Wildfires Dynamics in Siberian Larch Forests

Forests 7, 125 DOI: 10.3390/f7060125

Citation Report

щ		IF	CITATIONS
#	ARTICLE	IF	CHATIONS
1	Effects of Boreal Timber Rafting on the Composition of Arctic Driftwood. Forests, 2016, 7, 257.	2.1	10
2	Long-Term and Ontogenetic Patterns of Heavy Metal Contamination in Lake Baikal Seals (<i>Pusa) Tj ETQq1 1 0.</i>	.784314 rg 10.0	gBT /Overloc
3	Spatiotemporal characteristics of wildfire frequency and relative area burned in larch-dominated forests of Central Siberia. Russian Journal of Ecology, 2017, 48, 507-512.	0.9	32
4	Fire disturbance and climate change: implications for Russian forests. Environmental Research Letters, 2017, 12, 035003.	5.2	43
5	Differences in Human versus Lightning Fires between Urban and Rural Areas of the Boreal Forest in Interior Alaska. Forests, 2017, 8, 422.	2.1	11
6	Flux of Dissolved and Particulate Low-Temperature Pyrogenic Carbon from Two High-Latitude Rivers across the Spring Freshet Hydrograph. Frontiers in Marine Science, 2017, 4, .	2.5	16
7	Global trends of columnar and vertically distributed properties of aerosols with emphasis on dust, polluted dust and smoke - inferences from 10-year long CALIOP observations. Remote Sensing of Environment, 2018, 208, 120-132.	11.0	49
8	Strong radiative effect induced by clouds and smoke on forest net ecosystem productivity in central Siberia. Agricultural and Forest Meteorology, 2018, 250-251, 376-387.	4.8	39
9	Impacts of increased soil burn severity on larch forest regeneration on permafrost soils of far northeastern Siberia. Forest Ecology and Management, 2018, 417, 144-153.	3.2	41
10	Wildfire Impact on the Main Tree Species of the Near-Yenisei Siberia. Izvestiya - Atmospheric and Oceanic Physics, 2018, 54, 1525-1533.	0.9	4
11	Fire severity effects on soil carbon and nutrients and microbial processes in a Siberian larch forest. Global Change Biology, 2018, 24, 5841-5852.	9.5	55
12	Changes in fluxes of carbon dioxide and methane caused by fire in Siberian boreal forest with continuous permafrost. Journal of Environmental Management, 2018, 228, 405-415.	7.8	44
13	Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences, 2018, 15, 5287-5313.	3.3	143
14	Evaluating changes of biomass in global vegetation models: the role of turnover fluctuations and ENSO events. Environmental Research Letters, 2018, 13, 075002.	5.2	3
15	Predicting Potential Fire Severity Using Vegetation, Topography and Surface Moisture Availability in a Eurasian Boreal Forest Landscape. Forests, 2018, 9, 130.	2.1	43
16	Estimation of Burned Area in the Northeastern Siberian Boreal Forest from a Long-Term Data Record (LTDR) 1982–2015 Time Series. Remote Sensing, 2018, 10, 940.	4.0	28
17	Can satellite-based data substitute for surveyed data to predict the spatial probability of forest fire? A geostatistical approach to forest fire in the Republic of Korea. Geomatics, Natural Hazards and Risk, 2019, 10, 719-739.	4.3	32
18	Intraseasonal Dynamics of River Discharge and Burned Forest Areas in Siberia. Water (Switzerland), 2019, 11, 1146.	2.7	6

