Chimeric antigen receptor T cells secreting anti-PD-L1 a renal cell carcinoma in a humanized mouse model

Oncotarget 7, 34341-34355 DOI: 10.18632/oncotarget.9114

Citation Report

#	Article	IF	CITATIONS
1	Adoptive immunotherapy for the treatment of glioblastoma: progress and possibilities. Immunotherapy, 2016, 8, 1393-1404.	1.0	8
2	Development of CAR T cells designed to improve antitumor efficacy and safety. , 2017, 178, 83-91.		90
3	CAR Tâ€cell therapy of solid tumors. Immunology and Cell Biology, 2017, 95, 356-363.	1.0	155
4	Cellular Immunotherapy in B-Cell Malignancy. Oncology Research and Treatment, 2017, 40, 674-681.	0.8	11
5	The revolution of lung cancer treatment: from vaccines, to immune checkpoint inhibitors, to chimeric antigen receptor T therapy. Biotarget, 0, 1, 7-7.	0.5	11
6	The Multi-Purpose Tool of Tumor Immunotherapy: Gene-Engineered T Cells. Journal of Cancer, 2017, 8, 1690-1703.	1.2	17
7	Engineering Chimeric Antigen Receptor T-Cells for Racing in Solid Tumors: Don't Forget the Fuel. Frontiers in Immunology, 2017, 8, 267.	2.2	61
8	New Chimeric Antigen Receptor Design for Solid Tumors. Frontiers in Immunology, 2017, 8, 1934.	2.2	23
9	Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: challenges and opportunities. Oncotarget, 2017, 8, 90521-90531.	0.8	81
10	Incorporation of functional elements enhances the antitumor capacity of CAR T cells. Experimental Hematology and Oncology, 2017, 6, 28.	2.0	22
11	Prospects for combined use of oncolytic viruses and CAR T-cells. , 2017, 5, 90.		84
12	Adoptive T-Cell Therapy for Solid Tumors. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 193-204.	1.8	44
13	Adoptive T-Cell Therapy for Solid Tumors. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2017, 37, 193-204.	1.8	61
14	Current status and future prospects of the strategy of combining CAR‑T with PD‑1 blockade for antitumor therapy (Review). Molecular Medicine Reports, 2018, 17, 2083-2088.	1.1	19
15	The Pharmacology of T Cell Therapies. Molecular Therapy - Methods and Clinical Development, 2018, 8, 210-221.	1.8	78
16	Preclinical Models in Chimeric Antigen Receptor–Engineered T-Cell Therapy. Human Gene Therapy, 2018, 29, 534-546.	1.4	57
17	Reprogramming T-cells for adoptive immunotherapy of ovarian cancer. Expert Opinion on Biological Therapy, 2018, 18, 359-367.	1.4	5
18	Chimeric Antigen Receptor T Cell Therapy: Challenges to Bench-to-Bedside Efficacy. Journal of Immunology, 2018, 200, 459-468.	0.4	155

#	Article	IF	CITATIONS
19	Lessons learned from the blockade of immune checkpoints in cancer immunotherapy. Journal of Hematology and Oncology, 2018, 11, 31.	6.9	256
20	The si <scp>RNA</scp> â€mediated downregulation of <scp>PD</scp> â€l alone or simultaneously with <scp>CTLA</scp> â€4 shows enhanced in vitro <scp>CAR</scp> â€Tâ€cell functionality for further clinical development towards the potential use in immunotherapy of melanoma. Experimental Dermatology, 2018. 27. 769-778.	1.4	51
21	Chimeric antigen receptor (CAR)-transduced natural killer cells in tumor immunotherapy. Acta Pharmacologica Sinica, 2018, 39, 167-176.	2.8	121
22	Of Mice, Dogs, Pigs, and Men: Choosing the Appropriate Model for Immuno-Oncology Research. ILAR Journal, 2018, 59, 247-262.	1.8	40
23	Critical factors in chimeric antigen receptor-modified T-cell (CAR-T) therapy for solid tumors. OncoTargets and Therapy, 2019, Volume 12, 193-204.	1.0	21
24	Current Options and Future Directions in Immune Therapy for Glioblastoma. Frontiers in Oncology, 2018, 8, 578.	1.3	21
25	CAR T Cell Therapy of Non-hematopoietic Malignancies: Detours on the Road to Clinical Success. Frontiers in Immunology, 2018, 9, 2740.	2.2	58
26	CART Immunotherapy: Development, Success, and Translation to Malignant Gliomas and Other Solid Tumors. Frontiers in Oncology, 2018, 8, 453.	1.3	78
27	The Potential of CAR T Cell Therapy in Pancreatic Cancer. Frontiers in Immunology, 2018, 9, 2166.	2.2	92
28	<scp>CAR</scp> â€T cell therapy in melanoma: A future success story?. Experimental Dermatology, 2018, 27, 1315-1321.	1.4	55
29	Low-Dose Radiation Conditioning Enables CAR T Cells to Mitigate Antigen Escape. Molecular Therapy, 2018, 26, 2542-2552.	3.7	169
30	Programmed cell death protein 1 activation preferentially inhibits CD28.CAR–T cells. Cytotherapy, 2018, 20, 1259-1266.	0.3	60
31	Tim-3 expression and its role in hepatocellular carcinoma. Journal of Hematology and Oncology, 2018, 11, 126.	6.9	89
32	Expanding the Therapeutic Window for CAR T Cell Therapy in Solid Tumors: The Knowns and Unknowns of CAR T Cell Biology. Frontiers in Immunology, 2018, 9, 2486.	2.2	169
33	Immune Checkpoint Inhibition for Pancreatic Ductal Adenocarcinoma: Current Limitations and Future Options. Frontiers in Immunology, 2018, 9, 1878.	2.2	127
34	Identification of Carbonic Anhydrase IX as a Novel Target for Endoscopic Molecular Imaging of Human Bladder Cancer. Cellular Physiology and Biochemistry, 2018, 47, 1565-1577.	1.1	12
35	Increased antitumor activities of glypican-3-specific chimeric antigen receptor-modified T cells by coexpression of a soluble PD1–CH3 fusion protein. Cancer Immunology, Immunotherapy, 2018, 67, 1621-1634.	2.0	46
36	Incorporation of Immune Checkpoint Blockade into Chimeric Antigen Receptor T Cells (CAR-Ts): Combination or Built-In CAR-T. International Journal of Molecular Sciences, 2018, 19, 340.	1.8	157

