An epigenetic switch ensures transposon repression up methylation in embryonic stem cells

ELife 5, DOI: 10.7554/elife.11418

Citation Report

#	Article	IF	CITATIONS
1	pRB Takes an EZ Path to a Repetitive Task. Molecular Cell, 2016, 64, 1015-1017.	4.5	2
2	Polycomb repressive complex 1 provides a molecular explanation for repeat copy number dependency in FSHD muscular dystrophy. Human Molecular Genetics, 2017, 26, ddw426.	1.4	3
3	MERVL/Zscan4 Network Activation Results in Transient Genome-wide DNA Demethylation of mESCs. Cell Reports, 2016, 17, 179-192.	2.9	174
4	Specification and epigenetic programming of the human germ line. Nature Reviews Genetics, 2016, 17, 585-600.	7.7	352
5	DNA (De)Methylation: The Passive Route to NaÃ ⁻ vety?. Trends in Genetics, 2016, 32, 592-595.	2.9	5
6	An RB-EZH2 Complex Mediates Silencing of Repetitive DNA Sequences. Molecular Cell, 2016, 64, 1074-1087.	4.5	128
7	The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science, 2016, 354, 909-912.	6.0	267
8	Impairment of DNA Methylation Maintenance Is the Main Cause of Global Demethylation in Naive Embryonic Stem Cells. Molecular Cell, 2016, 62, 848-861.	4.5	189
9	Retrotransposons and the Mammalian Germline. , 2017, , 1-28.		1
10	Dynamics and Context-Dependent Roles of DNA Methylation. Journal of Molecular Biology, 2017, 429, 1459-1475.	2.0	126
11	PRC2 is required for extensive reorganization of H3K27me3 during epigenetic reprogramming in mouse fetal germ cells. Epigenetics and Chromatin, 2017, 10, 7.	1.8	25
12	DNA methylation homeostasis in human and mouse development. Current Opinion in Genetics and Development, 2017, 43, 101-109.	1.5	99
13	Polycomb Group Systems in Fungi: New Models for Understanding Polycomb Repressive Complex 2. Trends in Genetics, 2017, 33, 220-231.	2.9	32
14	Reprogramming towards totipotency is greatly facilitated by synergistic effects of small molecules. Biology Open, 2017, 6, 415-424.	0.6	39
15	DUX-family transcription factors regulate zygotic genome activation in placental mammals. Nature Genetics, 2017, 49, 941-945.	9.4	448
16	Gene body <scp>DNA</scp> methylation conspires with H3K36me3 to preclude aberrant transcription. EMBO Journal, 2017, 36, 1471-1473.	3.5	67
17	Activation of Lineage Regulators and Transposable Elements across aÂPluripotent Spectrum. Stem Cell Reports, 2017, 8, 1645-1658.	2.3	58
18	Capturing Human Naà ve Pluripotency in the Embryo and in the Dish. Stem Cells and Development, 2017,	1.1	29