TION RE

0		 D	
	ТАТ	REDC	דעו
\sim			

#	Article	IF	CITATIONS
19	Weather conditions and warm air masses during active fire-periods in boreal forests. Polar Science, 2019, 22, 100472.	1.2	21
20	ORCHIDEE MICT-LEAK (r5459), a global model for the production, transport, and transformation of dissolved organic carbon from Arctic permafrost regions – Part 1: Rationale, model description, and simulation protocol. Geoscientific Model Development, 2019, 12, 3503-3521.	3.6	12
21	A Comparison of Burned Area Time Series in the Alaskan Boreal Forests from Different Remote Sensing Products. Forests, 2019, 10, 363.	2.1	8
22	Tree density influences ecohydrological drivers of plant–water relations in a larch boreal forest in Siberia. Ecohydrology, 2019, 12, e2132.	2.4	11
23	Drought regulates the burned forest areas in Mexico: the case of 2011, a record year. Geocarto International, 2019, 34, 560-573.	3.5	12
24	Spaceâ€Based Observations for Understanding Changes in the Arcticâ€Boreal Zone. Reviews of Geophysics, 2020, 58, e2019RG000652.	23.0	39
25	Evaluating Post-Fire Vegetation Recovery in Cajander Larch Forests in Northeastern Siberia Using UAV Derived Vegetation Indices. Remote Sensing, 2020, 12, 2970.	4.0	23
26	Geological methane emissions and wildfire risk in the degraded permafrost area of the Xiao Xing'an Mountains, China. Scientific Reports, 2020, 10, 21297.	3.3	25
27	The Effect of Post-Fire Disturbances on a Seasonally Thawed Layer in the Permafrost Larch Forests of Central Siberia. Forests, 2020, 11, 790.	2.1	13
28	Extreme weather and climate events in northern areas: A review. Earth-Science Reviews, 2020, 209, 103324.	9.1	92
29	Decadalâ€Scale Recovery of Carbon Stocks After Wildfires Throughout the Boreal Forests. Global Biogeochemical Cycles, 2020, 34, e2020GB006612.	4.9	19
30	The importance of ground-truth and crowdsourcing data for the statistical and spatial analyses of the NASA FIRMS active fires in the Mediterranean Turkish forests. Remote Sensing Applications: Society and Environment, 2020, 19, 100327.	1.5	10
31	Dynamics of Post-Fire Effects in Larch Forests of Central Siberia Based on Satellite Data. E3S Web of Conferences, 2020, 149, 03008.	0.5	3
32	The Combination of Wildfire and Changing Climate Triggers Permafrost Degradation in the Khentii Mountains, Northern Mongolia. Atmosphere, 2020, 11, 155.	2.3	11
33	Vegetation Trajectories and Shortwave Radiative Forcing Following Boreal Forest Disturbance in Eastern Siberia. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005395.	3.0	9
34	Consideration of anthropogenic factors in boreal forest fire regime changes during rapid socio-economic development: case study of forestry districts with increasing burnt area in the Sakha Republic, Russia. Environmental Research Letters, 2020, 15, 035009.	5.2	29
35	Long-term ecological consequences of forest fires in the continuous permafrost zone of Siberia. Environmental Research Letters, 2020, 15, 034061.	5.2	58
36	Individual Particle Characteristics, Optical Properties and Evolution of an Extreme Longâ€Range Transported Biomass Burning Event in the European Arctic (Nyâ€Ãlesund, Svalbard Islands). Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031535.	3.3	14

#	Article	IF	CITATIONS
37	Focus on changing fire regimes: interactions with climate, ecosystems, and society. Environmental Research Letters, 2020, 15, 030201.	5.2	105
38	Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation. Science Advances, 2020, 6, eaax3308.	10.3	62
39	The dominance of Suillus species in ectomycorrhizal fungal communities on LarixÂgmelinii in a post-fire forest in the Russian Far East. Mycorrhiza, 2021, 31, 55-66.	2.8	11
40	Fire and vegetation dynamics in northwest Siberia during the last 60Âyears based on high-resolution remote sensing. Biogeosciences, 2021, 18, 207-228.	3.3	16
41	Post-fire Recruitment Failure as a Driver of Forest to Non-forest Ecosystem Shifts in Boreal Regions. Ecological Studies, 2021, , 69-100.	1.2	8
42	The Arctic Carbon Cycle and Its Response to Changing Climate. Current Climate Change Reports, 2021, 7, 14-34.	8.6	38
43	Improving prediction and assessment of global fires using multilayer neural networks. Scientific Reports, 2021, 11, 3295.	3.3	18
44	Current Trend of Carbon Emissions from Wildfires in Siberia. Atmosphere, 2021, 12, 559.	2.3	28
45	Understory plant diversity and composition across a postfire tree density gradient in a Siberian Arctic boreal forest. Canadian Journal of Forest Research, 2021, 51, 720-731.	1.7	14
46	Climate Variability May Delay Post-Fire Recovery of Boreal Forest in Southern Siberia, Russia. Remote Sensing, 2021, 13, 2247.	4.0	7
47	Evaluating the Differenced Normalized Burn Ratio for Assessing Fire Severity Using Sentinel-2 Imagery in Northeast Siberian Larch Forests. Remote Sensing, 2021, 13, 2311.	4.0	25
48	Regional Impact of Ozone Precursor Emissions on NO X and O 3 Levels at ZOTTO Tall Tower in Central Siberia. Earth and Space Science, 2021, 8, e2021EA001762.	2.6	5
49	Effects of Soil Abiotic and Biotic Factors on Tree Seedling Regeneration Following a Boreal Forest Wildfire. Ecosystems, 2022, 25, 471-487.	3.4	12
50	Wildfire history of the boreal forest of south-western Yakutia (Siberia) over the last two millennia documented by a lake-sediment charcoal record. Biogeosciences, 2021, 18, 4185-4209.	3.3	19
51	Spatio-temporal patterns of wildfires in Siberia during 2001–2020. Geocarto International, 2022, 37, 7339-7357.	3.5	17
52	Regional-scale data assimilation with the Spatially Explicit Individual-based Dynamic Global Vegetation Model (SEIB-DGVM) over Siberia. Progress in Earth and Planetary Science, 2021, 8, .	3.0	1
53	Carbon dioxide emissions and vegetation recovery in fire-affected forest ecosystems of Siberia: Recent local estimations. Current Opinion in Environmental Science and Health, 2021, 23, 100283.	4.1	4
54	Wildfires in the Siberian taiga. Ambio, 2021, 50, 1953-1974.	5.5	108

