Overview of the Coupled Model Intercomparison Projection and organization

Geoscientific Model Development 9, 1937-1958

DOI: 10.5194/gmd-9-1937-2016

Citation Report

#	Article	IF	CITATIONS
2	Comparison of Ice-Phase Microphysical Parameterization Schemes Using Numerical Simulations of Tropical Convection. Journal of Applied Meteorology and Climatology, 1991, 30, 985-1004.	1.7	197
3	Sea-Level Rise: Causes, Impacts, and Scenarios forÂChange. , 2015, , 197-241.		2
4	C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6. Geoscientific Model Development, 2016, 9, 2853-2880.	1.3	186
7	Community Intercomparison Suite (CIS) v1.4.0: a tool for intercomparing models and observations. Geoscientific Model Development, 2016, 9, 3093-3110.	1.3	33
8	The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): understanding sea ice through climate-model simulations. Geoscientific Model Development, 2016, 9, 3427-3446.	1.3	83
12	The Vulnerability, Impacts, Adaptation and Climate Services Advisory Board (VIACS AB v1.0) contribution to CMIP6. Geoscientific Model Development, 2016, 9, 3493-3515.	1.3	31
13	LS3MIP (v1.0) contribution to CMIP6: the Land Surface, Snow and Soil moisture Model Intercomparison Project $\hat{a} \in \hat{a}$ aims, setup and expected outcome. Geoscientific Model Development, 2016, 9, 2809-2832.	1.3	152
14	The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geoscientific Model Development, 2016, 9, 2973-2998.	1.3	343
15	OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geoscientific Model Development, 2016, 9, 3231-3296.	1.3	223
16	Towards improved and more routine Earth system model evaluation in CMIP. Earth System Dynamics, 2016, 7, 813-830.	2.7	74
17	Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6. Geoscientific Model Development, 2016, 9, 4521-4545.	1.3	199
18	The Radiative Forcing Model Intercomparison Project (RFMIP): experimental protocol for CMIP6. Geoscientific Model Development, 2016, 9, 3447-3460.	1.3	178
19	The Detection and Attribution Model Intercomparison Project (DAMIPÂv1.0) contribution to CMIP6. Geoscientific Model Development, 2016, 9, 3685-3697.	1.3	280
20	The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) contribution to CMIP6: investigation of sea-level and ocean climate change in response to CO ₂ forcing. Geoscientific Model Development, 2016, 9, 3993-4017.	1.3	133
21	The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 2016, 9, 3461-3482.	1.3	2,084
22	GMMIP (v1.0) contribution to CMIP6: Global Monsoons Model Inter-comparison Project. Geoscientific Model Development, 2016, 9, 3589-3604.	1.3	93
23	The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geoscientific Model Development, 2016, 9, 3751-3777.	1.3	282
24	The Dynamics and Variability Model Intercomparison Project (DynVarMIP) for CMIP6: assessing the stratosphere–troposphere system. Geoscientific Model Development, 2016, 9, 3413-3425.	1.3	32

#	ARTICLE	IF	CITATIONS
25	High Resolution Model Intercomparison Project (HighResMIPÂv1.0) for CMIP6. Geoscientific Model Development, 2016, 9, 4185-4208.	1.3	643
26	P-CSI v1.0, an accelerated barotropic solver for the high-resolution ocean model component in the Community Earth System Model v2.0. Geoscientific Model Development, 2016, 9, 4209-4225.	1.3	15
27	The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6. Geoscientific Model Development, 2016, 9, 2701-2719.	1.3	138
28	Aspen Global Change Institute: 25 Years of Interdisciplinary Global Change Science. Bulletin of the American Meteorological Society, 2016, 97, 2027-2037.	1.7	0
29	An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model. Ecological Modelling, 2016, 336, 36-56.	1.2	5
30	Using climate models to estimate the quality of global observational data sets. Science, 2016, 354, 452-455.	6.0	43
31	A semi-empirical model for mesospheric and stratospheric NO _{produced by energetic particle precipitation. Atmospheric Chemistry and Physics, 2016, 16, 8667-8693.}	1.9	20
32	Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. Global and Planetary Change, 2017, 150, 58-69.	1.6	49
33	Benchmarking CMIP5 models with a subset of ESA CCI Phase 2 data using the ESMValTool. Remote Sensing of Environment, 2017, 203, 9-39.	4.6	34
34	Selection of a representative subset of global climate models that captures the profile of regional changes for integrated climate impacts assessment. Earth Perspectives Transdisciplinarity Enabled, 2017, 4, .	1.4	82
36	A climate model projection weighting scheme accounting for performance and interdependence. Geophysical Research Letters, 2017, 44, 1909-1918.	1.5	278
37	Still weighting to break the model democracy. Geophysical Research Letters, 2017, 44, 3328-3329.	1.5	10
38	Aerosol and Solar Irradiance Effects on Decadal Climate Variability and Predictability. Current Climate Change Reports, 2017, 3, 150-162.	2.8	22
39	The Global Aerosol Synthesis and Science Project (GASSP): Measurements and Modeling to Reduce Uncertainty. Bulletin of the American Meteorological Society, 2017, 98, 1857-1877.	1.7	52
40	Decadal climate predictions improved by ocean ensemble dispersion filtering. Journal of Advances in Modeling Earth Systems, 2017, 9, 1138-1149.	1.3	15
41	Representing water scarcity in future agricultural assessments. Anthropocene, 2017, 18, 15-26.	1.6	27
42	The Role of Forcings in the Twentieth-Century North Atlantic Multidecadal Variability: The 1940–75 North Atlantic Cooling Case Study. Journal of Climate, 2017, 30, 7317-7337.	1.2	57
43	Impact of oceanic warming on electromagnetic oceanic tidal signals: A CMIP5 climate modelâ€based sensitivity study. Geophysical Research Letters, 2017, 44, 4994-5000.	1.5	21

#	Article	IF	CITATIONS
44	Learning about climate change solutions in the IPCC and beyond. Environmental Science and Policy, 2017, 77, 252-259.	2.4	113
45	Linking sea level rise and socioeconomic indicators under the Shared Socioeconomic Pathways. Environmental Research Letters, 2017, 12, 114002.	2.2	39
46	New vigour involving statisticians to overcome ensemble fatigue. Nature Climate Change, 2017, 7, 697-703.	8.1	31
47	The Multisensor Advanced Climatology of Liquid Water Path (MAC-LWP). Journal of Climate, 2017, 30, 10193-10210.	1.2	72
48	Progress in climate modelling. Nature Climate Change, 2017, 7, 684-685.	8.1	39
49	Causes of model dry and warm bias over central U.S. and impact on climate projections. Nature Communications, 2017, 8, 881.	5.8	92
50	Request aggregation, caching, and forwarding strategies for improving large climate data distribution with NDN. , 2017 , , .		15
51	Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets. Astrophysical Journal, Supplement Series, 2017, 231, 12.	3.0	106
52	Parallel Post-Processing of the Earth Climate Model Output. Procedia Computer Science, 2017, 108, 2473-2477.	1.2	2
53	Framework for Incorporating Downscaled Climate Output into Existing Engineering Methods: Application to Precipitation Frequency Curves. Journal of Infrastructure Systems, 2017, 23, .	1.0	31
54	Spectators or participants: How can SETAC become more engaged in international climate change research programs?. Environmental Toxicology and Chemistry, 2017, 36, 1971-1977.	2.2	6
55	A Process-Based Assessment of Decadal-Scale Surface Temperature Evolutions in the NCAR CCSM4's 25-Year Hindcast Experiments. Journal of Climate, 2017, 30, 6723-6736.	1.2	6
56	Evaluation of the computational performance of the finite-volume atmospheric model of the IAP/LASG (FAMIL) on a high-performance computer. Atmospheric and Oceanic Science Letters, 2017, 10, 329-336.	0.5	14
57	Educational and Scientific Applications of Climate Model Diagnostic Analyzer. , 2017, , .		0
58	Impact of deforestation and climate on the Amazon Basin's above-ground biomass during 1993–2012. Scientific Reports, 2017, 7, 15615.	1.6	20
59	Radiative and Chemical Response to Interactive Stratospheric Sulfate Aerosols in Fully Coupled CESM1 (WACCM). Journal of Geophysical Research D: Atmospheres, 2017, 122, 13,061.	1.2	128
60	CMIP5 Scientific Gaps and Recommendations for CMIP6. Bulletin of the American Meteorological Society, 2017, 98, 95-105.	1.7	207
61	Toward Understanding the Diverse Impacts of Airâ€Sea Interactions on MJO Simulations. Journal of Geophysical Research: Oceans, 2017, 122, 8855-8875.	1.0	13

#	Article	IF	CITATIONS
62	Leveraging Climate Regulation by Ecosystems for Agriculture to Promote Ecosystem Stewardship. Tropical Conservation Science, 2017, 10, 194008291772067.	0.6	8
63	Impacts of MtÂPinatubo volcanic aerosol on the tropical stratosphere in chemistry–climate model simulations using CCMI and CMIP6 stratospheric aerosol data. Atmospheric Chemistry and Physics, 2017, 17, 13139-13150.	1.9	16
64	Is future climate predictable with statistics?. ESAIM Proceedings and Surveys, 2017, 60, 104-113.	0.5	O
65	The Asian Monsoon and its Future Change in Climate Models: A Review. Journal of the Meteorological Society of Japan, 2017, 95, 7-33.	0.7	81
66	Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the periodÂ1990–2015. Atmospheric Chemistry and Physics, 2017, 17, 2709-2720.	1.9	87
67	HEPPA-II model–measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008–2009. Atmospheric Chemistry and Physics, 2017, 17, 3573-3604.	1.9	55
68	A New Paradigm for Diagnosing Contributions to Model Aerosol Forcing Error. Geophysical Research Letters, 2017, 44, 12,004.	1.5	8
69	Statistical evaluation of future soil moisture changes in East Asia projected in a CMIP5 multi-model ensemble. Hydrological Research Letters, 2017, 11, 37-43.	0.3	2
70	The underestimated magnitude and decline trend in nearâ€surface wind over China. Atmospheric Science Letters, 2017, 18, 475-483.	0.8	11
71	The PMIP4 contribution to CMIP6 – Part 4: Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments. Geoscientific Model Development, 2017, 10, 4035-4055.	1.3	137
72	The BRIDGE HadCM3 family of climate models: HadCM3@BristolÂv1.0. Geoscientific Model Development, 2017, 10, 3715-3743.	1.3	188
73	MACv2-SP: a parameterization of anthropogenic aerosol optical properties and an associated Twomey effect for use in CMIP6. Geoscientific Model Development, 2017, 10, 433-452.	1.3	130
74	AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6. Geoscientific Model Development, 2017, 10, 585-607.	1.3	202
7 5	A JavaScript API for the Ice Sheet System Model (ISSM) 4.11: towards an online interactive model for the cryosphere community. Geoscientific Model Development, 2017, 10, 4393-4403.	1.3	2
76	The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6. Geoscientific Model Development, 2017, 10, 359-384.	1.3	186
77	Integrating Long Tide Gauge Records with Projection Modelling Outputs. A Case Study: New York. Journal of Marine Science and Engineering, 2017, 5, 34.	1.2	1
78	Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP). Geoscientific Model Development, 2017, 10, 2169-2199.	1.3	137
79	Historical greenhouse gas concentrations for climate modelling (CMIP6). Geoscientific Model Development, 2017, 10, 2057-2116.	1.3	350

#	ARTICLE	IF	Citations
80	The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geoscientific Model Development, 2017, 10, 1487-1520.	1.3	401
81	Current challenges of implementing anthropogenic land-use and land-cover change in models contributing to climate change assessments. Earth System Dynamics, 2017, 8, 369-386.	2.7	69
82	Compiled records of carbon isotopes in atmospheric CO ₂ for historical simulations in CMIP6. Geoscientific Model Development, 2017, 10, 4405-4417.	1.3	154
83	North Atlantic deep water formation and AMOC in CMIP5 models. Ocean Science, 2017, 13, 609-622.	1.3	94
84	Simulating natural carbon sequestration in the Southern Ocean: on uncertainties associated with eddy parameterizations and iron deposition. Biogeosciences, 2017, 14, 1561-1576.	1.3	4
86	The DeepMIP contribution to PMIP4: experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0). Geoscientific Model Development, 2017, 10, 889-901.	1.3	90
88	Snowmelt response to simulated warming across a large elevation gradient, southern Sierra Nevada, California. Cryosphere, 2017, 11, 2847-2866.	1.5	29
89	The PMIP4 contribution to CMIP6 – Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations. Geoscientific Model Development, 2017, 10, 3979-4003.	1.3	171
90	Uncertainties in the land-use flux resulting from land-use change reconstructions and gross land transitions. Earth System Dynamics, 2017, 8, 91-111.	2.7	36
91	The PMIP4 contribution to CMIP6 – Part 3: The last millennium, scientific objective, and experimental design for the PMIP4 <i>past1000</i> simulations. Geoscientific Model Development, 2017, 10, 4005-4033.	1.3	155
92	Solar forcing for CMIP6 (v3.2). Geoscientific Model Development, 2017, 10, 2247-2302.	1.3	293
93	The Sectional Stratospheric Sulfate Aerosol module (S3A-v1) within the LMDZ general circulation model: description and evaluation against stratospheric aerosol observations. Geoscientific Model Development, 2017, 10, 3359-3378.	1.3	14
94	Evaluating the performance of coupled snow–soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site. Geoscientific Model Development, 2017, 10, 3461-3479.	1.3	37
95	Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability. Cryosphere, 2017, 11, 2595-2609.	1.5	28
96	Carbon–nitrogen interactions in idealized simulations with JSBACH (version 3.10). Geoscientific Model Development, 2017, 10, 2009-2030.	1.3	47
97	Interdependency in Multimodel Climate Projections: Component Replication and Result Similarity. Geophysical Research Letters, 2018, 45, 2771-2779.	1.5	38
98	The GFDL Global Atmosphere and Land Model AM4.0/LM4.0: 1. Simulation Characteristics With Prescribed SSTs. Journal of Advances in Modeling Earth Systems, 2018, 10, 691-734.	1.3	155
99	Indian Summer Monsoon Simulations: Usefulness of Increasing Horizontal Resolution, Manual Tuning, and Semi-Automatic Tuning in Reducing Present-Day Model Biases. Scientific Reports, 2018, 8, 3522.	1.6	30

#	Article	IF	CITATIONS
100	Multimodel Surface Temperature Responses to Removal of U.S. Sulfur Dioxide Emissions. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2773-2796.	1.2	15
101	An Ensemble Covariance Framework for Quantifying Forced Climate Variability and Its Time of Emergence. Journal of Climate, 2018, 31, 4117-4133.	1.2	11
102	Scenarios towards limiting global mean temperature increase below 1.5 \hat{A}° C. Nature Climate Change, 2018, 8, 325-332.	8.1	795
103	The Impact of Stratospheric Ozone Feedbacks on Climate Sensitivity Estimates. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4630-4641.	1.2	25
104	Impact of model resolution on the representation of the air–sea interaction associated with the North Water Polynya. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 1474-1489.	1.0	17
105	Tropical convection regimes in climate models: evaluation with satellite observations. Atmospheric Chemistry and Physics, 2018, 18, 4657-4672.	1.9	6
106	Nonstationary fuzzy forecasting of wind and wave climate in very long-term scales. Journal of Ocean Engineering and Science, 2018, 3, 144-155.	1.7	12
107	Nitrogen deposition outweighs climatic variability in driving annual growth rate of canopy beech trees: Evidence from longâ€term growth reconstruction across a geographic gradient. Global Change Biology, 2018, 24, 2898-2912.	4.2	22
108	Inconsistent Responses of Hot Extremes to Historical Land Use and Cover Change Among the Selected CMIP5 Models. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3497-3512.	1.2	19
109	Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science, 2018, 359, .	6.0	397
110	The Accelerating Land Carbon Sink of the 2000s May Not Be Driven Predominantly by the Warming Hiatus. Geophysical Research Letters, 2018, 45, 1402-1409.	1.5	13
111	Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation. Global Environmental Change, 2018, 48, 119-135.	3.6	202
112	CAUSES: Attribution of Surface Radiation Biases in NWP and Climate Models near the U.S. Southern Great Plains. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3612-3644.	1.2	62
113	Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations. Atmospheric Chemistry and Physics, 2018, 18, 1091-1114.	1.9	56
114	Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt.ÂTambora. Atmospheric Chemistry and Physics, 2018, 18, 2307-2328.	1.9	41
115	Open and scalable analytics of large Earth observation datasets: From scenes to multidimensional arrays using SciDB and GDAL. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 138, 47-56.	4.9	35
116	Understanding the Central Equatorial African long-term drought using AMIP-type simulations. Climate Dynamics, 2018, 50, 1115-1128.	1.7	44
117	Evaluating Climate Models with an African Lens. Bulletin of the American Meteorological Society, 2018, 99, 313-336.	1.7	71

#	Article	IF	CITATIONS
118	Climate Modeling. , 2018, , 205-216.		0
119	Multivariate Time Series Analysis in Climate and Environmental Research. , 2018, , .		46
120	Arctic Climate Changes Based on Historical Simulations (1900â€'2013) with the CAMS-CSM. Journal of Meteorological Research, 2018, 32, 881-895.	0.9	6
121	Global Mean Climate and Main Patterns of Variability in the CMCC M2 Coupled Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 185-209.	1.3	202
122	Near-global climate simulation at 1 km resolution: establishing a performance baseline on 4888 GPUs with COSMO 5.0. Geoscientific Model Development, 2018, 11, 1665-1681.	1.3	110
123	Longâ€Term Climate Simulations Using the IITM Earth System Model (IITMâ€ESMv2) With Focus on the South Asian Monsoon. Journal of Advances in Modeling Earth Systems, 2018, 10, 1127-1149.	1.3	28
124	Influence of radiative forcing factors on ground–air temperature coupling during the last millennium: implications for borehole climatology. Climate of the Past, 2018, 14, 1583-1606.	1.3	15
125	Assessing the impact of aÂfuture volcanic eruption on decadal predictions. Earth System Dynamics, 2018, 9, 701-715.	2.7	9
126	The impact of precipitation evaporation on the atmospheric aerosol distribution in EC-Earth v3.2.0. Geoscientific Model Development, 2018, 11, 1443-1465.	1.3	12
128	Improved Aerosol Processes and Effective Radiative Forcing in HadGEM3 and UKESM1. Journal of Advances in Modeling Earth Systems, 2018, 10, 2786-2805.	1.3	106
129	How Long should the MISR Record Be when Evaluating Aerosol Optical Depth Climatology in Climate Models?. Remote Sensing, 2018, 10, 1326.	1.8	11
130	A run control framework to streamline profiling, porting, and tuning simulation runs and provenance tracking of geoscientific applications. Geoscientific Model Development, 2018, 11, 2875-2895.	1.3	3
131	Singleâ€Column Modeling of Convection During the CINDY2011/DYNAMO Field Campaign With the CNRM Climate Model Version 6. Journal of Advances in Modeling Earth Systems, 2018, 10, 578-602.	1.3	8
132	Response of the Intertropical Convergence Zone to Climate Change: Location, Width, and Strength. Current Climate Change Reports, 2018, 4, 355-370.	2.8	165
133	Post-Processing Strategies for the ECMWF Model. , 2018, , .		0
134	Spatial Assessment of Water Use Efficiency (SDG Indicator 6.4.1) for Regional Policy Support. Frontiers in Environmental Science, 2018, 6, .	1.5	16
135	Ocean Warming: From the Surface to the Deep in Observations and Models. Oceanography, 2018, 31, 41-51.	0.5	33
136	Irrigation variability and climate change affect derived distributions of simulated water recharge and nitrate leaching. Water International, 2018, 43, 829-845.	0.4	3

#	ARTICLE	IF	CITATIONS
137	The Benefits of Global High Resolution for Climate Simulation: Process Understanding and the Enabling of Stakeholder Decisions at the Regional Scale. Bulletin of the American Meteorological Society, 2018, 99, 2341-2359.	1.7	107
138	Climate change projections from Coupled Model Intercomparison Project phase 5 multiâ€model weighted ensembles for Mexico, the North American monsoon, and the midâ€summer drought region. International Journal of Climatology, 2018, 38, 5699-5716.	1.5	57
139	Simulation of observed climate changes in 1850–2014 with climate model INM-CM5. Earth System Dynamics, 2018, 9, 1235-1242.	2.7	55
140	Climate change vs. socio-economic development: understanding the future South Asian water gap. Hydrology and Earth System Sciences, 2018, 22, 6297-6321.	1.9	54
142	Toward reduction of the uncertainties in climate sensitivity due to cloud processes using a global non-hydrostatic atmospheric model. Progress in Earth and Planetary Science, 2018, 5, .	1.1	28
143	Change in future climate due to Antarctic meltwater. Nature, 2018, 564, 53-58.	13.7	189
144	Regional Climate Model Evaluation System powered by Apache Open Climate Workbench $\nu 1.3.0$: an enabling tool for facilitating regional climate studies. Geoscientific Model Development, 2018, 11, 4435-4449.	1.3	16
145	Preindustrial Control Simulations With HadGEM3â€GC3.1 for CMIP6. Journal of Advances in Modeling Earth Systems, 2018, 10, 3049-3075.	1.3	62
146	Understanding the Equatorial Pacific Cold Tongue Time-Mean Heat Budget. Part II: Evaluation of the GFDL-FLOR Coupled GCM. Journal of Climate, 2018, 31, 9987-10011.	1.2	11
147	A Hierarchical Statistical Framework for Emergent Constraints: Application to Snowâ€Albedo Feedback. Geophysical Research Letters, 2018, 45, 13,050.	1.5	30
148	Simulation of Climate and Weather Extreme Indices with the INM-CM5 Climate Model. Russian Meteorology and Hydrology, 2018, 43, 756-762.	0.2	6
149	Projections of Future Sea Level Contributions from the Greenland and Antarctic Ice Sheets: Challenges Beyond Dynamical Ice Sheet Modeling. Oceanography, 2018, 31, .	0.5	21
150	Role of Penetrative Convection under the Ice in the Formation of the State of the World Ocean. Izvestiya - Atmospheric and Oceanic Physics, 2018, 54, 594-607.	0.2	1
151	ESM-SnowMIP: assessing snow models and quantifying snow-related climate feedbacks. Geoscientific Model Development, 2018, 11, 5027-5049.	1.3	119
152	The CAMS Climate System Model and a Basic Evaluation of Its Climatology and Climate Variability Simulation. Journal of Meteorological Research, 2018, 32, 839-861.	0.9	48
153	An Assessment of CAMS-CSM in Simulating Land–Atmosphere Heat and Water Exchanges. Journal of Meteorological Research, 2018, 32, 862-880.	0.9	4
154	The Experimental Basis for the Inclusion of Nitrogen Within Terrestrial Biosphere Modeling Framework. , 2018, , .		0
155	Climate, weather, space weather: model development in an operational context. Journal of Space Weather and Space Climate, 2018, 8, A32.	1.1	5

#	ARTICLE	IF	Citations
156	How Well Are Clouds Simulated over Greenland in Climate Models? Consequences for the Surface Cloud Radiative Effect over the Ice Sheet. Journal of Climate, 2018, 31, 9293-9312.	1.2	12
157	The Impact of Processâ€Based Warm Rain Constraints on the Aerosol Indirect Effect. Geophysical Research Letters, 2018, 45, 10,729.	1.5	28
158	Global Investigation of Soil Moisture and Latent Heat Flux Coupling Strength. Water Resources Research, 2018, 54, 8196-8215.	1.7	34
159	The Effect of Global Warming on Future Water Availability: CMIP5 Synthesis. Water Resources Research, 2018, 54, 7791-7819.	1.7	47
160	Using machine learning to build temperature-based ozone parameterizations for climate sensitivity simulations. Environmental Research Letters, 2018, 13, 104016.	2.2	48
161	Energy budget-based backscatter in a shallow water model of a double gyre basin. Ocean Modelling, 2018, 132, 1-11.	1.0	14
162	Distinct Influences of Land Cover and Land Management on Seasonal Climate. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12017-12039.	1,2	26
163	The Cloud Feedback Model Intercomparison Project Observational Simulator Package: Version 2. Geoscientific Model Development, 2018, 11, 77-81.	1.3	65
164	A Review of Climate Change Attribution Studies. Journal of Meteorological Research, 2018, 32, 671-692.	0.9	59
165	Requirements for a global data infrastructure in support of CMIP6. Geoscientific Model Development, 2018, 11, 3659-3680.	1.3	62
166	Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison. Cryosphere, 2018, 12, 1433-1460.	1.5	89
167	The Lowâ€Resolution Version of HadGEM3 GC3.1: Development and Evaluation for Global Climate. Journal of Advances in Modeling Earth Systems, 2018, 10, 2865-2888.	1.3	142
168	The impact of spatiotemporal variability in atmospheric CO ₂ concentration on global terrestrial carbon fluxes. Biogeosciences, 2018, 15, 5635-5652.	1.3	9
169	19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers. Cryosphere, 2018, 12, 3311-3331.	1.5	64
170	An ensemble of AMIP simulations with prescribed land surface temperatures. Geoscientific Model Development, 2018, 11, 3865-3881.	1.3	12
171	A Prospectus for Constraining Rapid Cloud Adjustments in General Circulation Models. Journal of Advances in Modeling Earth Systems, 2018, 10, 2080-2094.	1.3	3
172	Climate model configurations of the ECMWF Integrated Forecasting System (ECMWF-IFS cycle 43r1) for HighResMIP. Geoscientific Model Development, 2018, 11, 3681-3712.	1.3	104
173	Antarctic sub-shelf melt rates via PICO. Cryosphere, 2018, 12, 1969-1985.	1.5	73

#	Article	IF	CITATIONS
174	Volcanic Radiative Forcing From 1979 to 2015. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12491-12508.	1.2	87
175	Understanding the Equatorial Pacific Cold Tongue Time-Mean Heat Budget. Part I: Diagnostic Framework. Journal of Climate, 2018, 31, 9965-9985.	1.2	16
176	The climate of a retrograde rotating Earth. Earth System Dynamics, 2018, 9, 1191-1215.	2.7	21
177	Improving the representation of anthropogenic CO ₂ emissions in climate models: impact of a new parameterization for the Community Earth System ModelA(CESM). Earth System Dynamics, 2018, 9, 1045-1062.	2.7	13
178	Using a virtual machine environment for developing, testing, and training for the UM-UKCA composition-climate model, using Unified Model version 10.9 and above. Geoscientific Model Development, 2018, 11, 3647-3657.	1.3	3
179	A Large Committed Longâ€Term Sink of Carbon due to Vegetation Dynamics. Earth's Future, 2018, 6, 1413-1432.	2.4	24
180	Stable Equatorial Ice Belts at High Obliquity in a Coupled Atmosphere–Ocean Model. Astrophysical Journal, 2018, 864, 106.	1.6	21
181	UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions. Geoscientific Model Development, 2018, 11, 3187-3213.	1.3	124
182	Overview of experiment design and comparison of models participating in phase 1 of the SPARC Quasi-Biennial Oscillation initiative (QBOi). Geoscientific Model Development, 2018, 11, 1009-1032.	1.3	81
183	Can Climate Models Reproduce the Decadal Change of Dust Aerosol in East Asia?. Geophysical Research Letters, 2018, 45, 9953-9962.	1.5	34
184	Ocean Carbon Cycle Feedbacks Under Negative Emissions. Geophysical Research Letters, 2018, 45, 5062-5070.	1.5	32
185	Global energetics and local physics as drivers of past, present and future monsoons. Nature Geoscience, 2018, 11, 392-400.	5. 4	100
186	A methodology and implementation of automated emissions harmonization for use in Integrated Assessment Models. Environmental Modelling and Software, 2018, 105, 187-200.	1.9	32
187	The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6. Geoscientific Model Development, 2018, 11, 1133-1160.	1.3	113
188	Reviews and syntheses: Carbonyl sulfide as aÂmulti-scale tracer for carbon and water cycles. Biogeosciences, 2018, 15, 3625-3657.	1.3	98
189	Modular System for Shelves and Coasts (MOSSCOÂv1.0) – a flexible and multi-component framework for coupled coastal ocean ecosystem modelling. Geoscientific Model Development, 2018, 11, 915-935.	1.3	17
190	Canadian snow and sea ice: historical trends and projections. Cryosphere, 2018, 12, 1157-1176.	1.5	95
191	The PMIP4 contribution to CMIP6 – Part 1: Overview and over-arching analysis plan. Geoscientific Model Development, 2018, 11, 1033-1057.	1.3	164

#	Article	IF	Citations
192	A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geoscientific Model Development, 2018, 11, 1421-1442.	1.3	116
193	An interactive ocean surface albedo scheme (OSAv1.0): formulation and evaluation in ARPEGE-Climat (V6.1) and LMDZ (V5A). Geoscientific Model Development, 2018, 11, 321-338.	1.3	24
194	Why Do Models Produce Spread in Snow Albedo Feedback?. Geophysical Research Letters, 2018, 45, 6223-6231.	1.5	34
195	On the Simulations of Global Oceanic Latent Heat Flux in the CMIP5 Multimodel Ensemble. Journal of Climate, 2018, 31, 7111-7128.	1.2	16
196	Radiative–convective equilibrium model intercomparison project. Geoscientific Model Development, 2018, 11, 793-813.	1.3	127
197	Process-level improvements in CMIP5 models and their impact on tropical variability, the Southern Ocean, and monsoons. Earth System Dynamics, 2018, 9, 33-67.	2.7	13
198	Climate pattern-scaling set for an ensemble of 22ÂGCMs – adding uncertainty to the IMOGEN versionÂ2.0 impact system. Geoscientific Model Development, 2018, 11, 541-560.	1.3	14
199	The NUIST Earth System ModelÂ(NESM) versionÂ3: description and preliminary evaluation. Geoscientific Model Development, 2018, 11, 2975-2993.	1.3	135
200	Radiative effects of ozone waves on the Northern Hemisphere polar vortex and its modulation by the QBO. Atmospheric Chemistry and Physics, 2018, 18, 6637-6659.	1.9	19
201	How Well Do AR5 Sea Surface-Height Model Projections Match Observational Rates of Sea-Level Rise at the Regional Scale?. Journal of Marine Science and Engineering, 2018, 6, 11.	1.2	4
202	Ensembles vs. information theory: supporting science under uncertainty. Frontiers of Earth Science, 2018, 12, 653-660.	0.9	21
203	Top of Atmosphere Broadband Radiative Fluxes From Geostationary Satellite Observations. , 2018, , 85-113.		0
204	Coordination to Understand and Reduce Global Model Biases by U.S. and Chinese Institutions. Bulletin of the American Meteorological Society, 2018, 99, ES109-ES113.	1.7	4
205	Impact of climate change on backup energy and storage needs in wind-dominated power systems in Europe. PLoS ONE, 2018, 13, e0201457.	1.1	30
206	Storylines and Pathways for Adaptation in Europe. , 2018, , 7-47.		0
207	ICONâ€A, the Atmosphere Component of the ICON Earth System Model: I. Model Description. Journal of Advances in Modeling Earth Systems, 2018, 10, 1613-1637.	1.3	123
208	Climate shifts within major agricultural seasons for $+1.5$ and $+2.0~{\hat {\sf A}}^{\circ}{\sf C}$ worlds: HAPPI projections and AgMIP modeling scenarios. Agricultural and Forest Meteorology, 2018, 259, 329-344.	1.9	39
209	Model structures amplify uncertainty in predicted soil carbon responses to climate change. Nature Communications, 2018, 9, 2171.	5.8	88