TION RED

		CITATION REPORT		
#	Article		IF	Citations
19	The Epigenetic Paradox of Pluripotent ES Cells. Journal of Molecular Biology, 2017, 429	, 1476-1503.	2.0	35
20	An endosiRNA-Based Repression Mechanism Counteracts Transposon Activation during Demethylation in Embryonic Stem Cells. Cell Stem Cell, 2017, 21, 694-703.e7.	Global DNA	5.2	65
21	Rif1 promotes a repressive chromatin state to safeguard against endogenous retrovirus Nucleic Acids Research, 2017, 45, 12723-12738.	s activation.	6.5	49
22	Epigenetic resetting of human pluripotency. Development (Cambridge), 2017, 144, 274	48-2763.	1.2	225
23	Secrets from immortal worms: What can we learn about biological ageing from the plar system?. Seminars in Cell and Developmental Biology, 2017, 70, 108-121.	narian model	2.3	35
24	L1 Mosaicism in Mammals: Extent, Effects, and Evolution. Trends in Genetics, 2017, 33	, 802-816.	2.9	92
25	H3K14ac is linked to methylation of H3K9 by the triple Tudor domain of SETDB1. Natur Communications, 2017, 8, 2057.	e	5.8	72
26	The emergence of piRNAs against transposon invasion to preserve mammalian genome Communications, 2017, 8, 1411.	integrity. Nature	5.8	144
27	Transient transcription in the early embryo sets an epigenetic state that programs post Nature Genetics, 2017, 49, 110-118.	natal growth.	9.4	76
28	Vitamin C induces specific demethylation of H3K9me2 in mouse embryonic stem cells v Epigenetics and Chromatin, 2017, 10, 36.	via Kdm3a/b.	1.8	55
29	Epigenomic drugs and the germline: Collateral damage in the home of heritability?. Mol Cellular Endocrinology, 2018, 468, 121-133.	ecular and	1.6	11
30	Genome-wide analyses reveal a role of Polycomb in promoting hypomethylation of DNA valleys. Genome Biology, 2018, 19, 18.	methylation	3.8	103
31	Cancer RNome: Evolution and Sustenance. , 2018, , 113-242.			1
32	Heterochromatin delays CRISPR-Cas9 mutagenesis but does not influence the outcome DNA repair. PLoS Biology, 2018, 16, e2005595.	of mutagenic	2.6	75
33	Reduced PRC2 function alters male germline epigenetic programming and paternal inhe Biology, 2018, 16, 104.	eritance. BMC	1.7	17
34	Quantitative subcellular proteomics using SILAC reveals enhanced metabolic buffering pluripotent ground state. Stem Cell Research, 2018, 33, 135-145.	in the	0.3	8
35	Tracing the transitions from pluripotency to germ cell fate with CRISPR screening. Natu Communications, 2018, 9, 4292.	re	5.8	65
36	Dual Inhibition of DNA and Histone Methyltransferases Increases Viral Mimicry in Ovaria Cells. Cancer Research, 2018, 78, 5754-5766.	an Cancer	0.4	83

#	Article	IF	CITATIONS
37	Pairs of Adjacent Conserved Noncoding Elements Separated by Conserved Genomic Distances Act as Cis-Regulatory Units. Genome Biology and Evolution, 2018, 10, 2535-2550.	1.1	1
38	L1 retrotransposition in the soma: a field jumping ahead. Mobile DNA, 2018, 9, 22.	1.3	63
39	Enigma of Retrotransposon Biology in Mammalian Early Embryos and Embryonic Stem Cells. Stem Cells International, 2018, 2018, 1-6.	1.2	20
40	Deregulation of Retroelements as an Emerging Therapeutic Opportunity in Cancer. Trends in Cancer, 2018, 4, 583-597.	3.8	53
41	Two are better than one: HPoxBS - hairpin oxidative bisulfite sequencing. Nucleic Acids Research, 2018, 46, e88-e88.	6.5	9
42	Switching roles for DNA and histone methylation depend on evolutionary ages of human endogenous retroviruses. Genome Research, 2018, 28, 1147-1157.	2.4	82
43	Silencing of transposable elements may not be a major driver of regulatory evolution in primate iPSCs. ELife, 2018, 7, .	2.8	27
44	Transposable elements generate regulatory novelty in a tissue-specific fashion. BMC Genomics, 2018, 19, 468.	1.2	86
45	Individual retrotransposon integrants are differentially controlled by KZFP/KAP1-dependent histone methylation, DNA methylation and TET-mediated hydroxymethylation in naÃ ⁻ ve embryonic stem cells. Epigenetics and Chromatin, 2018, 11, 7.	1.8	39
46	SETDB1 prevents TET2-dependent activation of IAP retroelements in naÃ ⁻ ve embryonic stem cells. Genome Biology, 2018, 19, 6.	3.8	29
47	Smchd1 regulates long-range chromatin interactions on the inactive X chromosome and at Hox clusters. Nature Structural and Molecular Biology, 2018, 25, 766-777.	3.6	84
48	Transcriptional control and exploitation of an immuneâ€responsive family of plant retrotransposons. EMBO Journal, 2018, 37, .	3.5	45
49	DNA Methylation in Eukaryotes: Regulation and Function. , 2018, , 509-570.		0
50	The diverse roles of DNA methylation in mammalian development and disease. Nature Reviews Molecular Cell Biology, 2019, 20, 590-607.	16.1	1,269
51	Epigenetic Compensation Promotes Liver Regeneration. Developmental Cell, 2019, 50, 43-56.e6.	3.1	49
52	An ErbB2/c-Src axis links bioenergetics with PRC2 translation to drive epigenetic reprogramming and mammary tumorigenesis. Nature Communications, 2019, 10, 2901.	5.8	24
53	Repressive Epigenetic Signatures Safeguard the Liver. Developmental Cell, 2019, 50, 3-4.	3.1	2
54	LINE-1 Evasion of Epigenetic Repression in Humans. Molecular Cell, 2019, 75, 590-604.e12.	4.5	106