#	Article	IF	CITATIONS
55	Weather Conditions and Warm Air Masses in Southern Sakha During Active Forest Fire Periods. Journal of Disaster Research, 2019, 14, 641-648.	0.7	8
56	Influence of Climatic Conditions on Western Siberian Forest Fires. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 269-293.	0.4	1
58	Siberian Ecosystems as Drivers of Cryospheric Climate Feedbacks in the Terrestrial Arctic. Frontiers in Climate, 2021, 3, .	2.8	3
59	Influence of Siberian forest fires smoke in July 2019 on the atmosphere pollution of Krasnoyarsk by particulate matter. , 2020, , .		1
60	Possible Impact of Global Warming and Other Factors Affecting Migration in Russia with Emphasis on Siberia. Quaestiones Geographicae, 2020, 39, 111-123.	1.1	2
61	Forest Burnability Analysis and Preliminary Fire Forecasting Dangers on the Territory of the Amur Region. Lecture Notes in Networks and Systems, 2022, , 542-552.	0.7	0
62	Rare and Extreme Wildland Fire in Sakha in 2021. Atmosphere, 2021, 12, 1572.	2.3	16
63	Problem of climate-driven dynamics in the genetic forest typology. AIP Conference Proceedings, 2021, ,	0.4	3
64	Estimation of Direct Fire Emissions from Forests Burning in Siberia. Environmental Sciences Proceedings, 2021, 4, 12.	0.3	1
65	Siberian taiga and tundra fire regimes from 2001–2020. Environmental Research Letters, 2022, 17, 025001.	5.2	38
66	Wildfire Dynamics along a North-Central Siberian Latitudinal Transect Assessed Using Landsat Imagery. Remote Sensing, 2022, 14, 790.	4.0	5
67	The influence of thinning and prescribed burning on future forest fires in fire-prone regions of Europe. Environmental Research Letters, 2022, 17, 055010.	5.2	10
68	Molecular Characterization of Water-Soluble Aerosol Particle Extracts by Ultrahigh-Resolution Mass Spectrometry: Observation of Industrial Emissions and an Atmospherically Aged Wildfire Plume at Lake Baikal. ACS Earth and Space Chemistry, 2022, 6, 1095-1107.	2.7	12
69	Overview: Recent advances in the understanding of the northern Eurasian environments and of the urban air quality in China – a Pan-Eurasian Experiment (PEEX) programme perspective. Atmospheric Chemistry and Physics, 2022, 22, 4413-4469.	4.9	9
70	Developing an insulation box with automatic temperature control for PM2.5 measurements in cold regions. Journal of Environmental Management, 2022, 311, 114784.	7.8	2
71	Climate change, fire return intervals and the growing risk of permanent forest loss in boreal Eurasia. Science of the Total Environment, 2022, 831, 154885.	8.0	15
72	Asymmetrical Trends of Burned Area Between Eastern and Western Siberia Regulated by Atmospheric Oscillation. Geophysical Research Letters, 2021, 48, .	4.0	5
73	Global and Regional Trends and Drivers of Fire Under Climate Change. Reviews of Geophysics, 2022, 60,	23.0	182

