Comparison of Microalgae Cultivation in Photobioreact Two-Stage Hybrid System

Frontiers in Energy Research

4,

DOI: 10.3389/fenrg.2016.00029

Citation Report

#	Article	IF	CITATIONS
1	Algae to Economically Viable Low-Carbon-Footprint Oil. Annual Review of Chemical and Biomolecular Engineering, 2017, 8, 335-357.	3.3	25
2	RNA-Seq and metabolic flux analysis of Tetraselmis sp. M8 during nitrogen starvation reveals a two-stage lipid accumulation mechanism. Bioresource Technology, 2017, 244, 1281-1293.	4.8	33
3	Sequencing batch membrane photobioreactor for real secondary effluent polishing using native microalgae: Process performance and full-scale projection. Journal of Cleaner Production, 2017, 168, 708-715.	4.6	70
4	Green microalgae biomolecule separations and recovery. Bioresources and Bioprocessing, 2018, 5, .	2.0	88
5	Application of high-salinity stress for enhancing the lipid productivity of Chlorella sorokiniana HS1 in a two-phase process. Journal of Microbiology, 2018, 56, 56-64.	1.3	40
6	Pilot scale flat panel photobioreactor system for mass production of Ulva lactuca (Chlorophyta). Bioresource Technology, 2018, 249, 582-591.	4.8	32
7	Modified conventional bioreactor for microalgae cultivation. Journal of Bioscience and Bioengineering, 2018, 125, 224-230.	1.1	18
8	Cultivation of microalgae for biodiesel production: A review on upstream and downstream processing. Chinese Journal of Chemical Engineering, 2018, 26, 17-30.	1.7	150
9	Biodiesel from Microalgae. Energy, Environment, and Sustainability, 2018, , 277-318.	0.6	9
10	Harvesting and pre-treatment of microalgae cultivated in wastewater for biodiesel production: A review. Energy Conversion and Management, 2018, 171, 1416-1429.	4.4	200
11	Gas fermentation of C1 feedstocks: commercialization status and future prospects. Biofuels, Bioproducts and Biorefining, 2018, 12, 1103-1117.	1.9	48
12	Exploitation of Microalgae Species for Nutraceutical Purposes: Cultivation Aspects. Fermentation, 2018, 4, 46.	1.4	41
13	Oil production and fatty acid composition of Chlorella vulgaris cultured in nutrient-enriched solid-agar-based medium. Bioresource Technology Reports, 2018, 3, 218-223.	1.5	9
14	A Mathematical Model to Predict the Microalgal Growth in an Open Pond Cultivation : A location based approach. , 2018, , .		0
15	Computational fluid dynamics applied for the improvement of a flat-plate photobioreactor towards high-density microalgae cultures. Biochemical Engineering Journal, 2019, 151, 107257.	1.8	16
16	Biodiesel From Microalgae. , 2019, , 601-628.		8
17	TiO ₂ doped polydimethylsiloxane (PDMS) and <i>Luffa cylindrica</i> based photocatalytic nanosponge to absorb and desorb oil in diatom solar panels. RSC Advances, 2019, 9, 22410-22416.	1.7	18
18	Optimal integration of microalgae production with photovoltaic panels: environmental impacts and energy balance. Biotechnology for Biofuels, 2019, 12, 239.	6.2	38