#	Article	IF	CITATIONS
55	Reduction of Global H3K27me3 Enhances HER2/ErbB2 Targeted Therapy. Cell Reports, 2019, 29, 249-257.e8.	2.9	29
56	Metabolic–Epigenetic Axis in Pluripotent State Transitions. Epigenomes, 2019, 3, 13.	0.8	10
57	Regulation of Genomic Output and (Pluri)potency in Regeneration. Annual Review of Genetics, 2019, 53, 327-346.	3.2	15
58	Open Chromatin, Epigenetic Plasticity, and Nuclear Organization in Pluripotency. Developmental Cell, 2019, 48, 135-150.	3.1	80
59	Dynamic Methylation of an L1 Transduction Family during Reprogramming and Neurodifferentiation. Molecular and Cellular Biology, 2019, 39, .	1.1	22
60	A regulatory circuitry locking pluripotent stemness to embryonic stem cell: Interaction between threonine catabolism and histone methylation. Seminars in Cancer Biology, 2019, 57, 72-78.	4.3	18
61	The Polycomb protein Ezl1 mediates H3K9 and H3K27 methylation to repress transposable elements in Paramecium. Nature Communications, 2019, 10, 2710.	5.8	69
62	Histone demethylase Kdm2a regulates germ cell genes and endogenous retroviruses in embryonic stem cells. Epigenomics, 2019, 11, 751-766.	1.0	11
63	methyl-ATAC-seq measures DNA methylation at accessible chromatin. Genome Research, 2019, 29, 969-977.	2.4	32
64	On the Importance to Acknowledge Transposable Elements in Epigenomic Analyses. Genes, 2019, 10, 258.	1.0	24
65	Analysis of DNA Methylation Profile in Plants by Chop-PCR. Methods in Molecular Biology, 2019, 1991, 79-90.	0.4	14
66	DNMT1 in Six2 Progenitor Cells Is Essential for Transposable Element Silencing and Kidney Development. Journal of the American Society of Nephrology: JASN, 2019, 30, 594-609.	3.0	30
67	Regulation of transposable elements by DNA modifications. Nature Reviews Genetics, 2019, 20, 417-431.	7.7	285
68	The impact of transposable element activity on therapeutically relevant human stem cells. Mobile DNA, 2019, 10, 9.	1.3	18
69	Does the Presence of Transposable Elements Impact the Epigenetic Environment of Human Duplicated Genes?. Genes, 2019, 10, 249.	1.0	7
70	The Landscape of L1 Retrotransposons in the Human Genome Is Shaped by Pre-insertion Sequence Biases and Post-insertion Selection. Molecular Cell, 2019, 74, 555-570.e7.	4.5	107
71	Transposable elements are regulated by context-specific patterns of chromatin marks in mouse embryonic stem cells. Nature Communications, 2019, 10, 34.	5.8	104
72	Transition of inner cell mass to embryonic stem cells: mechanisms, facts, and hypotheses. Cellular and Molecular Life Sciences, 2019, 76, 873-892.	2.4	29