#	Article	IF	CITATIONS
210	Impacts of Different Cumulus Schemes on the Pathways through which SST Provides Feedback to the Madden–Julian Oscillation. Journal of Climate, 2018, 31, 5559-5579.	1.2	6
211	An Overview of Interactions and Feedbacks Between Ice Sheets and the Earth System. Reviews of Geophysics, 2018, 56, 361-408.	9.0	58
212	A Higherâ€resolution Version of the Max Planck Institute Earth System Model (MPlâ€ESM1.2â€HR). Journal of Advances in Modeling Earth Systems, 2018, 10, 1383-1413.	1.3	272
213	Evaluation of multi-decadal UCLA-CFSv2 simulation and impact of interactive atmospheric-ocean feedback on global and regional variability. Climate Dynamics, 2019, 52, 3683-3707.	1.7	12
214	Parametric Controls on Vegetation Responses to Biogeochemical Forcing in the CLM5. Journal of Advances in Modeling Earth Systems, 2019, 11, 2879-2895.	1.3	69
215	A hierarchical collection of political/economic regions for analysis of climate extremes. Climatic Change, 2019, 155, 639-656.	1.7	8
216	Climate Model Uncertainty and Trend Detection in Regional Sea Level Projections: A Review. Surveys in Geophysics, 2019, 40, 1631-1653.	2.1	13
217	Verification of a seeder–feeder orographic precipitation enhancement scheme accounting for lowâ€level blocking. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 2909-2932.	1.0	2
218	Infiltration from the Pedon to Global Grid Scales: An Overview and Outlook for Land Surface Modeling. Vadose Zone Journal, 2019, 18, 1-53.	1.3	56
219	Evaluation of an Online Gridâ€Coarsening Algorithm in a Global Eddyâ€Admitting Ocean Biogeochemical Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 1759-1783.	1.3	32
220	Enhancing Skill of Initialized Decadal Predictions Using a Dynamic Model of Drift. Geophysical Research Letters, 2019, 46, 9991-9999.	1.5	7
221	The remote sensing of radiative forcing by light-absorbing particles (LAPs) in seasonal snow over northeastern China. Atmospheric Chemistry and Physics, 2019, 19, 9949-9968.	1.9	19
222	Beyond Static Benchmarking: Using Experimental Manipulations to Evaluate Land Model Assumptions. Global Biogeochemical Cycles, 2019, 33, 1289-1309.	1.9	59
223	Estimating and tracking the remaining carbon budget for stringent climate targets. Nature, 2019, 571, 335-342.	13.7	229
224	Land Cover Change Intensifies Actual and Potential Radiative Forcing through CO2 in South and Southeast Asia from 1992 to 2015. International Journal of Environmental Research and Public Health, 2019, 16, 2460.	1.2	8
225	Understanding Intermodel Diversity of CMIP5 Climate Models in Simulating East Asian Marginal Sea Surface Temperature in the Near Future (2020–2049). Journal of Geophysical Research: Oceans, 2019, 124, 5607-5617.	1.0	1
226	Regional grid refinement in an Earth system model: impacts on the simulated Greenland surface mass balance. Cryosphere, 2019, 13, 1547-1564.	1.5	26
227	The impact of horizontal atmospheric resolution in modelling air–sea heat fluxes. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 3271-3283.	1.0	7

#	Article	IF	Citations
228	Surface Flux Drivers for the Slowdown of the Atlantic Meridional Overturning Circulation in a Highâ€Resolution Global Coupled Climate Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 1349-1363.	1.3	11
229	Recent Changes in the ISBAâ€CTRIP Land Surface System for Use in the CNRMâ€CM6 Climate Model and in Global Offâ€Line Hydrological Applications. Journal of Advances in Modeling Earth Systems, 2019, 11, 1207-1252.	1.3	120
230	High Climate Sensitivity in the Community Earth System Model Version 2 (CESM2). Geophysical Research Letters, 2019, 46, 8329-8337.	1.5	249
231	Largely underestimated carbon emission from land use and land cover change in the conterminous United States. Global Change Biology, 2019, 25, 3741-3752.	4.2	46
232	CAS FGOALS-f3-L Model Datasets for CMIP6 Historical Atmospheric Model Intercomparison Project Simulation. Advances in Atmospheric Sciences, 2019, 36, 771-778.	1.9	109
233	Investigating the feedbacks between CO2, vegetation and the AMOC in a coupled climate model. Climate Dynamics, 2019, 53, 2485-2500.	1.7	5
234	Decision-making in model construction: Unveiling habits. Environmental Modelling and Software, 2019, 120, 104490.	1.9	14
235	Significant improvement of cloud representation in the global climate model MRI-ESM2. Geoscientific Model Development, 2019, 12, 2875-2897.	1.3	60
236	ESD Reviews: Climate feedbacks in the Earth system and prospects for their evaluation. Earth System Dynamics, 2019, 10, 379-452.	2.7	46
237	Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geoscientific Model Development, 2019, 12, 2727-2765.	1.3	439
238	A model intercomparison of Titan's climate and low-latitude environment. Icarus, 2019, 333, 113-126.	1.1	36
239	Evaluation of FESOM2.0 Coupled to ECHAM6.3: Preindustrial and HighResMIP Simulations. Journal of Advances in Modeling Earth Systems, 2019, 11, 3794-3815.	1.3	38
240	The Impact of Prescribed Ozone in Climate Projections Run With HadGEM3â€GC3.1. Journal of Advances in Modeling Earth Systems, 2019, 11, 3443-3453.	1.3	20
241	The GFDL Global Ocean and Sea Ice Model OM4.0: Model Description and Simulation Features. Journal of Advances in Modeling Earth Systems, 2019, 11, 3167-3211.	1.3	195
242	Disentangling the causes of the 1816 European year without a summer. Environmental Research Letters, 2019, 14, 094019.	2.2	13
243	Quantifying uncertainty in European climate projections using combined performance-independence weighting. Environmental Research Letters, 2019, 14, 124010.	2.2	64
244	Investigating the applicability of emergent constraints. Earth System Dynamics, 2019, 10, 501-523.	2.7	14
245	CAM6 simulation of mean and extreme precipitation over Asia: sensitivity to upgraded physical parameterizations and higher horizontal resolution. Geoscientific Model Development, 2019, 12, 3773-3793.	1.3	28

#	Article	IF	CITATIONS
246	Radiative Forcing of Climate: The Historical Evolution of the Radiative Forcing Concept, the Forcing Agents and their Quantification, and Applications. Meteorological Monographs, 2019, 59, 14.1-14.101.	5.0	52
247	Global Climate Simulated by the Seoul National University Atmosphere Model Version 0 with a Unified Convection Scheme (SAMO-UNICON). Journal of Climate, 2019, 32, 2917-2949.	1.2	76
248	UKESM1: Description and Evaluation of the U.K. Earth System Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 4513-4558.	1.3	448
249	An Overview of the Atmospheric Component of the Energy Exascale Earth System Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 2377-2411.	1.3	168
250	Structure and Performance of GFDL's CM4.0 Climate Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 3691-3727.	1.3	242
251	Evaluation of CNRM Earth System Model, CNRMâ€ESM2â€1: Role of Earth System Processes in Presentâ€Day and Future Climate. Journal of Advances in Modeling Earth Systems, 2019, 11, 4182-4227.	1.3	309
252	Automatic data matching for geospatial models: a new paradigm for geospatial data and models sharing. Annals of GIS, 2019, 25, 283-298.	1.4	13
253	Simulation of the Northern and Southern Hemisphere Annular Modes by CAMS-CSM. Journal of Meteorological Research, 2019, 33, 934-948.	0.9	3
254	Improving consistency among models of overlapping scope in multi-sector studies: The case of electricity capacity expansion scenarios. Renewable and Sustainable Energy Reviews, 2019, 116, 109416.	8.2	12
255	The End of the Wait for Climate Sensitivity?. Geophysical Research Letters, 2019, 46, 12289-12292.	1.5	0
256	Understanding Monsoonal Water Cycle Changes in a Warmer Climate in E3SMv1 Using a Normalized Gross Moist Stability Framework. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10826-10843.	1.2	6
258	Estimating the Increase in Regional Evaporative Water Consumption as a Result of Vegetation Restoration Over the Loess Plateau, China. Journal of Geophysical Research D: Atmospheres, 2019, 124, 11783-11802.	1.2	100
259	The Dia To (v1.0) $\hat{a} \in \hat{a}$ a new diagnostic tool for water, energy and entropy budgets in climate models. Geoscientific Model Development, 2019, 12, 3805-3834.	1.3	20
260	Representing Nitrogen, Phosphorus, and Carbon Interactions in the E3SM Land Model: Development and Global Benchmarking. Journal of Advances in Modeling Earth Systems, 2019, 11, 2238-2258.	1.3	74
261	Expansion of Coccidioidomycosis Endemic Regions in the United States in Response to Climate Change. GeoHealth, 2019, 3, 308-327.	1.9	86
262	The Whole Atmosphere Community Climate Model Version 6 (WACCM6). Journal of Geophysical Research D: Atmospheres, 2019, 124, 12380-12403.	1.2	261
263	Projecting marine species range shifts from only temperature can mask climate vulnerability. Global Change Biology, 2019, 25, 4208-4221.	4.2	77
265	Attribution of ocean temperature change to anthropogenic and natural forcings using the temporal, vertical and geographical structure. Climate Dynamics, 2019, 53, 5389-5413.	1.7	34

#	ARTICLE	IF	CITATIONS
266	Probabilistic Sea Level Projections at the Coast by 2100. Surveys in Geophysics, 2019, 40, 1673-1696.	2.1	58
267	Causes of Dimming and Brightening in China Inferred from Homogenized Daily Clear-Sky and All-Sky in situ Surface Solar Radiation Records (1958–2016). Journal of Climate, 2019, 32, 5901-5913.	1.2	51
268	LongRunMIP: Motivation and Design for a Large Collection of Millennial-Length AOGCM Simulations. Bulletin of the American Meteorological Society, 2019, 100, 2551-2570.	1.7	65
269	Paleodust Insights into Dust Impacts on Climate. Journal of Climate, 2019, 32, 7897-7913.	1.2	29
270	Catch a star in your net. Early Years Educator, 2019, 21, x-xi.	0.0	0
272	Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP). Geoscientific Model Development, 2019, 12, 3241-3281.	1.3	201
274	The Response of the Ozone Layer to Quadrupled CO2 Concentrations: Implications for Climate. Journal of Climate, 2019, 32, 7629-7642.	1.2	17
275	The Meteorological Research Institute Earth System Model Version 2.0, MRI-ESM2.0: Description and Basic Evaluation of the Physical Component. Journal of the Meteorological Society of Japan, 2019, 97, 931-965.	0.7	434
276	Comparison of Anthropogenic Aerosol Climate Effects among Three Climate Models with Reduced Complexity. Atmosphere, 2019, 10, 456.	1.0	9
277	Robust and Nonrobust Aspects of Atlantic Meridional Overturning Circulation Variability and Mechanisms in the Community Earth System Model. Journal of Climate, 2019, 32, 7349-7368.	1.2	10
278	Impacts of Changes of External Forcings from CMIP5 to CMIP6 on Surface Temperature in FGOALS-g2. Scientific Online Letters on the Atmosphere, 2019, 15, 211-215.	0.6	12
279	Oklahoma's future wind energy resources and their relationship with the Central Plains low-level jet. Renewable and Sustainable Energy Reviews, 2019, 115, 109374.	8.2	13
280	Land Surface Processes Create Patterns in Atmospheric Residence Time of Water. Journal of Geophysical Research D: Atmospheres, 2019, 124, 583-600.	1.2	7
281	Ionization of the Polar Atmosphere by Energetic Electron Precipitation Retrieved From Balloon Measurements. Geophysical Research Letters, 2019, 46, 990-996.	1.5	27
282	Towards operational predictions of the near-term climate. Nature Climate Change, 2019, 9, 94-101.	8.1	116
283	Pacific Ocean Forcing and Atmospheric Variability Are the Dominant Causes of Spatially Widespread Droughts in the Contiguous United States. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2507-2524.	1.2	10
284	Coupling the Common Land Model to ECHAM5 Atmospheric General Circulation Model. Journal of Meteorological Research, 2019, 33, 251-263.	0.9	6
285	Prescribing Zonally Asymmetric Ozone Climatologies in Climate Models: Performance Compared to a Chemistryâ€Climate Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 918-933.	1.3	8

#	Article	IF	Citations
286	Observing and Modeling Ice Sheet Surface Mass Balance. Reviews of Geophysics, 2019, 57, 376-420.	9.0	119
287	Event selection for dynamical downscaling: a neural network approach for physically-constrained precipitation events. Climate Dynamics, 2022, 58, 2863-2879.	1.7	8
288	Fastâ€Forward to Perturbed Equilibrium Climate. Geophysical Research Letters, 2019, 46, 8969-8975.	1.5	8
289	Inferring causation from time series in Earth system sciences. Nature Communications, 2019, 10, 2553.	5.8	411
290	Relative Impacts of Simultaneous Stressors on a Pelagic Marine Ecosystem. Frontiers in Marine Science, 2019, 6, .	1.2	32
291	Subgrid variations of the cloud water and droplet number concentration over the tropical ocean: satellite observations and implications for warm rain simulations in climate models. Atmospheric Chemistry and Physics, 2019, 19, 1077-1096.	1.9	26
292	Aerosol optical properties over Europe: an evaluation of the AQMEII Phase 3 simulations against satellite observations. Atmospheric Chemistry and Physics, 2019, 19, 2965-2990.	1.9	17
293	Anthropogenic aerosol forcing – insights from multiple estimates from aerosol-climate models with reduced complexity. Atmospheric Chemistry and Physics, 2019, 19, 6821-6841.	1.9	33
294	How representative are FLUXNET measurements of surface fluxes during temperature extremes?. Biogeosciences, 2019, 16, 1829-1844.	1.3	11
295	The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification. Geoscientific Model Development, 2019, 12, 1139-1164.	1.3	168
296	The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geoscientific Model Development, 2019, 12, 1573-1600.	1.3	458
297	First forcing estimates from the future CMIP6 scenarios of anthropogenic aerosol optical properties and an associated Twomey effect. Geoscientific Model Development, 2019, 12, 989-1007.	1.3	27
298	Current and Future Variations of the Monsoons of the Americas in a Warming Climate. Current Climate Change Reports, 2019, 5, 125-144.	2.8	58
299	Construction of a tephra-based multi-archive coherent chronological framework for the last deglaciation in the Mediterranean region. Quaternary Science Reviews, 2019, 216, 47-57.	1.4	3
300	Back to the Future: Using Long-Term Observational and Paleo-Proxy Reconstructions to Improve Model Projections of Antarctic Climate. Geosciences (Switzerland), 2019, 9, 255.	1.0	27
301	Experiment design of the International CLIVAR C20C+ Detection and Attribution project. Weather and Climate Extremes, 2019, 24, 100206.	1.6	43
302	Climate Change Amplification of Natural Drought Variability: The Historic Mid-Twentieth-Century North American Drought in a Warmer World. Journal of Climate, 2019, 32, 5417-5436.	1.2	23
303	Uncovering the Forced Climate Response from a Single Ensemble Member Using Statistical Learning. Journal of Climate, 2019, 32, 5677-5699.	1.2	45

#	Article	IF	CITATIONS
304	Evaluation of CMIP6 DECK Experiments With CNRM M6â€1. Journal of Advances in Modeling Earth Systems, 2019, 11, 2177-2213.	1.3	494
305	Key determinants of global land-use projections. Nature Communications, 2019, 10, 2166.	5.8	123
306	Evaluation of FAMIL2 in Simulating the Climatology and Seasonalâ€toâ€Interannual Variability of Tropical Cyclone Characteristics. Journal of Advances in Modeling Earth Systems, 2019, 11, 1117-1136.	1.3	49
307	Hydrologic and Agricultural Earth Observations and Modeling for the Water-Food Nexus. Frontiers in Environmental Science, 2019, 7, .	1.5	16
308	Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geoscientific Model Development, 2019, 12, 1443-1475.	1.3	496
309	Climates of Warm Earth-like Planets. II. Rotational "Goldilocks―Zones for Fractional Habitability and Silicate Weathering. Astrophysical Journal, 2019, 875, 79.	1.6	23
310	Uncertainty Quantification Using Multiple Modelsâ€"Prospects and Challenges. Simulation Foundations, Methods and Applications, 2019, , 835-855.	0.8	10
311	Unsupervised Learning Reveals Geography of Global Ocean Dynamical Regions. Earth and Space Science, 2019, 6, 784-794.	1.1	31
312	Developments in the MPIâ€M Earth System Model version 1.2 (MPIâ€ESM1.2) and Its Response to Increasing CO ₂ . Journal of Advances in Modeling Earth Systems, 2019, 11, 998-1038.	1.3	582
313	Climate change would lead to a sharp acceleration of Central African forests dynamics by the end of the century. Environmental Research Letters, 2019, 14, 044002.	2.2	12
314	The Atmospheric Infrared Sounder Obs4MIPs Version 2 Data Set. Earth and Space Science, 2019, 6, 324-333.	1.1	11
315	Benchmark decadal forecast skill for terrestrial water storage estimated by an elasticity framework. Nature Communications, 2019, 10, 1237.	5.8	13
316	100 Years of Earth System Model Development. Meteorological Monographs, 2019, 59, 12.1-12.66.	5.0	48
317	Predictability of North Atlantic Sea Surface Temperature and Upper-Ocean Heat Content. Journal of Climate, 2019, 32, 3005-3023.	1.2	21
318	Sensitivity of Labrador Sea Water Formation to Changes in Model Resolution, Atmospheric Forcing, and Freshwater Input. Journal of Geophysical Research: Oceans, 2019, 124, 2126-2152.	1.0	25
319	Meeting User Needs for Sea Level Rise Information: A Decision Analysis Perspective. Earth's Future, 2019, 7, 320-337.	2.4	112
320	Potential future methane emission hot spots in Greenland. Environmental Research Letters, 2019, 14, 035001.	2.2	8
321	The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution. Journal of Advances in Modeling Earth Systems, 2019, 11, 2089-2129.	1.3	404

#	Article	IF	CITATIONS
322	The Future of Climate Epidemiology: Opportunities for Advancing Health Research in the Context of Climate Change. American Journal of Epidemiology, 2019, 188, 866-872.	1.6	25
323	Assessment of Uncertainties in Scenario Simulations of Biogeochemical Cycles in the Baltic Sea. Frontiers in Marine Science, 2019, 6, .	1.2	31
324	Simulated Greenland Surface Mass Balance in the GISS ModelE2 GCM: Role of the Ice Sheet Surface. Journal of Geophysical Research F: Earth Surface, 2019, 124, 750-765.	1.0	15
325	Limitations of the 1 % experiment as the benchmark idealized experiment for carbon cycle intercomparison in C ⁴ MIP. Geoscientific Model Development, 2019, 12, 597-611.	1.3	8
326	Modelâ€Derived Uncertainties in Deep Ocean Temperature Trends Between 1990 and 2010. Journal of Geophysical Research: Oceans, 2019, 124, 1155-1169.	1.0	13
327	Modulation of Arctic Sea Ice Loss by Atmospheric Teleconnections from Atlantic Multidecadal Variability. Journal of Climate, 2019, 32, 1419-1441.	1.2	32
328	Three Ways Forward to Improve Regional Information for Extreme Events: An Early Career Perspective. Frontiers in Environmental Science, 2019, 7, .	1.5	4
329	Satellite-based soil moisture provides missing link between summertime precipitation and surface temperature biases in CMIP5 simulations over conterminous United States. Scientific Reports, 2019, 9, 1657.	1.6	22
330	New Cloud System Metrics to Assess Bulk Ice Cloud Schemes in a GCM. Journal of Advances in Modeling Earth Systems, 2019, 11, 3212-3234.	1.3	5
331	Oceanâ€Waveâ€Atmosphere Interaction Processes in a Fully Coupled Modeling System. Journal of Advances in Modeling Earth Systems, 2019, 11, 3852-3874.	1.3	37
334	The Canadian Earth System Model version 5 (CanESM5.0.3). Geoscientific Model Development, 2019, 12, 4823-4873.	1.3	581
335	Water isotopes – climate relationships for the mid-Holocene and preindustrial period simulated with an isotope-enabled version of MPI-ESM. Climate of the Past, 2019, 15, 1913-1937.	1.3	41
336	Incorporation of inline warm rain diagnostics into the COSP2 satellite simulator for process-oriented model evaluation. Geoscientific Model Development, 2019, 12, 4297-4307.	1.3	8
337	Agreement between reconstructed and modeled boreal precipitation of the Last Interglacial. Science Advances, 2019, 5, eaax7047.	4.7	46
338	Description of the resolution hierarchy of the global coupled HadGEM3-GC3.1 model as used in CMIP6 HighResMIP experiments. Geoscientific Model Development, 2019, 12, 4999-5028.	1.3	139
339	Evaluating Carbon Extremes in a Coupled Climate-Carbon Cycle Simulation. , 2019, , .		2
340	The Southern Annular Mode and Southern Ocean Surface Westerly Winds in E3SM. Earth and Space Science, 2019, 6, 2624-2643.	1.1	17
341	Addressing Long-Term Operational Risk Management in Port Docks under Climate Change Scenariosâ€"A Spanish Case Study. Water (Switzerland), 2019, 11, 2153.	1.2	14

#	Article	IF	CITATIONS
342	Ease Access to Climate Simulations for Researchers: IS-ENES Climate4Impact. , 2019, , .		1
343	Numerical Experiments with the Coupled Ocean-Earth-Atmosphere Circulation Model and the Analysis of Decadal Variability of Its Main Physical Characteristic., 2019,,.		0
344	Improvement in the decadal prediction skill of the North Atlantic extratropical winter circulation through increased model resolution. Earth System Dynamics, 2019, 10, 901-917.	2.7	7
345	How Are Emergent Constraints Quantifying Uncertainty and What Do They Leave Behind?. Bulletin of the American Meteorological Society, 2019, 100, 2571-2588.	1.7	17
346	Improved Simulation of the QBO in E3SMv1. Journal of Advances in Modeling Earth Systems, 2019, 11, 3403-3418.	1.3	15
347	Decadal Predictions of the Probability of Occurrence for Warm Summer Temperature Extremes. Geophysical Research Letters, 2019, 46, 14042-14051.	1.5	16
348	Planetary health as a laboratory for enhanced evidence synthesis. Lancet Planetary Health, The, 2019, 3, e443-e445.	5.1	6
349	Albedos, Equilibrium Temperatures, and Surface Temperatures of Habitable Planets. Astrophysical Journal, 2019, 884, 75.	1.6	18
350	Sensitivity of Marine Heatwave Metrics to Ocean Model Resolution. Geophysical Research Letters, 2019, 46, 14604-14612.	1.5	41
351	Atmospheric Effects of >30â€keV Energetic Electron Precipitation in the Southern Hemisphere Winter During 2003. Journal of Geophysical Research: Space Physics, 2019, 124, 8138-8153.	0.8	24
352	The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero carbon emissions. Geoscientific Model Development, 2019, 12, 4375-4385.	1.3	56
353	Workflow Environments for Advanced Cyberinfrastructure Platforms. , 2019, , .		3
354	Realistic Quasiâ€Biennial Oscillation Variability in Historical and Decadal Hindcast Simulations Using CMIP6 Forcing. Geophysical Research Letters, 2019, 46, 14118-14125.	1.5	22
355	Assessment of the cost of climate change impacts on critical infrastructure in the circumpolar Arctic. Polar Geography, 2019, 42, 267-286.	0.8	50
356	Sea Ice Targeted Geoengineering Can Delay Arctic Sea Ice Decline but not Global Warming. Earth's Future, 2019, 7, 1296-1306.	2.4	13
357	Forcings, Feedbacks, and Climate Sensitivity in HadGEM3â€GC3.1 and UKESM1. Journal of Advances in Modeling Earth Systems, 2019, 11, 4377-4394.	1.3	74
358	Recommended temperature metrics for carbon budget estimates, model evaluation and climate policy. Nature Geoscience, 2019, 12, 964-971.	5.4	23
359	Contributions of Nordic anthropogenic emissions on air pollution and premature mortality over the Nordic region and the Arctic. Atmospheric Chemistry and Physics, 2019, 19, 12975-12992.	1.9	24

#	Article	IF	CITATIONS
360	Direct and indirect effects of CO 2 increase on crop yield in West Africa. International Journal of Climatology, 2019, 39, 2400-2411.	1.5	5
361	Madden–Julian oscillation changes under anthropogenic warming. Nature Climate Change, 2019, 9, 26-33.	8.1	71
362	Inter-hemispheric differences in energy budgets and cross-equatorial transport anomalies during the 20th century. Climate Dynamics, 2019, 53, 115-135.	1.7	13
363	The Sensitivity of Land–Atmosphere Coupling to Modern Agriculture in the Northern Midlatitudes. Journal of Climate, 2019, 32, 465-484.	1.2	5
364	Taking climate model evaluation to the next level. Nature Climate Change, 2019, 9, 102-110.	8.1	407
365	Assessments of downscaled climate data with a highâ€resolution weather station network reveal consistent but predictable bias. International Journal of Climatology, 2019, 39, 3091-3103.	1.5	12
366	Disentangling the influence of local and remote anthropogenic aerosols on South Asian monsoon daily rainfall characteristics. Climate Dynamics, 2019, 52, 6301-6320.	1.7	26
367	Footprints of Atlantic Multidecadal Oscillation in the Low-Frequency Variation of Extreme High Temperature in the Northern Hemisphere. Journal of Climate, 2019, 32, 791-802.	1.2	30
368	Tropical Cyclone Projections: Changing Climate Threats for Pacific Island Defense Installations. Weather, Climate, and Society, 2019, 11, 3-15.	0.5	12
369	Atlantic salinity budget in response to Northern and Southern Hemisphere ice sheet discharge. Climate Dynamics, 2019, 52, 5249-5267.	1.7	15
370	Computer Model Calibration with Large Non-Stationary Spatial Outputs: Application to the Calibration of a Climate Model. Journal of the Royal Statistical Society Series C: Applied Statistics, 2019, 68, 51-78.	0.5	13
371	Relationships between potential, attainable, and actual skill in a decadal prediction experiment. Climate Dynamics, 2019, 52, 4813-4831.	1.7	7
372	An uncertain future for the endemic Galliformes of the Caucasus. Science of the Total Environment, 2019, 651, 725-735.	3.9	22
373	Econometric estimates of Earth's transient climate sensitivity. Journal of Econometrics, 2020, 214, 6-32.	3.5	16
374	Toward a Consistent Definition between Satellite and Model Clear-Sky Radiative Fluxes. Journal of Climate, 2020, 33, 61-75.	1.2	22
375	Climate variability over South Americaâ€regional and large scale features simulated by the Brazilian Atmospheric Model (BAMâ€v0). International Journal of Climatology, 2020, 40, 2845-2869.	1.5	9
376	An assessment of scale-dependent variability and bias in global prediction models. Climate Dynamics, 2020, 54, 287-306.	1.7	9
377	Mechanisms of Future Changes in Equatorial Upwelling: CMIP5 Intermodel Analysis. Journal of Climate, 2020, 33, 497-510.	1.2	13

#	Article	IF	CITATIONS
378	Bounding Global Aerosol Radiative Forcing of Climate Change. Reviews of Geophysics, 2020, 58, e2019RG000660.	9.0	424
379	Skill and uncertainty in surface wind fields from general circulation models: Intercomparison of bias between AGCM, AOGCM and ESM global simulations. International Journal of Climatology, 2020, 40, 2659-2673.	1.5	14
380	An assessment of the Indian Ocean mean state and seasonal cycle in a suite of interannual CORE-II simulations. Ocean Modelling, 2020, 145, 101503.	1.0	20
381	Assessment of CMIP6 Cloud Fraction and Comparison with Satellite Observations. Earth and Space Science, 2020, 7, e2019EA000975.	1.1	55
382	Tropical Variability Simulated in ICONâ€A With a Spectral Cumulus Parameterization. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001732.	1.3	10
383	Humans drive future water scarcity changes across all Shared Socioeconomic Pathways. Environmental Research Letters, 2020, 15, 014007.	2.2	50
384	Teleconnection Processes Linking the Intensity of the Atlantic Multidecadal Variability to the Climate Impacts over Europe in Boreal Winter. Journal of Climate, 2020, 33, 2681-2700.	1.2	7
385	Evaluating surface eddy properties in coupled climate simulations with  eddy-present' and  eddy-rich' ocean resolution. Ocean Modelling, 2020, 147, 101567.	1.0	19
386	Global and regional impacts differ between transient and equilibrium warmer worlds. Nature Climate Change, 2020, 10, 42-47.	8.1	62
387	Equilibrium Climate Sensitivity Estimated by Equilibrating Climate Models. Geophysical Research Letters, 2020, 47, e2019GL083898.	1.5	84
388	Revisiting the Impact of Sea Salt on Climate Sensitivity. Geophysical Research Letters, 2020, 47, e2019GL085601.	1.5	12
389	Projecting health impacts of climate extremes: A methodological overview. , 2020, , 177-194.		O
390	Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth & Environment, 2020, 1, 14-27.	12.2	889
391	On the Superposition of Mean Advective and Eddy-Induced Transports in Global Ocean Heat and Salt Budgets. Journal of Climate, 2020, 33, 1121-1140.	1.2	9
392	Mass balance of the ice sheets and glaciers – Progress since AR5 and challenges. Earth-Science Reviews, 2020, 201, 102976.	4.0	44
393	Role of Maritime Continent Land Convection on the Mean State and MJO Propagation. Journal of Climate, 2020, 33, 1659-1675.	1.2	26
394	Changes in climate extremes in observations and climate model simulations. From the past to the future. , 2020, , 31-57.		11
395	Big climate data. , 2020, , 1-18.		2

#	Article	IF	CITATIONS
396	Sparse representation of big climate data. , 2020, , 243-274.		1
397	Causes of Higher Climate Sensitivity in CMIP6 Models. Geophysical Research Letters, 2020, 47, e2019GL085782.	1.5	759
398	Climate Perspectives in the Intra–Americas Seas. Atmosphere, 2020, 11, 959.	1.0	34
399	On the Projected Decline in Droughts Over South Asia in CMIP6 Multimodel Ensemble. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033587.	1.2	70
400	Evaluating the Performance of Climate Models Based on Wasserstein Distance. Geophysical Research Letters, 2020, 47, e2020GL089385.	1.5	13
401	Dynamics of Southern Hemisphere Atmospheric Circulation Response to Anthropogenic Aerosol Forcing. Geophysical Research Letters, 2020, 47, e2020GL089919.	1.5	8
402	Full Implementation of Matrix Approach to Biogeochemistry Module of CLM5. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002105.	1.3	8
403	Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth-Science Reviews, 2020, 210, 103348.	4.0	224
404	Emergent Constraint on the Frequency of Central Pacific El Ni $\tilde{A}\pm$ o Under Global Warming by the Equatorial Pacific Cold Tongue Bias in CMIP5/6 Models. Geophysical Research Letters, 2020, 47, e2020GL089519.	1.5	7
405	Quantifying Progress Across Different CMIP Phases With the ESMValTool. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032321.	1.2	50
406	Projected Increases in Monthly Midlatitude Summertime Temperature Variance Over Land Are Driven by Local Thermodynamics. Geophysical Research Letters, 2020, 47, e2020GL090197.	1.5	7
407	Salinity Biases and the Variability of the Atlantic Meridional Overturning Circulation in GFDL-CM3. Ocean Science Journal, 2020, 55, 505-520.	0.6	1
408	Implications of CMIP6 Projected Drying Trends for 21st Century Amazonian Drought Risk. Earth's Future, 2020, 8, e2020EF001608.	2.4	43
409	Robustness of CMIP6 Historical Global Mean Temperature Simulations: Trends, Longâ€Term Persistence, Autocorrelation, and Distributional Shape. Earth's Future, 2020, 8, e2020EF001667.	2.4	51
410	Global land use for 2015–2100 at 0.05° resolution under diverse socioeconomic and climate scenarios. Scientific Data, 2020, 7, 320.	2.4	89
411	Reducing global air pollution: the scope for further policy interventions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190331.	1.6	70
412	A model intercomparison of atmospheric 137Cs concentrations from the Fukushima Daiichi Nuclear Power Plant accident, phase III: Simulation with an identical source term and meteorological field at 1-km resolution. Atmospheric Environment: X, 2020, 7, 100086.	0.8	15
413	Optimal areas and climate change effects on dragon fruit cultivation in Mesoamerica. Journal of Agricultural Science, 2020, 158, 461-470.	0.6	6

#	Article	IF	Citations
414	Projected Strengthening of the Extratropical Surface Impacts of the Stratospheric Quasiâ€Biennial Oscillation. Geophysical Research Letters, 2020, 47, e2020GL089149.	1.5	16
415	Reconciling the climate and ozone response to the 1257 CE Mount Samalas eruption. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26651-26659.	3.3	15
416	Bias-corrected climate projections for South Asia from Coupled Model Intercomparison Project-6. Scientific Data, 2020, 7, 338.	2.4	165
417	Bias Correction and Ensemble Projections of Temperature Changes over Ten Subregions in CORDEX East Asia. Advances in Atmospheric Sciences, 2020, 37, 1191-1210.	1.9	11
418	Resolving and Parameterising the Ocean Mesoscale in Earth System Models. Current Climate Change Reports, 2020, 6, 137-152.	2.8	62
419	A comparison of CMIP6 and CMIP5 projections for precipitation to observational data: the case of Northeastern Iran. Theoretical and Applied Climatology, 2020, 142, 1613-1623.	1.3	70
420	Comparing instrumental, palaeoclimate, and projected rainfall data: Implications for water resources management and hydrological modelling. Journal of Hydrology: Regional Studies, 2020, 31, 100728.	1.0	10
421	Hydrologic modeling to examine the influence of the forestry reclamation approach and climate change on mineland hydrology. Science of the Total Environment, 2020, 743, 140605.	3.9	7
422	Implementation of Groundwater Lateral Flow and Human Water Regulation in CASâ€FGOALSâ€g3. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032289.	1.2	7
423	Global Warming Threshold and Mechanisms for Accelerated Greenland Ice Sheet Surface Mass Loss. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002029.	1.3	10
424	Reappraisal of the Climate Impacts of Ozoneâ€Depleting Substances. Geophysical Research Letters, 2020, 47, e2020GL088295.	1.5	16
425	Arctic Sea Ice in Two Configurations of the CESM2 During the 20th and 21st Centuries. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016133.	1.0	39
426	An Assessment of Earth's Climate Sensitivity Using Multiple Lines of Evidence. Reviews of Geophysics, 2020, 58, e2019RG000678.	9.0	498
427	Decomposing Temperature Extremes Errors in CMIP5 and CMIP6 Models. Geophysical Research Letters, 2020, 47, e2020GL088031.	1.5	52
428	Impact of poleward heat and moisture transports on Arctic clouds and climate simulation. Atmospheric Chemistry and Physics, 2020, 20, 2953-2966.	1.9	10
429	Characterizing Tropical Cyclones in the Energy Exascale Earth System Model Version 1. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002024.	1.3	20
430	A Framework to Quantify the Uncertainty Contribution of GCMs Over Multiple Sources in Hydrological Impacts of Climate Change. Earth's Future, 2020, 8, e2020EF001602.	2.4	56
431	The vertical profile of recent tropical temperature trends: Persistent model biases in the context of internal variability. Environmental Research Letters, 2020, 15, 1040b4.	2.2	25