# 19	ARTICLE The effect of culture salinity on the harvesting of microalgae biomass using pilot-scale tangential-flow-filter membrane. Bioresource Technology, 2019, 293, 122057.	lF 4.8	Citations 27
20	Preliminary Plant Design of Biofuel From Algae in Balikpapan, East Kalimantan. IOP Conference Series: Earth and Environmental Science, 2019, 353, 012059.	0.2	2
21	Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microbial Cell Factories, 2019, 18, 178.	1.9	246
22	Relating nitrogen concentration and light intensity to the growth and lipid accumulation of Dunaliella viridis in a photobioreactor. Journal of Applied Phycology, 2019, 31, 3397-3409.	1.5	10
23	Techno-Economic Analysis of Biogas Production from Microalgae through Anaerobic Digestion. , 0, , .		22
24	Assessing Oil Content of Microalgae Grown in Industrial Energetic-Laden Wastewater. Environmental Processes, 2019, 6, 969-983.	1.7	5
25	Microalgal Biofuels Production from Industrial and Municipal Wastewaters. , 2019, , 249-279.		3
26	Progress in physicochemical parameters of microalgae cultivation for biofuel production. Critical Reviews in Biotechnology, 2019, 39, 835-859.	5.1	69
27	Potential of two-stage cultivation in microalgae biofuel production. Fuel, 2019, 252, 339-349.	3.4	109
28	Qualitative biodiesel production from a locally isolated chlorophycean microalga Scenedesmus obliquus (Turpin) KÃ1⁄4tzing GA 45 under closed raceway pond cultivation. Renewable Energy, 2019, 139, 976-987.	4.3	21
29	Towards the implementation of sustainable biofuel production systems. Renewable and Sustainable Energy Reviews, 2019, 107, 250-263.	8.2	167
30	Microbes as Bio-Resource for Sustainable Production of Biofuels and Other Bioenergy Products. , 2019, , 205-222.		13
31	Pharmaceutical aptitude of Cladophora: A comprehensive review. Algal Research, 2019, 39, 101476.	2.4	28
32	Biological control of ciliate contamination in Chlamydomonas culture using the predatory copepod Acanthocyclops robustus. Algal Research, 2019, 37, 269-276.	2.4	5
33	Future Prospects of Microalgae in Wastewater Treatment. , 2019, , 129-135.		6
34	A review on cleaner production of biofuel feedstock from integrated CO2 sequestration and wastewater treatment system. Journal of Cleaner Production, 2019, 210, 445-458.	4.6	63
35	Carbon footprint analyses of microalgae cultivation systems under autotrophic and heterotrophic conditions. International Journal of Environmental Science and Technology, 2019, 16, 6671-6684.	1.8	23
36	Microalgal biodiesel production at outdoor open and polyhouse raceway pond cultivations: A case study with Scenedesmus accuminatus using low-cost farm fertilizer medium. Biomass and Bioenergy, 2019, 120, 156-165.	2.9	41

#	Article	IF	CITATIONS
37	Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Critical Reviews in Food Science and Nutrition, 2020, 60, 2961-2989.	5.4	69
38	Enhancement of biofuel production by microalgae using cement flue gas as substrate. Environmental Science and Pollution Research, 2020, 27, 17571-17586.	2.7	26
40	Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: A review. Renewable and Sustainable Energy Reviews, 2020, 119, 109621.	8.2	122
41	Synergistic Effect of Nutrient and Salt Stress on Lipid Productivity of Chlorella vulgaris Through Two-Stage Cultivation. Bioenergy Research, 2020, 13, 507-517.	2.2	23
42	Microalgal growth coupled with wastewater treatment in open and closed systems for advanced biofuel generation. Biomass Conversion and Biorefinery, 2022, 12, 1939-1958.	2.9	26
43	Towards green extraction methods from microalgae learning from the classics. Applied Microbiology and Biotechnology, 2020, 104, 9067-9077.	1.7	20
44	Heavy Metal Removal via Phycoremediation. , 2020, , .		0
45	Conceptual design of a hybrid thin layer cascade photobioreactor for microalgal biodiesel synthesis. International Journal of Energy Research, 2020, 44, 9757-9771.	2.2	13
46	New insights on improved growth and biogas production potential of Chlorella pyrenoidosa through intermittent iron oxide nanoparticle supplementation. Scientific Reports, 2020, 10, 14119.	1.6	29
47	Propagation of Inoculum for Haematococcus pluvialis Microalgae Scale-Up Photobioreactor Cultivation System. Applied Sciences (Switzerland), 2020, 10, 6283.	1.3	6
48	Microalgal Biomass Generation via Electroflotation: A Cost-Effective Dewatering Technology. Applied Sciences (Switzerland), 2020, 10, 9053.	1.3	8
49	Experimental studies on a two-step fast pyrolysis-catalytic hydrotreatment process for hydrocarbons from microalgae (Nannochloropsis gaditana and Scenedesmus almeriensis). Fuel Processing Technology, 2020, 206, 106466.	3.7	31
50	Optimization of growth and EPS production in two Porphyridum strains. Bioresource Technology Reports, 2020, 11, 100486.	1.5	9
51	Biofuels, biodiesel and biohydrogen production using bioprocesses. A review. Environmental Chemistry Letters, 2020, 18, 1049-1072.	8.3	131
52	Enhancing microalgal productivity and quality by different colored photobioreactors for biodiesel production using anaerobic reactor effluent. Biomass Conversion and Biorefinery, 2021, 11, 767-779.	2.9	12
53	Foodomics: To Discover the Health Potential of Microalgae. , 2021, , 658-671.		3
54	Wastewater based microalgal biorefinery for bioenergy production: Progress and challenges. Science of the Total Environment, 2021, 751, 141599.	3.9	177
55	How harvesting frequency influence the biomass and lipid productivities of Nannochloropsis sp Algal Research, 2021, 53, 102074.	2.4	8