#	Article	IF	CITATIONS
37	CAR T Cells in Solid Tumors: Blueprints for Building Effective Therapies. Frontiers in Immunology, 2018, 9, 1740.	2.2	155
38	Construction of an anti‑programmed death‑ligand 1 chimeric antigen receptor and determination of its antitumor function with transduced cells. Oncology Letters, 2018, 16, 157-166.	0.8	9
39	The Use of the Humanized Mouse Model in Gene Therapy and Immunotherapy for HIV and Cancer. Frontiers in Immunology, 2018, 9, 746.	2.2	31
40	Combination therapy: A feasibility strategy for CAR‑T cell therapy in the treatment of solid tumors (Review). Oncology Letters, 2018, 16, 2063-2070.	0.8	35
41	Manipulating the tumor microenvironment by adoptive cell transfer of CAR T-cells. Mammalian Genome, 2018, 29, 739-756.	1.0	33
42	Challenges and prospects of chimeric antigen receptor T cell therapy in solid tumors. Medical Oncology, 2018, 35, 87.	1.2	24
43	Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nature Biotechnology, 2018, 36, 847-856.	9.4	564
44	Driving cars to the clinic for solid tumors. Gene Therapy, 2018, 25, 165-175.	2.3	67
45	Gene therapy research for kidney diseases. Physiological Genomics, 2019, 51, 449-461.	1.0	22
46	The Role of Checkpoint Inhibitors and Cytokines in Adoptive Cell-Based Cancer Immunotherapy with Genetically Modified T Cells. Biochemistry (Moscow), 2019, 84, 695-710.	0.7	5
47	Bispecific T-Cell Redirection versus Chimeric Antigen Receptor (CAR)-T Cells as Approaches to Kill Cancer Cells. Antibodies, 2019, 8, 41.	1.2	90
48	Application of CAR T cells for the treatment of solid tumors. Progress in Molecular Biology and Translational Science, 2019, 164, 293-327.	0.9	15
49	T Cell Dysfunction in Cancer Immunity and Immunotherapy. Frontiers in Immunology, 2019, 10, 1719.	2.2	219
50	Synergistic combination of oncolytic virotherapy with CAR T-cell therapy. Progress in Molecular Biology and Translational Science, 2019, 164, 217-292.	0.9	15
51	Patient-derived xenograft models to optimize kidney cancer therapies. Translational Andrology and Urology, 2019, 8, S156-S165.	0.6	10
52	Inflammatory Biomarkers as Predictors of Response to Immunotherapy in Urological Tumors. Journal of Oncology, 2019, 2019, 1-11.	0.6	6
53	Combination Immunotherapy with CAR T Cells and Checkpoint Blockade for the Treatment of Solid Tumors. Cancer Cell, 2019, 36, 471-482.	7.7	280
54	Repurposing endogenous immune pathways to tailor and control chimeric antigen receptor TÂcell functionality. Nature Communications, 2019, 10, 5100.	5.8	42