#	Article	IF	CITATIONS
432	Improvement of the simulation of the summer East Asian westerly jet from CMIP5 to CMIP6. Atmospheric and Oceanic Science Letters, 2020, 13, 550-558.	0.5	19
433	The climate variability in global land precipitation in FGOALS-f3-L: A comparison between GMMIP and historical simulations. Atmospheric and Oceanic Science Letters, 2020, 13, 559-567.	0.5	3
434	CAS FGOALS-f3-L model dataset descriptions for CMIP6 DECK experiments. Atmospheric and Oceanic Science Letters, 2020, 13, 582-588.	0.5	18
435	The Evaluation of the North Atlantic Climate System in UKESM1 Historical Simulations for CMIP6. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002126.	1.3	8
436	Dependence of regional ocean heat uptake on anthropogenic warming scenarios. Science Advances, 2020, 6, .	4.7	34
437	Simulations for CMIP6 With the AWI Climate Model AWI Mâ€1â€1. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002009.	1.3	72
438	Evaluation and Projection of Surface Wind Speed Over China Based on CMIP6 GCMs. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033611.	1.2	50
439	Northward Propagation of the Intertropical Convergence Zone and Strengthening of Indian Summer Monsoon Rainfall. Geophysical Research Letters, 2020, 47, e2020GL089823.	1.5	28
440	Analysis and Attribution of Climate Change in the Upper Atmosphere From 1950 to 2015 Simulated by WACCMâ€X. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028623.	0.8	18
441	Benchmark Calculations of Radiative Forcing by Greenhouse Gases. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033483.	1.2	21
442	An Efficient Ice Sheet/Earth System Model Spinâ€up Procedure for CESM2â€CISM2: Description, Evaluation, and Broader Applicability. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001984.	1.3	10
443	Opportunities and challenges in using remaining carbon budgets to guide climate policy. Nature Geoscience, 2020, 13, 769-779.	5.4	68
444	Sensitivity of the Atlantic Meridional Overturning Circulation to Model Resolution in CMIP6 HighResMIP Simulations and Implications for Future Changes. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002014.	1.3	59
445	Future Changes in Climate over the Arabian Peninsula based on CMIP6 Multimodel Simulations. Earth Systems and Environment, 2020, 4, 611-630.	3.0	59
446	Robust Acceleration of Stratospheric Moistening and Its Radiative Feedback Under Greenhouse Warming. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033090.	1.2	7
447	Climate Sensitivity and Feedback of a New Coupled Model (K-ACE) to Idealized CO2 Forcing. Atmosphere, 2020, 11, 1218.	1.0	2
448	Statistically Downscaled CMIP6 Projections Show Stronger Warming for Germany. Atmosphere, 2020, 11, 1245.	1.0	17
449	Emerging Changes in Terrestrial Water Storage Variability as a Target for Future Satellite Gravity Missions. Remote Sensing, 2020, 12, 3898.	1.8	8

#	Article	IF	CITATIONS
450	A Comparison of the CMIP6 <i>midHolocene</i> li>and <i>lig127k</i> Simulations in CESM2. Paleoceanography and Paleoclimatology, 2020, 35, e2020PA003957.	1.3	14
451	Increasing risk of another Cape Town "Day Zero―drought in the 21st century. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29495-29503.	3.3	64
452	Tropical Cyclone Activities in Warm Climate with Quadrupled CO 2 Concentration Simulated by a New General Circulation Model. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032314.	1.2	0
453	Impact of Antarctic Meltwater Forcing on East Asian Climate Under Greenhouse Warming. Geophysical Research Letters, 2020, 47, e2020GL089951.	1.5	3
454	Description and Climate Simulation Performance of CASâ€ESM Version 2. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002210.	1.3	59
455	Global Carbon Cycle and Climate Feedbacks in the NASA GISS ModelE2.1. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002030.	1.3	15
456	The Pacific Equatorial Undercurrent in Three Generations of Global Climate Models and Glider Observations. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016609.	1.0	12
457	An Evaluation of the Largeâ€Scale Atmospheric Circulation and Its Variability in CESM2 and Other CMIP Models. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032835.	1.2	55
458	Irrigation and hydrometeorological extremes. Climate Dynamics, 2020, 55, 1521-1537.	1.7	8
459	Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves. Nature Geoscience, 2020, 13, 616-620.	5.4	169
460	Possible NPP changes and risky ecosystem region identification in China during the 21st century based on BCC-CSM2. Journal of Chinese Geography, 2020, 30, 1219-1232.	1.5	8
461	The effects of anthropogenic and volcanic aerosols and greenhouse gases on twentieth century Sahel precipitation. Scientific Reports, 2020, 10, 12203.	1.6	17
462	SouthEast Asia HydrO-meteorological droughT (SEA-HOT) framework: A case study in the Kelantan River Basin, Malaysia. Atmospheric Research, 2020, 246, 105155.	1.8	17
463	Centuries of monthly and 3-hourly global ocean wave data for past, present, and future climate research. Scientific Data, 2020, 7, 226.	2.4	19
464	The COVID-19 lockdowns: a window into the Earth System. Nature Reviews Earth & Environment, 2020, 1, 470-481.	12.2	153
465	Contrasting Transition Complexity Between El Niño and La Niña: Observations and CMIP5/6 Models. Geophysical Research Letters, 2020, 47, e2020GL088926.	1.5	21
466	The physics of climate variability and climate change. Reviews of Modern Physics, 2020, 92, .	16.4	159
467	Skill assessment of global climate model wind speed from CMIP5 and CMIP6 and evaluation of projections for the Bay of Bengal. Climate Dynamics, 2020, 55, 2667-2687.	1.7	29

#	Article	IF	Citations
468	Future greening of the Earth may not be as large as previously predicted. Agricultural and Forest Meteorology, 2020, 292-293, 108111.	1.9	24
469	Seasonal Variation of Wet Deposition of Black Carbon in Arctic Alaska. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032240.	1.2	16
470	Quantification of Uncertainty in Projections of Extreme Daily Precipitation. Earth and Space Science, 2020, 7, e2019EA001052.	1.1	31
471	Numerical impacts on tracer transport: A proposed intercomparison test of Atmospheric General Circulation Models. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 3937-3964.	1.0	9
472	Quantifying future drought change and associated uncertainty in southeastern Australia with multiple potential evapotranspiration models. Journal of Hydrology, 2020, 590, 125394.	2.3	25
473	Assessment of precipitation extremes in India during the 21st century under SSP1-1.9 mitigation scenarios of CMIP6 GCMs. Journal of Hydrology, 2020, 590, 125422.	2.3	53
474	Historical (1850–2014) Aerosol Evolution and Role on Climate Forcing Using the GISS ModelE2.1 Contribution to CMIP6. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001978.	1.3	69
475	A review of progress in coupled ocean-atmosphere model developments for ENSO studies in China. Journal of Oceanology and Limnology, 2020, 38, 930-961.	0.6	62
476	FIO-ESM v2.0 Outputs for the CMIP6 Global Monsoons Model Intercomparison Project Experiments. Advances in Atmospheric Sciences, 2020, 37, 1045-1056.	1.9	12
477	North Pacific zonal wind response to sea ice loss in the Polar Amplification Model Intercomparison Project and its downstream implications. Climate Dynamics, 2020, 55, 1779-1792.	1.7	7
478	Dynamical downscaling of unforced interannual sea-level variability in the North-West European shelf seas. Climate Dynamics, 2020, 55, 2207-2236.	1.7	15
479	Improved Nearâ€Surface Continental Climate in IPSLâ€CM6Aâ€LR by Combined Evolutions of Atmospheric and Land Surface Physics. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002005.	1.3	36
480	Centennial Changes in the Indonesian Throughflow Connected to the Atlantic Meridional Overturning Circulation: The Ocean's Transient Conveyor Belt. Geophysical Research Letters, 2020, 47, e2020GL090615.	1.5	13
481	A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming. Nature Communications, 2020, 11, 5544.	5.8	50
482	Equilibrium climate sensitivity above 5 °C plausible due to state-dependent cloud feedback. Nature Geoscience, 2020, 13, 718-721.	5.4	57
483	CAS FGOALS-f3-H and CAS FGOALS-f3-L outputs for the high-resolution model intercomparison project simulation of CMIP6. Atmospheric and Oceanic Science Letters, 2020, 13, 576-581.	0.5	15
484	Comparison of Indian Ocean warming simulated by CMIP5 and CMIP6 models. Atmospheric and Oceanic Science Letters, 2020, 13, 604-611.	0.5	8
485	The continuing march of Common Green Iguanas: arrival on mainland Asia. Journal for Nature Conservation, 2020, 57, 125888.	0.8	9

#	Article	IF	CITATIONS
486	Simple Global Ocean Biogeochemistry With Light, Iron, Nutrients and Gas Version 2 (BLINGv2): Model Description and Simulation Characteristics in GFDL's CM4.0. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002008.	1.3	24
487	Assessment of model performance of precipitation extremes over the mid-high latitude areas of Northern Hemisphere: from CMIP5 to CMIP6. Atmospheric and Oceanic Science Letters, 2020, 13, 598-603.	0.5	24
488	Future changes of global potential evapotranspiration simulated from CMIP5 to CMIP6 models. Atmospheric and Oceanic Science Letters, 2020, 13, 568-575.	0.5	29
489	Characterization of long period return values of extreme daily temperature and precipitation in the CMIP6 models: Part 1, model evaluation. Weather and Climate Extremes, 2020, 30, 100283.	1.6	55
490	How Does El Niño–Southern Oscillation Change Under Global Warming—A First Look at CMIP6. Geophysical Research Letters, 2020, 47, e2020GL090640.	1.5	72
491	Historically-based run-time bias corrections substantially improve model projections of 100 years of future climate change. Communications Earth & Environment, $2020, 1, .$	2.6	10
493	Variation of Projected Atmospheric Water Vapor in Central Asia Using Multi-Models from CMIP6. Atmosphere, 2020, 11, 909.	1.0	7
494	Butterfly effect and a self-modulating El Niño response to global warming. Nature, 2020, 585, 68-73.	13.7	63
495	South Pacific Convergence Zone dynamics, variability and impacts in a changing climate. Nature Reviews Earth & Environment, 2020, 1, 530-543.	12.2	49
496	GISSâ€E2.1: Configurations and Climatology. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002025.	1.3	234
497	WeatherBench: A Benchmark Data Set for Dataâ€Driven Weather Forecasting. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002203.	1.3	150
498	Evaluation of Historical CMIP6 Model Simulations of Seasonal Mean Temperature over Pakistan during 1970–2014. Atmosphere, 2020, 11, 1005.	1.0	28
499	Variability in the global energy budget and transports 1985–2017. Climate Dynamics, 2020, 55, 3381-3396.	1.7	23
500	Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5. Advances in Climate Change Research, 2020, 11, 239-251.	2.1	156
501	The Performance of CMIP6 Versus CMIP5 in Simulating Temperature Extremes Over the Global Land Surface. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033031.	1.2	90
502	Preface to Special Issue on CMIP6 Experiments: Model and Dataset Descriptions. Advances in Atmospheric Sciences, 2020, 37, 1033-1033.	1.9	5
503	Historical total ozone radiative forcing derived from CMIP6 simulations. Npj Climate and Atmospheric Science, 2020, 3, .	2.6	44
504	Evaluation of the Antarctic Circumpolar Wave Simulated by CMIP5 and CMIP6 Models. Atmosphere, 2020, 11, 931.	1.0	3

#	Article	IF	Citations
505	The Globalâ€Mean Precipitation Response to CO ₂ â€Induced Warming in CMIP6 Models. Geophysical Research Letters, 2020, 47, e2020GL089964.	1.5	32
506	Differences between CMIP6 and CMIP5 Models in Simulating Climate over China and the East Asian Monsoon. Advances in Atmospheric Sciences, 2020, 37, 1102-1118.	1.9	145
507	Spinâ€up of UK Earth System Model 1 (UKESM1) for CMIP6. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001933.	1.3	25
508	Global River Discharge and Floods in the Warmer Climate of the Last Interglacial. Geophysical Research Letters, 2020, 47, e2020GL089375.	1.5	18
509	Sea Ice Formation in a Coupled Climate Model Including Grease Ice. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002103.	1.3	5
510	Socioeconomic Drought Under Growing Population and Changing Climate: A New Index Considering the Resilience of a Regional Water Resources System. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033005.	1.2	34
511	Representation of the boreal summer tropical Atlantic–western North Pacific teleconnection in AGCMs: comparison of CMIP5 and CMIP6. Climate Dynamics, 2020, 55, 3025-3041.	1.7	6
512	Evaluation of snow cover and snow water equivalent in the continental Arctic in CMIP5 models. Climate Dynamics, 2020, 55, 2993-3016.	1.7	22
513	Eastern equatorial Pacific SST seasonal cycle in global climate models: from CMIP5 to CMIP6. Acta Oceanologica Sinica, 2020, 39, 50-60.	0.4	15
514	Overestimated acceleration of the advective Brewer–Dobson circulation due to stratospheric cooling. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 3850-3864.	1.0	4
515	Climate Sensitivity and Feedbacks of BCC-CSM to Idealized CO2 Forcing from CMIP5 to CMIP6. Journal of Meteorological Research, 2020, 34, 865-878.	0.9	15
516	Forecasting of Future Flooding and Risk Assessment under CMIP6 Climate Projection in Neuse River, North Carolina. Forecasting, 2020, 2, 323-345.	1.6	14
517	The impact of climate change on astronomical observations. Nature Astronomy, 2020, 4, 826-829.	4.2	18
518	Dynamics for El Ni $ ilde{A}$ ±o-La Ni $ ilde{A}$ ±a asymmetry constrain equatorial-Pacific warming pattern. Nature Communications, 2020, 11 , 4230.	5.8	40
519	Research challenges and opportunities for using big data in global change biology. Global Change Biology, 2020, 26, 6040-6061.	4.2	33
520	Advancing Global Ecological Modeling Capabilities to Simulate Future Trajectories of Change in Marine Ecosystems. Frontiers in Marine Science, 2020, 7, .	1.2	43
521	Direct and Indirect Effectsâ€"An Information Theoretic Perspective. Entropy, 2020, 22, 854.	1.1	3
522	Estimations of Long-Term nss-SO42– and NO3– Wet Depositions over East Asia by Use of Ensemble Machine-Learning Method. Environmental Science & East Rechnology, 2020, 54, 11118-11126.	4.6	7

#	Article	IF	CITATIONS
523	Clouds and Convective Selfâ€Aggregation in a Multimodel Ensemble of Radiativeâ€Convective Equilibrium Simulations. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002138.	1.3	86
524	CAS-FGOALS Datasets for the Two Interglacial Epochs of the Holocene and the Last Interglacial in PMIP4. Advances in Atmospheric Sciences, 2020, 37, 1034-1044.	1.9	14
525	Using the fast impact of anthropogenic aerosols on regional land temperature to constrain aerosol forcing. Science Advances, 2020, 6, eabb5297.	4.7	6
526	The effect of rapid adjustments to halocarbons and N2O on radiative forcing. Npj Climate and Atmospheric Science, 2020, 3, .	2.6	7
527	Contrasting Recent and Future ITCZ Changes From Distinct Tropical Warming Patterns. Geophysical Research Letters, 2020, 47, e2020GL089846.	1.5	12
528	Projection of Future Summer Precipitation over the Yellow River Basin: A Moisture Budget Perspective. Atmosphere, 2020, 11 , 1307 .	1.0	5
529	A Framework for Stormwater Quality Modelling under the Effects of Climate Change to Enhance Reuse. Sustainability, 2020, 12, 10463.	1.6	9
530	Intraseasonal Precipitation Variability over West Africa under 1.5 °C and 2.0 °C Global Warming Scenarios: Results from CORDEX RCMs. Climate, 2020, 8, 143.	1.2	5
531	Resolution-Dependent Perspectives on Caribbean Hydro-Climate Change. Hydrology, 2020, 7, 93.	1.3	8
532	Interâ€model Spread of the Changes in the East Asian Summer Monsoon System in CMIP5/6 Models. Journal of Geophysical Research D: Atmospheres, 2020, 125, 2020JD033016.	1.2	19
533	CMIP6 simulations of GPP growth satisfy the constraint imposed by increasing CO ₂ seasonal-cycle amplitude. IOP Conference Series: Earth and Environmental Science, 2020, 606, 012003.	0.2	4
534	The Effect of Statistical Downscaling on the Weighting of Multi-Model Ensembles of Precipitation. Climate, 2020, 8, 138.	1.2	18
535	Seasonal to Decadal Predictions With MIROC6: Description and Basic Evaluation. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002035.	1.3	19
536	Greater Greenland Ice Sheet contribution to global sea level rise in CMIP6. Nature Communications, 2020, 11, 6289.	5.8	73
537	Accelerated Greenland Ice Sheet Mass Loss Under High Greenhouse Gas Forcing as Simulated by the Coupled CESM2.1 ISM2.1. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002031.	1.3	12
538	Alleviation of an Arctic Sea Ice Bias in a Coupled Model Through Modifications in the Subgridâ€Scale Orographic Parameterization. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002111.	1.3	5
539	Understanding the Extreme Spread in Climate Sensitivity within the Radiativeâ€Convective Equilibrium Model Intercomparison Project. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002165.	1.3	24
540	Horizontal Temperature Fluxes in the Arctic in CMIP5 Model Results Analyzed with Self-Organizing Maps. Atmosphere, 2020, 11, 251.	1.0	4

#	Article	IF	CITATIONS
541	An Introduction to the E3SM Special Collection: Goals, Science Drivers, Development, and Analysis. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001821.	1.3	43
542	An Assessment of the Temporal Variability in the Annual Cycle of Daily Antarctic Sea Ice in the NCAR Community Earth System Model, Version 2: A Comparison of the Historical Runs With Observations. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016459.	1.0	7
543	CO ₂ Increase Experiments Using the CESM: Relationship to Climate Sensitivity and Comparison of CESM1 to CESM2. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002120.	1.3	25
544	On the changes in surface ozone over the twenty-first century: sensitivity to changes in surface temperature and chemical mechanisms. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190329.	1.6	18
545	The Impacts of Aerosol Emissions on Historical Climate in UKESM1. Atmosphere, 2020, 11, 1095.	1.0	5
546	Past climates inform our future. Science, 2020, 370, .	6.0	253
547	The CNRM Global Atmosphere Model ARPEGEâ€Climat 6.3: Description and Evaluation. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002075.	1.3	46
548	Floods and Droughts., 2020,, 50-67.		O
549	Initial Land Use/Cover Distribution Substantially Affects Global Carbon and Local Temperature Projections in the Integrated Earth System Model. Global Biogeochemical Cycles, 2020, 34, e2019GB006383.	1.9	6
553	Heatwaves and Cold Spells. , 2020, , 68-102.		0
554	Hurricanes and Other Storms. , 2020, , 103-134.		0
563	Long-Term Impacts of Partial Afforestation on Water and Salt Dynamics of an Intermittent Catchment under Climate Change. Water (Switzerland), 2020, 12, 1067.	1.2	6
564	Evaluation of the CMIP6 planetary albedo climatology using satellite observations. Climate Dynamics, 2020, 54, 5145-5161.	1.7	18
565	Historical Simulations With HadGEM3â€GC3.1 for CMIP6. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001995.	1.3	84
566	MJO Propagation Across the Maritime Continent: Are CMIP6 Models Better Than CMIP5 Models?. Geophysical Research Letters, 2020, 47, e2020GL087250.	1.5	77
567	Unprecedented Europe Heat in June–July 2019: Risk in the Historical and Future Context. Geophysical Research Letters, 2020, 47, e2020GL087809.	1.5	56
568	Projected changes in hot, dry and wet extreme events' clusters in CMIP6 multi-model ensemble. Environmental Research Letters, 2020, 15, 094021.	2.2	83
569	Regional Dynamic Sea Level Simulated in the CMIP5 and CMIP6 Models: Mean Biases, Future Projections, and Their Linkages. Journal of Climate, 2020, 33, 6377-6398.	1.2	58

#	Article	IF	CITATIONS
570	FIOâ€ESM Version 2.0: Model Description and Evaluation. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC016036.	1.0	69
571	Determining the Anthropogenic Greenhouse Gas Contribution to the Observed Intensification of Extreme Precipitation. Geophysical Research Letters, 2020, 47, e2019GL086875.	1.5	66
572	Present and Future Flood Hazard in the Lower Columbia River Estuary: Changing Flood Hazards in the Portlandâ€Vancouver Metropolitan Area. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015928.	1.0	15
573	Impact of Higher Spatial Atmospheric Resolution on Precipitation Extremes Over Land in Global Climate Models. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032184.	1.2	69
574	Population and Economic Projections in the Yangtze River Basin Based on Shared Socioeconomic Pathways. Sustainability, 2020, 12, 4202.	1.6	14
575	Hadley cell expansion in CMIP6 models. Atmospheric Chemistry and Physics, 2020, 20, 5249-5268.	1.9	78
576	Broad Consistency Between Observed and Simulated Trends in Sea Surface Temperature Patterns. Geophysical Research Letters, 2020, 47, e2019GL086773.	1.5	34
577	Climate Model Projections of 21st Century Global Warming Constrained Using the Observed Warming Trend. Geophysical Research Letters, 2020, 47, e2019GL086757.	1.5	55
578	Warmer climate projections in EC-Earth3-Veg: the role of changes in the greenhouse gas concentrations from CMIP5 to CMIP6. Environmental Research Letters, 2020, 15, 054020.	2.2	54
579	On the Mechanism of Arctic Climate Oscillation with a Period of About 15 Years According to Data of the INM RAS Climate Model. Izvestiya - Atmospheric and Oceanic Physics, 2020, 56, 112-122.	0.2	2
580	Robust Future Changes in Meteorological Drought in <scp>CMIP6</scp> Projections Despite Uncertainty in Precipitation. Geophysical Research Letters, 2020, 47, e2020GL087820.	1.5	239
581	Documenting numerical experiments in support of the Coupled Model Intercomparison Project Phase 6 (CMIP6). Geoscientific Model Development, 2020, 13, 2149-2167.	1.3	26
582	Seasonal representation of extreme precipitation indices over the United States in CMIP6 present-day simulations. Environmental Research Letters, 2020, 15, 094003.	2.2	42
583	Artificial intelligence reconstructs missing climate information. Nature Geoscience, 2020, 13, 408-413.	5.4	94
584	Crossbreeding CMIP6 Earth System Models WithÂanÂEmulator for Regionally Optimized Land Temperature Projections. Geophysical Research Letters, 2020, 47, e2019GL086812.	1.5	11
585	Implementation of U.K. Earth System Models for CMIP6. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001946.	1.3	83
586	The Flexible Global Oceanâ€Atmosphereâ€Land System Model Gridâ€Point Version 3 (FGOALSâ€g3): Description and Evaluation. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002012.	1.3	129
587	Projected changes in flooding: a continental U.S. perspective. Annals of the New York Academy of Sciences, 2020, 1472, 95-103.	1.8	10

#	Article	IF	CITATIONS
588	Evaluating the Sensitivity of Growing Degree Days as an Agro-Climatic Indicator of the Climate Change Impact: A Case Study of the Russian Far East. Atmosphere, 2020, 11, 404.	1.0	7
589	The dynamic and thermodynamic processes dominating the reduction of global land monsoon precipitation driven by anthropogenic aerosols emission. Science China Earth Sciences, 2020, 63, 919-933.	2.3	49
590	Regional Climate Sensitivity of Climate Extremes in CMIP6 Versus CMIP5 Multimodel Ensembles. Earth's Future, 2020, 8, e2019EF001474.	2.4	100
591	The Lack of QBOâ€MJO Connection in CMIP6 Models. Geophysical Research Letters, 2020, 47, e2020GL087295.	1.5	34
592	Divergent Regional Climate Consequences of Maintaining Current Irrigation Rates in the 21st Century. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031814.	1.2	17
593	Understanding Future Change of Global Monsoons Projected by CMIP6 Models. Journal of Climate, 2020, 33, 6471-6489.	1.2	147
594	Reductions in daily continental-scale atmospheric circulation biases between generations of global climate models: CMIP5 to CMIP6. Environmental Research Letters, 2020, 15, 064006.	2.2	37
595	Past warming trend constrains future warming in CMIP6 models. Science Advances, 2020, 6, eaaz9549.	4.7	327
596	Producing actionable climate change information for regions: the distillation paradigm and the 3R framework. European Physical Journal Plus, 2020, 135, 1.	1.2	13
598	Global Land Monsoon Precipitation Changes in CMIP6 Projections. Geophysical Research Letters, 2020, 47, e2019GL086902.	1.5	115
599	So What Is in an Earth System Model?. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001967.	1.3	3
600	Comparison of trends in the Hadley circulation between CMIP6 and CMIP5. Science Bulletin, 2020, 65, 1667-1674.	4.3	31
601	Assessing Global and Local Radiative Feedbacks Based on AGCM Simulations for 1980–2014/2017. Geophysical Research Letters, 2020, 47, e2020GL088063.	1.5	9
602	The past, current and future habitat range of the Spider-tailed Viper, <i>Pseudocerastes urarachnoides</i> (Serpentes: Viperidae) in western Iran and eastern Iraq as revealed by habitat modelling. Zoology in the Middle East, 2020, 66, 197-205.	0.2	11
603	Model uncertainties in climate change impacts on Sahel precipitation in ensembles of CMIP5 and CMIP6 simulations. Climate Dynamics, 2020, 55, 1385-1401.	1.7	53
604	Using Statistical and Dynamical Downscaling to Assess Climate Change Impacts on Mine Reclamation Cover Water Balances. Mine Water and the Environment, 2020, 39, 699-715.	0.9	5
605	Increased Dust Aerosols in the High Troposphere Over the Tibetan Plateau From 1990s to 2000s. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032807.	1.2	22
606	The global energy balance as represented in CMIP6 climate models. Climate Dynamics, 2020, 55, 553-577.	1.7	99

#	Article	IF	CITATIONS
607	Trends in AOD, Clouds, and Cloud Radiative Effects in Satellite Data and CMIP5 and CMIP6 Model Simulations Over Aerosol Source Regions. Geophysical Research Letters, 2020, 47, e2020GL087132.	1.5	48
608	Intercomparison of Magnitudes and Trends in Anthropogenic Surface Emissions From Bottomâ€Up Inventories, Topâ€Down Estimates, and Emission Scenarios. Earth's Future, 2020, 8, e2020EF001520.	2.4	54
609	An Overview of CMIP5 and CMIP6 Simulated Cloud Ice, Radiation Fields, Surface Wind Stress, Sea Surface Temperatures, and Precipitation Over Tropical and Subtropical Oceans. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032848.	1.2	38
610	Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO ₂ . Biogeosciences, 2020, 17, 2987-3016.	1.3	87
611	A DRPâ€4DVarâ€Based Coupled Data Assimilation System With a Simplified Offâ€Line Localization Technique for Decadal Predictions. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001768.	1.3	9
612	Presentation and Evaluation of the IPSLâ€CM6A‣R Climate Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002010.	1.3	541
613	Human influence on frequency of temperature extremes. Environmental Research Letters, 2020, 15, 064014.	2.2	38
614	Methodological and physical biases in global to subcontinental borehole temperature reconstructions: an assessment from a pseudo-proxy perspective. Climate of the Past, 2020, 16, 453-474.	1.3	4
615	Influence of multidecadal variability on high and low flows: the case of the Seine basin. Hydrology and Earth System Sciences, 2020, 24, 1611-1631.	1.9	13
616	Evaluation of aerosol and cloud properties in three climate models using MODIS observations and its corresponding COSP simulator, as well as their application in aerosol–cloud interactions. Atmospheric Chemistry and Physics, 2020, 20, 1607-1626.	1.9	12
617	Earth System Model Evaluation Tool (ESMValTool) v2.0 – technical overview. Geoscientific Model Development, 2020, 13, 1179-1199.	1.3	51
618	Description and evaluation of the UKCA stratosphere–troposphere chemistry scheme (StratTrop vn) Tj ETQq1 I	1 0.78431 <i>4</i>	1 rgBT /Ove
619	Machine dependence and reproducibility for coupled climate simulations: the HadGEM3-GC3.1 CMIP Preindustrial simulation. Geoscientific Model Development, 2020, 13, 139-154.	1.3	10
620	Near-global-scale high-resolution seasonal simulations with WRF-Noah-MP v.3.8.1. Geoscientific Model Development, 2020, 13, 1959-1974.	1.3	8
621	JULES-GL7: the Global Land configuration of the Joint UK Land Environment Simulator version 7.0 and 7.2. Geoscientific Model Development, 2020, 13, 483-505.	1.3	17
622	Brief communication: CESM2 climate forcing (1950–2014) yields realistic Greenland ice sheet surface mass balance. Cryosphere, 2020, 14, 1425-1435.	1.5	11
623	Understanding and assessing uncertainty of observational climate datasets for model evaluation using ensembles. Wiley Interdisciplinary Reviews: Climate Change, 2020, 11, e654.	3.6	23
624	The Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001916.	1.3	935

#	Article	IF	CITATIONS
625	GCMeval $\hat{a}\in$ An interactive tool for evaluation and selection of climate model ensembles. Climate Services, 2020, 18, 100167.	1.0	30
626	Development and testing scenarios for implementing land use and land cover changes during the Holocene in Earth system model experiments. Geoscientific Model Development, 2020, 13, 805-824.	1.3	36
627	A Possible Approach for Decadal Prediction of the PDO. Journal of Meteorological Research, 2020, 34, 63-72.	0.9	2
628	Beijing Climate Center Earth System Model version 1 (BCC-ESM1): model description and evaluation of aerosol simulations. Geoscientific Model Development, 2020, 13, 977-1005.	1.3	65
629	A Basic Effect of Cloud Radiative Effects on Tropical Sea Surface Temperature Variability. Journal of Climate, 2020, 33, 4333-4346.	1.2	2
630	Causal networks for climate model evaluation and constrained projections. Nature Communications, 2020, 11, 1415.	5.8	55
631	TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI): motivations and protocol version 1.0. Geoscientific Model Development, 2020, 13, 707-716.	1.3	52
632	Future changes in precipitation over Central Asia based on CMIP6 projections. Environmental Research Letters, 2020, 15, 054009.	2.2	124
633	Perspectives on the Future of Land Surface Models and the Challenges of Representing Complex Terrestrial Systems. Journal of Advances in Modeling Earth Systems, 2020, 12, e2018MS001453.	1.3	199
634	On the Analysis of the Performance of WRF and NICAM in a Hyperarid Environment. Weather and Forecasting, 2020, 35, 891-919.	0.5	20
635	The influence of climate change on lowâ€level jet characteristics over the South entral Plains as simulated by CMIP5 models. International Journal of Climatology, 2020, 40, 6020-6038.	1.5	2
636	Evaluation of the ability of CMIP6 models to simulate precipitation over Southwestern South America: Climatic features and long-term trends (1901–2014). Atmospheric Research, 2020, 241, 104953.	1.8	130
637	Human Activities Enhance Radiation Forcing through Surface Albedo Associated with Vegetation in Beijing. Remote Sensing, 2020, 12, 837.	1.8	20
638	The Doubleâ€ITCZ Bias in CMIP3, CMIP5, and CMIP6 Models Based on Annual Mean Precipitation. Geophysical Research Letters, 2020, 47, e2020GL087232.	1.5	153
639	Hydrological cycle changes under global warming and their effects on multiscale climate variability. Annals of the New York Academy of Sciences, 2020, 1472, 21-48.	1.8	13
640	Future Changes of Summer Monsoon Characteristics and Evaporative Demand Over Asia in CMIP6 Simulations. Geophysical Research Letters, 2020, 47, e2020GL087492.	1.5	85
641	Use of the Autoregressive Integrated Moving Average (ARIMA) Model to Forecast Near-Term Regional Temperature and Precipitation. Weather and Forecasting, 2020, 35, 959-976.	0.5	66
642	Lagrangian Analysis of Tropical Cyclone Genesis Simulated by General Circulation Models Compared with Observations. Journal of Climate, 2020, 33, 4489-4511.	1.2	4