#	Article	IF	CITATIONS
74	Influence of Climatic Conditions on Western Siberian Forest Fires. , 2022, , 1158-1182.		0
75	Recent regional warming across the Siberian lowlands: a comparison between permafrost and non-permafrost areas. Environmental Research Letters, 2022, 17, 054047.	5.2	9
76	Climatic variation drives loss and restructuring of carbon and nitrogen in boreal forest wildfire. Biogeosciences, 2022, 19, 2487-2506.	3.3	4
77	Thermohydrological Impact of Forest Disturbances on Ecosystemâ€Protected Permafrost. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	3
78	The impact of climate factors on Alaska fire carbon emission from 2001 to 2018. , 2022, , .		0
79	Spatial patterns of unburned refugia in Siberian larch forests during the exceptional 2020 fire season. Global Ecology and Biogeography, 2022, 31, 2041-2055.	5.8	1
80	Fire Weather Conditions in Boreal and Polar Regions in 2002–2021. Atmosphere, 2022, 13, 1117.	2.3	8
81	Wildfires in the Siberian Arctic. Fire, 2022, 5, 106.	2.8	14
82	Satellite Observational Evidence of Contrasting Changes in Northern Eurasian Wildfires from 2003 to 2020. Remote Sensing, 2022, 14, 4180.	4.0	2
84	The costs and benefits of fire management for carbon mitigation in Alaska through 2100. Environmental Research Letters, 2022, 17, 105001.	5.2	1
85	Remoteâ€5ensing Derived Trends in Gross Primary Production Explain Increases in the CO ₂ Seasonal Cycle Amplitude. Global Biogeochemical Cycles, 2022, 36, .	4.9	4
86	Wildfire incidence in western Kalaallit Nunaat (Greenland) from 1995 to 2020. International Journal of Wildland Fire, 2022, 31, 1033-1042.	2.4	1
87	Spatiotemporal Distribution Characteristics of Fire Scars Further Prove the Correlation between Permafrost Swamp Wildfires and Methane Geological Emissions. Sustainability, 2022, 14, 14947.	3.2	3
88	Surface, satellite ozone variations in Northern South America during low anthropogenic emission conditions: a machine learning approach. Air Quality, Atmosphere and Health, 2023, 16, 745-764.	3.3	3
89	Climate Crisis: Code Red for Humanity and Our Home Planet. , 2023, , 97-197.		2
90	Wildland Fires in the Subtropical Hill Forests of Southeastern Bangladesh. Atmosphere, 2023, 14, 97.	2.3	3
91	Transient Freezeâ€Thaw Deformation Responses to the 2018 and 2019 Fires Near Batagaika Megaslump, Northeast Siberia. Journal of Geophysical Research F: Earth Surface, 2023, 128, .	2.8	1
92	Shrubs Compensate for Tree Leaf Area Variation and Influence Vegetation Indices in Postâ€Fire Siberian Larch Forests. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	3.0	3

#	Article	IF	CITATIONS
93	Effects of Rossby Waves Breaking and Atmospheric Blocking Formation on the Extreme Forest Fire and Floods in Eastern Siberia 2019. Fire, 2023, 6, 122.	2.8	1
94	Lightning-Ignited Wildfires beyond the Polar Circle. Atmosphere, 2023, 14, 957.	2.3	1
95	Simulating dynamic fire regime and vegetation change in a warming Siberia. Fire Ecology, 2023, 19, .	3.0	3
96	Seed sources and safe sites as drivers of <i>Larix <scp>c</scp>ajanderi</i> regeneration following wildfire in the Siberian Arctic. Ecosphere, 2023, 14, .	2.2	0
97	Forest fire in Thailand: Spatio-temporal distribution and future risk identification. Natural Hazards Research, 2023, , .	3.8	1
98	Lightning-Ignited Wildfires and Associated Meteorological Conditions in Western Siberia for 2016‰2021. Atmosphere, 2024, 15, 106.	2.3	0
99	Forest fire estimation and risk prediction using multispectral satellite images: Case study. Natural Hazards Research, 2024, , .	3.8	0
100	Boreal forest tree growth and sap flow after a low-severity wildfire. Agricultural and Forest Meteorology, 2024, 347, 109899.	4.8	0
101	Two decades of fire activity over the PEEX domain: a look from space, with contribution from models and ground-based measurements. Big Earth Data, 0, , 1-47.	4.4	0
102	Triggering Pyro-Convection in a High-Resolution Coupled Fire–Atmosphere Simulation. Fire, 2024, 7, 92.	2.8	0