#	Article	IF	CITATIONS
55	Multispecific Targeting with Synthetic Ankyrin Repeat Motif Chimeric Antigen Receptors. Clinical Cancer Research, 2019, 25, 7506-7516.	3.2	43
56	Tumor-Associated Antigens. , 2019, , 107-125.		3
57	Metabolic regulation of CAR T cell function by the hypoxic microenvironment in solid tumors. Immunotherapy, 2019, 11, 335-345.	1.0	42
58	CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment. Frontiers in Immunology, 2019, 10, 128.	2.2	568
59	Carbonic Anhydrase as Drug Target. , 2019, , .		8
60	CAR-T immunotherapies: Biotechnological strategies to improve safety, efficacy and clinical outcome through CAR engineering. Biotechnology Advances, 2019, 37, 107411.	6.0	12
61	Gene editing for immune cell therapies. Nature Biotechnology, 2019, 37, 1425-1434.	9.4	147
62	Therapeutic challenges and current immunomodulatory strategies in targeting the immunosuppressive pancreatic tumor microenvironment. Journal of Experimental and Clinical Cancer Research, 2019, 38, 162.	3.5	116
63	Chimeric Antigen Receptor T Cell Immunotherapy for Tumor: A Review of Patent Literatures. Recent Patents on Anti-Cancer Drug Discovery, 2019, 14, 60-69.	0.8	1
64	Chimeric Antigen Receptor T Cell Therapy for Solid Tumors: Current Status, Obstacles and Future Strategies. Cancers, 2019, 11, 191.	1.7	33
65	Current Progress in CAR-T Cell Therapy for Solid Tumors. International Journal of Biological Sciences, 2019, 15, 2548-2560.	2.6	252
66	T-cell receptor and chimeric antigen receptor in solid cancers: current landscape, preclinical data and insight into future developments. Current Opinion in Oncology, 2019, 31, 430-438.	1.1	6
67	Teaching an old dog new tricks: next-generation CAR T cells. British Journal of Cancer, 2019, 120, 26-37.	2.9	240
68	T-cells "à la CAR-T(e)―– Genetically engineering T-cell response against cancer. Advanced Drug Delivery Reviews, 2019, 141, 23-40.	6.6	17
69	CART manufacturing process and reasons for academy-pharma collaboration. Immunology Letters, 2020, 217, 39-48.	1.1	9
70	Chimeric antigen receptor T cells in solid tumors: a war against the tumor microenvironment. Science China Life Sciences, 2020, 63, 180-205.	2.3	40
71	Current challenges and emerging opportunities of CAR-T cell therapies. Journal of Controlled Release, 2020, 319, 246-261.	4.8	78
72	Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nature Reviews Clinical Oncology, 2020, 17, 147-167.	12.5	786

#	Article	IF	Citations
73	Overcoming malignant cell-based mechanisms of resistance to immune checkpoint blockade antibodies. Seminars in Cancer Biology, 2020, 65, 28-37.	4.3	13
74	CAR-NK for tumor immunotherapy: Clinical transformation and future prospects. Cancer Letters, 2020, 472, 175-180.	3.2	142
75	CAR T-Cell Therapy for CNS Malignancies. , 2020, , 165-198.		0
76	Safety and Efficacy of an Immune Cell-Specific Chimeric Promoter in Regulating Anti-PD-1 Antibody Expression in CAR T Cells. Molecular Therapy - Methods and Clinical Development, 2020, 19, 14-23.	1.8	9
77	Engineered Antigen-Specific T Cells Secreting Broadly Neutralizing Antibodies: Combining Innate and Adaptive Immune Response against HIV. Molecular Therapy - Methods and Clinical Development, 2020, 19, 78-88.	1.8	10
78	Humanized Mice Are Precious Tools for Preclinical Evaluation of CAR T and CAR NK Cell Therapies. Cancers, 2020, 12, 1915.	1.7	30
79	Secretion of human soluble programmed cell death protein 1 by chimeric antigen receptor-modified T cells enhances anti-tumor efficacy. Cytotherapy, 2020, 22, 734-743.	0.3	14
80	TRUCKS, the fourthâ€generation CAR T cells: Current developments and clinical translation. Advances in Cell and Gene Therapy, 2020, 3, e84.	0.6	85
81	Strategies to Enhance the Efficacy of T-Cell Therapy for Central Nervous System Tumors. Frontiers in Immunology, 2020, 11, 599253.	2.2	11
82	<p>Immunotherapeutic Targets and Therapy for Renal Cell Carcinoma</p> . ImmunoTargets and Therapy, 2020, Volume 9, 273-288.	2.7	9
83	A giant step forward: chimeric antigen receptor T-cell therapy for lymphoma. Frontiers of Medicine, 2020, 14, 711-725.	1.5	8
84	Future of CAR T cells in multiple myeloma. Hematology American Society of Hematology Education Program, 2020, 2020, 272-279.	0.9	22
85	Immune Checkpoints and CAR-T Cells: The Pioneers in Future Cancer Therapies?. International Journal of Molecular Sciences, 2020, 21, 8305.	1.8	58
86	Highâ€Throughput Image Cytometry Detection Method for CARâ€T Transduction, Cell Proliferation, and Cytotoxicity Assays. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 689-697.	1.1	9
87	Targeted Cellular Micropharmacies: Cells Engineered for Localized Drug Delivery. Cancers, 2020, 12, 2175.	1.7	17
88	The Great War of Today: Modifications of CAR-T Cells to Effectively Combat Malignancies. Cancers, 2020, 12, 2030.	1.7	19
89	Engineering CAR-T Cells for Next-Generation Cancer Therapy. Cancer Cell, 2020, 38, 473-488.	7.7	342
90	Pancreatic Cancer UK Grand Challenge: Developments and challenges for effective CAR T cell therapy for pancreatic ductal adenocarcinoma. Pancreatology, 2020, 20, 394-408.	0.5	10