#	Article	IF	Citations
643	Future Landslide Characteristic Assessment Using Ensemble Climate Change Scenarios: A Case Study in Taiwan. Water (Switzerland), 2020, 12, 564.	1.2	9
644	On Tanzania's Precipitation Climatology, Variability, and Future Projection. Climate, 2020, 8, 34.	1.2	28
645	Quantifying horizontal length scales for surface wind variability in the tropical Pacific based on reanalyses. Climate Dynamics, 2020, 55, 1697-1709.	1.7	0
646	Amplified Madden–Julian oscillation impacts in the Pacific–North America region. Nature Climate Change, 2020, 10, 654-660.	8.1	37
647	Wintertime Arctic Oscillation and North Atlantic Oscillation and their impacts on the Northern Hemisphere climate in E3SM. Climate Dynamics, 2020, 55, 1105-1124.	1.7	5
648	Detection and attribution of aerosol–cloud interactions in large-domain large-eddy simulations with the ICOsahedral Non-hydrostatic model. Atmospheric Chemistry and Physics, 2020, 20, 5657-5678.	1.9	20
649	Projected future changes in rainfall in Southeast Asia based on CORDEX–SEA multi-model simulations. Climate Dynamics, 2020, 55, 1247-1267.	1.7	102
650	Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: A review and outlook. Remote Sensing of Environment, 2020, 246, 111872.	4.6	82
651	Stratospheric Ozone Changes From Explosive Tropical Volcanoes: Modeling and Ice Core Constraints. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032290.	1.2	14
652	Evaluation of historical CMIP6 model simulations of extreme precipitation over contiguous US regions. Weather and Climate Extremes, 2020, 29, 100268.	1.6	111
653	Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather and Climate Extremes, 2020, 29, 100269.	1.6	211
654	Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science, 2020, 369, 65-70.	6.0	373
655	Projected Change in Temperature and Precipitation Over Africa from CMIP6. Earth Systems and Environment, 2020, 4, 455-475.	3.0	219
656	Reflexive climate service infrastructure relations. Climate Services, 2020, 17, 100151.	1.0	5
657	Improvements in Circumpolar Southern Hemisphere Extratropical Atmospheric Circulation in CMIP6 Compared to CMIP5. Earth and Space Science, 2020, 7, e2019EA001065.	1.1	36
658	Community Integrated Earth System Model (CIESM): Description and Evaluation. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002036.	1.3	44
659	Simulation of Possible Future Climate Changes in the 21st Century in the INM-CM5 Climate Model. Izvestiya - Atmospheric and Oceanic Physics, 2020, 56, 218-228.	0.2	13
660	Normal Mode Perspective on the 2016 QBO Disruption: Evidence for a Basic State Regime Transition. Geophysical Research Letters, 2020, 47, e2020GL087274.	1.5	10

#	Article	IF	CITATIONS
661	Atmospheric CO2 during the Mid-Piacenzian Warm Period and the M2 glaciation. Scientific Reports, 2020, 10, 11002.	1.6	71
662	Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences, 2020, 17, 3439-3470.	1.3	348
663	Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Science Advances, 2020, 6, eaba1981.	4.7	321
664	Overview of the CMIP6 Historical Experiment Datasets with the Climate System Model CAS FGOALS-f3-L. Advances in Atmospheric Sciences, 2020, 37, 1057-1066.	1.9	26
665	Drivers of the enhanced decline of land near-surface relative humidity to abrupt 4xCO2 in CNRM-CM6-1. Climate Dynamics, 2020, 55, 1613-1629.	1.7	10
666	Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia. Atmospheric Research, 2020, 246, 105111.	1.8	138
667	Twenty first century changes in Antarctic and Southern Ocean surface climate in CMIP6. Atmospheric Science Letters, 2020, 21, e984.	0.8	53
668	Changing Degree of Convective Organization as a Mechanism for Dynamic Changes in Extreme Precipitation. Current Climate Change Reports, 2020, 6, 47-54.	2.8	20
670	Robustness and drivers of the Northern Hemisphere extratropical atmospheric circulation response to a CO\$\$_2\$\$-induced warming in CNRM-CM6-1. Climate Dynamics, 2020, 54, 2267-2285.	1.7	5
671	Uncertainties in the Annual Cycle of Rainfall Characteristics over West Africa in CMIP5 Models. Atmosphere, 2020, 11, 216.	1.0	10
672	QBO Changes in CMIP6 Climate Projections. Geophysical Research Letters, 2020, 47, e2019GL086903.	1.5	24
673	The generation of gridded emissions data for CMIP6. Geoscientific Model Development, 2020, 13, 461-482.	1.3	88
674	Effective resolution in high resolution global atmospheric models for climate studies. Atmospheric Science Letters, 2020, 21, e952.	0.8	34
675	Preserving the coupled atmosphere–ocean feedback in initializations of decadal climate predictions. Wiley Interdisciplinary Reviews: Climate Change, 2020, 11, e637.	3.6	22
676	Projected near-term changes of temperature extremes in Europe and China under different aerosol emissions. Environmental Research Letters, 2020, 15, 034013.	2.2	14
677	Impacts of ENSO and Madden–Julian oscillation on the genesis of tropical cyclones simulated by general circulation models and compared to observations. Environmental Research Letters, 2020, 15, 034046.	2.2	6
678	Plant Growth Nullifies the Effect of Increased Waterâ€Use Efficiency on Streamflow Under Elevated CO 2 in the Southeastern United States. Geophysical Research Letters, 2020, 47, e2019GL086940.	1.5	13
679	Event-based models to understand the scale of the impact of extremes. Nature Energy, 2020, 5, 111-114.	19.8	24

#	Article	IF	Citations
680	Enhancing ENSO Prediction Skill by Combining Modelâ€Analog and Linear Inverse Models (MA‣IM). Geophysical Research Letters, 2020, 47, e2019GL085914.	1.5	6
681	Decadal-to-Multidecadal Variability of Seasonal Land Precipitation in Northern Hemisphere in Observation and CMIP6 Historical Simulations. Atmosphere, 2020, 11, 195.	1.0	9
682	Uncertainty in the Response of Sudden Stratospheric Warmings and Stratosphereâ€Troposphere Coupling to Quadrupled CO ₂ Concentrations in CMIP6 Models. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032345.	1,2	50
683	Designing high-yielding maize ideotypes to adapt changing climate in the North China Plain. Agricultural Systems, 2020, 181, 102805.	3.2	50
684	Future projections of the near-surface wind speed over eastern China based on CMIP5 datasets. Climate Dynamics, 2020, 54, 2361-2385.	1.7	30
685	Variations in start date, end date, frequency and intensity of yearly temperature extremes across China during the period 1961–2017. Environmental Research Letters, 2020, 15, 045007.	2.2	19
686	Dynamical systems theory sheds new light on compound climate extremes in Europe and Eastern North America. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 1636-1650.	1.0	50
687	Response of Storm-Related Extreme Sea Level along the U.S. Atlantic Coast to Combined Weather and Climate Forcing. Journal of Climate, 2020, 33, 3745-3769.	1.2	16
688	The Time-Scale-Dependent Response of the Wintertime North Atlantic to Increased Ocean Model Resolution in a Coupled Forecast Model. Journal of Climate, 2020, 33, 3663-3689.	1.2	15
689	Comparison of monthly air and land surface temperature extremes simulated using CMIP5 and CMIP6 versions of the Beijing Climate Center climate model. Theoretical and Applied Climatology, 2020, 140, 487-502.	1.3	43
690	Presentâ€Day and Historical Aerosol and Ozone Characteristics in CNRM CMIP6 Simulations. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001816.	1.3	36
691	Impact of Model Resolution on Tropical Cyclone Simulation Using the HighResMIP–PRIMAVERA Multimodel Ensemble. Journal of Climate, 2020, 33, 2557-2583.	1.2	141
692	Assessing the Impact of Initialization on Decadal Prediction Skill. Geophysical Research Letters, 2020, 47, e2019GL086361.	1.5	14
693	The CMIP6 Data Request (DREQ, version 01.00.31). Geoscientific Model Development, 2020, 13, 201-224.	1.3	22
694	The linkage between CMIP5 climate models' abilities to simulate precipitation and vector winds. Climate Dynamics, 2020, 54, 4953-4970.	1.7	18
695	Atmospheric teleconnection processes linking winter air stagnation and haze extremes in China with regional Arctic sea ice decline. Atmospheric Chemistry and Physics, 2020, 20, 4999-5017.	1.9	20
696	The Chemistry Mechanism in the Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001882.	1.3	189
697	Excessive ITCZ but Negative SST Biases in the Tropical Pacific Simulated by CMIP5/6 Models: The Role of the Meridional Pattern of SST Bias. Journal of Climate, 2020, 33, 5305-5316.	1.2	16

#	ARTICLE	IF	Citations
698	An improved modelâ€based analogue forecasting for the prediction of the tropical <scp>Indoâ€Pacific</scp> Sea surface temperature in a coupled climate model. International Journal of Climatology, 2020, 40, 6346-6360.	1.5	7
699	Implementation of the CMIP6 Forcing Data in the IPSL M6A‣R Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001940.	1.3	95
700	Diagnosing Transient Response to CO ₂ Forcing in Coupled Atmosphereâ€Ocean Model Experiments Using a Climate Model Emulator. Geophysical Research Letters, 2020, 47, e2019GL085844.	1.5	15
701	Impact of Subgrid Variation of Water Vapor on Longwave Radiation in a General Circulation Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001926.	1.3	1
702	Insights From CMIP6 for Australia's Future Climate. Earth's Future, 2020, 8, e2019EF001469.	2.4	164
703	Comparison of <scp>CMIP6</scp> and <scp>CMIP5</scp> simulations of precipitation in China and the East Asian summer monsoon. International Journal of Climatology, 2020, 40, 6423-6440.	1.5	211
704	Improving sea-level projections on the Northwestern European shelf using dynamical downscaling. Climate Dynamics, 2020, 54, 1987-2011.	1.7	49
705	Mechanisms of enhanced ocean surface warming in the Kuroshio region for 1951–2010. Climate Dynamics, 2020, 54, 4129-4145.	1.7	7
706	An assessment of land-based climate and carbon reversibility in the Australian Community Climate and Earth System Simulator. Mitigation and Adaptation Strategies for Global Change, 2020, 25, 713-731.	1.0	7
707	Climate Change Projections for the Australian Monsoon From CMIP6 Models. Geophysical Research Letters, 2020, 47, e2019GL086816.	1.5	29
708	Greenland Ice Sheet Contribution to 21st Century Sea Level Rise as Simulated by the Coupled CESM2.1â€CISM2.1. Geophysical Research Letters, 2020, 47, e2019GL086836.	1.5	40
709	Initial Results From the Superâ€Parameterized E3SM. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001863.	1.3	28
711	Predictability Horizons in the Global Carbon Cycle Inferred From a Perfectâ€Model Framework. Geophysical Research Letters, 2020, 47, e2019GL085311.	1.5	12
712	Twenty-first century ocean forcing of the Greenland ice sheet for modelling of sea level contribution. Cryosphere, 2020, 14, 985-1008.	1.5	51
713	Presentâ€Day Greenland Ice Sheet Climate and Surface Mass Balance in CESM2. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005318.	1.0	24
714	Aurora Basin, the Weak Underbelly of East Antarctica. Geophysical Research Letters, 2020, 47, e2019GL086821.	1.5	11
716	The Coupled Model Intercomparison Project: History, uses, and structural effects on climate research. Wiley Interdisciplinary Reviews: Climate Change, 2020, 11, e648.	3.6	26
717	Improved methods for estimating equilibrium climate sensitivity from transient warming simulations. Climate Dynamics, 2020, 54, 4515-4543.	1.7	11

#	Article	IF	CITATIONS
718	Twentyâ€First Century Drought Projections in the CMIP6 Forcing Scenarios. Earth's Future, 2020, 8, e2019EF001461.	2.4	435
719	Antarctic Sea Ice Area in CMIP6. Geophysical Research Letters, 2020, 47, e2019GL086729.	1.5	129
720	SPEAR: The Next Generation GFDL Modeling System for Seasonal to Multidecadal Prediction and Projection. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001895.	1.3	94
721	The Global Teleconnection Signature of the Maddenâ€Julian Oscillation and Its Modulation by the Quasiâ€Biennial Oscillation. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032653.	1.2	24
722	Call for Participation: Collaborative Benchmarking of Functional-Structural Root Architecture Models. The Case of Root Water Uptake. Frontiers in Plant Science, 2020, 11, 316.	1.7	18
724	Assessment of South America summer rainfall climatology and trends in a set of global climate models large ensembles. International Journal of Climatology, 2021, 41, E59.	1.5	30
725	Future changes in wind energy resource over the Northwest Passage based on the compact the compact the compact of the compact	2.2	20
726	Future projections of winter cold surge paths over East Asia from <scp>CMIP6</scp> models. International Journal of Climatology, 2021, 41, 1230-1245.	1.5	10
727	Analysis of CMIP6 atmospheric moisture fluxes and the implications for projections of future change in mean and heavy rainfall. International Journal of Climatology, 2021, 41, E1417.	1.5	5
728	Interdecadal and interannual evolution characteristics of the global surface precipitation anomaly shown by <scp>CMIP5</scp> and <scp>CMIP6</scp> models. International Journal of Climatology, 2021, 41, E1100.	1.5	11
729	The dominant North Pacific atmospheric circulation patterns and their relations to Pacific SSTs: historical simulations and future projections in the IPCC AR6 models. Climate Dynamics, 2021, 56, 701-725.	1.7	25
730	Sudden Stratospheric Warmings. Reviews of Geophysics, 2021, 59, .	9.0	204
731	Leaching of dissolved organic carbon from mineral soils plays a significant role in the terrestrial carbon balance. Global Change Biology, 2021, 27, 1083-1096.	4.2	47
732	Simulated Relationship between Wintertime ENSO and East Asian Summer Rainfall: From CMIP3 to CMIP6. Advances in Atmospheric Sciences, 2021, 38, 221-236.	1.9	18
733	Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. Nature Climate Change, 2021, 11, 27-32.	8.1	79
734	Evaluation of precipitation in CMIP6 over the Yangtze River Basin. Atmospheric Research, 2021, 253, 105406.	1.8	53
735	Through space and time: Predicting numbers of an eruptive pine tree pest and its predator under changing climate conditions. Forest Ecology and Management, 2021, 483, 118770.	1.4	12
736	Widespread Persistent Extreme Cold Events Over Southâ€East China: Mechanisms, Trends, and Attribution. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033447.	1.2	12

#	ARTICLE	IF	CITATIONS
737	Assessment of the European Climate Projections as Simulated by the Large EURO ORDEX Regional and Global Climate Model Ensemble. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2019JD032356.	1.2	104
738	CMIP6 Historical Simulations (1850–2014) With GISS 2.1. Journal of Advances in Modeling Earth Systems, 2021, 13, e2019MS002034.	1.3	49
739	Insight from CMIP6 SSP-RCP scenarios for future drought characteristics in China. Atmospheric Research, 2021, 250, 105375.	1.8	157
740	Evaluation of CMIP6 precipitation simulations across different climatic zones: Uncertainty and model intercomparison. Atmospheric Research, 2021, 250, 105369.	1.8	83
741	Historical and projected low-frequency variability in the Somali Jet and Indian Summer Monsoon. Climate Dynamics, 2021, 56, 749-765.	1.7	13
742	The Northwestern Pacific Warming Record in August 2020 Occurred Under Anthropogenic Forcing. Geophysical Research Letters, 2021, 48, e2020GL090956.	1.5	18
743	Stringent mitigation substantially reduces risk of unprecedented near-term warming rates. Nature Climate Change, 2021, 11, 126-131.	8.1	19
744	Historical Changes in Surface Soil Moisture Over the Contiguous United States: An Assessment of CMIP6. Geophysical Research Letters, 2021, 48, .	1.5	19
745	Multivariate Estimations of Equilibrium Climate Sensitivity From Short Transient Warming Simulations. Geophysical Research Letters, 2021, 48, e2020GL091090.	1.5	3
746	Performance of the <scp>IPCC AR6</scp> models in simulating the relation of the western North Pacific subtropical high to the spring northern tropical Atlantic <scp>SST</scp> . International Journal of Climatology, 2021, 41, 2189-2208.	1.5	10
747	Brief communication: <scp>CMIP6</scp> does not suggest any atmospheric blocking increase in summer over Greenland by 2100. International Journal of Climatology, 2021, 41, 2589-2596.	1.5	19
748	Dynamic 3-D Visualization of Climate Model Development and Results. IEEE Computer Graphics and Applications, 2021, 41, 17-25.	1.0	3
749	Datasets for the CMIP6 Scenario Model Intercomparison Project (ScenarioMIP) Simulations with the Coupled Model CAS FGOALS-f3-L. Advances in Atmospheric Sciences, 2021, 38, 329-339.	1.9	15
750	Surface Temperature Changes Projected by FGOALS Models under Low Warming Scenarios in CMIP5 and CMIP6. Advances in Atmospheric Sciences, 2021, 38, 203-220.	1.9	6
751	Decadal variability of the Kuroshio Extension: the response of the jet to increased atmospheric resolution in a coupled ocean–atmosphere model. Climate Dynamics, 2021, 56, 1227-1249.	1.7	4
752	Hydroclimate changes over Sweden in the twentieth and twenty-first centuries: a millennium perspective. Geografiska Annaler, Series A: Physical Geography, 2021, 103, 103-131.	0.6	13
753	Glaciers and glaciation of North Island, New Zealand. New Zealand Journal of Geology, and Geophysics, 2021, 64, 1-20.	1.0	8
754	Enhanced warming constrained by past trends in equatorial Pacific sea surface temperature gradient. Nature Climate Change, 2021, 11, 33-37.	8.1	58

#	Article	IF	CITATIONS
755	Mechanisms of tropical precipitation biases in climate models. Climate Dynamics, 2021, 56, 17-27.	1.7	4
756	Evaluation of global terrestrial evapotranspiration in CMIP6 models. Theoretical and Applied Climatology, 2021, 143, 521-531.	1.3	36
757	Reversed impacts of the Arctic oscillation on the precipitation over the South China Sea and its surrounding areas in October and November. Climate Dynamics, 2021, 56, 65-85.	1.7	2
758	What causes the spread of model projections of ocean dynamic sea-level change in response to greenhouse gas forcing?. Climate Dynamics, 2021, 56, 155-187.	1.7	29
759	Pacific variability reconciles observed and modelled global mean temperature increase since 1950. Climate Dynamics, 2021, 56, 613-634.	1.7	11
760	The regional MiKlip decadal prediction system for Europe: Hindcast skill for extremes and userâ€oriented variables. International Journal of Climatology, 2021, 41, E1944.	1.5	5
761	Marine Heatwaves. Annual Review of Marine Science, 2021, 13, 313-342.	5.1	254
762	Drivers of the Indian summer monsoon climate variability. , 2021, , 1-28.		4
763	Projected Changes in Water Year Types and Hydrological Drought in California's Central Valley in the 21st Century. Climate, 2021, 9, 26.	1.2	4
764	Evaluating Diurnal and Semi-Diurnal Cycle of Precipitation in CMIP6 Models Using Satellite- and Ground-Based Observations. Journal of Climate, 2021, , 1-56.	1.2	19
765	Revisiting the Causal Connection between the Great Salinity Anomaly of the 1970s and the Shutdown of Labrador Sea Deep Convection. Journal of Climate, 2021, 34, 675-696.	1.2	9
766	Historical Evidence for Anthropogenic Climate Change and Climate Modeling Basics. Springer Hydrogeology, 2021, , 47-70.	0.1	0
767	A clustering-based approach to ocean model–data comparison around Antarctica. Ocean Science, 2021, 17, 131-145.	1.3	5
768	Modeling extreme climatic events using the generalized extreme value (GEV) distribution. Handbook of Statistics, 2021, , 39-71.	0.4	9
769	Introduction to Freva $\hat{a} \in A$ Free Evaluation System Framework for Earth System Modeling. Journal of Open Research Software, 2021, 9, 13.	2.7	11
770	Significant climate benefits from near-term climate forcer mitigation in spite of aerosol reductions. Environmental Research Letters, 0, , .	2.2	14
771	Radiation budget in RegCM4: simulation results from two radiative schemes over the South West Indian Ocean. Climate Research, 2021, 84, 181-195.	0.4	1
772	Future Changes in the Global and Regional Sea Level Rise and Sea Surface Temperature Based on CMIP6 Models. Atmosphere, 2021, 12, 90.	1.0	19

#	Article	IF	CITATIONS
773	NUIST ESM v3 Data Submission to CMIP6. Advances in Atmospheric Sciences, 2021, 38, 268-284.	1.9	5
774	Antarctic Bottom Water and North Atlantic Deep Water in CMIP6 models. Ocean Science, 2021, 17, 59-90.	1.3	84
775	Projected Changes in Temperature and Precipitation Over the United States, Central America, and the Caribbean in CMIP6 GCMs. Earth Systems and Environment, 2021, 5, 1-24.	3.0	125
776	Coordinating an operational data distribution network for CMIP6 data. Geoscientific Model Development, 2021, 14, 629-644.	1.3	38
777	Impacts of Model Spatial Resolution on the Simulation of Convective Spectrum and the Associated Cloud Radiative Effect in the Tropics. Journal of the Meteorological Society of Japan, 2021, 99, 789-802.	0.7	2
778	The Climatic Analysis of Summer Monsoon Extreme Precipitation Events over West Africa in CMIP6 Simulations. Earth Systems and Environment, 2021, 5, 25-41.	3.0	47
779	Evaluation of the contribution of tropical cyclone seeds to changes in tropical cyclone frequency due to global warming in high-resolution multi-model ensemble simulations. Progress in Earth and Planetary Science, 2021, 8, .	1.1	30
780	Long-term Regional Dynamic Sea Level Changes from CMIP6 Projections. Advances in Atmospheric Sciences, 2021, 38, 157-167.	1.9	9
781	North Atlantic Oscillation response in GeoMIP experiments G6solar and G6sulfur: why detailed modelling is needed for understanding regional implications of solar radiation management. Atmospheric Chemistry and Physics, 2021, 21, 1287-1304.	1.9	25
782	Cloud adjustments dominate the overall negative aerosol radiative effects of biomass burning aerosols in UKESM1 climate model simulations over the south-eastern Atlantic. Atmospheric Chemistry and Physics, 2021, 21, 17-33.	1.9	13
783	Coupling of the CASâ€LSM Landâ€Surface Model With the CASâ€FGOALSâ€g3 Climate System Model. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002171.	1.3	3
784	Low-frequency variability of the Pacific Subtropical Cells as reproduced by coupled models and ocean reanalyses. Climate Dynamics, 2021, 56, 3231-3254.	1.7	8
785	Temperature extremes in a changing climate., 2021,, 9-23.		1
786	Call to Action for Global Access to and Harmonization of Quality Information of Individual Earth Science Datasets. Data Science Journal, 2021, 20, .	0.6	5
787	Source Attributions of Radiative Forcing by Regions, Sectors, and Climate Forcers. SSRN Electronic Journal, 0, , .	0.4	0
788	Biomass burning aerosols in most climate models are too absorbing. Nature Communications, 2021, 12, 277.	5.8	84
789	Assessing uncertainty for decisionâ€making in climate adaptation and risk mitigation. International Journal of Climatology, 2021, 41, 2891-2912.	1.5	8
790	A New Graphical Method to Diagnose the Impacts of Model Changes on Climate Sensitivity. Journal of the Meteorological Society of Japan, 2021, 99, 437-448.	0.7	O

#	Article	IF	CITATIONS
791	Forecasting Remote Atmospheric Responses to Decadal Kuroshio Stability Transitions. Journal of Climate, 2021, 34, 379-395.	1.2	16
792	AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations. Atmospheric Chemistry and Physics, 2021, 21, 87-128.	1.9	96
793	Identifying robust bias adjustment methods for European extreme precipitation in a multi-model pseudo-reality setting. Hydrology and Earth System Sciences, 2021, 25, 273-290.	1.9	9
794	Greater committed warming after accounting for the pattern effect. Nature Climate Change, 2021, 11, 132-136.	8.1	35
795	HIRM v1.0: a hybrid impulse response model for climate modeling and uncertainty analyses. Geoscientific Model Development, 2021, 14, 365-375.	1.3	3
796	Using Machine Learning to Make Computationally Inexpensive Projections of 21st Century Stratospheric Column Ozone Changes in the Tropics. Frontiers in Earth Science, 2021, 8, .	0.8	1
797	Quantifying Human-Induced Dynamic and Thermodynamic Contributions to Severe Cold Outbreaks Like November 2019 in the Eastern United States. Bulletin of the American Meteorological Society, 2021, 102, S17-S23.	1.7	7
798	Simulation of the dipole pattern of summer precipitation over the Tibetan Plateau by CMIP6 models. Environmental Research Letters, 2021, 16, 014047.	2.2	16
799	Climate Change Projection in the Twenty-First Century Simulated by NIMS-KMA CMIP6 Model Based on New GHGs Concentration Pathways. Asia-Pacific Journal of Atmospheric Sciences, 2021, 57, 851-862.	1.3	15
800	Habitat use as indicator of adaptive capacity to climate change. Diversity and Distributions, 2021, 27, 655-667.	1.9	9
801	Improved atmospheric circulation over Europe by the new generation of CMIP6 earth system models. Climate Dynamics, 2021, 56, 3527-3540.	1.7	33
802	Implementation of nitrogen cycle in the CLASSIC land model. Biogeosciences, 2021, 18, 669-706.	1.3	11
803	Future changes of the ENSO–Indian summer monsoon teleconnection. , 2021, , 393-412.		7
804	Future changes in precipitation extremes over Southeast Asia: insights from CMIP6 multi-model ensemble. Environmental Research Letters, 2021, 16, 024013.	2.2	78
805	Constraining human contributions to observed warming since the pre-industrial period. Nature Climate Change, 2021, 11, 207-212.	8.1	108
806	Summertime atmosphere–sea ice coupling in the Arctic simulated by CMIP5/6 models: Importance of large-scale circulation. Climate Dynamics, 2021, 56, 1467-1485.	1.7	17
807	Trait-Based Modeling of Terrestrial Ecosystems: Advances and Challenges Under Global Change. Current Climate Change Reports, 2021, 7, 1-13.	2.8	17
808	Northern Hemisphere Sudden Stratospheric Warming and Its Downward Impact in Four Chinese CMIP6 Models. Advances in Atmospheric Sciences, 2021, 38, 187-202.	1.9	21

#	ARTICLE	IF	CITATIONS
809	The response of mesospheric H ₂ O and CO to solar irradiance variability in models and observations. Atmospheric Chemistry and Physics, 2021, 21, 201-216.	1.9	6
810	Dust Atmospheric Transport Over Long Distances. , 2022, , 259-300.		2
811	Generation of westerly wind bursts by forcing outside the tropics. Scientific Reports, 2021, 11, 912.	1.6	7
812	FORTE 2.0: a fast, parallel and flexible coupled climate model. Geoscientific Model Development, 2021, 14, 275-293.	1.3	3
813	Simulated response of the active layer thickness of permafrost to climate change. Atmospheric and Oceanic Science Letters, 2021, 14, 100007.	0.5	1
814	Satellite-based radiative forcing by light-absorbing particles in snow across the Northern Hemisphere. Atmospheric Chemistry and Physics, 2021, 21, 269-288.	1.9	11
815	Towards HPC and Big Data Analytics Convergence: Design and Experimental Evaluation of a HPDA Framework for eScience at Scale. IEEE Access, 2021, 9, 73307-73326.	2.6	10
816	Projected Trends of Wintertime North American Surface Mean and Extreme Temperatures over the Next Half-century in Two Generations of Canadian Earth System Models. Atmosphere - Ocean, 2021, 59, 53-75.	0.6	2
817	Ground-based lidar processing and simulator framework for comparing models and observations (ALCF 1.0). Geoscientific Model Development, $2021,14,43-72$.	1.3	13
818	Assimilating synthetic Biogeochemical-Argo and ocean colour observations into a global ocean model to inform observing system design. Biogeosciences, 2021, 18, 509-534.	1.3	14
819	Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison. Atmospheric Chemistry and Physics, 2021, 21, 853-874.	1.9	65
820	Making climate projections conditional on historical observations. Science Advances, 2021, 7, .	4.7	89
821	Changes in precipitation and air temperature contribute comparably to permafrost degradation in a warmer climate. Environmental Research Letters, 2021, 16, 024008.	2.2	52
822	Future Changes in Extreme High Temperature over China at 1.5°C–5°C Global Warming Based on CMIP6 Simulations. Advances in Atmospheric Sciences, 2021, 38, 253-267.	1.9	52
823	An evaluation of the Arctic clouds and surface radiative fluxes in CMIP6 models. Acta Oceanologica Sinica, 2021, 40, 85-102.	0.4	8
824	South Asian summer monsoon response to anthropogenic aerosol forcing. , 2021, , 433-448.		0
825	Future Changes in the Great Plains Lowâ€Level Jet Governed by Seasonally Dependent Pattern Changes in the North Atlantic Subtropical High. Geophysical Research Letters, 2021, 48, e2020GL090356.	1.5	12
826	Assessing the Impact of Climate Change on the Distribution of Lime (16srii-B) and Alfalfa (16srii-D) Phytoplasma Disease Using MaxEnt. Plants, 2021, 10, 460.	1.6	6

#	Article	IF	Citations
827	Multi-Model Ensemble Projection of Precipitation Changes over China under Global Warming of 1.5 and $2\mathring{A}^{\circ}\text{C}$ with Consideration of Model Performance and Independence. Journal of Meteorological Research, 2021, 35, 184-197.	0.9	14
828	Modulation of the Occurrence of Heatwaves over the Euro-Mediterranean Region by the Intensity of the Atlantic Multidecadal Variability. Journal of Climate, 2021, 34, 1099-1114.	1.2	15
829	An observational equatorial Atlantic Ocean constraint on Indian monsoon precipitation projections. Climate Dynamics, 2021, 57, 209-221.	1.7	2
830	Regionally aggregated, stitched and deâ€drifted CMIPâ€climate data, processed with netCDFâ€SCM v2.0.0. Geoscience Data Journal, 0, , .	1.8	8
831	The quiet crossing of ocean tipping points. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	64
832	Model Uncertainty in the Projected Indian Summer Monsoon Precipitation Change under Low-Emission Scenarios. Atmosphere, 2021, 12, 248.	1.0	6
833	Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence. Nature Communications, 2021, 12, 800.	5.8	30
834	Subdiurnal to Interannual Frequency Analysis of Observed and Modeled Reflected Shortwave Radiation From Earth. Geophysical Research Letters, 2021, 48, e2020GL089221.	1.5	3
835	Synchronized spatial shifts of Hadley and Walker circulations. Earth System Dynamics, 2021, 12, 121-132.	2.7	13
836	Future changes in the frequency of temperature extremes may be underestimated in tropical and subtropical regions. Communications Earth & Environment, 2021, 2, .	2.6	32
837	Climate response to introduction of the ESA CCI land cover data to the NCAR CESM. Climate Dynamics, 2021, 56, 4109-4127.	1.7	11
838	Uncertainty in Forced and Natural Arctic Solar Absorption Variations in CMIP6 Models. Journal of Climate, 2021, 34, 931-948.	1.2	6
839	A climate service for ecologists: sharing pre-processed EURO-CORDEX regional climate scenario data using the eLTER Information System. Earth System Science Data, 2021, 13, 631-644.	3.7	7
840	ISMIP6-based projections of ocean-forced Antarctic Ice Sheet evolution using the Community Ice Sheet Model. Cryosphere, 2021, 15, 633-661.	1.5	16
841	Simulating the mid-Holocene, last interglacial and mid-Pliocene climate with EC-Earth3-LR. Geoscientific Model Development, 2021, 14, 1147-1169.	1.3	32
842	Communicating potentially large but nonâ€robust changes in multiâ€model projections of future climate. International Journal of Climatology, 2021, 41, 3657-3669.	1.5	9
843	Global exposure to flooding from the new CMIP6 climate model projections. Scientific Reports, 2021, 11, 3740.	1.6	73
844	Projection of future extreme precipitation in Iran based on CMIP6 multi-model ensemble. Theoretical and Applied Climatology, 2021, 144, 643-660.	1.3	32