#	Article	IF	CITATIONS
73	Integrative Proteomic Profiling Reveals PRC2-Dependent Epigenetic Crosstalk Maintains Ground-State Pluripotency. Cell Stem Cell, 2019, 24, 123-137.e8.	5.2	90
74	Role of Mammalian DNA Methyltransferases in Development. Annual Review of Biochemistry, 2020, 89, 135-158.	5.0	182
75	Reactivation of Endogenous Retroelements in Cancer Development and Therapy. Annual Review of Cancer Biology, 2020, 4, 159-176.	2.3	36
76	Distinct contributions of DNA methylation and histone acetylation to the genomic occupancy of transcription factors. Genome Research, 2020, 30, 1393-1406.	2.4	41
77	Nanopore Sequencing Enables Comprehensive Transposable Element Epigenomic Profiling. Molecular Cell, 2020, 80, 915-928.e5.	4.5	117
78	Strain-Specific Epigenetic Regulation of Endogenous Retroviruses: The Role of Trans-Acting Modifiers. Viruses, 2020, 12, 810.	1.5	11
79	Endogenous Retroviruses Walk a Fine Line between Priming and Silencing. Viruses, 2020, 12, 792.	1.5	14
80	Cell Signaling Coordinates Global PRC2 Recruitment and Developmental Gene Expression in Murine Embryonic Stem Cells. IScience, 2020, 23, 101646.	1.9	10
81	Trim24 and Trim33 Play a Role in Epigenetic Silencing of Retroviruses in Embryonic Stem Cells. Viruses, 2020, 12, 1015.	1.5	11
82	Epigenetic Regulation of the Non-Coding Genome: Opportunities for Immuno-Oncology. Epigenomes, 2020, 4, 22.	0.8	6
83	Protection from DNA re-methylation by transcription factors in primordial germ cells and pre-implantation embryos can explain trans-generational epigenetic inheritance. Genome Biology, 2020, 21, 118.	3.8	43
84	Methylation-directed glycosylation of chromatin factors represses retrotransposon promoters. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14292-14298.	3.3	28
85	Dppa2 and Dppa4 counteract de novo methylation to establish a permissive epigenome for development. Nature Structural and Molecular Biology, 2020, 27, 706-716.	3.6	51
86	Epigenetic Switch–Induced Viral Mimicry Evasion in Chemotherapy-Resistant Breast Cancer. Cancer Discovery, 2020, 10, 1312-1329.	7.7	84
87	Genome-wide analysis in the mouse embryo reveals the importance of DNA methylation for transcription integrity. Nature Communications, 2020, 11, 3153.	5.8	91
88	TETs compete with DNMT3 activity in pluripotent cells at thousands of methylated somatic enhancers. Nature Genetics, 2020, 52, 819-827.	9.4	83
89	H1 linker histones silence repetitive elements by promoting both histone H3K9 methylation and chromatin compaction. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14251-14258.	3.3	57
90	Polycomb Repression without Bristles: Facultative Heterochromatin and Genome Stability in Fungi. Genes, 2020, 11, 638.	1.0	26