#	Article	IF	CITATIONS
91	Targeting PD-L1 in non-small cell lung cancer using CAR T cells. Oncogenesis, 2020, 9, 72.	2.1	48
92	Programming CAR T cells to enhance anti-tumor efficacy through remodeling of the immune system. Frontiers of Medicine, 2020, 14, 726-745.	1.5	9
93	PD1 Blockade Enhances ICAM1-Directed CAR T Therapeutic Efficacy in Advanced Thyroid Cancer. Clinical Cancer Research, 2020, 26, 6003-6016.	3.2	18
94	CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine, 2020, 59, 102975.	2.7	425
95	New agents and regimens for diffuse large B cell lymphoma. Journal of Hematology and Oncology, 2020, 13, 175.	6.9	79
96	CAR-T Cells Hit the Tumor Microenvironment: Strategies to Overcome Tumor Escape. Frontiers in Immunology, 2020, 11, 1109.	2.2	165
97	Mouse Tumor Models for Advanced Cancer Immunotherapy. International Journal of Molecular Sciences, 2020, 21, 4118.	1.8	62
98	The Advent of CAR T-Cell Therapy for Lymphoproliferative Neoplasms: Integrating Research Into Clinical Practice. Frontiers in Immunology, 2020, 11, 888.	2.2	45
99	Regulation of Cancer Immune Checkpoints. Advances in Experimental Medicine and Biology, 2020, , .	0.8	7
100	Tâ€cells expressing a chimericâ€PD1â€Dap10â€CD3zeta receptor reduce tumour burden in multiple murine syngeneic models of solid cancer. Immunology, 2020, 160, 280-294.	2.0	21
101	Engineering T Cells to Treat Cancer: The Convergence of Immuno-Oncology and Synthetic Biology. Annual Review of Cancer Biology, 2020, 4, 121-139.	2.3	13
102	A Bump in the Road: How the Hostile AML Microenvironment Affects CAR T Cell Therapy. Frontiers in Oncology, 2020, 10, 262.	1.3	48
103	Chimeric Antigen Receptor Cell Therapy: Overcoming Obstacles to Battle Cancer. Cancers, 2020, 12, 842.	1.7	21
104	Use of CAR-T cell therapy, PD-1 blockade, and their combination for the treatment of hematological malignancies. Clinical Immunology, 2020, 214, 108382.	1.4	40
105	T lymphocyte-targeted immune checkpoint modulation in glioma. , 2020, 8, e000379.		28
106	Spatiotemporal PET Imaging Reveals Differences in CAR-T Tumor Retention in Triple-Negative Breast Cancer Models. Molecular Therapy, 2020, 28, 2271-2285.	3.7	45
108	Current Clinical Evidence and Potential Solutions to Increase Benefit of CAR T-Cell Therapy for Patients with Solid Tumors. Oncolmmunology, 2020, 9, 1777064.	2.1	25
109	CAR-T Cell Therapy in Cancer: Tribulations and Road Ahead. Journal of Immunology Research, 2020, 2020, 1-11.	0.9	49

ARTICLE IF CITATIONS # New directions in chimeric antigen receptor T cell [CAR $\hat{\epsilon}$] therapy and related flow cytometry. 110 0.7 28 Cytometry Part B - Clinical Cytometry, 2020, 98, 299-327. Towards Physiologically and Tightly Regulated Vectored Antibody Therapies. Cancers, 2020, 12, 962. 1.7 Combination Strategies for Immune-Checkpoint Blockade and Response Prediction by Artificial 112 1.8 31 Intelligence. International Journal of Molecular Sciences, 2020, 21, 2856. Clinical practice: chimeric antigen receptor (CAR) T cells: a major breakthrough in the battle against 1.9 cancer. Clinical and Experimental Medicine, 2020, 20, 469-480. CAR-T cells: Early successes in blood cancer and challenges in solid tumors. Acta Pharmaceutica 114 5.7 47 Sinica B, 2021, 11, 1129-1147. Enhancing anti-tumour efficacy with immunotherapy combinations. Lancet, The, 2021, 397, 1010-1022. 6.3 Counteracting CAR T cell dysfunction. Oncogene, 2021, 40, 421-435. 116 2.6 76 Emerging vistas in CAR T-cell therapy: challenges and opportunities in solid tumors. Expert Opinion on 1.4 Biological Therapy, 2021, 21, 145-160. Insight into next-generation CAR therapeutics: designing CAR T cells to improve clinical outcomes. 118 3.9 54 Journal of Clinical Investigation, 2021, 131, . Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nature Reviews 12.8 Cancer, 2021, 21, 145-161. Construction of PD1/CD28 chimeric-switch receptor enhances anti-tumor ability of c-Met CAR-T in 120 2.1 34 gastric cancer. Oncolmmunology, 2021, 10, 1901434. CAR T cells in solid tumors: challenges and opportunities. Stem Cell Research and Therapy, 2021, 12, 81. 2.4 312 T Cell Exhaustion and CAR-T Immunotherapy in Hematological Malignancies. BioMed Research 122 0.9 35 International, 2021, 2021, 1-8. Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment. Cellular and Molecular Immunology, 2021, 18, 1085-1095. 4.8 74 Using Adoptive Cellular Therapy for Localized Protein Secretion. Cancer Journal (Sudbury, Mass), 124 1.0 3 2021, 27, 159-167. CAR-T cell persistence in the treatment of leukemia and lymphoma. Leukemia and Lymphoma, 2021, 62, 2587-2599. Determinants of Response and Mechanisms of Resistance of CAR T-cell Therapy in Multiple Myeloma. 126 2.6 40 Blood Cancer Discovery, 2021, 2, 302-318. Chimeric Antigen Receptor–Modified T Cells and T Cell–Engaging Bispecific Antibodies: Different 1.2 Tools for the Same Job. Current Hematologic Malignancy Reports, 2021, 16, 218-233.