#	Article	IF	CITATIONS
845	Evaluation of historical CMIP6 model simulations and future projections of temperature and precipitation in Paraguay. Climatic Change, 2021, 164, 1.	1.7	19
846	An evaluation of CMIP6 historical simulations of the cold season teleconnection between tropical Indo-Pacific sea surface temperatures and precipitation in Southwest Asia, the coastal Middle East, and Northern Pakistan and India. Journal of Climate, 2021, , 1-43.	1.2	3
847	Current status on the need for improved accessibility to climate models code. Geoscientific Model Development, 2021, 14, 923-934.	1.3	5
848	Leaf area index in Earth system models: how the key variable of vegetation seasonality works in climate projections. Environmental Research Letters, 2021, 16, 034027.	2.2	23
849	Machine learning for weather and climate are worlds apart. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200098.	1.6	27
850	Time- and depth-resolved mechanistic assessment of water stress in Australian ecosystems under the CMIP6 scenarios. Advances in Water Resources, 2021, 148, 103837.	1.7	4
851	Dataâ€Driven Mediumâ€Range Weather Prediction With a Resnet Pretrained on Climate Simulations: A New Model for WeatherBench. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002405.	1.3	62
852	Clarifying the Relation between AMOC and Thermal Wind: Application to the Centennial Variability in a Coupled Climate Model. Journal of Physical Oceanography, 2021, 51, 343-364.	0.7	9
853	More accurate quantification of model-to-model agreement in externally forced climatic responses over the coming century. Nature Communications, 2021, 12, 788.	5.8	32
854	Climatic Warming and Humidification in the Arid Region of Northwest China: Multi-Scale Characteristics and Impacts on Ecological Vegetation. Journal of Meteorological Research, 2021, 35, 113-127.	0.9	58
855	Increased Turbulence in the Eurasian Upper‣evel Jet Stream in Winter: Past and Future. Earth and Space Science, 2021, 8, e2020EA001556.	1.1	9
856	Multi-Aspect Assessment of CMIP6 Models for Arctic Sea Ice Simulation. Journal of Climate, 2021, 34, 1515-1529.	1.2	20
857	Interdecadal weakening of the cross-equatorial flows over the Maritime Continent during the boreal summer in the mid-1990s: drivers and physical processes. Climate Dynamics, 2021, 57, 55-72.	1.7	3
859	Correlations Between Seaâ€Level Components Are Driven by Regional Climate Change. Earth's Future, 2021, 9, e2020EF001825.	2.4	7
861	The Southern Annular Mode in 6th Coupled Model Intercomparison Project Models. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034161.	1.2	10
862	Temperature dataset of CMIP6 models over China: evaluation, trend and uncertainty. Climate Dynamics, 2021, 57, 17-35.	1.7	91
863	Quantifying the Tropical Upper Tropospheric Warming Amplification Using Radio Occultation Measurements. Earth and Space Science, 2021, 8, e2020EA001597.	1.1	7
864	Downscaling and Evaluation of Seasonal Climate Data for the European Power Sector. Atmosphere, 2021, 12, 304.	1.0	4

#	Article	IF	Citations
865	The Nonhydrostatic ICosahedral Atmospheric Model for CMIP6 HighResMIP simulations (NICAM16-S): experimental design, model description, and impacts of model updates. Geoscientific Model Development, 2021, 14, 795-820.	1.3	28
866	Evaluation of Cloud and Precipitation Simulations in CAM6 and AM4 Using Observations Over the Southern Ocean. Earth and Space Science, 2021, 8, e2020EA001241.	1.1	10
867	Anthropogenic Greenhouse Gas and Aerosol Contributions to Extreme Temperature Changes during 1951–2015. Journal of Climate, 2021, 34, 857-870.	1.2	34
868	Method Uncertainty Is Essential for Reliable Confidence Statements of Precipitation Projections. Journal of Climate, 2021, 34, 1227-1240.	1.2	9
869	Evaluation of polar stratospheric clouds in the global chemistry–climate model SOCOLv3.1 by comparison with CALIPSO spaceborne lidar measurements. Geoscientific Model Development, 2021, 14, 935-959.	1.3	7
870	Evaluating Climate Models with the CLIVAR 2020 ENSO Metrics Package. Bulletin of the American Meteorological Society, 2021, 102, E193-E217.	1.7	93
871	CO ₂ -plant effects do not account for the gap between dryness indices and projected dryness impacts in CMIP6 or CMIP5. Environmental Research Letters, 2021, 16, 034018.	2.2	20
872	Historical and Projected Changes in the Southern Hemisphere Surface Westerlies. Geophysical Research Letters, 2021, 48, e2020GL090849.	1.5	57
873	Exploring uncertainties in global crop yield projections in a large ensemble of crop models and CMIP5 and CMIP6 climate scenarios. Environmental Research Letters, 2021, 16, 034040.	2.2	53
874	Increasing ENSO–rainfall variability due to changes in future tropical temperature–rainfall relationship. Communications Earth & Environment, 2021, 2, .	2.6	58
875	Climate Sensitivity Increases Under Higher CO ₂ Levels Due to Feedback Temperature Dependence. Geophysical Research Letters, 2021, 48, e2020GL089074.	1.5	31
876	Slowdown and reversal of terrestrial near-surface wind speed and its future changes over eastern China. Environmental Research Letters, 2021, 16, 034028.	2.2	22
877	A Few Frontier Issues in Ocean Engineering Mechanics. China Ocean Engineering, 2021, 35, 1-11.	0.6	2
878	The German Climate Forecast System: GCFS. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002101.	1.3	30
879	Anthropogenic climate change is worsening North American pollen seasons. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	118
880	Projections of river floods in Europe using <scp>EURO ORDEX</scp> , <scp>CMIP5</scp> and <scp>CMIP6</scp> simulations. International Journal of Climatology, 2021, 41, 3203-3221.	1.5	29
881	Business risk and the emergence of climate analytics. Nature Climate Change, 2021, 11, 87-94.	8.1	97
882	Uncertainty of ENSO-amplitude projections in CMIP5 and CMIP6 models. Climate Dynamics, 2021, 56, 3875-3888.	1.7	59

#	Article	IF	CITATIONS
883	Compensation Between Cloud Feedback and Aerosolâ€Cloud Interaction in CMIP6 Models. Geophysical Research Letters, 2021, 48, e2020GL091024.	1.5	33
884	Assessment of a full-field initialized decadal climate prediction system with the CMIP6 version of EC-Earth. Earth System Dynamics, 2021, 12, 173-196.	2.7	32
885	CAS-LSM Datasets for the CMIP6 Land Surface Snow and Soil Moisture Model Intercomparison Project. Advances in Atmospheric Sciences, 2021, 38, 862-874.	1.9	2
886	Heat Stress Indicators in CMIP6: Estimating Future Trends and Exceedances of Impactâ€Relevant Thresholds. Earth's Future, 2021, 9, e2020EF001885.	2.4	71
887	A 21st Century Warming Threshold for Sustained Greenland Ice Sheet Mass Loss. Geophysical Research Letters, 2021, 48, e2020GL090471.	1.5	29
888	The MJO-QBO Relationship in a GCM with Stratospheric Nudging. Journal of Climate, 2021, , 1-69.	1.2	17
889	Future Directions in Precipitation Science. Remote Sensing, 2021, 13, 1074.	1.8	3
891	Diverging responses of high-latitude CO ₂ and CH ₄ emissions in idealized climate change scenarios. Cryosphere, 2021, 15, 1097-1130.	1.5	13
892	A temperature binning approach for multi-sector climate impact analysis. Climatic Change, 2021, 165, 1.	1.7	6
893	Greenhouse gases drove the increasing trends in spring precipitation across the central USA. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190553.	1.6	10
894	Means and Extremes: Evaluation of a CMIP6 Multi-Model Ensemble in Reproducing Historical Climate Characteristics across Alberta, Canada. Water (Switzerland), 2021, 13, 737.	1.2	16
895	Constraints on global aerosol number concentration, SO ₂ and condensation sink in UKESM1 using ATomÂmeasurements. Atmospheric Chemistry and Physics, 2021, 21, 4979-5014.	1.9	16
896	Agreement and Uncertainty Among Climate Change Impact Models: A Synthesis of Sagebrush Steppe Vegetation Projections. Rangeland Ecology and Management, 2021, 75, 119-129.	1.1	9
897	Quantifying the influence of short-term emission reductions on climate. Science Advances, 2021, 7, .	4.7	24
898	Representation by two climate models of the dynamical and diabatic processes involved in the development of an explosively deepening cyclone during NAWDEX. Weather and Climate Dynamics, 2021, 2, 233-253.	1.2	5
900	Evaluation of the interactive stratospheric ozone (O3v2) module in the E3SM version 1 Earth system model. Geoscientific Model Development, 2021, 14, 1219-1236.	1.3	9
901	The Applicability of Big Data in Climate Change Research: The Importance of System of Systems Thinking. Frontiers in Environmental Science, 2021, 9, .	1.5	33
902	Multifaceted characteristics of dryland aridity changes in a warming world. Nature Reviews Earth & Environment, 2021, 2, 232-250.	12.2	281

#	Article	IF	Citations
903	How Does the North Atlantic SST Pattern Respond to Anthropogenic Aerosols in the 1970s and 2000s?. Geophysical Research Letters, 2021, 48, e2020GL092142.	1.5	13
904	Intercomparison of the representations of the atmospheric chemistry of pre-industrial methane and ozone in earth system and other global chemistry-transport models. Atmospheric Environment, 2021, 248, 118248.	1.9	5
905	The Diurnal Cycle of Precipitation according to Multiple Decades of Global Satellite Observations, Three CMIP6 Models, and the ECMWF Reanalysis. Journal of Climate, 2021, 34, 5063-5080.	1.2	27
906	Global Near-Surface Wind Speed Changes over the Last Decades Revealed by Reanalyses and CMIP6 Model Simulations. Journal of Climate, 2021, 34, 2219-2234.	1.2	32
907	Regional environmental controllers influence continental scale soil carbon stocks and future carbon dynamics. Scientific Reports, 2021, 11, 6474.	1.6	7
909	Estimating the CMIP6 Anthropogenic Aerosol Radiative Effects with the Advantage of Prescribed Aerosol Forcing. Atmosphere, 2021, 12, 406.	1.0	3
910	Tropical cyclone precipitation in the HighResMIP atmosphere-only experiments of the PRIMAVERA Project. Climate Dynamics, 2021, 57, 253-273.	1.7	23
911	ENSO phase-locking behavior in climate models: from CMIP5 to CMIP6. Environmental Research Communications, 2021, 3, 031004.	0.9	10
912	Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100. Atmospheric Chemistry and Physics, 2021, 21, 5015-5061.	1.9	54
914	Two-timescale response of a large Antarctic ice shelf to climate change. Nature Communications, 2021, 12, 1991.	5.8	45
915	Quantifying the effects of the diurnal cycle in the variability of rainfall. International Journal of Climatology, 2021, 41, 4533.	1.5	2
916	Climate change reduces frost exposure for high-value California orchard crops. Science of the Total Environment, 2021, 762, 143971.	3.9	26
917	Mapping Yearly Fine Resolution Global Surface Ozone through the Bayesian Maximum Entropy Data Fusion of Observations and Model Output for 1990–2017. Environmental Science & Enp; Technology, 2021, 55, 4389-4398.	4.6	47
918	Natural variability contributes to model–satellite differences in tropical tropospheric warming. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	27
919	Evaluation of extreme sub-daily precipitation in high-resolution global climate model simulations. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190545.	1.6	26
920	Simulated Thermocline Tilt Over the Tropical Indian Ocean and Its Influence on Future Sea Surface Temperature Variability. Geophysical Research Letters, 2021, 48, e2020GL091902.	1.5	8
921	Simulation and Projection of Summer Convective Afternoon Rainfall Activities over Southeast Asia in CMIP6 Models. Journal of Climate, 2021, , 1-43.	1.2	2
922	Metrics for evaluating tropical cyclones in climate data. Journal of Applied Meteorology and Climatology, 2021, , .	0.6	20

#	Article	IF	CITATIONS
923	An observation-based evaluation and ranking of historical Earth system model simulations in the northwest North Atlantic Ocean. Biogeosciences, 2021, 18, 1803-1822.	1.3	21
924	CMIP6 model-based analog forecasting for the seasonal prediction of sea surface temperature in the offshore area of China. Geoscience Letters, 2021, 8, .	1.3	5
927	Diverging land-use projections cause large variability in their impacts on ecosystems and related indicators for ecosystem services. Earth System Dynamics, 2021, 12, 327-351.	2.7	11
928	Projecting the potential distribution of ticks in China under climate and land use change. International Journal for Parasitology, 2021, 51, 749-759.	1.3	16
929	A regime view of future atmospheric circulation changes in northern mid-latitudes. Weather and Climate Dynamics, 2021, 2, 163-180.	1.2	44
930	Föhn, fire and grazing in Southern Tibet? A 20,000-year multi-proxy record in an alpine ecotonal ecosystem. Quaternary Science Reviews, 2021, 256, 106817.	1.4	12
931	Climate hazard indices projections based on CORDEX-CORE, CMIP5 and CMIP6 ensemble. Climate Dynamics, 2021, 57, 1293.	1.7	83
932	Projected changes in wind speed and wind energy potential over West Africa in CMIP6 models. Environmental Research Letters, 2021, 16, 044033.	2.2	39
933	Comparing different generations of idealized solar geoengineering simulations in the Geoengineering Model Intercomparison Project (GeoMIP). Atmospheric Chemistry and Physics, 2021, 21, 4231-4247.	1.9	22
934	Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet. Cryosphere, 2021, 15, 1215-1236.	1.5	71
935	Enhanced Climate Response to Ozone Depletion From Ozoneâ€Circulation Coupling. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034286.	1.2	5
936	Comparison of Coincident Optical Particle Counter and Lidar Measurements of Polar Stratospheric Clouds Above McMurdo (77.85°S, 166.67°E) From 1994 to 1999. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033572.	1.2	3
937	Predicting origins of coherent air mass trajectories using a neural networkâ€"the case of dry intrusions. Meteorological Applications, 2021, 28, e1986.	0.9	7
938	Projection of temperature and precipitation under SSPs-RCPs Scenarios over northwest China. Frontiers of Earth Science, 2021, 15, 23-37.	0.9	27
939	ReNovRisk: a multidisciplinary programme to study the cyclonic risks in the South-West Indian Ocean. Natural Hazards, 2021, 107, 1191-1223.	1.6	9
941	Arctic Warming Revealed by Multiple CMIP6 Models: Evaluation of Historical Simulations and Quantification of Future Projection Uncertainties. Journal of Climate, 2021, 34, 4871-4892.	1.2	55
942	Recommendations for Future Research Priorities for Climate Modeling and Climate Services. Bulletin of the American Meteorological Society, 2021, 102, E578-E588.	1.7	25
943	Korea Institute of Ocean Science and Technology Earth System Model and Its Simulation Characteristics. Ocean Science Journal, 2021, 56, 18-45.	0.6	28

#	Article	IF	CITATIONS
944	Evaluation of precipitation simulations in <scp>CMIP6</scp> models over Uganda. International Journal of Climatology, 2021, 41, 4743-4768.	1.5	61
945	Atmosphereâ€Ocean Feedback From Windâ€Driven Sea Spray Aerosol Production. Geophysical Research Letters, 2021, 48, e2020GL091900.	1.5	7
946	Multicentennial Variability Driven by Salinity Exchanges Between the Atlantic and the Arctic Ocean in a Coupled Climate Model. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002366.	1.3	28
947	Tropospheric ozone in CMIP6 simulations. Atmospheric Chemistry and Physics, 2021, 21, 4187-4218.	1.9	89
948	Climate model projections from the Scenario Model Intercomparison ProjectÂ(ScenarioMIP) of CMIP6. Earth System Dynamics, 2021, 12, 253-293.	2.7	236
949	Analysis of the Atmospheric Water Cycle for the Laurentian Great Lakes Region Using CMIP6 Models. Journal of Climate, 2021, 34, 4693-4710.	1.2	5
950	The Unusual Stratospheric Arctic Winter 2019/20: Chemical Ozone Loss From Satellite Observations and TOMCAT Chemical Transport Model. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034386.	1,2	19
951	Decomposing the Drivers of Polar Amplification with a Single-Column Model. Journal of Climate, 2021, 34, 2355-2365.	1.2	28
952	The importance of horizontal model resolution on simulated precipitation in Europe – from global to regional models. Weather and Climate Dynamics, 2021, 2, 181-204.	1.2	8
953	Influence of the El Niño–Southern Oscillation on entry stratospheric water vapor in coupled chemistry–ocean CCMI and CMIP6 models. Atmospheric Chemistry and Physics, 2021, 21, 3725-3740.	1.9	8
954	Tropical Cyclone Frequency Under Varying SSTs in Aquaplanet Simulations. Geophysical Research Letters, 2021, 48, e2020GL091980.	1.5	8
955	Recordâ€breaking daily rainfall in the United Kingdom and the role of anthropogenic forcings. Atmospheric Science Letters, 2021, 22, e1033.	0.8	7
956	Humanâ€Induced Rainfall Reduction in Droughtâ€Prone Northern Central Asia. Geophysical Research Letters, 2021, 48, e2020GL092156.	1.5	22
957	Evaluation and comparison of CMIP6 and CMIP5 model performance in simulating the seasonal extreme precipitation in the Western North Pacific and East Asia. Weather and Climate Extremes, 2021, 31, 100303.	1.6	65
958	Projecting Global Mean Seaâ€Level Change Using CMIP6 Models. Geophysical Research Letters, 2021, 48, e2020GL092064.	1.5	48
959	The Thermocline Biases in the Tropical North Pacific and Their Attributions. Journal of Climate, 2021, 34, 1635-1648.	1.2	10
960	Simulations of ENSO Phase-Locking in CMIP5 and CMIP6. Journal of Climate, 2021, 34, 5135-5149.	1,2	24
961	A new global gridded glacier dataset based on the Randolph Glacier Inventory version 6.0. Journal of Glaciology, $0, 1-4$.	1.1	5

#	Article	IF	CITATIONS
962	Modulation of Land Photosynthesis by the Indian Ocean Dipole: Satelliteâ€Based Observations and CMIP6 Future Projections. Earth's Future, 2021, 9, e2020EF001942.	2.4	18
963	CMIP6 Evaluation and Projection of Temperature and Precipitation over China. Advances in Atmospheric Sciences, 2021, 38, 817-830.	1.9	129
964	Linking Deep and Shallow Convective Mass Fluxes via an Assumed Entrainment Distribution in CAM5â€CLUBB: Parameterization and Simulated Precipitation Variability. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002357.	1.3	10
965	Accounting for moist processes in a subâ€grid orographic drag scheme. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 2124-2146.	1.0	0
969	Analysis of Climate-Oriented Researches in Building. Applied Sciences (Switzerland), 2021, 11, 3251.	1.3	10
970	Could CMIP6 climate models reproduce the early-2000s global warming slowdown?. Science China Earth Sciences, 2021, 64, 853-865.	2.3	7
971	Arctic Ocean Freshwater in CMIP6 Ensembles: Declining Sea Ice, Increasing Ocean Storage and Export. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016930.	1.0	20
972	Wind resource evolution in Europe under different scenarios of climate change characterised by the novel Shared Socioeconomic Pathways. Energy Conversion and Management, 2021, 234, 113961.	4.4	40
973	Discrepancies of Upper Troposphere Summer Thermal Contrast Between Tibetan Plateau and Tropical Indian Ocean in Multiple Data. Frontiers in Environmental Science, 2021, 9, .	1.5	2
974	The fast response of Sahel precipitation to climate change allows effective mitigation action. Npj Climate and Atmospheric Science, 2021, 4, .	2.6	11
975	The Effect of an Equatorial Continent on the Tropical Rain Belt. Part 1: Annual Mean Changes in the ITCZ. Journal of Climate, 2021, , 1-51.	1.2	1
976	Expected prevalence of the facultative parasitoid Megaselia scalaris of honey bees in Africa and the Mediterranean region under climate change conditions. International Journal of Tropical Insect Science, 2021, 41, 3137-3145.	0.4	4
977	A Scalable Earth Observationsâ€Based Decision Support System for Hydropower Planning in Africa. Journal of the American Water Resources Association, 0, , .	1.0	1
978	Recent climate variability around the Kerguelen Islands (Southern Ocean) seen through weather regimes. Journal of Applied Meteorology and Climatology, 2021, , .	0.6	5
979	Origins of the Excessive Westward Extension of ENSO SST Simulated in CMIP5 and CMIP6 Models. Journal of Climate, 2021, 34, 2839-2851.	1.2	41
981	Improved decadal predictions of <scp>East Asian</scp> summer monsoon with a weakly coupled data assimilation scheme. International Journal of Climatology, 2021, 41, 5550-5571.	1.5	4
982	Interactive effects of body mass changes and speciesâ€specific morphology on flight behavior of chickâ€rearing Antarctic fulmarine petrels under diurnal wind patterns. Ecology and Evolution, 2021, 11, 4972-4991.	0.8	6
983	Observations and climate models confirm precipitation pattern is changing over Nepal. Jalavaì,,yu, 2021, 1, 25-46.	0.4	6

#	Article	IF	Citations
985	Extreme climate changes over three major river basins in China as seen in CMIP5 and CMIP6. Climate Dynamics, 2021, 57, 1187-1205.	1.7	38
986	Modeling Integrated Impacts of Climate Change and Grazing on Mongolia's Rangelands. Land, 2021, 10, 397.	1.2	5
987	Evaluation of earth system model and atmospheric inversion using total column CO2 observations from GOSAT and OCO-2. Progress in Earth and Planetary Science, 2021, 8, .	1.1	10
989	A comparative study on habitat models for adult bigeye tuna in the Indian Ocean based on gridded tuna longline fishery data. Fisheries Oceanography, 2021, 30, 584-607.	0.9	14
990	Comparisons Between CMIP5 and CMIP6 Models: Simulations of Climate Indices Influencing Food Security, Infrastructure Resilience, and Human Health in Canada. Earth's Future, 2021, 9, e2021EF001995.	2.4	25
991	Plant phenology evaluation of CRESCENDO land surface models – Part 1: Start and end of the growing season. Biogeosciences, 2021, 18, 2405-2428.	1.3	19
992	Assessment of CMIP6 in simulating precipitation over arid Central Asia. Atmospheric Research, 2021, 252, 105451.	1.8	81
993	Changes in the Subantarctic Mode Water Properties and Spiciness in the Southern Indian Ocean based on Argo Observations. Journal of Physical Oceanography, 2021, , .	0.7	8
996	Temperature and Prey Species Richness Drive the Broad-Scale Distribution of a Generalist Predator. Diversity, 2021, 13, 169.	0.7	2
997	Land–sea temperature contrasts at the Last Interglacial and their impact on the hydrological cycle. Climate of the Past, 2021, 17, 869-885.	1.3	12
998	Disturbance suppresses the aboveground carbon sink in North American boreal forests. Nature Climate Change, 2021, 11, 435-441.	8.1	51
999	Multivariable evaluation of land surface processes in forced and coupled modes reveals new error sources to the simulated water cycle in the IPSL (Institute Pierre Simon Laplace) climate model. Hydrology and Earth System Sciences, 2021, 25, 2199-2221.	1.9	8
1000	How to reconstruct aerosol-induced diffuse radiation scenario for simulating GPP in land surface models? An evaluation of reconstruction methods with ORCHIDEE_DFv1.0_DFforc. Geoscientific Model Development, 2021, 14, 2029-2039.	1.3	2
1003	Evaluation of the Performance of CMIP6 Models in Reproducing Rainfall Patterns over North Africa. Atmosphere, 2021, 12, 475.	1.0	55
1006	Anthropogenic aerosol forcing of the Atlantic meridional overturning circulation and the associated mechanisms in CMIP6 models. Atmospheric Chemistry and Physics, 2021, 21, 5821-5846.	1.9	25
1007	An Assessment of Land–Atmosphere Interactions over South America Using Satellites, Reanalysis, and Two Global Climate Models. Journal of Hydrometeorology, 2021, 22, 905-922.	0.7	33
1008	Evaluation of Mesoscale Convective Systems in Climate Simulations: Methodological Development and Results from MPAS-CAM over the United States. Journal of Climate, 2021, 34, 2611-2633.	1.2	40
1009	Assessment of the Future Impact of Climate Change on the Hydrology of the Mangoky River, Madagascar Using ANN and SWAT. Water (Switzerland), 2021, 13, 1239.	1.2	10

#	Article	IF	Citations
1010	Extreme temperature indices in Eurasia in a <scp>CMIP6</scp> multiâ€model ensemble: Evaluation and projection. International Journal of Climatology, 2021, 41, 5368-5385.	1.5	36
1011	Marginal ice zone fraction benchmarks sea ice and climate model skill. Nature Communications, 2021, 12, 2221.	5.8	14
1012	The contributions of individual countries and regions to the global radiative forcing. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	3.3	15
1013	Mapping past human land use using archaeological data: A new classification for global land use synthesis and data harmonization. PLoS ONE, 2021, 16, e0246662.	1.1	47
1014	Ocean surface current multiscale observation mission (OSCOM): Simultaneous measurement of ocean surface current, vector wind, and temperature. Progress in Oceanography, 2021, 193, 102531.	1.5	24
1015	How to Save Endangered Magnolias? From Population Biology to Conservation Action: The Case of Allopatric Radiation in Western Mexico. , 0, , .		7
1016	Fifty Year Trends in Global Ocean Heat Content Traced to Surface Heat Fluxes in the Subâ€Polar Ocean. Geophysical Research Letters, 2021, 48, e2020GL091439.	1.5	7
1017	Arctic Warming and Associated Sea Ice Reduction in the Early 20th Century Induced by Natural Forcings in MRIâ€ESM2.0 Climate Simulations and Multimodel Analyses. Geophysical Research Letters, 2021, 48, e2020GL092336.	1.5	5
1019	Present and Future of Rainfall in Antarctica. Geophysical Research Letters, 2021, 48, e2020GL092281.	1.5	33
1020	Compatible Fossil Fuel CO2 Emissions in the CMIP6 Earth System Models' Historical and Shared Socioeconomic Pathway Experiments of the Twenty-First Century. Journal of Climate, 2021, 34, 2853-2875.	1.2	23
1021	Buoyancy and Wind Driven Changes in Subantarctic Mode Water During 2004–2019. Geophysical Research Letters, 2021, 48, e2021GL092511.	1.5	14
1022	Shortened Duration of Global Warming Slowdowns with Elevated Greenhouse Gas Emissions. Journal of Meteorological Research, 2021, 35, 225-237.	0.9	8
1023	Long-term variability of Sea Surface Temperature in the Tropical Indian Ocean in relation to climate change and variability. Global and Planetary Change, 2021, 199, 103436.	1.6	4
1024	The influence of anthropogenic climate change on wet and dry summers in Europe. Science Bulletin, 2021, 66, 813-823.	4.3	33
1025	Preface for "Projection and impact assessment of global change― Progress in Earth and Planetary Science, 2021, 8, .	1.1	2
1026	Evaluation of the performance of CMIP5 and CMIP6 models in simulating the South Pacific Quadrupole–ENSO relationship. Atmospheric and Oceanic Science Letters, 2021, 14, 100057.	0.5	6
1027	Evapotranspiration in the Amazon: spatial patterns, seasonality, and recent trends in observations, reanalysis, and climate models. Hydrology and Earth System Sciences, 2021, 25, 2279-2300.	1.9	32
1028	High-resolution dynamical downscaling of ERA-Interim temperature and precipitation using WRF model for Greece. Climate Dynamics, 2021, 57, 799-825.	1.7	25

#	Article	IF	CITATIONS
1029	Urban Resilience of Shenzhen City under Climate Change. Atmosphere, 2021, 12, 537.	1.0	13
1030	Surface Flux Equilibrium Estimates of Evapotranspiration at Large Spatial Scales. Journal of Hydrometeorology, 2021, 22, 765-779.	0.7	9
1031	Midlatitude Cloud Radiative Effect Sensitivity to Cloud Controlling Factors in Observations and Models: Relationship with Southern Hemisphere Jet Shifts and Climate Sensitivity. Journal of Climate, 2021, , 1-59.	1.2	3
1032	Ecosystem age-class dynamics and distribution in the LPJ-wsl v2.0 global ecosystem model. Geoscientific Model Development, 2021, 14, 2575-2601.	1.3	5
1033	Quantifying the Occurrence of Record Hot Years Through Normalized Warming Trends. Geophysical Research Letters, 2021, 48, e2020GL091626.	1.5	6
1034	Colombian climatology in CMIP5/CMIP6 models: Persistent biases and improvements. Revista Facultad De IngenierÃa, 0, , .	0.5	17
1035	Evaluating spatial patterns of Asian meteorological drought variations and associated SST anomalies in CMIP6 models. Theoretical and Applied Climatology, 2021, 145, 345-361.	1.3	1
1036	The Common Representative Intermediates Mechanism Version 2 in the United Kingdom Chemistry and Aerosols Model. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002420.	1.3	6
1039	Evaluation of extreme precipitation over Asia in CMIP6 models. Climate Dynamics, 2021, 57, 1751-1769.	1.7	82
1040	Spurious North Tropical Atlantic precursors to El Niño. Nature Communications, 2021, 12, 3096.	5.8	33
1041	Variable 21st Century Climate Change Response for Rivers in High Mountain Asia at Seasonal to Decadal Time Scales. Water Resources Research, 2021, 57, e2020WR029266.	1.7	63
1042	Assessing Prior Emergent Constraints on Surface Albedo Feedback in CMIP6. Journal of Climate, 2021, 34, 3889-3905.	1.2	11
1043	Opposite Responses of the Dry and Moist Eddy Heat Transport Into the Arctic in the PAMIP Experiments. Geophysical Research Letters, 2021, 48, e2020GL089990.	1.5	11
1044	Intraseasonal variability of Indian Summer Monsoon Rainfall in CMIP6 models simulation. Theoretical and Applied Climatology, 2021, 145, 687-702.	1.3	19
1045	Projected changes in temperature and precipitation over mainland Southeast Asia by CMIP6 models. Journal of Water and Climate Change, 2022, 13, 337-356.	1.2	33
1047	The Tuning Strategy of IPSLâ€CM6A‣R. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002340.	1.3	10
1048	Climate Projections for the Southern Ocean Reveal Impacts in the Marine Microbial Communities Following Increases in Sea Surface Temperature. Frontiers in Marine Science, 2021, 8, .	1.2	15
1049	Impact of dust in PMIP-CMIP6 mid-Holocene simulations with the IPSL model. Climate of the Past, 2021, 17, 1091-1117.	1.3	10

#	Article	IF	CITATIONS
1050	Geographical bias in physiological data limits predictions of global change impacts. Functional Ecology, 2021, 35, 1572-1578.	1.7	22
1052	The Impact of Southern Ocean Ekman Pumping, Heat and Freshwater Flux Variability on Intermediate and Mode Water Export in CMIP Models: Present and Future Scenarios. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017173.	1.0	1
1053	Sea Ice Suppression of CO ₂ Outgassing in the West Antarctic Peninsula: Implications For The Evolving Southern Ocean Carbon Sink. Geophysical Research Letters, 2021, 48, e2020GL091835.	1.5	9
1054	The wet and stormy <scp>UK</scp> winter ofÂ2019/2020. Weather, 2021, 76, 396-402.	0.6	25
1055	Emergent Constraints on the Large-Scale Atmospheric Circulation and Regional Hydroclimate: Do They Still Work in CMIP6 and How Much Can They Actually Constrain the Future?. Journal of Climate, 2021, 34, 6355-6377.	1.2	14
1056	A Comparative Study on the Skill of CMIP6 Models to Preserve Daily Spatial Patterns of Monsoon Rainfall Over India. Frontiers in Climate, 2021, 3, .	1.3	12
1058	Convective/Large-scale Rainfall Partitions of Tropical Heavy Precipitation in CMIP6 Atmospheric Models. Advances in Atmospheric Sciences, 2021, 38, 1020-1027.	1.9	11
1059	Gross Discrepancies between Observed and Simulated Twentieth-to-Twenty-First-Century Precipitation Trends in Southeastern South America. Journal of Climate, 2021, 34, 6441-6457.	1.2	6
1060	An improved multivariable integrated evaluation method and tool (MVIETool) v1.0 for multimodel intercomparison. Geoscientific Model Development, 2021, 14, 3079-3094.	1.3	8
1061	FalRv2.0.0: a generalized impulse response model for climate uncertainty and future scenario exploration. Geoscientific Model Development, 2021, 14, 3007-3036.	1.3	34
1063	Emergent constraints on climate sensitivities. Reviews of Modern Physics, 2021, 93, .	16.4	28
1064	Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity. Nature Climate Change, 2021, 11, 501-507.	8.1	74
1067	Projected land ice contributions to twenty-first-century sea level rise. Nature, 2021, 593, 74-82.	13.7	200
1068	Projection of the Future Changes in Tropical Cyclone Activity Affecting East Asia over the Western North Pacific Based on Multi-RegCM4 Simulations. Advances in Atmospheric Sciences, 2022, 39, 284-303.	1.9	12
1069	Climatological Increased Precipitation from July to August in the Western North Pacific Region Simulated by CMIP6 Models. Atmosphere, 2021, 12, 664.	1.0	2
1070	Integrated assessment model diagnostics: key indicators and model evolution. Environmental Research Letters, 2021, 16, 054046.	2.2	36
1071	Can we trust CMIP5/6 future projections of European winter precipitation?. Environmental Research Letters, 2021, 16, 054063.	2.2	12
1072	Timescales of the permafrost carbon cycle and legacy effects of temperature overshoot scenarios. Nature Communications, 2021, 12, 2688.	5.8	18