			_
#	ARTICLE	IF	CITATIONS
91	Genome-wide analysis of H3K4me3 and H3K27me3 modifications due to Lr28 for leaf rust resistance in bread wheat (Triticum aestivum). Plant Molecular Biology, 2020, 104, 113-136.	2.0	8
92	Defined Stem Cell Culture Conditions to Model Mouse Blastocyst Development. Current Protocols in Stem Cell Biology, 2020, 52, e105.	3.0	6
93	On transposons and totipotency. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190339.	1.8	26
94	Combinatorial metabolism drives the naive to primed pluripotent chromatin landscape. Experimental Cell Research, 2020, 389, 111913.	1.2	11
95	Our Conflict with Transposable Elements and Its Implications for Human Disease. Annual Review of Pathology: Mechanisms of Disease, 2020, 15, 51-70.	9.6	81
96	A potential new mechanism for pregnancy loss: considering the role of LINE-1 retrotransposons in early spontaneous miscarriage. Reproductive Biology and Endocrinology, 2020, 18, 6.	1.4	16
97	Endogenous Retroelements in Cancer: Molecular Roles and Clinical Approach. , 0, , .		1
98	Recognize Yourself—Innate Sensing of Non-LTR Retrotransposons. Viruses, 2021, 13, 94.	1.5	7
99	m6A RNA methylation regulates the fate of endogenous retroviruses. Nature, 2021, 591, 312-316.	13.7	156
100	Chromatin and Epigenetic Rearrangements in Embryonic Stem Cell Fate Transitions. Frontiers in Cell and Developmental Biology, 2021, 9, 637309.	1.8	25
101	Epigenetic editing: Dissecting chromatin function in context. BioEssays, 2021, 43, e2000316.	1.2	22
102	The deubiquitinase Usp9x regulates PRC2-mediated chromatin reprogramming during mouse development. Nature Communications, 2021, 12, 1865.	5.8	11
103	H3.3-K27M drives neural stem cell-specific gliomagenesis in a human iPSC-derived model. Cancer Cell, 2021, 39, 407-422.e13.	7.7	56
105	The interplay between DNA and histone methylation: molecular mechanisms and disease implications. EMBO Reports, 2021, 22, e51803.	2.0	83
106	The emerging role of non-coding RNAs in the epigenetic regulation of pediatric cancers. Seminars in Cancer Biology, 2021, , .	4.3	11
108	Rewiring of chromatin state and gene expression by transposable elements. Development Growth and Differentiation, 2021, 63, 262-273.	0.6	6
109	Endogenous retroviruses in the origins and treatment of cancer. Genome Biology, 2021, 22, 147.	3.8	73
112	Establishment of H3K9me3-dependent heterochromatin during embryogenesis in Drosophila miranda. ELife, 2021, 10, .	2.8	22

#	Article	IF	CITATIONS
113	Dnmt1 has de novo activity targeted to transposable elements. Nature Structural and Molecular Biology, 2021, 28, 594-603.	3.6	83
115	Functional study of distinct domains of Dux in improving mouse SCNT embryonic developmentâ€. Biology of Reproduction, 2021, 105, 1089-1103.	1.2	4
116	LIN28 coordinately promotes nucleolar/ribosomal functions and represses the 2C-like transcriptional program in pluripotent stem cells. Protein and Cell, 2022, 13, 490-512.	4.8	28
117	More than causing (epi)genomic instability: emerging physiological implications of transposable element modulation. Journal of Biomedical Science, 2021, 28, 58.	2.6	12
118	Advances in mapping the epigenetic modifications of 5â€methylcytosine (5mC), N6â€methyladenine (6mA), and N4â€methylcytosine (4mC). Biotechnology and Bioengineering, 2021, 118, 4204-4216.	1.7	37
119	The role of retrotransposable elements in ageing and age-associated diseases. Nature, 2021, 596, 43-53.	13.7	156
120	Genome-Wide Mapping of Cytosine Methylation Revealed Dynamic DNA Methylation Patterns Associated with Sporophyte Development of Saccharina japonica. International Journal of Molecular Sciences, 2021, 22, 9877.	1.8	6
123	Role of Polycomb in the control of transposable elements. Trends in Genetics, 2021, 37, 882-889.	2.9	45
124	Get Out and Stay Out: New Insights Into DNA Methylation Reprogramming in Mammals. Frontiers in Cell and Developmental Biology, 2020, 8, 629068.	1.8	12
125	DNA methylation dynamics at transposable elements in mammals. Essays in Biochemistry, 2019, 63, 677-689.	2.1	35
134	Jump around: transposons in and out of the laboratory. F1000Research, 2020, 9, 135.	0.8	10
135	<scp>SUMO</scp> ylated <scp>PRC</scp> 1 controls histone H3.3 deposition and genome integrity of embryonic heterochromatin. EMBO Journal, 2020, 39, e103697.	3.5	21
136	Methylation of TP53BP2 and Apaf-1 genes in embryonic lung cells and their impact on gene expression. Annals of Translational Medicine, 2018, 6, 459-459.	0.7	2
137	Polycomb mutant partially suppresses DNA hypomethylation–associated phenotypes in Arabidopsis. Life Science Alliance, 2021, 4, e202000848.	1.3	23
138	Dynamic enhancer partitioning instructs activation of a growth-related gene during exit from naÃ ⁻ ve pluripotency. ELife, 2019, 8, .	2.8	11
139	Impact of chromosomal organization on epigenetic drift and domain stability revealed by physics-based simulations. Biophysical Journal, 2021, 120, 4932-4943.	0.2	7
140	Transposable Element Dynamics and Regulation during Zygotic Genome Activation in Mammalian Embryos and Embryonic Stem Cell Model Systems. Stem Cells International, 2021, 2021, 1-17.	1.2	3
141	Transposable elements as new players in neurodegenerative diseases. FEBS Letters, 2021, 595, 2733-2755.	1.3	24

