, 2023, 28, 3254.	1.7	3
224	Synthesis and antibacterial analysis of C-6 amino-functionalised chitosan derivatives. International Journal of Biological Macromolecules, 2023, 240, 124278.	3.6	4
225	From the problem to the solution: Chitosan valorization cycle. Carbohydrate Polymers, 2023, 309, 120674.	5.1	12
226	Wet-spinnability and crosslinked Fiber properties of alginate/hydroxyethyl cellulose with varied proportion for potential use in tendon tissue engineering. International Journal of Biological Macromolecules, 2023, 240, 124492.	3.6	8
227	Kaolin-loaded carboxymethyl chitosan/sodium alginate composite sponges for rapid hemostasis. International Journal of Biological Macromolecules, 2023, 233, 123532.	3.6	14
228	Improvement of Therapeutic Value of Quercetin with Chitosan Nanoparticle Delivery Systems and Potential Applications. International Journal of Molecular Sciences, 2023, 24, 3293.	1.8	9
229	Future Prospects of Natural Polymer-Based Drug Delivery Systems in Combating Lung Diseases. , 2023, , 465-482.		8
230	Chitosan-Based Nanoparticles as Effective Drug Delivery Systems—A review. Molecules, 2023, 28, 1963.	1.7	43
231	Chitosan-Based Biomaterials: Insights into Chemistry, Properties, Devices, and Their Biomedical Applications. Marine Drugs, 2023, 21, 147.	2.2	20
232	State-of-the-art advancement of surface functionalized layered double hydroxides for cell-specific targeting of therapeutics. Advances in Colloid and Interface Science, 2023, 314, 102869.	7.0	5
233	Macro bead formation based on polyelectrolyte complexation between long-chain polyphosphates and chitosan. Materials Advances, 2023, 4, 1678-1686.	2.6	1
234	Eggshell Membrane as a Biomaterial for Bone Regeneration. Polymers, 2023, 15, 1342.	2.0	6
235	Nanochitosan derived from marine bacteria. , 2023, , 147-168.		2
236	Nanochitosan derived from snail and its applications. , 2023, , 49-58.		0
237	Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications. Military Medical Research, 2023, 10, .	1.9	23
238	Anti-COVID-19 Credentials of Chitosan Composites and Derivatives: Future Scope?. Antibiotics, 2023, 12, 665.	1.5	1

		CITATION REPORT	tion Report		
#	Article	IF	CITATIONS		
239	<scp>ChitoHeal</scp> gel use on the nasal site for prevention of <scp>N95</scp> masks caused pressure injuries: A randomised clinical trial. International Wound Journal, 0, , .	1.3	0		
246	Advances in Nanopharmacology: Focus on Reproduction, Endocrinology, Developmental Alteration: and Next Generational Effects. , 2023, , 100-138.	5,	0		