#	Article	IF	CITATIONS
1073	Analyzing the Diurnal Cycle by Bayesian Interpolation on a Sphere for Mapping GNSS Radio Occultation Data. Journal of Atmospheric and Oceanic Technology, 2021, 38, 951-961.	0.5	4
1074	Comparison of the oxygen isotope signatures in speleothem records and iHadCM3 model simulations for the last millennium. Climate of the Past, 2021, 17, 985-1004.	1.3	8
1075	The 20th century global warming signature on the ocean at global and basin scales as depicted from historical reanalyses. International Journal of Climatology, 2021, 41, 5977-5997.	1.5	4
1076	Weather extremes over Europe under 1.5 and 2.0 °C global warming from HAPPI regional climate ensemble simulations. Earth System Dynamics, 2021, 12, 457-468.	2.7	8
1079	Evaluation of Longâ€Term Temperature Trend and Variability in CMIP6 Multimodel Ensemble. Geophysical Research Letters, 2021, 48, e2021GL093227.	1.5	3
1080	Improvements in Cloud and Water Vapor Simulations Over the Tropical Oceans in CMIP6 Compared to CMIP5. Earth and Space Science, 2021, 8, e2020EA001520.	1.1	17
1081	The Benefits of Continuous Local Regression for Quantifying Global Warming. Earth and Space Science, 2021, 8, e2020EA001082.	1.1	5
1082	A Spatial Evaluation of Arctic Sea Ice and Regional Limitations in CMIP6 Historical Simulations. Journal of Climate, 2021, 34, 6399-6420.	1.2	23
1083	Rising Planetary Boundary Layer Height over the Sahara Desert and Arabian Peninsula in a Warming Climate. Journal of Climate, 2021, 34, 4043-4068.	1.2	12
1084	A mechanistic analysis of tropical Pacific dynamic sea level in GFDL-OM4 under OMIP-I and OMIP-II forcings. Geoscientific Model Development, 2021, 14, 2471-2502.	1.3	5
1085	Warm Cloud Evolution, Precipitation, and Their Weak Linkage in HadGEM3: New Process-Level Diagnostics using A-Train Observations. Journals of the Atmospheric Sciences, 2021, , .	0.6	0
1086	Analysis of secondary organic aerosol simulation bias in the Community Earth System Model (CESM2.1). Atmospheric Chemistry and Physics, 2021, 21, 8003-8021.	1.9	9
1087	Wintertime direct radiative effects due to black carbon (BC) over the Indo-Gangetic Plain as modelled with new BC emission inventories in CHIMERE. Atmospheric Chemistry and Physics, 2021, 21, 7671-7694.	1.9	5
1088	An open-source tool for visualization of climate mitigation scenarios: Mipplot. Environmental Modelling and Software, 2021, 139, 105001.	1.9	4
1089	Topâ€ofâ€Atmosphere Radiation Budget and Cloud Radiative Effects Over the Tibetan Plateau and Adjacent Monsoon Regions From CMIP6 Simulations. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034345.	1.2	13
1091	Snowfall-albedo feedbacks could have led to deglaciation of snowball Earth starting from mid-latitudes. Communications Earth & Environment, 2021, 2, .	2.6	2
1092	Pressure level of maximum radiative heating enhancement in response to increasing CO2 over the global monsoon area. Atmospheric and Oceanic Science Letters, 2021, 14, 100037.	0.5	0
1093	A Schwarz iterative method to evaluate ocean–atmosphere coupling schemes: implementation and diagnostics in IPSL-CM6-SW-VLR. Geoscientific Model Development, 2021, 14, 2959-2975.	1.3	3

#	Article	IF	CITATIONS
1094	Five years of whole-soil warming led to loss of subsoil carbon stocks and increased CO $<$ sub $>$ 2 $<$ /sub $>$ efflux. Science Advances, 2021, 7, .	4.7	98
1095	The asymmetric influence of ocean heat content on ENSO predictability in the CNRM-CM5 coupled general circulation model. Journal of Climate, 2021, , 1-57.	1.2	5
1096	Using Climate Model Simulations to Constrain Observations. Journal of Climate, 2021, 34, 6281-6301.	1.2	11
1097	CAS FGOALS-f3-L Large-ensemble Simulations for the CMIP6 Polar Amplification Model Intercomparison Project. Advances in Atmospheric Sciences, 2021, 38, 1028-1049.	1.9	4
1098	Comparison of CMIP6 historical climate simulations and future projected warming to an empirical model of global climate. Earth System Dynamics, 2021, 12, 545-579.	2.7	14
1099	Prolonged Siberian heat of 2020 almost impossible without human influence. Climatic Change, 2021, 166, 9.	1.7	57
1100	Naturalized streamflows and Affluent Natural Energy projections for the Brazilian hydropower sector for the SSP2-4.5 and SSP5-8.5 scenarios of the CMIP6. Journal of Water and Climate Change, 2022, 13, 315-336.	1.2	1
1101	Future evolution of aerosols and implications for climate change in the Euro-Mediterranean region using the CNRM-ALADIN63 regional climate model. Atmospheric Chemistry and Physics, 2021, 21, 7639-7669.	1.9	5
1102	Robust Interâ€Hemispheric Asymmetry in the Response to Symmetric Volcanic Forcing in Model Large Ensembles. Geophysical Research Letters, 2021, 48, e2021GL092558.	1.5	8
1103	Spatiotemporal differences and uncertainties in projections of precipitation and temperature in South Korea from <scp>CMIP6</scp> and <scp>CMIP5</scp> general circulation model <scp>s</scp> . International Journal of Climatology, 2021, 41, 5899-5919.	1.5	47
1105	BCC-CSM2-HR: a high-resolution version of the Beijing Climate Center Climate System Model. Geoscientific Model Development, 2021, 14, 2977-3006.	1.3	52
1106	Carbon Cycle Response to Temperature Overshoot Beyond 2°C: An Analysis of CMIP6 Models. Earth's Future, 2021, 9, e2020EF001967.	2.4	17
1107	Hydrological Extremes and Responses to Climate Change in the Kelantan River Basin, Malaysia, Based on the CMIP6 HighResMIP Experiments. Water (Switzerland), 2021, 13, 1472.	1.2	24
1108	Future Changes to El Ni $\tilde{A}\pm$ o Teleconnections over the North Pacific and North America. Journal of Climate, 2021, , 1-43.	1.2	6
1109	Earth System Models Are Not Capturing Presentâ€Day Tropical Forest Carbon Dynamics. Earth's Future, 2021, 9, e2020EF001874.	2.4	22
1110	Anthropogenic Speeding Up of South China Flash Droughts as Exemplified by the 2019 Summerâ€Autumn Transition Season. Geophysical Research Letters, 2021, 48, e2020GL091901.	1.5	36
1111	Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nature Communications, 2021, 12, 2754.	5.8	229
1112	Benchmarking performance changes in the simulation of extratropical modes of variability across CMIP generations. Journal of Climate, 2021, , 1-70.	1.2	6

#	Article	IF	CITATIONS
1113	Changes in Annual Extremes of Daily Temperature and Precipitation in CMIP6 Models. Journal of Climate, 2021, 34, 3441-3460.	1.2	132
1114	Dynamical landscape and multistability of a climate model. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, 20210019.	1.0	18
1116	Evaluation of the CMIP6 marine subtropical stratocumulus cloud albedo and its controlling factors. Atmospheric Chemistry and Physics, 2021, 21, 9809-9828.	1.9	13
1117	Application of Topological Data Analysis to Multi-Resolution Matching of Aerosol Optical Depth Maps. Frontiers in Environmental Science, 2021, 9, .	1.5	1
1118	Evaluation of CMIP6 Global Climate Models for Simulating Land Surface Energy and Water Fluxes During 1979–2014. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002515.	1.3	33
1119	Economic Shock in a Climate Scenario and Its Impact on Surface Temperatures. Earth's Future, 2021, 9, e2021EF002061.	2.4	2
1120	TRAPPIST Habitable Atmosphere Intercomparison (THAI) Workshop Report. Planetary Science Journal, 2021, 2, 106.	1.5	29
1121	Skilful decadal predictions of subpolar North Atlantic SSTs using CMIP model-analogues. Environmental Research Letters, 2021, 16, 064090.	2.2	7
1122	Coupling framework (1.0) for the PISM (1.1.4) ice sheet model and the MOM5 (5.1.0) ocean model via the PICO ice shelf cavity model in an Antarctic domain. Geoscientific Model Development, 2021, 14, 3697-3714.	1.3	10
1123	Description and Demonstration of the Coupled Community Earth System Model v2 – Community Ice Sheet Model v2 (CESM2â€CISM2). Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002356.	1.3	13
1124	Evaluating the physical and biogeochemical state of the global ocean component of UKESM1 in CMIP6 historical simulations. Geoscientific Model Development, 2021, 14, 3437-3472.	1.3	25
1125	Emergence of seasonal delay of tropical rainfall during 1979–2019. Nature Climate Change, 2021, 11, 605-612.	8.1	25
1126	Projected future daily characteristics of African precipitation based on global (CMIP5, CMIP6) and regional (CORDEX, CORDEX-CORE) climate models. Climate Dynamics, 2021, 57, 3135-3158.	1.7	81
1127	On the Origin of Discrepancies Between Observed and Simulated Memory of Arctic Sea Ice. Geophysical Research Letters, 2021, 48, e2020GL091784.	1.5	4
1128	An underestimated negative cloud feedback from cloud lifetime changes. Nature Climate Change, 2021, 11, 508-513.	8.1	51
1129	Correcting Observational Biases in Sea Surface Temperature Observations Removes Anomalous Warmth during World War II. Journal of Climate, 2021, 34, 4585-4602.	1.2	10
1130	Climate sensitivity indices and their relation with projected temperature change in CMIP6 models. Environmental Research Letters, 2021, 16, 064095.	2.2	6
1131	pyam: Analysis and visualisation of integrated assessment and macro-energy scenarios. Open Research Europe, $0,1,74.$	2.0	2

#	Article	IF	CITATIONS
1132	Continental Hydrologic Intercomparison Project, Phase 1: A Largeâ€Scale Hydrologic Model Comparison Over the Continental United States. Water Resources Research, 2021, 57, e2020WR028931.	1.7	27
1133	A novel method for ranking <scp>CMIP6</scp> global climate models over the southeast Asian region. International Journal of Climatology, 2022, 42, 97-117.	1.5	18
1134	Climate change and extreme weather: A review focusing on the continental United States. Journal of the Air and Waste Management Association, 2021, 71, 1186-1209.	0.9	9
1135	Assessing Decadal Predictability in an Earthâ€System Model Using Explainable Neural Networks. Geophysical Research Letters, 2021, 48, e2021GL093842.	1.5	10
1136	Presentâ€day and future climate over central and South America according to <scp>CMIP5</scp> / <scp>CMIP6</scp> models. International Journal of Climatology, 2021, 41, 6713-6735.	1.5	77
1137	How many hot days and heavy precipitation days will grandchildren experience that break the records set in their grandparents' lives?. Environmental Research Communications, 2021, 3, 061002.	0.9	1
1138	Doubling of the population exposed to drought over South Asia: CMIP6 multi-model-based analysis. Science of the Total Environment, 2021, 771, 145186.	3.9	56
1139	Evaluation of CMIP6 models in simulating the statistics of extreme precipitation over Eastern Africa. Atmospheric Research, 2021, 254, 105509.	1.8	78
1140	Summer heat sources changes over the Tibetan Plateau in CMIP6 models. Environmental Research Letters, 2021, 16, 064060.	2.2	7
1141	Future Changes in Simulated Evapotranspiration across Continental Africa Based on CMIP6 CNRM-CM6. International Journal of Environmental Research and Public Health, 2021, 18, 6760.	1.2	14
1142	Regional Features of Long-Term Exposure to PM2.5 Air Quality over Asia under SSP Scenarios Based on CMIP6 Models. International Journal of Environmental Research and Public Health, 2021, 18, 6817.	1.2	10
1143	Underestimated MJO Variability in CMIP6 Models. Geophysical Research Letters, 2021, 48, e2020GL092244.	1.5	20
1144	East Antarctic cooling induced by decadal changes in Madden-Julian oscillation during austral summer. Science Advances, 2021, 7, .	4.7	9
1145	Seasonal Variation of Wet Deposition of Black Carbon at Nyâ€Ã…lesund, Svalbard. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034110.	1.2	8
1146	Impacts of climate change on terrestrial hydrological components and crop water use in the Chesapeake Bay watershed. Journal of Hydrology: Regional Studies, 2021, 35, 100830.	1.0	7
1147	Hot extremes have become drier in the United States Southwest. Nature Climate Change, 2021, 11, 598-604.	8.1	40
1148	Climate pacing of millennial sea-level change variability in the central and western Mediterranean. Nature Communications, 2021, 12, 4013.	5.8	25
1149	Co-emission of volcanic sulfur and halogens amplifies volcanic effective radiative forcing. Atmospheric Chemistry and Physics, 2021, 21, 9009-9029.	1.9	17

#	Article	IF	CITATIONS
1150	Tracking Changes in Climate Sensitivity in CNRM Climate Models. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002190.	1.3	7
1151	Significant impact of forcing uncertainty in a large ensemble of climate model simulations. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	46
1152	Asymmetry in the climate–carbon cycle response to positive and negative CO2 emissions. Nature Climate Change, 2021, 11, 613-617.	8.1	70
1153	Impact of climate and population changes on the increasing exposure to summertime compound hot extremes. Science of the Total Environment, 2021, 772, 145004.	3.9	31
1154	Projected sea-level changes in the marginal seas near China based on dynamical downscaling. Journal of Climate, 2021, , 1-52.	1.2	4
1155	Next-generation regional ocean projections for living marine resource management in a changing climate. ICES Journal of Marine Science, 2021, 78, 1969-1987.	1.2	42
1156	Historical evolution and future trend of Northern Hemisphere snow cover in CMIP5 and CMIP6 models. Environmental Research Letters, 2021, 16, 065013.	2.2	15
1157	The Urban River Syndrome: Achieving Sustainability Against a Backdrop of Accelerating Change. International Journal of Environmental Research and Public Health, 2021, 18, 6406.	1.2	3
1158	MaxEnt Modeling Based on CMIP6 Models to Project Potential Suitable Zones for Cunninghamia lanceolata in China. Forests, 2021, 12, 752.	0.9	34
1159	EarthNet2021: A large-scale dataset and challenge for Earth surface forecasting as a guided video prediction task., 2021,,.		14
1160	Evaluation of CMIP6 GCM rainfall in mainland Southeast Asia. Atmospheric Research, 2021, 254, 105525.	1.8	85
1161	Human Influence on the Increasing Drought Risk Over Southeast Asian Monsoon Region. Geophysical Research Letters, 2021, 48, e2021GL093777.	1.5	18
1162	Increasing heat risk in China's urban agglomerations. Environmental Research Letters, 2021, 16, 064073.	2.2	27
1163	Deep Emulators for Differentiation, Forecasting, and Parametrization in Earth Science Simulators. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002554.	1.3	12
1164	Addressing biases in Arctic–boreal carbon cycling in the Community Land Model Version 5. Geoscientific Model Development, 2021, 14, 3361-3382.	1.3	14
1165	Spatio-temporal variability of sea-ice and ocean parameters over the Arctic Ocean in response to a warming climate. Polar Science, 2021, 30, 100721.	0.5	4
1166	Applications of large deviation theory in geophysical fluid dynamics and climate science. Rivista Del Nuovo Cimento, 2021, 44, 291-363.	2.0	14
1167	Recent decreases in domestic energy consumption in the United Kingdom attributed to human influence on the climate. Atmospheric Science Letters, 0, , e1062.	0.8	1

#	Article	IF	CITATIONS
1168	Bookkeeping estimates of the net land-use change flux – a sensitivity study with the CMIP6 land-use dataset. Earth System Dynamics, 2021, 12, 763-782.	2.7	9
1169	Committed and projected future changes in global peatlands – continued transient model simulations since the Last Glacial Maximum. Biogeosciences, 2021, 18, 3657-3687.	1.3	19
1170	Understanding human influence on climate change in China. National Science Review, 2022, 9, nwab113.	4.6	70
1171	Multi-Decadal Variability and Future Changes in Precipitation over Southern Africa. Atmosphere, 2021, 12, 742.	1.0	35
1172	Evaluation of ocean dimethylsulfide concentration and emission in CMIP6 models. Biogeosciences, 2021, 18, 3823-3860.	1.3	24
1173	Global Dust Variability Explained by Drought Sensitivity in CMIP6 Models. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006073.	1.0	12
1174	Future Climate Change Hotspots Under Different 21st Century Warming Scenarios. Earth's Future, 2021, 9, e2021EF002027.	2.4	33
1175	Climate change favours large seasonal loss of Arctic ozone. Nature Communications, 2021, 12, 3886.	5.8	44
1176	Investigations on the anthropogenic reversal of the natural ozone gradient between northern and southern midlatitudes. Atmospheric Chemistry and Physics, 2021, 21, 9669-9679.	1.9	8
1177	Assessing species reintroduction sites based on future climate suitability for food resources. Conservation Biology, 2021, 35, 1821-1832.	2.4	6
1178	Toward Consistent Observational Constraints in Climate Predictions and Projections. Frontiers in Climate, 2021, 3, .	1.3	18
1179	Projections of future meteorological droughts in China under CMIP6 from a threeâ€dimensional perspective. Agricultural Water Management, 2021, 252, 106849.	2.4	34
1180	Comparison of <scp>CMIP6</scp> and <scp>CMIP5</scp> models in simulating mean and extreme precipitation over East Africa. International Journal of Climatology, 2021, 41, 6474-6496.	1.5	98
1181	Understanding each other's models: an introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication. Geoscientific Model Development, 2021, 14, 3843-3878.	1.3	41
1182	Argoâ€"Two Decades: Global Oceanography, Revolutionized. Annual Review of Marine Science, 2022, 14, 379-403.	5.1	37
1183	Future changes in annual, seasonal and monthly runoff signatures in contrasting Alpine catchments in Austria. Hydrology and Earth System Sciences, 2021, 25, 3429-3453.	1.9	16
1185	Seasonal prediction skills in the CAMS-CSM climate forecast system. Climate Dynamics, 2021, 57, 2953-2970.	1.7	8
1186	Variations in mineralogy of dust in an ice core obtained from northwestern Greenland over the past 100 years. Climate of the Past, 2021, 17, 1341-1362.	1.3	9

#	Article	IF	CITATIONS
1187	Climate change-induced economic impact assessment by parameterizing spatially heterogeneous CO2 distribution. Technological Forecasting and Social Change, 2021, 167, 120668.	6.2	17
1188	Combined Effects of Global Warming and Ozone Depletion/Recovery on Southern Hemisphere Atmospheric Circulation and Regional Precipitation. Geophysical Research Letters, 2021, 48, e2021GL092568.	1.5	9
1189	Contribution of external forcings to the observed trend in surface temperature over Africa during 1901â€"2014 and its future projection from CMIP6 simulations. Atmospheric Research, 2021, 254, 105512.	1.8	21
1190	Annual precipitation explains variability in dryland vegetation greenness globally but not locally. Global Change Biology, 2021, 27, 4367-4380.	4.2	44
1191	The Climatology and the Midwinter Suppression of the Cold Season North Pacific Storm Track in CMIP6 Models. Journal of Climate, 2021, , 1-56.	1.2	3
1192	Persistent Model Biases in the CMIP6 Representation of Stratospheric Polar Vortex Variability. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034759.	1.2	13
1193	Comparative Assessment and Future Prediction Using CMIP6 and CMIP5 for Annual Precipitation and Extreme Precipitation Simulation. Frontiers in Earth Science, 2021, 9, .	0.8	32
1194	Future climate change shaped by inter-model differences in Atlantic meridional overturning circulation response. Nature Communications, 2021, 12, 3659.	5.8	55
1195	Exploring the Effect of Occurrence-Bias-Adjustment Assumptions on Hydrological Impact Modeling. Water (Switzerland), 2021, 13, 1573.	1.2	1
1196	Comparison of Current and Future PM _{2.5} Air Quality in China Under CMIP6 and DPEC Emission Scenarios. Geophysical Research Letters, 2021, 48, e2021GL093197.	1.5	15
1197	A Novel Initialization Technique for Decadal Climate Predictions. Frontiers in Climate, 2021, 3, .	1.3	3
1198	How do CMIP6 models project changes in precipitation extremes over seasons and locations across the mid hills of Nepal?. Theoretical and Applied Climatology, 2021, 145, 1127-1144.	1.3	12
1200	Impacts of heterogeneous CO ₂ on water and carbon fluxes across the global land surface. International Journal of Digital Earth, 2021, 14, 1175-1193.	1.6	4
1201	Historical fidelity and future change of Amundsen Sea Low under 1.5 °C–4°C global warming in CMIP6. Atmospheric Research, 2021, 255, 105533.	1.8	17
1202	Climate change decisive for Asia's snow meltwater supply. Nature Climate Change, 2021, 11, 591-597.	8.1	131
1203	Heat wave magnitude over India under changing climate: Projections from <scp>CMIP5</scp> and <scp>CMIP6</scp> experiments. International Journal of Climatology, 2022, 42, 331-351.	1.5	32
1204	Drivers of Twenty-First Century U.S. Winter Precipitation Trends in CMIP6 Models: A Storyline-Based Approach. Journal of Climate, 2021, , 1-48.	1.2	3
1205	Observed and Future Precipitation and Evapotranspiration in Water Management Zones of Uganda: CMIP6 Projections. Atmosphere, 2021, 12, 887.	1.0	21

#	Article	IF	CITATIONS
1206	Future surface temperatures over Europe according to CMIP6 climate projections: an analysis with original and bias-corrected data. Climatic Change, 2021, 167, 1.	1.7	37
1207	Forecasting the Distribution of a Range-Expanding Bat Reveals Future Response to Climate Change and Habitat. Acta Chiropterologica, 2021, 23, .	0.2	3
1208	Taking globally consistent health impact projections to the next level. Lancet Planetary Health, The, 2021, 5, e487-e493.	5.1	6
1209	Poleward shifts in marine fisheries under Arctic warming. Environmental Research Letters, 2021, 16, 074057.	2.2	17
1210	Comparison of CMIP5 and CMIP6 Multi-Model Ensemble for Precipitation Downscaling Results and Observational Data: The Case of Hanjiang River Basin. Atmosphere, 2021, 12, 867.	1.0	21
1211	The unidentified eruption of 1809: a climatic cold case. Climate of the Past, 2021, 17, 1455-1482.	1.3	19
1212	Land carbon-concentration and carbon-climate feedbacks are significantly reduced by nitrogen and phosphorus limitation. Environmental Research Letters, 2021, 16, 074043.	2.2	8
1213	Modelling and validation of the spatial distribution of suitable habitats for the recruitment of invasive plants on climate change scenarios: An approach from the regeneration niche. Science of the Total Environment, 2021, 777, 146007.	3.9	13
1214	The annual cycle of terrestrial water storage anomalies in CMIP6 models evaluated against GRACE data. Journal of Climate, 2021, , 1-40.	1.2	7
1215	Nonlinear plant–plant interactions modulate impact of extreme drought and recovery on a Mediterranean ecosystem. New Phytologist, 2021, 231, 1784-1797.	3.5	14
1216	A Comprehensive Intermediate-Term Drought Evaluation System and Evaluation of Climate Data Products over the Conterminous United States. Journal of Hydrometeorology, 2021, , .	0.7	2
1217	Assessing Biases and Climate Implications of the Diurnal Precipitation Cycle in Climate Models. Geophysical Research Letters, 2021, 48, e2021GL093017.	1.5	25
1218	Future scenarios of risk of Vibrio infections in a warming planet: a global mapping study. Lancet Planetary Health, The, 2021, 5, e426-e435.	5.1	38
1219	Present and future aerosol impacts on Arctic climate change in the GISS-E2.1 Earth system model. Atmospheric Chemistry and Physics, 2021, 21, 10413-10438.	1.9	12
1220	An evaluation of <scp>CMIP5</scp> and <scp>CMIP6</scp> climate models in simulating summer rainfall in the Southeast Asian monsoon domain. International Journal of Climatology, 2022, 42, 1181-1202.	1.5	32
1221	Skilful prediction of cod stocks in the North and Barents Sea a decade in advance. Communications Earth & Environment, 2021, 2, .	2.6	14
1222	Relationship between shortwave radiation bias over the Southern Ocean and the <scp>doubleâ€</scp> intertropical convergence zone problem in <scp>MRIâ€ESM2</scp> . Atmospheric Science Letters, 2021, 22, e1064.	0.8	4
1223	Improving the potential accuracy and usability of EURO-CORDEX estimates of future rainfall climate using frequentist model averaging. Nonlinear Processes in Geophysics, 2021, 28, 329-346.	0.6	1

#	Article	IF	CITATIONS
1224	Estimating Remaining Carbon Budgets Using Temperature Responses Informed by CMIP6. Frontiers in Climate, $2021, 3, .$	1.3	0
1226	The SMHI Large Ensemble (SMHI-LENS) with EC-Earth3.3.1. Geoscientific Model Development, 2021, 14, 4781-4796.	1.3	17
1227	Role of Maximum Entropy and Citizen Science to Study Habitat Suitability of Jacobin Cuckoo in Different Climate Change Scenarios. ISPRS International Journal of Geo-Information, 2021, 10, 463.	1.4	5
1228	Future projections of precipitation, surface temperatures and drought events over the monsoon transitional zone in China from biasâ€corrected ⟨scp⟩CMIP6⟨/scp⟩ models. International Journal of Climatology, 2022, 42, 1203-1219.	1.5	14
1229	Intercomparison of the expected change in the temperature and the precipitation retrieved from CMIP6 and CMIP5 climate projections: A Mediterranean hot spot case, Turkey. Atmospheric Research, 2021, 256, 105576.	1.8	80
1230	Climate-Land-Energy-Water Nexus Models Across Scales: Progress, Gaps and Best Accessibility Practices. Frontiers in Environmental Science, 2021, 9, .	1.5	19
1231	Future Changes in Wet and Dry Season Characteristics in CMIP5 and CMIP6 simulations. Journal of Hydrometeorology, 2021, , .	0.7	20
1232	Uncertainty and Bias in Global to Regional Scale Assessments of Current and Future Coastal Flood Risk. Earth's Future, 2021, 9, e2020EF001882.	2.4	35
1233	Evaluation of soil carbon dynamics after forest cover change in CMIP6 land models using chronosequences. Environmental Research Letters, 2021, 16, 074030.	2.2	5
1235	A Predictive Model of Chlorophyll a in Western Lake Erie Based on Artificial Neural Network. Applied Sciences (Switzerland), 2021, 11, 6529.	1.3	3
1236	Observational evidence that cloud feedback amplifies global warming. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	49
1237	Highâ€Frequency Sea Ice Variability in Observations and Models. Geophysical Research Letters, 2021, 48, e2020GL092356.	1.5	5
1238	A Processâ€Oriented Diagnostic to Assess Precipitationâ€Thermodynamic Relations and Application to CMIP6 Models. Geophysical Research Letters, 2021, 48, e2021GL094108.	1.5	5
1239	CM2Mc-LPJmL v1.0: biophysical coupling of a process-based dynamic vegetation model with managed land to a general circulation model. Geoscientific Model Development, 2021, 14, 4117-4141.	1.3	13
1240	Impacts of climate change on environmental flows in West Africa's Upper Niger Basin and the Inner Niger Delta. Hydrology Research, 2021, 52, 958-974.	1.1	9
1241	Evaluation of Extreme Temperatures Over Australia in the Historical Simulations of CMIP5 and CMIP6 Models. Earth's Future, 2021, 9, e2020EF001902.	2.4	24
1242	Introducing NARCliM1.5: Evaluating the Performance of Regional Climate Projections for Southeast Australia for 1950–2100. Earth's Future, 2021, 9, e2020EF001833.	2.4	20
1244	Large variability in response to projected climate and landâ€use changes among European bumblebee species. Global Change Biology, 2021, 27, 4530-4545.	4.2	12

#	Article	IF	CITATIONS
1245	The physiological effect of CO2 on the hydrological cycle in summer over Europe and land-atmosphere interactions. Climatic Change, 2021, 167, 1.	1.7	6
1246	Assessing the Effect of Changing Ambient Air Temperature on Water Temperature and Quality in Drinking Water Distribution Systems. Water (Switzerland), 2021, 13, 1916.	1.2	6
1247	Interdecadal Shift of the Relationship between ENSO and Winter Synoptic Temperature Variability over the Asian–Pacific–American Region in the 1980s. Journal of Climate, 2021, 34, 5321-5335.	1.2	10
1248	Sources of Uncertainty in Multimodel Large Ensemble Projections of the Winter North Atlantic Oscillation. Geophysical Research Letters, 2021, 48, e2021GL093258.	1.5	10
1249	Evaluation of Temperature and Precipitation Simulations in CMIP6 Models Over the Tibetan Plateau. Earth and Space Science, 2021, 8, e2020EA001620.	1.1	39
1250	Southeast Indian Subantarctic Mode Water in the CMIP6 Coupled Models. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016872.	1.0	2
1251	A continuous decline of global seasonal wind speed range over land since 1980. Journal of Climate, 2021, , 1-54.	1.2	4
1252	Multimodel Ensemble Projections of Wave Climate in the Western North Pacific Using CMIP6 Marine Surface Winds. Journal of Marine Science and Engineering, 2021, 9, 835.	1.2	6
1253	Reconciling Human and Natural Drivers of the Tripole Pattern of Multidecadal Summer Temperature Variations Over Eurasia. Geophysical Research Letters, 2021, 48, e2021GL093971.	1.5	10
1254	Influence of multisite calibration on streamflow estimation based on the hydrological model with CMADS inputs. Journal of Water and Climate Change, 2021, 12, 3264-3281.	1.2	4
1255	Observation-based selection of climate models projects Arctic ice-free summers around 2035. Communications Earth & Environment, 2021, 2, .	2.6	26
1256	Eastern equatorial Pacific warming delayed by aerosols and thermostat response to CO2 increase. Nature Climate Change, 2021, 11, 696-703.	8.1	52
1257	Evaluation of the Performance of CMIP5 and CMIP6 Models in Simulating the Victoria Mode–El Niño Relationship. Journal of Climate, 2021, 34, 7625-7644.	1.2	6
1258	The role of residential air circulation and cooling demand for electrification planning: Implications of climate change in sub-Saharan Africa. Energy Economics, 2021, 99, 105307.	5.6	16
1259	An unsupervised learning approach to identifying blocking events: the case of European summer. Weather and Climate Dynamics, 2021, 2, 581-608.	1.2	4
1260	Influence of Arctic sea-ice loss on the Greenland ice sheet climate. Climate Dynamics, 2022, 58, 179-193.	1.7	3
1261	Projected response of global runoff to El Niño-Southern oscillation. Environmental Research Letters, 2021, 16, 084037.	2.2	11
1262	Benefits of sea ice initialization for the interannual-to-decadal climate prediction skill in the Arctic in EC-Earth3. Geoscientific Model Development, 2021, 14, 4283-4305.	1.3	7

#	Article	IF	CITATIONS
1263	Disentangling the Impacts of Anthropogenic Aerosols on Terrestrial Carbon Cycle During 1850–2014. Earth's Future, 2021, 9, e2021EF002035.	2.4	11
1264	Drivers of uncertainty in future projections of Madden–Julian Oscillation teleconnections. Weather and Climate Dynamics, 2021, 2, 653-673.	1.2	5
1265	Fingerprinting Heatwaves and Cold Spells and Assessing Their Response to Climate Change Using Large Deviation Theory. Physical Review Letters, 2021, 127, 058701.	2.9	19
1266	The Irish Atlantic CoCliME case study configuration, validation and application of a downscaled ROMS ocean climate model off SW Ireland. Harmful Algae, 2021, 107, 102053.	2.2	7
1267	Estimating centennial-scale changes in global terrestrial near-surface wind speed based on CMIP6 GCMs. Environmental Research Letters, 2021, 16, 084039.	2.2	21
1268	Tropical cloud-radiative changes contribute to robust climate change-induced jet exit strengthening over Europe during boreal winter. Environmental Research Letters, 2021, 16, 084041.	2.2	3
1269	North Atlantic Oscillation in winter is largely insensitive to autumn Barents-Kara sea ice variability. Science Advances, 2021, 7, .	4.7	8
1270	Performance of the Taiwan Earth System Model in Simulating Climate Variability Compared With Observations and CMIP6 Model Simulations. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002353.	1.3	31
1271	Projection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6. Science Bulletin, 2021, 66, 2528-2537.	4.3	88
1272	Future changes in precipitation extremes across China based on <scp>CMIP6</scp> models. International Journal of Climatology, 2022, 42, 635-651.	1.5	53
1273	Comparison of CMIP6 and CMIP5 model performance in simulating historical precipitation and temperature in Bangladesh: a preliminary study. Theoretical and Applied Climatology, 2021, 145, 1385-1406.	1.3	63
1274	Influence of Lowâ€Frequency PNA Variability on MJO Teleconnections to North American Atmospheric River Activity. Geophysical Research Letters, 2021, 48, e2021GL094078.	1.5	12
1275	Climate change scenario services: From science to facilitating action. One Earth, 2021, 4, 1074-1082.	3.6	14
1276	Estimation of maximum seasonal tropical cyclone damage in the Atlantic using climate models. Natural Hazards, 0, , 1.	1.6	1
1277	Future Changes in Precipitation Extremes over East Africa Based on CMIP6 Models. Water (Switzerland), 2021, 13, 2358.	1.2	37
1278	Spatiotemporal changes in rainfall and droughts of Bangladesh for 1.5 and 2°C temperature rise scenarios of CMIP6 models. Theoretical and Applied Climatology, 2021, 146, 527-542.	1.3	16
1280	Role of cloud feedback in continental warming response to CO2 physiological forcing. Journal of Climate, 2021, , 1-49.	1.2	0
1281	Mechanisms linking multi-year La Niña with preceding strong El Niño. Scientific Reports, 2021, 11, 17465.	1.6	30