#	Article	IF	CITATIONS
142	DNA Methylation in Eukaryotes: Regulation and Function. , 2017, , 1-62.		1
148	Epigenetics, the Vascular Wall, and Atherosclerosis. , 2019, , 302-313.		Ο
150	The Evolutionary Volte-Face of Transposable Elements: From Harmful Jumping Genes to Major Drivers of Genetic Innovation. Cells, 2021, 10, 2952.	1.8	15
151	Roles and regulation of endogenous retroviruses in pluripotency and early development. , 2020, , 155-186.		2
152	Evidence that activin A directly modulates early human male germline differentiation status. Reproduction, 2020, 160, 141-154.	1.1	6
154	Epigenetic Regulation during Primordial Germ Cell Development and Differentiation. Sexual Development, 2021, 15, 411-431.	1.1	16
155	Emerging roles for endogenous retroviruses in immune epigenetic regulation*. Immunological Reviews, 2022, 305, 165-178.	2.8	19
156	Epigenetic targeting of transposon relics: beating the dead horses of the genome?. Epigenetics, 2022, 17, 1331-1344.	1.3	3
157	Polycomb Repressive Complex 2 in Eukaryotes—An Evolutionary Perspective. Epigenomes, 2022, 6, 3.	0.8	15
158	Distinct transcription kinetics of pluripotent cell states. Molecular Systems Biology, 2022, 18, e10407.	3.2	4
159	Endogenous retroviruses co-opted as divergently transcribed regulatory elements shape the regulatory landscape of embryonic stem cells. Nucleic Acids Research, 2022, 50, 2111-2127.	6.5	12
160	Analysis of epigenetic features characteristic of L1 loci expressed in human cells. Nucleic Acids Research, 2022, 50, 1888-1907.	6.5	9
161	High Stability of the Epigenome in <i>Drosophila</i> Interspecific Hybrids. Genome Biology and Evolution, 2022, 14, .	1.1	2
163	Driving Chromatin Organisation through N6-methyladenosine Modification of RNA: What Do We Know and What Lies Ahead?. Genes, 2022, 13, 340.	1.0	6
164	A comprehensive approach for genome-wide efficiency profiling of DNA modifying enzymes. Cell Reports Methods, 2022, 2, 100187.	1.4	4
166	EZH2 suppresses endogenous retroviruses and an interferon response in cancers. Genes and Cancer, 2021, 12, 96-105.	0.6	8
167	Epigenetic integrity of paternal imprints enhances the developmental potential of androgenetic haploid embryonic stem cells. Protein and Cell, 2022, 13, 102-119.	4.8	4
168	Sex-specific chromatin remodelling safeguards transcription in germ cells. Nature, 2021, 600, 737-742.	13.7	24