#	Article	IF	CITATIONS
56	Two-stage cultivation of Chlorella vulgaris using light and salt stress conditions for simultaneous production of lipid, carotenoids, and antioxidants. Journal of Applied Phycology, 2021, 33, 227-239.	1.5	35
57	Novel, automated, semi-industrial modular photobioreactor system for cultivation of demanding microalgae that produce fine chemicals—The next story of H. pluvialis and astaxanthin. Algal Research, 2021, 53, 102151.	2.4	26
58	Potential of reverse osmosis reject water as a growth medium for the production of algal metabolites–A state-of-the-art review. Journal of Water Process Engineering, 2021, 40, 101849.	2.6	5
59	Influence of photobioreactor set-up on the survival of microalgae inoculum. Bioresource Technology, 2021, 320, 124408.	4.8	26
60	Technical and physiological aspects of microalgae cultivation and productivity—spirulina as a promising and feasible choice. Organic Agriculture, 2021, 11, 269-276.	1.2	7
61	Algal Biomass Generation as Feedstock for Sustainable Bio-oil Production. Green Energy and Technology, 2021, , 259-273.	0.4	0
62	Techno-economic analysis of hydrothermal liquefaction of Chlorella (microalgae) powered by renewable energy. AIP Conference Proceedings, 2021, , .	0.3	0
63	Harvesting Aurantiochytrium sp. SW1 using organic flocculants and characteristics of the extracted oil. Algal Research, 2021, 54, 102211.	2.4	6
64	Integrated Approach for Wastewater Treatment and Biofuel Production in Microalgae Biorefineries. Energies, 2021, 14, 2282.	1.6	91
65	Microalgal Cell Biofactory—Therapeutic, Nutraceutical and Functional Food Applications. Plants, 2021, 10, 836.	1.6	55
66	Variables Governing Photosynthesis and Growth in Microalgae Mass Cultures. Processes, 2021, 9, 820.	1.3	52
67	A state-of-the-art review on the synthetic mechanisms, production technologies, and practical application of polyunsaturated fatty acids from microalgae. Algal Research, 2021, 55, 102281.	2.4	43
68	Algal biotechnology in Australia and Vietnam: Opportunities and challenges. Algal Research, 2021, 56, 102335.	2.4	11
69	Operational Strategies to Selectively Produce Purple Bacteria for Microbial Protein in Raceway Reactors. Environmental Science & Technology, 2021, 55, 8278-8286.	4.6	28
70	Two-stage cultivation of microalgae for production of high-value compounds and biofuels: A review. Algal Research, 2021, 57, 102353.	2.4	89
71	Valorization of microalgae biomass into bioproducts promoting circular bioeconomy: a holistic approach of bioremediation and biorefinery. 3 Biotech, 2021, 11, 378.	1.1	18
72	Advances in microalgal cell wall polysaccharides: a review focused on structure, production, and biological application. Critical Reviews in Biotechnology, 2021, , 1-16.	5.1	9
73	Real-Time Monitoring of Microalgal Biomass in Pilot-Scale Photobioreactors Using Nephelometry. Processes, 2021, 9, 1530.	1.3	8