#	Article	IF	Citations
128	Humanized Mouse Models for the Advancement of Innate Lymphoid Cell-Based Cancer Immunotherapies. Frontiers in Immunology, 2021, 12, 648580.	2.2	11
129	Chimeric antigen receptor-engineered natural killer cells: a promising cancer immunotherapy. Expert Review of Clinical Immunology, 2021, 17, 643-659.	1.3	5
130	Armored CAR T-Cells: The Next Chapter in T-Cell Cancer Immunotherapy. Biologics: Targets and Therapy, 2021, Volume 15, 95-105.	3.0	33
131	ShRNA-mediated silencing of PD-1 augments the efficacy of chimeric antigen receptor T cells on subcutaneous prostate and leukemia xenograft. Biomedicine and Pharmacotherapy, 2021, 137, 111339.	2.5	19
132	Single-cell transcriptomics: a novel precision medicine technique in nephrology. Korean Journal of Internal Medicine, 2021, 36, 479-490.	0.7	5
133	CAR T Cell-Based Immunotherapy for the Treatment of Glioblastoma. Frontiers in Neuroscience, 2021, 15, 662064.	1.4	80
134	How Can We Engineer CAR T Cells to Overcome Resistance?. Biologics: Targets and Therapy, 2021, Volume 15, 175-198.	3.0	8
135	Mechanisms of PD-L1 Regulation in Malignant and Virus-Infected Cells. International Journal of Molecular Sciences, 2021, 22, 4893.	1.8	12
136	Combination of CRISPR/Cas9 System and CAR-T Cell Therapy: A New Era for Refractory and Relapsed Hematological Malignancies. Current Medical Science, 2021, 41, 420-430.	0.7	5
137	Making Potent CAR T Cells Using Genetic Engineering and Synergistic Agents. Cancers, 2021, 13, 3236.	1.7	3
138	CAR T-cell therapy for pleural mesothelioma: Rationale, preclinical development, and clinical trials. Lung Cancer, 2021, 157, 48-59.	0.9	16
139	Vector Strategies to Actualize B Cell–Based Gene Therapies. Journal of Immunology, 2021, 207, 755-764.	0.4	5
140	Optimizing T Cell-Based Therapy for Glioblastoma. Frontiers in Immunology, 2021, 12, 705580.	2.2	9
141	"Builtâ€in―PDâ€1 blocker to rescue NKâ€92 activity from PDâ€L1–mediated tumor escape mechanisms. F Journal, 2021, 35, e21750.	ASEB	5
142	Advances in CAR design. Best Practice and Research in Clinical Haematology, 2021, 34, 101304.	0.7	4
143	Tumor Secretome to Adoptive Cellular Immunotherapy: Reduce Me Before I Make You My Partner. Frontiers in Immunology, 2021, 12, 717850.	2.2	10
144	Engineering strategies for broad application of TCR-T- and CAR-T-cell therapies. International Immunology, 2021, 33, 551-562.	1.8	20
145	Targeted immunotherapies to consider for B Cell non-hodgkin lymphoma. Expert Review of Precision Medicine and Drug Development, 2021, 6, 317-332.	0.4	0