#	Article	IF	CITATIONS
169	The DNMT1 inhibitorÂGSK-3484862 mediates global demethylation in murine embryonic stem cells. Epigenetics and Chromatin, 2021, 14, 56.	1.8	16
170	The Level of LINE-1 mRNA Is Increased in Extracellular Circulating Plasma RNA in Patients with Colorectal Cancer. Bulletin of Experimental Biology and Medicine, 2022, 173, 261-264.	0.3	1
172	OCT4 activates a <i>Suv39h1</i> -repressive antisense lncRNA to couple histone H3 Lysine 9 methylation to pluripotency. Nucleic Acids Research, 2022, 50, 7367-7379.	6.5	7
173	NF-κB signaling controls H3K9me3 levels at intronic LINE-1 and hematopoietic stem cell genes in cis. Journal of Experimental Medicine, 2022, 219, .	4.2	4
174	Role of Transposable Elements in Genome Stability: Implications for Health and Disease. International Journal of Molecular Sciences, 2022, 23, 7802.	1.8	15
175	H3K9 tri-methylation at <i>Nanog</i> times differentiation commitment and enables the acquisition of primitive endoderm fate. Development (Cambridge), 2022, 149, .	1.2	9
176	H3K27me3 at pericentromeric heterochromatin is a defining feature of the early mouse blastocyst. Scientific Reports, 2022, 12, .	1.6	5
177	All Quiet on the TE Front? The Role of Chromatin in Transposable Element Silencing. Cells, 2022, 11, 2501.	1.8	2
179	A small RNA-guided PRC2 complex eliminates DNA as an extreme form of transposon silencing. Cell Reports, 2022, 40, 111263.	2.9	23
180	The renaissance and enlightenment of <i>Marchantia</i> as a model system. Plant Cell, 2022, 34, 3512-3542.	3.1	31
182	DNMT and EZH2 inhibitors synergize to activate therapeutic targets in hepatocellular carcinoma. Cancer Letters, 2022, 548, 215899.	3.2	18
183	Imprinting fidelity in mouse iPSCs depends on sex of donor cell and medium formulation. Nature Communications, 2022, 13, .	5.8	11
184	DNA methylation underpins the epigenomic landscape regulating genome transcription in Arabidopsis. Genome Biology, 2022, 23, .	3.8	20
185	The regulation of totipotency transcription: Perspective from in vitro and in vivo totipotency. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5
186	Epigenetic factor competition reshapes the EMT landscape. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5
187	Transposable Elements as a Source of Novel Repetitive DNA in the Eukaryote Genome. Cells, 2022, 11, 3373.	1.8	13
188	DNA sequence and chromatin modifiers cooperate to confer epigenetic bistability at imprinting control regions. Nature Genetics, 2022, 54, 1702-1710.	9.4	15
189	Retrotransposon insertions associated with risk of neurologic and psychiatric diseases. EMBO Reports, 2023, 24, .	2.0	3

#	Article	IF	CITATIONS
190	Epigenetics across the evolutionary tree: New paradigms from nonâ€model animals. BioEssays, 0, , 2200036.	1.2	2
191	Preconception paternal mental disorders and child health: Mechanisms and interventions. Neuroscience and Biobehavioral Reviews, 2023, 144, 104976.	2.9	4
192	Transposon control as a checkpoint for tissue regeneration. Development (Cambridge), 2022, 149, .	1.2	3
193	Comparison of oocyte vitrification using a semi-automated or a manual closed system in human siblings: survival and transcriptomic analyses. Journal of Ovarian Research, 2022, 15, .	1.3	6
194	Retrotransposon instability dominates the acquired mutation landscape of mouse induced pluripotent stem cells. Nature Communications, 2022, 13, .	5.8	7
195	Transient Polycomb activity represses developmental genes in growing oocytes. Clinical Epigenetics, 2022, 14, .	1.8	1
196	Evidence that direct inhibition of transcription factor binding is the prevailing mode of gene and repeat repression by DNA methylation. Nature Genetics, 2022, 54, 1895-1906.	9.4	39
198	Dynamic antagonism between key repressive pathways maintains the placental epigenome. Nature Cell Biology, 2023, 25, 579-591.	4.6	2
199	<scp>RNA</scp> â€mediated heterochromatin formation at repetitive elements in mammals. EMBO Journal, 2023, 42, .	3.5	2
200	Essential role of an ERV-derived Env38 protein in adaptive humoral immunity against an exogenous SVCV infection in a zebrafish model. PLoS Pathogens, 2023, 19, e1011222.	2.1	5
224	Transposable Elements: Emerging Therapeutic Targets in Neurodegenerative Diseases. Neurotoxicity Research, 2024, 42, .	1.3	0