#	Article	IF	CITATIONS
74	Integration of Algal Biofuels With Bioremediation Coupled Industrial Commodities Towards Cost-Effectiveness. Frontiers in Energy Research, 2021, 9, .	1.2	9
75	A Review of Green Synthesis of Metal Nanoparticles Using Algae. Frontiers in Microbiology, 2021, 12, 693899.	1.5	78
76	Strategies to Produce Cost-Effective Third-Generation Biofuel From Microalgae. Frontiers in Energy Research, 2021, 9, .	1.2	61
77	Effect of different illumination patterns on the growth and biomolecular synthesis of isolated Chlorella Thermophila in a 50 L pilot-scale photobioreactor. Process Biochemistry, 2021, 109, 87-97.	1.8	13
78	A critical perspective on the scope of interdisciplinary approaches used in fourth-generation biofuel production. Algal Research, 2021, 58, 102436.	2.4	31
79	Microalgae: Sustainable resource of carbohydrates in third-generation biofuel production. Renewable and Sustainable Energy Reviews, 2021, 150, 111464.	8.2	72
80	Environmental impact and nutritional value of food products using the seaweed Saccharina latissima. Journal of Cleaner Production, 2021, 319, 128689.	4.6	11
81	Algal biofuels. , 2022, , 359-378.		0
82	Trends in photobioreactor technology for microalgal biomass production along with wastewater treatment: Bottlenecks and breakthroughs. , 2022, , 135-154.		2
83	Cultivation techniques. , 2021, , 1-33.		2
84	Current Status of the Algae Production Industry in Europe: An Emerging Sector of the Blue Bioeconomy. Frontiers in Marine Science, 2021, 7, .	1.2	272
85	Agronomic Practices for Photoautotrophic Production of Algae Biomass. Grand Challenges in Biology and Biotechnology, 2019, , 111-156.	2.4	4
86	Integrated Approach for Bioremediation and Biofuel Production Using Algae. , 2020, , 145-160.		9
87	Novel Stacked Modular Open Raceway Ponds for Microalgae Biomass Cultivation in Biogas Plants: Preliminary Design and Modelling. Environmental and Climate Technologies, 2020, 24, 1-19.	0.5	9
88	Liquid fuel production <i>via</i> supercritical water gasification of algae: a role for solar heat integration?. Sustainable Energy and Fuels, 2021, 5, 6269-6297.	2.5	6
89	Algal Biofuel: A Sustainable Approach for Fuel of Future Generation. , 2021, , 3-29.		2
90	Promises and challenges for expanding the use of N2-fixing cyanobacteria as a fertilizer for sustainable agriculture. , 2022, , 99-158.		2
91	System biology in lignocellulose and algae refineries. , 2022, , 151-173.		1

	Сітат	ION REPORT	
#	Article	IF	CITATIONS
92	Algal biorefinery: technoeconomic analysis. , 2022, , 115-124.		0
93	The impact of nitrogen starvation on the dynamics of lipid and biomass production in Scenedesmus sp Environmental Research and Technology, 2019, 2, 158-170.	0.8	2
94	Bioproduction from Microalgal Resources. , 2020, , 227-236.		0
95	Algal physiology and cultivation. , 2022, , 79-96.		4
96	Microalgae and Cyanobacteria: How Exploiting These Microbial Resources Can Address the Underlying Challenges Related to Food Sources and Sustainable Agriculture: A Review. Journal of Plant Growth Regulation, 2023, 42, 1-20.	2.8	14
97	Effects of water recirculation on microalgae assemblage and corresponding sustainability of the photobioreactor cultivation system. Biomass and Bioenergy, 2022, 157, 106326.	2.9	8
98	Impact of cultivation conditions on microalgae biomass productivity and lipid content. Materials Today: Proceedings, 2022, 56, 282-290.	0.9	20
99	Phycoremediation as a Strategy for the Recovery of Marsh and Wetland with Potential in Colombia. Resources, 2022, 11, 15.	1.6	3
100	Microalgal biofuels: Challenges, status and scope. , 2022, , 73-118.		0
101	Microalgal dewatering with focus on filtration and antifouling strategies: A review. Algal Research, 2022, 61, 102588.	2.4	19
102	Nutraceutical productions from microalgal derived compounds via circular bioeconomy perspective. Bioresource Technology, 2022, 347, 126575.	4.8	5
103	Wastewater grown microalgae feedstock for biodiesel production. , 2022, , 59-73.		0
105	Microalgae Bioactive Carbohydrates as a Novel Sustainable and Eco-Friendly Source of Prebiotics: Emerging Health Functionality and Recent Technologies for Extraction and Detection. Frontiers in Nutrition, 2022, 9, 806692.	1.6	26
106	Advancement and role of abiotic stresses in microalgae biorefinery with a focus on lipid production. Fuel, 2022, 316, 123192.	3.4	36
107	CO2 sequestration using a novel Belt Conveyor Reactor with rotating sieve trays compared with Airlift Bubble Column as photobioreactors. Journal of King Saud University, Engineering Sciences, 2021, , .	1.2	5
108	Characterisation of a simple â€~hanging bag' photobioreactor for lowâ€cost cultivation of microalga Journal of Chemical Technology and Biotechnology, 2022, 97, 608-619.	2. 1.6	11
109	Agro-industrial wastewater-grown microalgae: A techno-environmental assessment of open and closed systems. Science of the Total Environment, 2022, 834, 155282.	3.9	20
110	Bioprocess Strategy of Haematococcus lacustris for Biomass and Astaxanthin Production Keys to Commercialization: Perspective and Future Direction. Fermentation, 2022, 8, 179.	1.4	14