#	Article	IF	CITATIONS
1282	Impacts of Arctic Sea Ice on Cold Season Atmospheric Variability and Trends Estimated from Observations and a Multi-model Large Ensemble. Journal of Climate, 2021, , 1-64.	1.2	11
1283	A Paris-like agreement for biodiversity needs IPCC-like science. Global Ecology and Conservation, 2021, 28, e01617.	1.0	16
1284	Is there any improvement in simulation of wintertime Western Pacific teleconnection pattern and associated climate anomalies in CMIP6 comparing with CMIP5 models?. Journal of Climate, 2021, , 1-75.	1.2	7
1285	Slow Modes of Global Temperature Variability and Their Impact on Climate Sensitivity Estimates. Journal of Climate, 2021, 34, 8717-8738.	1.2	5
1286	The fate of the Caspian Sea under projected climate change and water extraction during the 21st century. Environmental Research Letters, 2021, 16, 094024.	2.2	16
1287	Reconstruction of Historical Land Surface Albedo Changes in China From 850 to 2015 Using Land Use Harmonization Data and Albedo Lookâ€Up Maps. Earth and Space Science, 2021, 8, e2021EA001799.	1.1	7
1288	Contributions to Polar Amplification in CMIP5 and CMIP6 Models. Frontiers in Earth Science, 2021, 9, .	0.8	55
1289	The potential for structural errors in emergent constraints. Earth System Dynamics, 2021, 12, 899-918.	2.7	19
1290	Machine learning to optimize climate projection over China with multi-model ensemble simulations. Environmental Research Letters, 2021, 16, 094028.	2.2	17
1291	Evaluation and Projection of Near-Surface Wind Speed over China Based on CMIP6 Models. Atmosphere, 2021, 12, 1062.	1.0	15
1292	Using Global-Scale Earth System Models for Regional Fisheries Applications. Frontiers in Marine Science, 2021, 8, .	1.2	17
1293	Validation of the PALM model system 6.0 in a real urban environment: a case study in Dejvice, Prague, the Czech Republic. Geoscientific Model Development, 2021, 14, 4797-4842.	1.3	26
1294	Greenhouse warming intensifies north tropical Atlantic climate variability. Science Advances, 2021, 7, .	4.7	26
1296	Significant additional Antarctic warming in atmospheric bias-corrected ARPEGE projections with respect to control run. Cryosphere, 2021, 15, 3615-3635.	1.5	2
1297	TempestExtremes v2.1: a community framework for feature detection, tracking, and analysis in large datasets. Geoscientific Model Development, 2021, 14, 5023-5048.	1.3	53
1298	Analysis of a Record-Breaking Rainfall Event Associated With a Monsoon Coastal Megacity of South China Using Multisource Data. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 6404-6414.	2.7	19
1299	Downscaling Snow Deposition Using Historic Snow Depth Patterns: Diagnosing Limitations From Snowfall Biases, Winter Snow Losses, and Interannual Snow Pattern Repeatability. Water Resources Research, 2021, 57, e2021WR029999.	1.7	6
1301	Linking global land surface temperature projections to radiative effects of hydrometeors under a global warming scenario. Environmental Research Letters, 2021, 16, 084044.	2.2	1

#	Article	IF	CITATIONS
1303	Land-use harmonization datasets for annual global carbon budgets. Earth System Science Data, 2021, 13, 4175-4189.	3.7	37
1304	Regions of intensification of extreme snowfall under future warming. Scientific Reports, 2021, 11, 16621.	1.6	20
1305	Global Connectivity of Southern Ocean Ecosystems. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	28
1306	PALEOSTRIPv1.0 – a user-friendly 3D backtracking software to reconstruct paleo-bathymetries. Geoscientific Model Development, 2021, 14, 5285-5305.	1.3	0
1307	Removing the Effects of Tropical Dynamics from North Pacific Climate Variability. Journal of Climate, 2021, , 1-49.	1.2	10
1308	A multi-perspective approach for selecting CMIP6 scenarios to project climate change impacts on glacio-hydrology with a case study in Upper Indus river basin. Journal of Hydrology, 2021, 599, 126466.	2.3	28
1309	The declining tropical carbon sink. Nature Climate Change, 2021, 11, 727-728.	8.1	4
1310	Quantitative methods to predict the effect of climate change on microbial food safety: A needs analysis. Trends in Food Science and Technology, 2021, , .	7.8	3
1311	Future Projection of Extreme Rainfall for Flood Management due to Climate Change in an Urban Area. Journal of Sustainable Water in the Built Environment, 2021, 7, 04021012.	0.9	1
1312	Editorial for the CORDEX-CORE Experiment I Special Issue. Climate Dynamics, 2021, 57, 1265-1268.	1.7	27
1313	Assessment of the Current and Projected Conditions of Water Availability in the Sevastopol Region for Grape Growing. Agronomy, 2021, 11, 1665.	1.3	6
1314	Towards neural Earth system modelling by integrating artificial intelligence in Earth system science. Nature Machine Intelligence, 2021, 3, 667-674.	8.3	98
1315	Inferring future warming in the Arctic from the observed global warming trend and CMIP6 simulations. Advances in Climate Change Research, 2021, 12, 499-507.	2.1	23
1316	Projected Changes to Hydroclimate Seasonality in the Continental United States. Earth's Future, 2021, 9, e2021EF002019.	2.4	14
1317	Reanalysis in Earth System Science: Toward Terrestrial Ecosystem Reanalysis. Reviews of Geophysics, 2021, 59, e2020RG000715.	9.0	24
1318	Seasonal Arctic sea ice forecasting with probabilistic deep learning. Nature Communications, 2021, 12, 5124.	5.8	84
1319	Cloud Feedbacks from CanESM2 to CanESM5.0 and their influence on climate sensitivity. Geoscientific Model Development, 2021, 14, 5355-5372.	1.3	10
1320	Index―and modelâ€dependent projections of East Asian summer monsoon in Coupled Model Intercomparison Project Phase 6 simulations. International Journal of Climatology, 2022, 42, 2208-2224.	1.5	4

#	Article	IF	CITATIONS
1322	Three Flavors of Radiative Feedbacks and Their Implications for Estimating Equilibrium Climate Sensitivity. Geophysical Research Letters, 2021, 48, e2021GL092983.	1.5	11
1323	Diverse Responses of Globalâ€Mean Surface Temperature to External Forcings and Internal Climate Variability in Observations and CMIP6 Models. Geophysical Research Letters, 2021, 48, e2021GL093194.	1.5	3
1324	Evaluation of extreme precipitation indices over West Africa in CMIP6 models. Climate Dynamics, 2022, 58, 925-939.	1.7	32
1325	Divergent, plausible, and relevant climate futures for near- and long-term resource planning. Climatic Change, 2021, 167, 1.	1.7	17
1326	Future changes in the meteorological potential for winter haze over Beijing during periods of peak carbon emissions and carbon neutrality in China projected by Coupled Model Intercomparison Project Phase 6 models. International Journal of Climatology, 0, , .	1.5	6
1327	Evaluating boreal summer circulation patterns of CMIP6 climate models over the Asian region. Climate Dynamics, 2022, 58, 427-441.	1.7	5
1328	The Impacts of Global Warming on Climate Zone Changes Over Asia Based on CMIP6 Projections. Earth and Space Science, 2021, 8, e2021EA001701.	1.1	13
1329	Future high-resolution El Niño/Southern Oscillation dynamics. Nature Climate Change, 2021, 11, 758-765.	8.1	58
1330	A new CAM6 + DART reanalysis with surface forcing from CAM6 to other CESM models. Scientific Reports, 2021, 11, 16384.	1.6	5
1331	Footprint of greenhouse forcing in daily temperature variability. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
1333	"Beyond Weather Regimes― Descriptors Monitoring Atmospheric Centers of Action. A case study for Aotearoa New Zealand. Journal of Climate, 2021, , 1-50.	1.2	4
1334	First Application of Artificial Neural Networks to Estimate 21st Century Greenland Ice Sheet Surface Melt. Geophysical Research Letters, 2021, 48, e2021GL092449.	1.5	3
1335	Prospect of Increased Disruption to the QBO in a Changing Climate. Geophysical Research Letters, 2021, 48, e2021GL093058.	1.5	28
1336	Interâ€Basin Interaction Between Variability in the South Atlantic Ocean and the El Niño/Southern Oscillation. Geophysical Research Letters, 2021, 48, e2021GL093338.	1.5	10
1337	Widespread Grounding Line Retreat of Totten Glacier, East Antarctica, Over the 21st Century. Geophysical Research Letters, 2021, 48, e2021GL093213.	1.5	17
1338	Evaluating the performance of CMIP6 Earth system models in simulating global vegetation structure and distribution. Advances in Climate Change Research, 2021, 12, 584-595.	2.1	31
1339	Coâ€occurrence of California Drought and Northeast Pacific Marine Heatwaves Under Climate Change. Geophysical Research Letters, 2021, 48, e2021GL092765.	1.5	30
1340	Projected impacts of 1.5 and 2°C global warming on temperature and precipitation patterns in South America. International Journal of Climatology, 2022, 42, 1597-1611.	1.5	26

#	Article	IF	CITATIONS
1341	Weakened Antarctic Dipole Under Global Warming in CMIP6 Models. Geophysical Research Letters, 2021, 48, e2021GL094863.	1.5	6
1342	Future Sea Level Change Under Coupled Model Intercomparison Project Phase 5 and Phase 6 Scenarios From the Greenland and Antarctic Ice Sheets. Geophysical Research Letters, 2021, 48, e2020GL091741.	1.5	28
1344	Anthropogenic Influences on Tornadic Storms. Journal of Climate, 2021, , 1-57.	1.2	3
1345	West Nile virus is predicted to be more geographically widespread in New York State and Connecticut under future climate change. Global Change Biology, 2021, 27, 5430-5445.	4.2	11
1346	Global populationâ€weighted degreeâ€day projections for a combination of climate and socioâ€economic scenarios. International Journal of Climatology, 2021, 41, 5447-5464.	1.5	5
1347	Performance evaluation of CMIP6 global climate models for selecting models for climate projection over Nigeria. Theoretical and Applied Climatology, 2021, 146, 599-615.	1.3	38
1348	The Anomalous Mei-yu Rainfall of Summer 2020 from a Circulation Clustering Perspective: Current and Possible Future Prevalence. Advances in Atmospheric Sciences, 2021, 38, 2010-2022.	1.9	8
1349	Sea-level rise in Venice: historic and future trends (review article). Natural Hazards and Earth System Sciences, 2021, 21, 2643-2678.	1.5	61
1350	Impact of horizontal resolution on monsoon precipitation for CORDEX-South Asia: A regional earth system model assessment. Atmospheric Research, 2021, 259, 105681.	1.8	25
1351	A systematic framework for the assessment of sustainable hydropower potential in a river basin – The case of the upper Indus. Science of the Total Environment, 2021, 786, 147142.	3.9	18
1352	Evaluation of Climate in CMIP6 Models over Two Third Pole Subregions with Contrasting Circulation Systems. Journal of Climate, 2021, , 1-64.	1.2	5
1353	Structure of the Pacific Walker Circulation Depicted by the Reanalysis and CMIP6. Atmosphere, 2021, 12, 1219.	1.0	4
1354	Description of Dust Emission Parameterization in CASâ€ESM2 and Its Simulation of Global Dust Cycle and East Asian Dust Events. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002456.	1.3	7
1355	Rapid Sea-Level Rise in the Southern-Hemisphere Subtropical Oceans. Journal of Climate, 2021, , 1-55.	1.2	8
1356	ENSO Dynamics in the E3SM-1-0, CESM2, and GFDL-CM4 Climate Models. Journal of Climate, 2021, , 1-59.	1.2	10
1357	An appraisal of seasonal precipitation dynamics over the Northâ€West Himalayan region under future warming scenarios. International Journal of Climatology, 0, , .	1.5	2
1358	Mechanisms shaping wind convergence under extreme synoptic situations over the Gulf Stream region. Journal of Climate, 2021, , 1-53.	1.2	0
1359	Calibrationâ€Free Complementary Relationship Estimates Terrestrial Evapotranspiration Globally. Water Resources Research, 2021, 57, e2021WR029691.	1.7	89

#	Article	IF	CITATIONS
1360	Significant Increase of the Global Population Exposure to Increased Precipitation Extremes in the Future. Earth's Future, 2021, 9, e2020EF001941.	2.4	32
1361	Uncertainties, Limits, and Benefits of Climate Change Mitigation for Soil Moisture Drought in Southwestern North America. Earth's Future, 2021, 9, e2021EF002014.	2.4	30
1362	Volume and Heat Transport in the South China Sea and Maritime Continent at Present and the End of the 21st Century. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016901.	1.0	5
1363	Understanding Topâ€ofâ€Atmosphere Flux Bias in the AeroCom Phase III Models: A Clearâ€5ky Perspective. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002584.	1.3	4
1364	The Impacts of Environmental and Socio-Economic Risks on the Fisheries in the Mediterranean Region. Sustainability, 2021, 13, 10670.	1.6	5
1365	Strengthened Impacts of November Snow Cover Over Siberia on the Out-of-phase Change in the Siberian High Between December and January Since 2000 and Implication for Intraseasonal Climate Prediction. Frontiers in Earth Science, 2021, 9, .	0.8	2
1366	Assessment of Central Asian heat extremes by statistical downscaling: Validation and future projection for 2015â€'2100. Advances in Climate Change Research, 2022, 13, 14-27.	2.1	6
1367	Coupling the U.K. Earth System Model to Dynamic Models of the Greenland and Antarctic Ice Sheets. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002520.	1.3	19
1368	Multiple Metrics Informed Projections of Future Precipitation in China. Geophysical Research Letters, 2021, 48, e2021GL093810.	1.5	8
1369	Reevaluation of Totalâ€Column Ozone Trends and of the Effective Radiative Forcing of Ozoneâ€Depleting Substances. Geophysical Research Letters, 2021, 48, e2021GL095376.	1.5	7
1370	Dynamics of widespread extreme precipitation events and the associated large-scale environment using AMeDAS and JRA-55 data. Journal of Climate, 2021, , 1-44.	1.2	4
1371	A Regimeâ€Based Investigation Into the Errors of CMIP6 Simulated Cloud Radiative Effects Using Satellite Observations. Geophysical Research Letters, 2021, 48, e2021GL095399.	1.5	7
1372	Mean and extreme precipitation changes over China under SSP scenarios: results from high-resolution dynamical downscaling for CORDEX East Asia. Climate Dynamics, 2022, 58, 1015-1031.	1.7	14
1373	Development of observation-based global multilayer soil moisture products for 1970 to 2016. Earth System Science Data, 2021, 13, 4385-4405.	3.7	9
1374	Northwestward shift of the northern boundary of the East Asian summer monsoon during the mid-Holocene caused by orbital forcing and vegetation feedbacks. Quaternary Science Reviews, 2021, 268, 107136.	1.4	23
1375	An Assessment of Climate Feedbacks in Observations and Climate Models Using Different Energy Balance Frameworks. Journal of Climate, 2021, , 1-30.	1.2	4
1376	The Brewer–Dobson circulation in CMIP6. Atmospheric Chemistry and Physics, 2021, 21, 13571-13591.	1.9	25
1377	Engaging with stakeholders to produce actionable science: a framework and guidance. Weather, Climate, and Society, 2021, , .	0.5	19

#	Article	IF	CITATIONS
1378	Projecting Future Vegetation Change for Northeast China Using CMIP6 Model. Remote Sensing, 2021, 13, 3531.	1.8	11
1379	EC-Earth3-AerChem: a global climate model with interactive aerosols and atmospheric chemistry participating in CMIP6. Geoscientific Model Development, 2021, 14, 5637-5668.	1.3	40
1380	Evaluating Observational Constraints on Intermodel Spread in Cloud, Temperature, and Humidity Feedbacks. Geophysical Research Letters, 2021, 48, e2020GL092309.	1.5	3
1381	Downscaling CESM2 in CLM5 to Hindcast Preindustrial Equilibrium Line Altitudes for Tropical Mountain Glaciers. Geophysical Research Letters, 2021, 48, e2021GL094071.	1.5	1
1382	Dataâ€Driven Worldwide Quantification of Largeâ€Scale Hydroclimatic Covariation Patterns and Comparison With Reanalysis and Earth System Modeling. Water Resources Research, 2021, 57, e2020WR029377.	1.7	8
1383	Sustainable and cost-effective vegetation restoration framework under climate change. Forest Ecology and Management, 2021, 496, 119436.	1.4	3
1385	Suppressed Lateâ€20th Century Warming in CMIP6 Models Explained by Forcing and Feedbacks. Geophysical Research Letters, 2021, 48, e2021GL094948.	1.5	22
1386	Meanâ€State Dependence of CO ₂ â€Forced Tropical Atlantic Sector Climate Change. Geophysical Research Letters, 2021, 48, e2021GL093803.	1.5	4
1387	Eastern Bering Sea shelf environmental and lower trophic level responses to climate forcing: Results of dynamical downscaling from CMIP6. Deep-Sea Research Part II: Topical Studies in Oceanography, 2021, 193, 104975.	0.6	6
1388	Drivers of exceptional coastal warming in the northeastern United States. Nature Climate Change, 2021, 11, 854-860.	8.1	23
1389	Changes of Southâ€Central Pacific Largeâ€Scale Environment Associated With Hydrometeorsâ€Radiationâ€Circulation Interactions in a Coupled GCM. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034973.	1.2	4
1390	pyam: Analysis and visualisation of integrated assessment and macro-energy scenarios. Open Research Europe, 0, 1, 74.	2.0	15
1391	Recovery of the first ever multi-year lidar dataset of the stratospheric aerosol layer, from Lexington, MA, and Fairbanks, AK, January 1964 to July 1965. Earth System Science Data, 2021, 13, 4407-4423.	3.7	0
1392	Evaluation of the Performance of CMIP5 and CMIP6 Models in Simulating the Victoria Mode–El Niño Relationship. Journal of Climate, 2021, 34, 7625-7644.	1.2	6
1393	Probabilistic Evaluation of Drought in CMIP6 Simulations. Earth's Future, 2021, 9, e2021EF002150.	2.4	10
1394	2020/21 record-breaking cold waves in east of China enhanced by the †Warm Arctic-Cold Siberia†Martern. Environmental Research Letters, 2021, 16, 094040.	2.2	29
1395	Towards data-driven energy communities: A review of open-source datasets, models and tools. Renewable and Sustainable Energy Reviews, 2021, 148, 111290.	8.2	45
1396	Data-driven spatiotemporal projections of shallow permafrost based on CMIP6 across the Qinghaiâ€'Tibet Plateau at 1Âkm2 scale. Advances in Climate Change Research, 2021, 12, 814-827.	2.1	25

#	Article	IF	Citations
1397	Land-use change and rodent-borne diseases: hazards on the shared socioeconomic pathways. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200362.	1.8	16
1398	Coupled Model Intercomparison Project phase 6 evaluation and projection of East African precipitation. International Journal of Climatology, 2022, 42, 2398-2412.	1.5	23
1400	Subantarctic Mode Water and its long-term change in CMIP6 models. Journal of Climate, 2021, , 1-51.	1.2	3
1401	Validation of terrestrial biogeochemistry in CMIP6 Earth system models: a review. Geoscientific Model Development, 2021, 14, 5863-5889.	1.3	11
1402	Understanding model diversity in future precipitation projections for South America. Climate Dynamics, 2022, 58, 1329-1347.	1.7	3
1403	Mycorrhizal Distributions Impact Global Patterns of Carbon and Nutrient Cycling. Geophysical Research Letters, 2021, 48, e2021GL094514.	1.5	14
1404	Variations of Tropical Lapse Rates in Climate Models and their Implications for Upper Tropospheric Warming. Journal of Climate, 2021, , 1-50.	1.2	7
1405	Interannual and Seasonal Drivers of Carbon Cycle Variability Represented by the Community Earth System Model (CESM2). Global Biogeochemical Cycles, 2021, 35, e2021GB007034.	1.9	9
1406	Multidecadal Variations in the East Asian Winter Monsoon and Their Relationship with the Atlantic Multidecadal Oscillation since 1850. Journal of Climate, 2021, 34, 7525-7539.	1.2	13
1407	Evaluating Diurnal Rainfall Signal Performance from CMIP5 to CMIP6. Journal of Climate, 2021, 34, 7607-7623.	1.2	12
1408	Changes in the Tropical Lapse Rate due to Entrainment and Their Impact on Climate Sensitivity. Geophysical Research Letters, 2021, 48, e2021GL094969.	1.5	4
1409	Why super sandstorm 2021 in North China?. National Science Review, 2022, 9, nwab165.	4.6	69
1410	Regional imprints of changes in the Atlantic Meridional Overturning Circulation in the eddy-rich ocean model VIKING20X. Ocean Science, 2021, 17, 1177-1211.	1.3	31
1411	Inter-model spread in the wintertime Arctic amplification in the CMIP6 models and the important role of internal climate variability. Global and Planetary Change, 2021, 204, 103543.	1.6	11
1412	Link Between Opaque Cloud Properties and Atmospheric Dynamics in Observations and Simulations of Current Climate in the Tropics, and Impact on Future Predictions. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033899.	1.2	4
1413	Increasing the Depth of a Land Surface Model. Part I: Impacts on the Subsurface Thermal Regime and Energy Storage. Journal of Hydrometeorology, 2021, 22, 3211-3230.	0.7	10
1414	Differences in multiâ€model ensembles of <scp>CMIP5</scp> and <scp>CMIP6</scp> projections for future droughts in South Korea. International Journal of Climatology, 2022, 42, 2688-2716.	1.5	25
1415	A Performance Evaluation of Potential Intensity over the Tropical Cyclone Passage to South Korea Simulated by CMIP5 and CMIP6 Models. Atmosphere, 2021, 12, 1214.	1.0	6

#	Article	IF	CITATIONS
1416	Estimated effect of the permafrost carbon feedback on the zero emissions commitment to climate change. Biogeosciences, 2021, 18, 4937-4952.	1.3	11
1417	A Framework for Actual Evapotranspiration Assessment and Projection Based on Meteorological, Vegetation and Hydrological Remote Sensing Products. Remote Sensing, 2021, 13, 3643.	1.8	8
1418	Winter Euroâ€Atlantic Climate Modes: Future Scenarios From a CMIP6 Multiâ€Model Ensemble. Geophysical Research Letters, 2021, 48, e2021GL094532.	1.5	5
1419	Subseasonal-to-Seasonal Extreme Precipitation Events in the Contiguous United States: Generation of a Database and Climatology. Journal of Climate, 2021, 34, 7571-7586.	1.2	3
1422	Projections of northern hemisphere extratropical climate underestimate internal variability and associated uncertainty. Communications Earth & Environment, 2021, 2, .	2.6	21
1423	Potential habitat and productivity loss of Populus deltoides industrial forest plantations due to global warming. Forest Ecology and Management, 2021, 496, 119474.	1.4	14
1424	Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields. Nature Food, 2021, 2, 683-691.	6.2	100
1425	The Independent Volcanic Eruption Source Parameter Archive (IVESPA, version 1.0): A new observational database to support explosive eruptive column model validation and development. Journal of Volcanology and Geothermal Research, 2021, 417, 107295.	0.8	28
1426	Southern Ocean polynyas in CMIP6 models. Cryosphere, 2021, 15, 4281-4313.	1.5	20
1427	Evaluating the Influence of Climate Change on Sophora moorcroftiana (Benth.) Baker Habitat Distribution on the Tibetan Plateau Using Maximum Entropy Model. Forests, 2021, 12, 1230.	0.9	10
1428	Estimation of Watershed Hydrochemical Responses to Future Climate Changes Based on CMIP6 Scenarios in the Tianhe River (China). Sustainability, 2021, 13, 10102.	1.6	2
1429	An ocean modeling study to quantify wind forcing and oceanic mixing effects on the tropical North Pacific subsurface warm bias in CMIP and OMIP simulations. Climate Dynamics, 2022, 58, 999-1014.	1.7	1
1430	Evaluation and projection of mean surface temperature using CMIP6 models over East Africa. Journal of African Earth Sciences, 2021, 181, 104226.	0.9	37
1432	Prediction of soil erosion risk using earth observation data under recent emission scenarios of CMIP6. Geocarto International, 2022, 37, 7041-7064.	1.7	13
1433	Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO ₂ . Biogeosciences, 2021, 18, 4985-5010.	1.3	49
1434	Are the Different Eddy Metrics Quantifying the Winter North Pacific Storm Track Consistent with Each Other?. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034979.	1.2	0
1435	Significant Contribution of Stratospheric Water Vapor to the Poleward Expansion of the Hadley Circulation in Autumn Under Greenhouse Warming. Geophysical Research Letters, 2021, 48, e2021GL094008.	1.5	12
1436	Compound climate risks threaten aquatic food system benefits. Nature Food, 2021, 2, 673-682.	6.2	48

#	Article	IF	CITATIONS
1437	Combining CMIP data with a regional convection-permitting model and observations to project extreme rainfall under climate change. Environmental Research Letters, 2021, 16, 104023.	2,2	11
1438	North Atlantic jet stream projections in the context of the past 1,250 years. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	20
1439	Assessment of Extreme Precipitation Indices over Indochina and South China in CMIP6 Models. Journal of Climate, 2021, 34, 7507-7524.	1.2	16
1440	Present and future relations between ENSO and winter synoptic temperature variability over the Asian-Pacific-American region simulated by CMIP5/6. Journal of Climate, 2021, , 1-49.	1.2	1
1441	Coupled regional Earth system modeling in the Baltic Sea region. Earth System Dynamics, 2021, 12, 939-973.	2.7	13
1442	Spatio-temporal variations of dryness/wetness over Northwest China under different SSPs-RCPs. Atmospheric Research, 2021, 259, 105672.	1.8	21
1443	Presentation and Evaluation of the IPSLâ€CM6A‣R Ensemble of Extended Historical Simulations. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002565.	1.3	18
1444	Equilibrium Modeling for Environmental Science: Exploring the Nexus of Economic Systems and Environmental Change. Earth's Future, 2021, 9, e2020EF001923.	2.4	6
1445	GCAP 2.0: a global 3-D chemical-transport model framework for past, present, and future climate scenarios. Geoscientific Model Development, 2021, 14, 5789-5823.	1.3	11
1446	Evaluating the Applicability of a Quantile–Quantile Adjustment Approach for Downscaling Monthly GCM Projections to Site Scale over the Qinghai-Tibet Plateau. Atmosphere, 2021, 12, 1170.	1.0	2
1447	A combined estimate of global temperature. Environmetrics, 2022, 33, e2706.	0.6	6
1448	Skillful decadal prediction of unforced southern European summer temperature variations. Environmental Research Letters, 2021, 16, 104017.	2.2	9
1449	The Cause of the Large Cold Bias in the Northwestern Pacific Ocean. Geophysical Research Letters, 2021, 48, e2021GL094616.	1.5	1
1450	Future Weakening of the ENSO Ocean Carbon Buffer Under Anthropogenic Forcing. Geophysical Research Letters, 2021, 48, e2021GL094021.	1.5	4
1451	Agreement of analytical and simulationâ€based estimates of the required land depth in climate models. Geophysical Research Letters, 2021, 48, e2021GL094273.	1.5	2
1452	Constraining the Date of a Seasonally Iceâ€Free Arctic Using a Simple Model. Geophysical Research Letters, 2021, 48, e2021GL094309.	1.5	22
1453	A global perspective on the sub-seasonal clustering of precipitation extremes. Weather and Climate Extremes, 2021, 33, 100348.	1.6	17
1454	Enhanced North Pacific impact on El Ni $\tilde{A}\pm$ o/Southern Oscillation under greenhouse warming. Nature Climate Change, 2021, 11, 840-847.	8.1	34

#	Article	IF	Citations
1455	Machine learning feature analysis illuminates disparity between E3SM climate models and observed climate change. Journal of Computational and Applied Mathematics, 2021, 395, 113451.	1.1	6
1456	Long-Term Trend Comparison of Planetary Boundary Layer Height in Observations and CMIP6 Models over China. Journal of Climate, 2021, 34, 8237-8256.	1.2	5
1457	Trends, variability and predictive skill of the ocean heat content in North Atlantic: an analysis with the EC-Earth3 model. Climate Dynamics, 2022, 58, 1311-1328.	1.7	2
1458	Assessment of meteorological drought change in the 21st century based on CMIP6 multi-model ensemble projections over mainland China. Journal of Hydrology, 2021, 601, 126643.	2.3	47
1459	Isotopic content in high mountain karst aquifers as a proxy for climate change impact in Mediterranean zones: The Port del Comte karst aquifer (SE Pyrenees, Catalonia, Spain). Science of the Total Environment, 2021, 790, 148036.	3.9	6
1460	Projected changes in temperature, precipitation and potential evapotranspiration across Indus River Basin at 1.5–3.0 °C warming levels using CMIP6-GCMs. Science of the Total Environment, 2021, 789, 147867.	3.9	37
1461	Assessing the regional biogenic methanol emission from spring wheat during the growing season: A Canadian case study. Environmental Pollution, 2021, 287, 117602.	3.7	3
1462	Projections of changes in ecosystem productivity under 1.5°C and 2°C global warming. Global and Planetary Change, 2021, 205, 103588.	1.6	18
1463	Appraising standardized moisture anomaly index (SZI) in drought projection across China under CMIP6 forcing scenarios. Journal of Hydrology: Regional Studies, 2021, 37, 100898.	1.0	14
1464	Increased high-temperature extremes and associated population exposure in Africa by the mid-21st century. Science of the Total Environment, 2021, 790, 148162.	3.9	83
1465	Dynamical Seasonal Prediction of Tropical Cyclone Activity Using the FGOALS-f2 Ensemble Prediction System. Weather and Forecasting, 2021, 36, 1759-1778.	0.5	10
1466	Assessment of CMIP6 model performance for temperature and precipitation in Xinjiang, China. Atmospheric and Oceanic Science Letters, 2022, 15, 100128.	0.5	9
1467	Changes in floodplain regimes over Canada due to climate change impacts: Observations from CMIP6 models. Science of the Total Environment, 2021, 792, 148323.	3.9	15
1468	Conserving the Cerrado and Amazon biomes of Brazil protects the soy economy from damaging warming. World Development, 2021, 146, 105582.	2.6	22
1469	Assessment of the Coupled Model Intercomparison Project phase 6 (CMIP6) Model performance in simulating the spatial-temporal variation of aerosol optical depth over Eastern Central China. Atmospheric Research, 2021, 261, 105747.	1.8	10
1470	Multi-stage ensemble-learning-based model fusion for surface ozone simulations: A focus on CMIP6 models. Environmental Science and Ecotechnology, 2021, 8, 100124.	6.7	17
1471	Deep learning, explained: Fundamentals, explainability, and bridgeability to process-based modelling. Environmental Modelling and Software, 2021, 144, 105159.	1.9	63
1472	The Role of Elevated Terrain and the Gulf of Mexico in the Production of Severe Local Storm Environments over North America. Journal of Climate, 2021, 34, 7799-7819.	1.2	3

#	Article	IF	CITATIONS
1473	Assessment of the capability of CMIP6 global climate models to simulate Arctic cyclones. Advances in Climate Change Research, 2021, 12, 660-676.	2.1	5
1474	Predicting the potential distribution of wintering Asian Great Bustard (Otis tarda dybowskii) in China: Conservation implications. Global Ecology and Conservation, 2021, 31, e01817.	1.0	6
1475	Precipitation over semi-arid regions of North Hemisphere affected by Atlantic Multidecadal Oscillation. Atmospheric Research, 2021, 262, 105801.	1.8	10
1476	Wind energy resource over Europe under CMIP6 future climate projections: What changes from CMIP5 to CMIP6. Renewable and Sustainable Energy Reviews, 2021, 151, 111594.	8.2	61
1477	Promoting reproducibility and increased collaboration in electric sector capacity expansion models with community benchmarking and intercomparison efforts. Applied Energy, 2021, 304, 117745.	5.1	10
1478	Future changes in precipitation and temperature over the Yangtze River Basin in China based on CMIP6 GCMs. Atmospheric Research, 2021, 264, 105828.	1.8	54
1479	Radiative effects of reduced aerosol emissions during the COVID-19 pandemic and the future recovery. Atmospheric Research, 2021, 264, 105866.	1.8	7
1480	Assessing and predicting soil carbon density in China using CMIP5 earth system models. Science of the Total Environment, 2021, 799, 149247.	3.9	5
1481	The variability and teleconnections of meteorological drought in the Indian summer monsoon season: Implications for staple crop production. Journal of Hydrology, 2021, 603, 126845.	2.3	12
1482	Validation of Australian atmospheric aerosols from reanalysis data and CMIP6 simulations. Atmospheric Research, 2021, 264, 105856.	1.8	13
1483	Effects of global greening phenomenon on water sustainability. Catena, 2022, 208, 105732.	2.2	10
1484	Population exposure to compound extreme events in India under different emission and population scenarios. Science of the Total Environment, 2022, 806, 150424.	3.9	40
1485	Climate change impacts on wind energy resources in North America based on the CMIP6 projections. Science of the Total Environment, 2022, 806, 150580.	3.9	38
1486	Incorrect Asian aerosols affecting the attribution and projection of regional climate change in CMIP6 models. Npj Climate and Atmospheric Science, 2021, 4, .	2.6	56
1487	Evaluation of CMIP6 Model Simulation Capability in Sichuan Region. Open Journal of Natural Science, 2021, 09, 121-131.	0.1	0
1488	Future projections for terrestrial biomes indicate widespread warming and moisture reduction in forests up to 2100 in South America. Global Ecology and Conservation, 2021, 25, e01441.	1.0	10
1489	Zonally contrasting shifts of the tropical rain belt in response to climate change. Nature Climate Change, 2021, 11, 143-151.	8.1	88
1490	Graph-Guided Regularized Regression of Pacific Ocean Climate Variables to Increase Predictive Skill of Southwestern U.S. Winter Precipitation. Journal of Climate, 2021, 34, 737-754.	1.2	8