CITAT	0.01	DEDO	DT
		K F P ()	ואו
011/11		ICEI O	

#	Article	IF	CITATIONS
146	The PD-1/PD-L1 Checkpoint in Normal Germinal Centers and Diffuse Large B-Cell Lymphomas. Cancers, 2021, 13, 4683.	1.7	9
147	Chimeric antigen receptor (CAR) immunotherapy: basic principles, current advances, and future prospects in neuro-oncology. Immunologic Research, 2021, 69, 471-486.	1.3	8
148	Harnessing the Immune System to Fight Multiple Myeloma. Cancers, 2021, 13, 4546.	1.7	10
149	Engineering solutions to design CAR-T cells. , 2022, , 1-31.		0
150	Beyond conventional immune-checkpoint inhibition — novel immunotherapies for renal cell carcinoma. Nature Reviews Clinical Oncology, 2021, 18, 199-214.	12.5	179
151	Chimeric Antigen Receptors for the Tumour Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1263, 117-143.	0.8	8
152	Mechanisms of Resistance to Checkpoint Blockade Therapy. Advances in Experimental Medicine and Biology, 2020, 1248, 83-117.	0.8	22
153	The dark side of immunotherapy: pancreatic cancer. , 2020, 3, 491-520.		15
154	Melanoma: Prognostic Factors and Factors Predictive of Response to Therapy. Current Medicinal Chemistry, 2020, 27, 2792-2813.	1.2	12
155	Design and Implementation of NK Cell-Based Immunotherapy to Overcome the Solid Tumor Microenvironment. Cancers, 2020, 12, 3871.	1.7	17
156	Manipulating the Metabolism to Improve the Efficacy of CAR T-Cell Immunotherapy. Cells, 2021, 10, 14.	1.8	34
157	The Role of Immune Checkpoints after Cellular Therapy. International Journal of Molecular Sciences, 2020, 21, 3650.	1.8	7
158	The progress of CAR-T therapy in cancer and beyond. STEMedicine, 2020, 1, e47.	0.5	13
159	Application of Chimeric Antigen Receptor-T Cell (CAR-T) in Non-Small Cell Lung Cancer. Advances in Clinical Medicine, 2021, 11, 4373-4377.	0.0	0
160	Current Status of CAR-T Cell Therapy in Multiple Myeloma. Hemato, 2021, 2, 660-671.	0.2	2
161	From Hematopoietic Stem Cell Transplantation to Chimeric Antigen Receptor Therapy: Advances, Limitations and Future Perspectives. Cells, 2021, 10, 2845.	1.8	6
162	CAR T cell therapy in solid tumors; with an extensive focus on obstacles and strategies to overcome the challenges. International Immunopharmacology, 2021, 101, 108260.	1.7	3
163	Development of Therapeutic Antibodies Against Carbonic Anhydrases. , 2019, , 305-322.		0

		Citation R	EPORT	
#	Article		IF	CITATIONS
164	Cellular transformers for targeted therapy. Advanced Drug Delivery Reviews, 2021, 179	, 114032.	6.6	8
165	Chimeric Antigen Receptor T-Cell Therapy in Lung Cancer: Potential and Challenges. Fro Immunology, 2021, 12, 782775.	ontiers in	2.2	23
166	Construction of PD1/CD28 Fusion Receptor Enhances Anti-Tumor Ability of c-Met CAR- Cancer. SSRN Electronic Journal, 0, , .	T in Gastric	0.4	0
167	Engineering T cells to survive and thrive in the hostile tumor microenvironment. Curren Biomedical Engineering, 2022, 21, 100360.	t Opinion in	1.8	5
168	Engineering Chimeric Antigen Receptor T cells to Treat Glioblastoma. The Journal of Tar Therapies in Cancer, 2017, 6, 22-25.	geted	2.0	10
170	Payload Delivery: Engineering Immune Cells to Disrupt the Tumour Microenvironment. 13, 6000.	Cancers, 2021,	1.7	3
171	Pushing Past the Blockade: Advancements in T Cell-Based Cancer Immunotherapies. Fro Immunology, 2021, 12, 777073.	ontiers in	2.2	5
172	Overview of the pre-clinical and clinical studies about the use of CAR-T cell therapy of c combined with oncolytic viruses. World Journal of Surgical Oncology, 2022, 20, 16.	ancer	0.8	12
174	Emerging strategies for treating autoimmune disorders with genetically modified Treg of Allergy and Clinical Immunology, 2022, 149, 1-11.	cells. Journal	1.5	21
175	Sweet Immune Checkpoint Targets to Enhance T Cell Therapy. Journal of Immunology, 2 278-285.	2022, 208,	0.4	15
176	Enhanced Chimeric Antigen Receptor T Cell Therapy through Co-Application of Synergis Combination Partners. Biomedicines, 2022, 10, 307.	stic	1.4	9
177	Combination of genetically engineered T cells and immune checkpoint blockade for the cancer. Immunotherapy Advances, 2022, 2, .	treatment of	1.2	8
178	Resistance and recurrence of malignancies after CAR-T cell therapy. Experimental Cell R 410, 112971.	esearch, 2022,	1.2	4
179	Strategies to overcome the side effects of chimeric antigen receptor T cell therapy. Anr York Academy of Sciences, 2022, 1510, 18-35.	als of the New	1.8	3
180	Anti-CAIX BBζ CAR4/8 TÂcells exhibit superior efficacy in a ccRCC mouse model. Molec Oncolytics, 2022, 24, 385-399.	ular Therapy -	2.0	15
181	Advances in CAR-T Cell Genetic Engineering Strategies to Overcome Hurdles in Solid Tu Treatment. Frontiers in Immunology, 2022, 13, 830292.	mors	2.2	24
182	Immunotherapy in Lung Cancer: Current Landscape and Future Directions. Frontiers in 2022, 13, 823618.	Immunology,	2.2	105
183	CAR T Cell Therapy in Primary Brain Tumors: Current Investigations and the Future. From Immunology, 2022, 13, 817296.	ntiers in	2.2	35