#	Article	IF	CITATIONS
111	Sustainable microalgal biomass production in food industry wastewater for low-cost biorefinery products: a review. Phytochemistry Reviews, 2023, 22, 969-991.	3.1	21
112	The Effect of Variable Light Source and Light Intensity on the Growth of Three Algal Species. Cells, 2022, 11, 1293.	1.8	20
113	Algae cultivation for biomedical applications: Current scenario and future direction. , 2022, , 283-303.		1
114	Microalgal biofuels: A sustainable pathway for renewable energy. , 2022, , 187-222.		5
115	Hybrid photobioreactors: The success-to-failure experiences on pilot scale. , 2022, , 1019-1035.		0
116	Biotechnology advancements in CO2 capture and conversion by microalgae-based systems. , 2022, , 385-414.		1
117	Innovative and Strategic Upgrades in Large-Scale Microalgal Culture Techniques. Clean Energy Production Technologies, 2022, , 211-237.	0.3	0
118	Cultivation of marine microalgae, Nannochloropsis sp. in macro-bubbles photobioreactor system. AIP Conference Proceedings, 2022, , .	0.3	1
119	Alternative Source of Nutrients for Microalgae Cultivation in a Photobioreactor System. IOP Conference Series: Earth and Environmental Science, 2022, 1034, 012005.	0.2	0
120	Potential of microalgae cultivation using nutrient-rich wastewater and harvesting performance by biocoagulants/bioflocculants: Mechanism, multi-conversion of biomass into valuable products, and future challenges. Journal of Cleaner Production, 2022, 365, 132806.	4.6	42
121	A comprehensive review on biodiesel production from microalgae through nanocatalytic transesterification process: lifecycle assessment and methodologies. International Nano Letters, 2022, 12, 351-378.	2.3	12
122	Microalgae cultivation in offshore floating photobioreactor: State-of-the-art, opportunities and challenges. Aquacultural Engineering, 2022, 98, 102269.	1.4	13
123	Development of a low-cost cultivation medium for simultaneous production of biodiesel and bio-crude from the chlorophycean microalga Tetradesmus obliquus: A renewable energy prospective. Journal of Cleaner Production, 2022, 364, 132658.	4.6	9
124	A comprehensive review on microalgal biomass production and processing for biodiesel production. Fuel, 2022, 324, 124773.	3.4	22
125	Revisiting algal lipids and cellular stress-causing strategies for ameliorating the productivity of suitable lipids of microalgae for biofuel applications. Sustainable Energy and Fuels, 2022, 6, 3907-3925.	2.5	1
126	Screening of high lipid content and productivity of microalgae under photoautotrophic cultivation for biodiesel production. Environmental Progress and Sustainable Energy, 0, , .	1.3	0
127	Bioenergy, Biofuels, Lipids and Pigments—Research Trends in the Use of Microalgae Grown in Photobioreactors. Energies, 2022, 15, 5357.	1.6	10
128	A review on the promising fuel of the future – Biobutanol; the hindrances and future perspectives. Fuel, 2022, 327, 125166.	3.4	28