		CITATION	Report	
#	Article		IF	CITATIONS
184	Carbonic Anhydrase IX: A Renewed Target for Cancer Immunotherapy. Cancers, 2022, 14	4, 1392.	1.7	16
185	Emerging Novel Combined CAR-T Cell Therapies. Cancers, 2022, 14, 1403.		1.7	9
186	Update for Advance CAR-T Therapy in Solid Tumors, Clinical Application in Peritoneal Car From Colorectal Cancer and Future Prospects. Frontiers in Immunology, 2022, 13, 8414	cinomatosis 25.	2.2	10
187	Hurdles to breakthrough in CAR T cell therapy of solid tumors. Stem Cell Research and TI 13, 140.	nerapy, 2022,	2.4	20
188	Importance of T, NK, CAR T and CAR NK Cell Metabolic Fitness for Effective Anti-Cancer T Continuous Learning Process Allowing the Optimization of T, NK and CAR-Based Anti-Ca Cancers, 2022, 14, 183.	⁻ herapy: A ncer Therapies.	1.7	8
189	Immunotherapy against Gliomas. , 0, , .			0
190	Optimization of metabolism to improve efficacy during CAR-T cell manufacturing. Journa Translational Medicine, 2021, 19, 499.	l of	1.8	33
191	Humanized Germ-Free Mice for Investigating the Intervention Effect of Commensal Micr Cancer Immunotherapy. Antioxidants and Redox Signaling, 2022, 37, 1291-1302.	obiome on	2.5	0
192	T Cell–Mediated Targeted Delivery of Anti–PD-L1 Nanobody Overcomes Poor Antibo Improves PD-L1 Blocking at the Tumor Site. Cancer Immunology Research, 2022, 10, 71	ndy Penetration and 3-727.	1.6	4
193	Development of CAR T Cell Therapy in Children—A Comprehensive Overview. Journal of Medicine, 2022, 11, 2158.	^F Clinical	1.0	12
194	Engineering a single-chain variable fragment of cetuximab for CAR T-cell therapy against squamous cell carcinomas. Oral Oncology, 2022, 129, 105867.	head and neck	0.8	9
196	Immune Checkpoint Blockade via PD-L1 Potentiates More CD28-Based than 4-1BB-Based Anhydrase IX Chimeric Antigen Receptor T Cells. International Journal of Molecular Scien 5448.	d Anti-Carbonic ces, 2022, 23,	1.8	4
199	Systematic Review of Available CAR-T Cell Trials around the World. Cancers, 2022, 14, 20	567.	1.7	31
200	Engineering off-the-shelf universal CAR T cells: A silver lining in the cloud. Cytokine, 2022	2, 156, 155920.	1.4	4
201	CAR-T Cells in the Treatment of Urologic Neoplasms: Present and Future. Frontiers in On	cology, 0, 12, .	1.3	4
203	Multiple Myeloma Therapy: Emerging Trends and Challenges. Cancers, 2022, 14, 4082.		1.7	19
204	Understanding CAR TÂcell-tumor interactions: Paving the way for successful clinical outo 2022, 3, 538-564.	comes. Med,	2.2	11
205	Secretory co-factors in next-generation cellular therapies for cancer. Frontiers in Immunc	ology, 0, 13,	2.2	1