#	ARTICLE	IF	Citations
130	Full utilization of marine microalgal hydrothermal liquefaction liquid products through a closed-loop route: towards enhanced bio-oil production and zero-waste approach. 3 Biotech, 2022, 12,	1.1	11
131	Cultivation of microalgae on food waste: Recent advances and way forward. Bioresource Technology, 2022, 363, 127834.	4.8	16
132	Life cycle assessment of bioelectrochemical and integrated microbial fuel cell systems for sustainable wastewater treatment and resource recovery. Journal of Environmental Management, 2022, 320, 115778.	3.8	18
133	Techno-economic analysis of microalgae cultivation for commercial sustainability: A state-of-the-art review. Journal of Cleaner Production, 2022, 370, 133456.	4.6	21
134	Potential applications of Botryococcus terribilis: A review. Biomass and Bioenergy, 2022, 165, 106582.	2.9	7
135	Overview on Advanced Microalgae-Based Sustainable Biofuel Generation and Its Life Cycle Assessment. Clean Energy Production Technologies, 2022, , 53-71.	0.3	1
136	Biofuels from Algae. Clean Energy Production Technologies, 2022, , 183-201.	0.3	0
137	Natural Substrates and Culture Conditions to Produce Pigments from Potential Microbes in Submerged Fermentation. Fermentation, 2022, 8, 460.	1.4	15
138	Microalgae-mediated wastewater treatment for biofuels production: A comprehensive review. Microbiological Research, 2022, 265, 127187.	2.5	10
139	Growth and Metabolite Production in Chlorella sp.: Analysis of Cultivation System and Nutrient Reduction. Bioenergy Research, 0, , .	2.2	2
140	Usage of source separated urine for the biodiesel production from algal biomass. Biochemical Engineering Journal, 2022, 188, 108692.	1.8	2
141	Transcriptomic analysis reveals the mechanism of low/high temperature resistance in an outstanding diet alga Nannochloropsis oceanica. Aquaculture Reports, 2022, 27, 101365.	0.7	2
142	Enhanced Algal Biomass Production in a Novel Electromagnetic Photobioreactor (E-PBR). Current Microbiology, 2022, 79, .	1.0	2
143	Microalgae as sources of green bioactives for health-enhancing food supplements and nutraceuticals: A review of literature. , 0, 2, 10.		0
144	Sustainable production of biofuels from the algae-derived biomass. Bioprocess and Biosystems Engineering, 2023, 46, 1077-1097.	1.7	10
145	Modulation of the metabolite content of the unicellular rhodophyte Porphyridium purpureum using a 2-stage cultivation approach and chemical stressors. Journal of Biotechnology, 2022, 360, 125-132.	1.9	0
146	Applying membrane technology in microalgae industry: A comprehensive review. Renewable and Sustainable Energy Reviews, 2023, 172, 113041.	8.2	18
147	Growth of Scenedesmus dimorphus in swine wastewater with versus without solid–liquid separation pretreatment. Bioresource Technology, 2023, 369, 128434.	4.8	6

#	Article	IF	CITATIONS
148	Microalgae mediated wastewater treatment and its production for biofuels and bioproducts. Advances in Chemical Pollution, Environmental Management and Protection, 2023, , 153-165.	0.3	1
149	Algal Synthesis of Gold Nanoparticles: Applications in Bioenergy. Clean Energy Production Technologies, 2023, , 109-127.	0.3	0
150	Biotechnological Approaches to Enhance Algae Biofuel Production. Clean Energy Production Technologies, 2023, , 1-41.	0.3	0
151	Challenges Assessment in Economic Algal Biofuel Production. Clean Energy Production Technologies, 2023, , 129-147.	0.3	0
152	Positive Influence and Future Perspective of Marine Alga on Biofuel Production. Clean Energy Production Technologies, 2023, , 237-270.	0.3	0
153	Algal Biofuel Production from Municipal Waste Waters. Clean Energy Production Technologies, 2023, , 193-236.	0.3	0
154	Mathematical Modeling of Microalgal Growth during Anaerobic Digestion Effluent Bioremediation. Water (Switzerland), 2022, 14, 3938.	1.2	0
155	Algal biomass dual roles in phycoremediation of wastewater and production of bioenergy and value-added products. International Journal of Environmental Science and Technology, 2023, 20, 8199-8216.	1.8	5
156	Development of Microalgae Biodiesel: Current Status and Perspectives. Microorganisms, 2023, 11, 34.	1.6	10
157	Algae Bioenergy. , 2023, , 1-7.		0
158	Integrating biological and chemical CO2 sequestration using green microalgae for bioproducts generation. Frontiers in Climate, 0, 4, .	1.3	2
159	Microalgal bioactive metabolites as promising implements in nutraceuticals and pharmaceuticals: inspiring therapy for health benefits. Phytochemistry Reviews, 2023, 22, 903-933.	3.1	8
160	Potential of Using Manure in Microalgae Cultivation for Third Generation of Biofuel Production. , 2023, , 85-105.		0
161	Small-scale Production and Business Plan for Phycocyanin from Cyanobacteria. , 2023, , 253-277.		1
162	Life cycle energy use and greenhouse gas emissions for a novel algal-osmosis membrane system versus conventional advanced potable water reuse processes: Part I. Journal of Environmental Management, 2023, 331, 117293.	3.8	1
163	Techno-economic assessment of a novel algal-membrane system versus conventional wastewater treatment and advanced potable reuse processes: Part II. Journal of Environmental Management, 2023, 331, 117189.	3.8	3
164	Effects of cultivation systems and nutrient limitation on the growth and metabolite biosynthesis of Botryococcus terribilis. Biomass Conversion and Biorefinery, 0, , .	2.9	1
165	Design and scale-up of photobioreactors. , 2023, , 11-32.		0