	Article	IF	CITATIONS
206	Paving the road to make chimeric antigen receptorâ€Tâ€cell therapy effective against solid tumors. Cancer Science, 2022, 113, 4020-4029.	1.7	2
207	Chimeric antigen receptor engineered cells and their clinical application in infectious disease. Clinical and Translational Discovery, 2022, 2, .	0.2	0
208	Beyond direct killing—novel cellular immunotherapeutic strategies to reshape the tumor microenvironment. Seminars in Immunopathology, 2023, 45, 215-227.	2.8	7
209	The journey of CAR-T therapy in hematological malignancies. Molecular Cancer, 2022, 21, .	7.9	45
210	Novel technologies for improving the safety and efficacy of CAR-T cell therapy. International Journal of Hematology, 2023, 117, 647-651.	0.7	4
211	Clinical cancer immunotherapy: Current progress and prospects. Frontiers in Immunology, 0, 13, .	2.2	39
212	Advances and Hurdles in CAR T Cell Immune Therapy for Solid Tumors. Cancers, 2022, 14, 5108.	1.7	9
213	Preclinical models for development of immune–oncology therapies. Immuno-oncology Insights, 2022, 03, 396-398.	0.0	2
214	Mechanisms of Resistance and Strategies to Combat Resistance in PD-(L)1 Blockade. Immuno, 2022, 2, 671-691.	0.6	2
215	Genetic enhancement: an avenue to combat aging-related diseases. , 2022, 1, 307-318.		14
216	Anti-CD19 chimeric antigen receptor T cells secreting anti-PD-L1 single-chain variable fragment attenuate PD-L1 mediated T cell inhibition. International Immunopharmacology, 2022, 113, 109442.	1.7	2
216 217	Anti-CD19 chimeric antigen receptor T cells secreting anti-PD-L1 single-chain variable fragment attenuate PD-L1 mediated T cell inhibition. International Immunopharmacology, 2022, 113, 109442. RNA Therapeutics for Improving CAR T-cell Safety and Efficacy. Cancer Research, 2023, 83, 354-362.	1.7 0.4	2
216 217 219	Anti-CD19 chimeric antigen receptor T cells secreting anti-PD-L1 single-chain variable fragment attenuate PD-L1 mediated T cell inhibition. International Immunopharmacology, 2022, 113, 109442. RNA Therapeutics for Improving CAR T-cell Safety and Efficacy. Cancer Research, 2023, 83, 354-362. CAR-NK as a Rapidly Developed and Efficient Immunotherapeutic Strategy against Cancer. Cancers, 2023, 15, 117.	1.7 0.4 1.7	2 6 7
216 217 219 220	Anti-CD19 chimeric antigen receptor T cells secreting anti-PD-L1 single-chain variable fragment attenuate PD-L1 mediated T cell inhibition. International Immunopharmacology, 2022, 113, 109442.RNA Therapeutics for Improving CAR T-cell Safety and Efficacy. Cancer Research, 2023, 83, 354-362.CAR-NK as a Rapidly Developed and Efficient Immunotherapeutic Strategy against Cancer. Cancers, 2023, 15, 117.Advanced T and Natural Killer Cell Therapy for Glioblastoma. Journal of Korean Neurosurgical Society, 2023, 66, 356-381.	1.7 0.4 1.7 0.5	2 6 7 0
216 217 219 220 221	Anti-CD19 chimeric antigen receptor T cells secreting anti-PD-L1 single-chain variable fragment attenuate PD-L1 mediated T cell inhibition. International Immunopharmacology, 2022, 113, 109442.RNA Therapeutics for Improving CAR T-cell Safety and Efficacy. Cancer Research, 2023, 83, 354-362.CAR-NK as a Rapidly Developed and Efficient Immunotherapeutic Strategy against Cancer. Cancers, 2023, 15, 117.Advanced T and Natural Killer Cell Therapy for Clioblastoma. Journal of Korean Neurosurgical Society, 2023, 66, 356-381.Chimeric Antigen Receptor T-Cell Therapy for Solid Tumors: The Past and the Future. Journal of Immunotherapy and Precision Oncology, 2023, 6, 19-30.	1.7 0.4 1.7 0.5 0.6	2 6 7 0 1
216 217 219 220 221 222	Anti-CD19 chimeric antigen receptor T cells secreting anti-PD-L1 single-chain variable fragment attenuate PD-L1 mediated T cell inhibition. International Immunopharmacology, 2022, 113, 109442. RNA Therapeutics for Improving CAR T-cell Safety and Efficacy. Cancer Research, 2023, 83, 354-362. CAR-NK as a Rapidly Developed and Efficient Immunotherapeutic Strategy against Cancer. Cancers, 2023, 15, 117. Advanced T and Natural Killer Cell Therapy for Clioblastoma. Journal of Korean Neurosurgical Society, 2023, 66, 356-381. Chimeric Antigen Receptor T-Cell Therapy for Solid Tumors: The Past and the Future. Journal of Immunotherapy and Precision Oncology, 2023, 6, 19-30. CAR T cells: engineered immune cells to treat brain cancers and beyond. Molecular Cancer, 2023, 22, .	1.7 0.4 1.7 0.5 0.6 7.9	2 6 7 0 1
 216 217 219 220 221 222 222 223 	Anti-CD19 chimeric antigen receptor T cells secreting anti-PD-L1 single-chain variable fragment attenuate PD-L1 mediated T cell inhibition. International Immunopharmacology, 2022, 113, 109442.RNA Therapeutics for Improving CAR T-cell Safety and Efficacy. Cancer Research, 2023, 83, 354-362.CAR-NK as a Rapidly Developed and Efficient Immunotherapeutic Strategy against Cancer. Cancers, 2023, 15, 117.Advanced T and Natural Killer Cell Therapy for Glioblastoma. Journal of Korean Neurosurgical Society, 2023, 66, 356-381.Chimeric Antigen Receptor T-Cell Therapy for Solid Tumors: The Past and the Future. Journal of Immunotherapy and Precision Oncology, 2023, 6, 19-30.CAR T cells: engineered immune cells to treat brain cancers and beyond. Molecular Cancer, 2023, 22, .Chimeric antigen receptor-modified cells for the treatment of solid tumors: First steps in a thousand-mile march. , 2023, 97-131.	1.7 0.4 1.7 0.5 0.6 7.9	2 6 7 0 1 7 0

#	Article	IF	CITATIONS
225	Chimeric antigen receptor T cells therapy in solid tumors. Clinical and Translational Oncology, 2023, 25, 2279-2296.	1.2	2
226	The current landscape of CAR T-cell therapy for solid tumors: Mechanisms, research progress, challenges, and counterstrategies. Frontiers in Immunology, 0, 14, .	2.2	23
227	Tâ€cell exhaustion in <scp>CARâ€T</scp> â€cell therapy and strategies to overcome it. Immunology, 2023, 169, 400-411.	2.0	7
228	Relationship between the tumor microenvironment and the efficacy of the combination of radiotherapy and immunotherapy. International Review of Cell and Molecular Biology, 2023, , .	1.6	1
250	Immuntherapie mit CAR-T-Zellen: der Durchbruch in der Krebsbehandlung. , 2023, , 147-159.		0
253	Recent advances in CAR T-cell engineering using synthetic biology: Paving the way for next-generation cancer treatment. Advances in Protein Chemistry and Structural Biology, 2024, , .	1.0	0