ARTICLE IF CITATIONS # Municipal Wastewater as Potential Bio-refinery., 2023, , 89-108. 0 166 Techno-economic identification of production factors threatening the competitiveness of algae 3.4 23 biodiesel. Fuel, 2023, 344, 128056. DISCOVR strain screening pipeline – Part III: Strain evaluation in outdoor raceway ponds. Algal 168 2.4 4 Research, 2023, 70, 102990. Laboratory- and Pilot-Scale Cultivation of Tetraselmis striata to Produce Valuable Metabolic Compounds. Life, 2023, 13, 480. Lipid extraction from freshwater and marine microalgae using confined impinging jet mixer. AIP 170 0.3 0 Conference Proceedings, 2023, , . Competitive algae biodiesel depends on advances in mass algae cultivation. Bioresource Technology, 171 4.8 2023, 374, 128802. Development of Cost-Effective Fertilizer-Based Media for the Microalgae Cultivation Aimed at 172 0.2 2 Effective Biomass Production. NUST Journal of Engineering Sciences, 2020, 13, 45-51. A Critical Review on the Status and Progress of Microalgae Cultivation in Outdoor Photobioreactors 1.6 Conducted over 35 Years (1986–2021). Energies, 2023, 16, 3105. 174 Municipal Wastewater as Potential Bio-refinery., 2023, , 131-150. 0 Microstructure Engineered Photonâ€Managing Films for Solar Energy to Biomass Conversion. 10.2 Advanced Energy Materials, 2023, 13, . Industrial Perspectives of the Three Major Generations of Liquid and Gaseous-based Biofuel 176 0 Production., 2023,, 271-304. Biofuel production from algal biomass., 2023,, 45-58. Upstream and downstream processing of microalgae-based processes for simultaneous wastewater treatment and pigment production. , 2023, , 529-554. 187 0 Role of Microalgae in Integrated Wastewater Remediation and Valorization of Value-Added Compounds. , 2023, , 55-83. 200 Microalgal based biofuels: Sources, benefits, and constraints. , 2024, , 23-40. 0 Cutting-edge approaches for overcoming challenges in microalgal biodiesel production., 2024,, 355-394. 208 Overview of Bioprocess Engineering., 2024, , 123-155. 0 Algae Bioenergy., 2023, , 103-109.

#	Article	IF	CITATIONS
211	Algal Photo Bioreactors: A Promising Technology for Wastewater Treatment. Environmental Science and Engineering, 2023, , 57-80.	0.1	0
217	Use of microalgae in animal feeds. , 2024, , 235-264.		0
218	Flue gas capture using microalgae cultivated in photobioreactors. , 2024, , 131-156.		0
219	Algae a valuable biomass for bioethanol production. , 2024, , 143-155.		0
223	Microalgae-factories as potential antimicrobial agents: a comprehensive review. , 0, , .		0
224	Mitigation of Industrial Flue Gases and Wastewaters Through Algal Biomass Cultivation: Processes and Perspectives. , 2024, , 1-26.		0