#	Article	IF	CITATIONS
1491	Progress in Climate Change Downscaling Simulations in Southeast Asia., 2021, , 13-36.		1
1492	Atlantic Multidecadal Variability and North Atlantic Jet: A Multimodel View from the Decadal Climate Prediction Project. Journal of Climate, 2021, 34, 347-360.	1.2	20
1494	Projection of Climate Change and Consumptive Demands Projections Impacts on Hydropower Generation in the São Francisco River Basin, Brazil. Water (Switzerland), 2021, 13, 332.	1.2	15
1495	Assessment of pre-industrial to present-day anthropogenic climate forcing in UKESM1. Atmospheric Chemistry and Physics, 2021, 21, 1211-1243.	1.9	29
1496	Study on the Temporal and Spatial Characteristics of Snowfall in Winter over Tibetan Plateau Based on the CMIP6 Models. Open Journal of Natural Science, 2021, 09, 857-865.	0.1	0
1497	A multi-model CMIP6-PMIP4 study of Arctic sea ice at 127 ka: sea ice data compilation and model differences. Climate of the Past, 2021, 17, 37-62.	1.3	29
1498	BCC-ESM1 Model Datasets for the CMIP6 Aerosol Chemistry Model Intercomparison Project (AerChemMIP). Advances in Atmospheric Sciences, 2021, 38, 317-328.	1.9	5
1499	Improved Decadal Predictions of North Atlantic Subpolar Gyre SST in CMIP6. Geophysical Research Letters, 2021, 48, e2020GL091307.	1.5	43
1500	Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models. Atmospheric Chemistry and Physics, 2021, 21, 1105-1126.	1.9	39
1501	Assessment of Snow Depth over Arctic Sea Ice in CMIP6 Models Using Satellite Data. Advances in Atmospheric Sciences, 2021, 38, 168-186.	1.9	6
1502	Ozone Variation Trends under Different CMIP6 Scenarios. Atmosphere, 2021, 12, 112.	1.0	5
1503	Large-scale features of Last Interglacial climate: results from evaluating the & amp;lt;i>lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4). Climate of the Past, 2021, 17, 63-94.	1.3	76
1504	How Reliable Are Decadal Climate Predictions of Near-Surface Air Temperature?. Journal of Climate, 2021, 34, 697-713.	1.2	5
1505	Climate Information: Towards Transparent Distillation. , 2021, , 17-35.		2
1506	CAS-ESM2.0 Model Datasets for the CMIP6 Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP). Advances in Atmospheric Sciences, 2021, 38, 296-306.	1.9	17
1507	Numerical modeling of the global climate and carbon cycle system. , 2021, , 67-91.		0
1508	Keeping science on keel when software moves. Communications of the ACM, 2021, 64, 66-74.	3.3	8
1509	A New Approach to Evaluate and Reduce Uncertainty of Model-Based Biodiversity Projections for Conservation Policy Formulation. BioScience, 2021, 71, 1261-1273.	2.2	6

#	Article	IF	CITATIONS
1510	Sea-Level Rise: Causes, Impacts and Scenarios for Change. , 2021, , 777-777.		0
1511	Climate models capture key features of extreme precipitation probabilities across regions. Environmental Research Letters, 2021, 16, 024017.	2.2	12
1512	Probabilistic projections of future warming and climate sensitivity trajectories. Oxford Open Climate Change, 2021, 1 , .	0.6	3
1513	Ubiquitous increases in flood magnitude in the Columbia River basin under climate change. Hydrology and Earth System Sciences, 2021, 25, 257-272.	1.9	8
1514	The Seasonal and Regional Transition to an Iceâ€Free Arctic. Geophysical Research Letters, 2021, 48, e2020GL090825.	1.5	53
1515	Multiâ€model ensemble of <scp>CMIP6</scp> projections for future extreme climate stress on wheat in the North China plain. International Journal of Climatology, 2021, 41, E171.	1.5	43
1516	Introduction to Climate Change Over the Indian Region. , 2020, , 1-20.		26
1517	The CMIP6 Historical Simulation Datasets Produced by the Climate System Model CAMS-CSM. Advances in Atmospheric Sciences, 2021, 38, 285-295.	1.9	17
1518	Climate change impacts on South American water balance from a continental-scale hydrological model driven by CMIP5 projections. Climatic Change, 2020, 159, 503-522.	1.7	68
1519	Comparison of CMIP6 and CMIP5 models in simulating climate extremes. Science Bulletin, 2020, 65, 1415-1418.	4.3	182
1520	Rising vegetation activity dominates growing water use efficiency in the Asian permafrost region from 1900 to 2100. Science of the Total Environment, 2020, 736, 139587.	3.9	28
1521	Sensitivity of Historical Climate Simulations to Uncertain Aerosol Forcing. Geophysical Research Letters, 2020, 47, e2019GL085806.	1.5	28
1522	CMIP6 Models Predict Significant 21st Century Decline of the Atlantic Meridional Overturning Circulation. Geophysical Research Letters, 2020, 47, e2019GL086075.	1.5	161
1523	New Generation of Climate Models Track Recent Unprecedented Changes in Earth's Radiation Budget Observed by CERES. Geophysical Research Letters, 2020, 47, e2019GL086705.	1.5	39
1524	The Role of the Mean State on MJO Simulation in CESM2 Ensemble Simulation. Geophysical Research Letters, 2020, 47, e2020GL089824.	1.5	16
1525	Performance Evaluation of CMIP5 and CMIP6 Models on Heatwaves in Korea and Associated Teleconnection Patterns. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032583.	1.2	23
1526	GISS Model E2.2: A Climate Model Optimized for the Middle Atmosphere—2. Validation of Largeâ€Scale Transport and Evaluation of Climate Response. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033151.	1.2	14
1527	An Unprecedented Set of Highâ€Resolution Earth System Simulations for Understanding Multiscale Interactions in Climate Variability and Change. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002298.	1.3	104

#	Article	IF	CITATIONS
1528	Beyond Forcing Scenarios: Predicting Climate Change through Response Operators in a Coupled General Circulation Model. Scientific Reports, 2020, 10, 8668.	1.6	25
1529	Analysis of 20th century surface air temperature using linear dynamical modes. Chaos, 2020, 30, 123110.	1.0	8
1530	The Australian Earth System Model: ACCESS-ESM1.5. Journal of Southern Hemisphere Earth Systems Science, 2020, 70, 193-214.	0.7	215
1531	Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model. Journal of Southern Hemisphere Earth Systems Science, 2020, 70, 225-251.	0.7	136
1532	Human influence strengthens the contrast between tropical wet and dry regions. Environmental Research Letters, 2020, 15, 104026.	2.2	27
1533	Influence of model resolution on bomb cyclones revealed by HighResMIP-PRIMAVERA simulations. Environmental Research Letters, 2020, 15, 084001.	2.2	12
1534	Evaluating CMIP6 model fidelity at simulating non-Gaussian temperature distribution tails. Environmental Research Letters, 2020, 15, 074026.	2.2	5
1535	Vegetation biomass change in China in the 20th century: an assessment based on a combination of multi-model simulations and field observations. Environmental Research Letters, 2020, 15, 094026.	2.2	6
1536	Controls of the transient climate response to emissions by physical feedbacks, heat uptake and carbon cycling. Environmental Research Letters, 2020, 15, 0940c1.	2.2	10
1537	Uncertainty in carbon budget estimates due to internal climate variability. Environmental Research Letters, 2020, 15, 104064.	2.2	7
1538	Global surface air temperatures in CMIP6: historical performance and future changes. Environmental Research Letters, 2020, 15, 104056.	2.2	113
1539	The contribution of anthropogenic influence to more anomalous extreme precipitation in Europe. Environmental Research Letters, 2020, 15, 104077.	2.2	22
1540	Projections of Arctic sea ice conditions and shipping routes in the twenty-first century using CMIP6 forcing scenarios. Environmental Research Letters, 2020, 15, 104079.	2.2	44
1541	Projected changes in seasonal precipitation extremes over the United States in CMIP6 simulations. Environmental Research Letters, 2020, 15, 104078.	2.2	62
1542	Causal effects of Indian Ocean Dipole on El Niño–Southern Oscillation during 1950–2014 based on high-resolution models and reanalysis data. Environmental Research Letters, 2020, 15, 1040b6.	2.2	24
1543	Anthropogenic influence would increase intense snowfall events over parts of the Northern Hemisphere in the future. Environmental Research Letters, 2020, 15, 114022.	2.2	19
1544	Changes in building climate zones over China based on high-resolution regional climate projections. Environmental Research Letters, 2020, 15, 114045.	2.2	8
1545	Recent California tree mortality portends future increase in drought-driven forest die-off. Environmental Research Letters, 2020, 15, 124040.	2.2	20

#	Article	IF	CITATIONS
1546	Annual and seasonal mean tropical and subtropical precipitation bias in CMIP5 and CMIP6 models. Environmental Research Letters, 2020, 15, 124068.	2.2	20
1547	Global marine heatwave events using the new CMIP6 multi-model ensemble: from shortcomings in present climate to future projections. Environmental Research Letters, 2020, 15, 124058.	2.2	46
1548	Soil carbon sequestration simulated in CMIP6-LUMIP models: implications for climatic mitigation. Environmental Research Letters, 2020, 15, 124061.	2.2	35
1549	IPCC baseline scenarios have over-projected CO ₂ emissions and economic growth. Environmental Research Letters, 2021, 16, 014016.	2.2	58
1550	Role of sea surface temperature patterns for the Southern Hemisphere jet stream response to CO ₂ forcing. Environmental Research Letters, 2021, 16, 014020.	2.2	2
1551	Global mean thermosteric sea level projections by 2100 in CMIP6 climate models. Environmental Research Letters, 2021, 16, 014028.	2.2	11
1553	Kilometer-Scale Climate Models: Prospects and Challenges. Bulletin of the American Meteorological Society, 2020, 101, E567-E587.	1.7	96
1554	Fixed Anvil Temperature Feedback: Positive, Zero, or Negative?. Journal of Climate, 2020, 33, 2719-2739.	1.2	11
1555	Understanding Skill of Seasonal Mean Precipitation Prediction over California during Boreal Winter and Role of Predictability Limits. Journal of Climate, 2020, 33, 6141-6163.	1.2	13
1556	Processes Responsible for the Southern Hemisphere Ocean Heat Uptake and Redistribution under Anthropogenic Warming. Journal of Climate, 2020, 33, 3787-3807.	1.2	20
1557	The GLACE-Hydrology Experiment: Effects of Land–Atmosphere Coupling on Soil Moisture Variability and Predictability. Journal of Climate, 2020, 33, 6511-6529.	1.2	9
1558	North Pacific Upper-Ocean Cold Temperature Biases in CMIP6 Simulations and the Role of Regional Vertical Mixing. Journal of Climate, 2020, 33, 7523-7538.	1.2	24
1559	Impacts of Ice-Shelf Melting on Water-Mass Transformation in the Southern Ocean from E3SM Simulations. Journal of Climate, 2020, 33, 5787-5807.	1.2	20
1561	Simulation of Northeast U.S. Extreme Precipitation and Its Associated Circulation by CMIP5 Models. Journal of Climate, 2020, 33, 9817-9834.	1.2	13
1562	From CMIP3 to CMIP6: Northern Hemisphere Atmospheric Blocking Simulation in Present and Future Climate. Journal of Climate, 2020, 33, 10021-10038.	1.2	73
1563	Warming Patterns Affect El Niño Diversity in CMIP5 and CMIP6 Models. Journal of Climate, 2020, 33, 8237-8260.	1.2	23
1564	The Diurnal Temperature Range in CMIP6 Models: Climatology, Variability, and Evolution. Journal of Climate, 2020, 33, 8261-8279.	1.2	22
1565	An Overview of the Extratropical Storm Tracks in CMIP6 Historical Simulations. Journal of Climate, 2020, 33, 6315-6343.	1.2	89

#	Article	IF	CITATIONS
1566	Comparing Methods to Constrain Future European Climate Projections Using a Consistent Framework. Journal of Climate, 2020, 33, 8671-8692.	1.2	37
1567	Representation of Modes of Variability in Six U.S. Climate Models. Journal of Climate, 2020, 33, 7591-7617.	1.2	21
1568	Representation of Southern Ocean Properties across Coupled Model Intercomparison Project Generations: CMIP3 to CMIP6. Journal of Climate, 2020, 33, 6555-6581.	1.2	59
1569	Climatology of Severe Local Storm Environments and Synoptic-Scale Features over North America in ERA5 Reanalysis and CAM6 Simulation. Journal of Climate, 2020, 33, 8339-8365.	1.2	39
1570	A Regime-Oriented Approach to Observationally Constraining Extratropical Shortwave Cloud Feedbacks. Journal of Climate, 2020, 33, 9967-9983.	1.2	12
1571	The Arctic Surface Climate in CMIP6: Status and Developments since CMIP5. Journal of Climate, 2020, 33, 8047-8068.	1.2	78
1572	Severe Cold Winter in North America Linked to Bering Sea Ice Loss. Journal of Climate, 2020, 33, 8069-8085.	1.2	8
1573	Dramatic Weakening of the Tropical Easterly Jet Projected by CMIP6 Models. Journal of Climate, 2020, 33, 8439-8455.	1.2	10
1574	Ocean Heat Storage in Response to Changing Ocean Circulation Processes. Journal of Climate, 2020, 33, 9065-9082.	1.2	26
1575	Evaluation of Leading Modes of Climate Variability in the CMIP Archives. Journal of Climate, 2020, 33, 5527-5545.	1.2	47
1576	How Well Do CMIP6 Historical Runs Match Observed Northeast U.S. Precipitation and Extreme Precipitation–Related Circulation?. Journal of Climate, 2020, 33, 9835-9848.	1.2	34
1577	Role of AMOC in Transient Climate Response to Greenhouse Gas Forcing in Two Coupled Models. Journal of Climate, 2020, 33, 5845-5859.	1.2	19
1578	How Does the Quasi-Biennial Oscillation Affect the Boreal Winter Tropospheric Circulation in CMIP5/6 Models?. Journal of Climate, 2020, 33, 8975-8996.	1.2	32
1579	Predictive Skill Assessment for Land Water Storage in CMIP5 Decadal Hindcasts by a Global Reconstruction of GRACE Satellite Data. Journal of Climate, 2020, 33, 9497-9509.	1.2	5
1580	Drier North American Monsoon in Contrast to Asian–African Monsoon under Global Warming. Journal of Climate, 2020, 33, 9801-9816.	1.2	28
1581	Future Changes and Controlling Factors of the Eight Regional Monsoons Projected by CMIP6 Models. Journal of Climate, 2020, 33, 9307-9326.	1.2	54
1582	Simulations of Atmospheric Rivers, Their Variability, and Response to Global Warming Using GFDL's New High-Resolution General Circulation Model. Journal of Climate, 2020, 33, 10287-10303.	1.2	32
1583	A Mass and Energy Conservation Analysis of Drift in the CMIP6 Ensemble. Journal of Climate, 2020, , 1-43.	1.2	22

#	Article	IF	CITATIONS
1584	Different Enhancement of the East Asian Summer Monsoon under Global Warming and Interglacial Epochs Simulated by CMIP6 Models: Role of the Subtropical High. Journal of Climate, 2020, 33, 9721-9733.	1.2	31
1586	On the Correspondence between Seasonal Forecast Biases and Long-Term Climate Biases in Sea Surface Temperature. Journal of Climate, 2020, 34, 427-446.	1.2	7
1587	Origins of the IOD-like Biases in CMIP Multimodel Ensembles: The Atmospheric Component and Ocean–Atmosphere Coupling. Journal of Climate, 2020, 33, 10437-10453.	1.2	9
1588	Assessing Tropical Cyclones' Contribution to Precipitation over the Eastern United States and Sensitivity to the Variable-Resolution Domain Extent. Journal of Hydrometeorology, 2020, 21, 1425-1445.	0.7	31
1589	Simulated Tropical Precipitation Assessed across Three Major Phases of the Coupled Model Intercomparison Project (CMIP). Monthly Weather Review, 2020, 148, 3653-3680.	0.5	92
1590	Two-year consecutive concurrences of positive Indian Ocean Dipole and Central Pacific El Niño preconditioned the 2019/2020 Australian "black summer―bushfires. Geoscience Letters, 2020, 7, .	1.3	48
1591	Global and Arctic effective radiative forcing of anthropogenic gases and aerosols in MRI-ESM2.0. Progress in Earth and Planetary Science, 2020, 7, .	1.1	56
1592	Millennium time-scale experiments on climate-carbon cycle with doubled CO2 concentration. Progress in Earth and Planetary Science, 2020, 7, .	1.1	2
1593	Two decades of Earth system modeling with an emphasis on Model for Interdisciplinary Research on Climate (MIROC). Progress in Earth and Planetary Science, 2020, 7, .	1.1	36
1594	Biogeophysical and biogeochemical impacts of land-use change simulated by MIROC-ES2L. Progress in Earth and Planetary Science, 2020, 7, .	1.1	10
1595	Impact of air–sea coupling on the probability of occurrence of heat waves in Japan. Progress in Earth and Planetary Science, 2020, 7, .	1.1	3
1596	Compression of climate simulations with a nonstationary global SpatioTemporal SPDE model. Annals of Applied Statistics, 2020, 14, .	0.5	8
1597	Tropospheric Ozone Assessment Report. Elementa, 2020, 8, .	1.1	52
1598	Tropospheric Ozone Assessment Report: Assessment of global-scale model performance for global and regional ozone distributions, variability, and trends. Elementa, 2018, 6, .	1.1	177
1599	The Atlantic inflow across the Greenland-Scotland ridge in global climate models (CMIP5). Elementa, 2019, 7, .	1.1	11
1600	"Infrastructural geopolitics―of climate knowledge: the Brazilian Earth System Model and the North-South knowledge divide. Sociologias, 2019, 21, 44-75.	0.1	14
1601	Decadal Prediction Skill of BCC-CSM1.1 with Different Initialization Strategies. Journal of the Meteorological Society of Japan, 2019, 97, 733-744.	0.7	4
1602	The Added Value of Large-eddy and Storm-resolving Models for Simulating Clouds and Precipitation. Journal of the Meteorological Society of Japan, 2020, 98, 395-435.	0.7	93

#	Article	IF	CITATIONS
1603	Marine Low Clouds and their Parameterization in Climate Models. Journal of the Meteorological Society of Japan, 2020, 98, 1097-1127.	0.7	9
1604	Statistical Evaluation of Monthly Marine Surface Winds of CMIP6 GCMs in the western North Pacific. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2019, 75, I_1219-I_1224.	0.0	1
1605	Biophysical and economic implications for agriculture of $+1.5 {\hat {\sf A}}^\circ$ and $+2.0 {\hat {\sf A}}^\circ$ C global warming using AgMIP Coordinated Global and Regional Assessments. Climate Research, 2018, 76, 17-39.	0.4	49
1606	Predicting changes in distribution of a large coastal shark in the face of the strengthening East Australian Current. Marine Ecology - Progress Series, 2020, 642, 163-177.	0.9	40
1607	Sea Turtles for Ocean Research and Monitoring: Overview and Initial Results of the STORM Project in the Southwest Indian Ocean. Frontiers in Marine Science, 2020, 7, .	1.2	9
1608	Evaluation of the Performance of CMIP6 HighResMIP on West African Precipitation. Atmosphere, 2020, 11, 1053.	1.0	41
1609	Projected Hydroclimate Changes on Hispaniola Island through the 21st Century in CMIP6 Models. Atmosphere, 2021, 12, 6.	1.0	7
1610	Implications of Projected Hydroclimatic Change for Tularemia Outbreaks in High-Risk Areas across Sweden. International Journal of Environmental Research and Public Health, 2020, 17, 6786.	1.2	8
1611	Arctic Sea Ice: Decadal Simulations and Future Scenarios Using BESM-OA. Atmospheric and Climate Sciences, 2016, 06, 351-366.	0.1	5
1612	The global dust cycle and uncertainty in CMIP5 (Coupled Model Intercomparison Project phase 5) models. Atmospheric Chemistry and Physics, 2020, 20, 10401-10425.	1.9	54
1613	Accelerated increases in global and Asian summer monsoon precipitation from future aerosol reductions. Atmospheric Chemistry and Physics, 2020, 20, 11955-11977.	1.9	52
1614	Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP. Atmospheric Chemistry and Physics, 2020, 20, 12905-12920.	1.9	55
1615	Evaluation of climate model aerosol trends with ground-based observations over the last 2Âdecades – an AeroCom and CMIP6 analysis. Atmospheric Chemistry and Physics, 2020, 20, 13355-13378.	1.9	38
1616	How aerosols and greenhouse gases influence the diurnal temperature range. Atmospheric Chemistry and Physics, 2020, 20, 13467-13480.	1.9	23
1617	Evaluating the simulated radiative forcings, aerosol properties, and stratospheric warmings from the 1963 Mt Agung, 1982 El Chich \tilde{A}^3 n, and 1991 Mt Pinatubo volcanic aerosol clouds. Atmospheric Chemistry and Physics, 2020, 20, 13627-13654.	1.9	22
1618	Historical and future changes in air pollutants from CMIP6 models. Atmospheric Chemistry and Physics, 2020, 20, 14547-14579.	1.9	105
1619	Bias in CMIP6 models as compared to observed regional dimming and brightening. Atmospheric Chemistry and Physics, 2020, 20, 16023-16040.	1.9	25
1620	Untangling causality in midlatitude aerosol–cloud adjustments. Atmospheric Chemistry and Physics, 2020, 20, 4085-4103.	1.9	25

#	Article	IF	CITATIONS
1621	On the climate sensitivity and historical warming evolution in recent coupled model ensembles. Atmospheric Chemistry and Physics, 2020, 20, 7829-7842.	1.9	87
1622	Effective radiative forcing and adjustments in CMIP6 models. Atmospheric Chemistry and Physics, 2020, 20, 9591-9618.	1.9	149
1623	Climate and air quality impacts due to mitigation of non-methane near-term climate forcers. Atmospheric Chemistry and Physics, 2020, 20, 9641-9663.	1.9	30
1624	Projecting ozone hole recovery using an ensemble of chemistry–climate models weighted by model performance and independence. Atmospheric Chemistry and Physics, 2020, 20, 9961-9977.	1.9	16
1625	An inter-hemispheric seasonal comparison of polar amplification using radiative forcing of a quadrupling CO ₂ experiment. Annales Geophysicae, 2020, 38, 1123-1138.	0.6	10
1626	Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences, 2020, 17, 4173-4222.	1.3	255
1627	Nitrogen cycling in CMIP6 land surface models: progress and limitations. Biogeosciences, 2020, 17, 5129-5148.	1.3	60
1628	Global peatland area and carbon dynamics from the Last Glacial Maximum to the present – a process-based model investigation. Biogeosciences, 2020, 17, 5285-5308.	1.3	20
1629	Global climate response to idealized deforestation in CMIP6 models. Biogeosciences, 2020, 17, 5615-5638.	1.3	55
1630	Hysteretic temperature sensitivity of wetland CH ₄ fluxes explained by substrate availability and microbial activity. Biogeosciences, 2020, 17, 5849-5860.	1.3	19
1631	Spatially resolved evaluation of Earth system models with satellite column-averaged CO ₂ . Biogeosciences, 2020, 17, 6115-6144.	1.3	8
1632	Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models. Climate of the Past, 2020, 16, 1777-1805.	1.3	56
1633	Large-scale features and evaluation of the PMIP4-CMIP6 & amp; lt; i& amp; gt; midHolocene& amp; lt; li& amp; gt; simulations. Climate of the Past, 2020, 16, 1847-1872.	1.3	94
1634	Contribution of the coupled atmosphere–ocean–sea ice–vegetation model COSMOS to the PlioMIP2. Climate of the Past, 2020, 16, 2275-2323.	1.3	25
1635	The extremely warm summerÂof 2018 in Sweden – set in a historical context. Earth System Dynamics, 2020, 11, 1107-1121.	2.7	26
1636	Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6?. Earth System Dynamics, 2020, 11, 1233-1258.	2.7	63
1637	Emulating Earth system model temperatures with MESMER: from global mean temperature trajectories to grid-point-level realizations on land. Earth System Dynamics, 2020, 11, 139-159.	2.7	32
1638	Earth system modeling with endogenous and dynamic human societies: the copan:CORE open World–Earth modeling framework. Earth System Dynamics, 2020, 11, 395-413.	2.7	32

#	Article	IF	CITATIONS
1639	Variability of surface climate in simulations of past and future. Earth System Dynamics, 2020, 11, 447-468.	2.7	21
1640	Long-term variance of heavy precipitation across central Europe using a large ensemble of regional climate model simulations. Earth System Dynamics, 2020, 11, 469-490.	2.7	19
1641	Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth System Dynamics, 2020, 11, 491-508.	2.7	255
1642	Reaching 1.5 and 2.0 °C global surface temperature targets using stratospheric aerosol geoengineering. Earth System Dynamics, 2020, 11, 579-601.	2.7	50
1643	What could we learn about climate sensitivity from variability in the surface temperature record?. Earth System Dynamics, 2020, 11, 709-719.	2.7	3
1644	Compound warm–dry and cold–wet events over the Mediterranean. Earth System Dynamics, 2020, 11, 793-805.	2.7	51
1645	An investigation of weighting schemes suitable for incorporating large ensembles into multi-model ensembles. Earth System Dynamics, 2020, 11, 807-834.	2.7	39
1646	Reduced global warming from CMIP6 projections when weighting models by performance and independence. Earth System Dynamics, 2020, 11, 995-1012.	2.7	135
1647	An updated version of a gap-free monthly mean zonal mean ozone database. Earth System Science Data, 2018, 10, 1473-1490.	3.7	18
1648	Revised records of atmospheric trace gases CO ₂ , CH ₄ 0, and <i>1</i> _{13C-CO_{2 over the last 2000Âvears from Law Dome, Antarctica, Earth System Science Data, 2019, 11, 473-492.}}	: <td>sub&g</td>	sub&g
1649	The Global Space-based Stratospheric Aerosol Climatology (version 2.0): 1979–2018. Earth System Science Data, 2020, 12, 2607-2634.	3.7	28
1650	A Last Glacial Maximum forcing dataset for ocean modelling. Earth System Science Data, 2020, 12, 2971-2985.	3.7	1
1651	Global Carbon Budget 2020. Earth System Science Data, 2020, 12, 3269-3340.	3.7	1,477
1652	Earth system music: music generated from the United Kingdom Earth System Model (UKESM1). Geoscience Communication, 2020, 3, 263-278.	0.5	4
1653	Stratospheric aerosol evolution after Pinatubo simulated with a coupled size-resolved aerosol–chemistry–climate model, SOCOL-AERv1.0. Geoscientific Model Development, 2018, 11, 2633-2647.	1.3	16
1654	Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geoscientific Model Development, 2020, 13, 2197-2244.	1.3	245
1655	Assessing the performance of climate change simulation results from BESM-OA2.5 compared with a CMIP5 model ensemble. Geoscientific Model Development, 2020, 13, 2277-2296.	1.3	14
1656	Ocean biogeochemistry in the Norwegian Earth System Model version 2 (NorESM2). Geoscientific Model Development, 2020, 13, 2393-2431.	1.3	68

#	Article	IF	Citations
1657	Observations for Model Intercomparison Project (Obs4MIPs): status for CMIP6. Geoscientific Model Development, 2020, 13, 2945-2958.	1.3	17
1658	Development of the Community Water Model (CWatM v1.04) – a high-resolution hydrological model for global and regional assessment of integrated water resources management. Geoscientific Model Development, 2020, 13, 3267-3298.	1.3	60
1659	Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project. Geoscientific Model Development, 2020, 13, 3299-3318.	1.3	63
1660	Earth System Model Evaluation Tool (ESMValTool) v2.0 – an extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP. Geoscientific Model Development, 2020, 13, 3383-3438.	1.3	69
1661	On the increased climate sensitivity in the EC-Earth model from CMIP5 to CMIP6. Geoscientific Model Development, 2020, 13, 3465-3474.	1.3	88
1662	HighResMIP versions of EC-Earth: EC-Earth3P and EC-Earth3P-HR – description, model computational performance and basic validation. Geoscientific Model Development, 2020, 13, 3507-3527.	1.3	77
1663	The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development, 2020, 13, 3571-3605.	1.3	539
1664	Evaluating simulated climate patterns from the CMIP archives using satellite and reanalysis datasets using the Climate Model Assessment Tool (CMATv1). Geoscientific Model Development, 2020, 13, 3627-3642.	1.3	35
1665	Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geoscientific Model Development, 2020, 13, 3643-3708.	1.3	99
1666	Development of the global atmospheric chemistry general circulation model BCC-GEOS-Chem v1.0: model description and evaluation. Geoscientific Model Development, 2020, 13, 3817-3838.	1.3	12
1667	Evaluation of the University of Victoria Earth System Climate Model version 2.10 (UVic ESCM 2.10). Geoscientific Model Development, 2020, 13, 4183-4204.	1.3	23
1668	Earth System Model Evaluation Tool (ESMValTool) v2.0 – diagnostics for emergent constraints and future projections from Earth system models in CMIP. Geoscientific Model Development, 2020, 13, 4205-4228.	1.3	18
1669	Impact of horizontal resolution on global ocean–sea ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geoscientific Model Development, 2020, 13, 4595-4637.	1.3	75
1670	MIROC-INTEG-LAND version 1: a global biogeochemical land surface model with human water management, crop growth, and land-use change. Geoscientific Model Development, 2020, 13, 4713-4747.	1.3	14
1671	Reduced Complexity Model Intercomparison Project Phase 1: introduction and evaluation of global-mean temperature response. Geoscientific Model Development, 2020, 13, 5175-5190.	1.3	70
1672	Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geoscientific Model Development, 2020, 13, 5425-5464.	1.3	408
1673	European daily precipitation according to EURO-CORDEX regional climate models (RCMs) and high-resolution global climate models (GCMs) from the High-Resolution Model Intercomparison Project (HighResMIP). Geoscientific Model Development, 2020, 13, 5485-5506.	1.3	29
1674	Description and evaluation of a detailed gas-phase chemistry scheme in the TM5-MP global chemistry transport model (r112). Geoscientific Model Development, 2020, 13, 5507-5548.	1.3	11

#	Article	IF	CITATIONS
1675	The benefits of increasing resolution in global and regional climate simulations for European climate extremes. Geoscientific Model Development, 2020, 13, 5583-5607.	1.3	37
1676	Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geoscientific Model Development, 2020, 13, 6165-6200.	1.3	280
1677	Description and evaluation of aerosol in UKESM1 and HadGEM3-GC3.1 CMIP6 historical simulations. Geoscientific Model Development, 2020, 13, 6383-6423.	1.3	83
1678	ISBA-MEB (SURFEX v8.1): model snow evaluation for local-scale forest sites. Geoscientific Model Development, 2020, 13, 6523-6545.	1.3	4
1680	Weak sensitivity of the terrestrial water budget to global soil texture maps in the ORCHIDEE land surface model. Hydrology and Earth System Sciences, 2020, 24, 3753-3774.	1.9	13
1681	Accelerated hydrological cycle over the Sanjiangyuan region induces more streamflow extremes at different global warming levels. Hydrology and Earth System Sciences, 2020, 24, 5439-5451.	1.9	25
1682	Importance of El Niño reproducibility for reconstructing historical CO ₂ flux variations in the equatorial Pacific. Ocean Science, 2020, 16, 1431-1442.	1.3	4
1683	Remapping of Greenland ice sheet surface mass balance anomalies for large ensemble sea-level change projections. Cryosphere, 2020, 14, 1747-1762.	1.5	11
1684	Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models. Cryosphere, 2020, 14, 2331-2368.	1.5	72
1685	Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble. Cryosphere, 2020, 14, 2495-2514.	1.5	115
1686	Brief communication: Evaluating Antarctic precipitation in ERA5 and CMIP6 against CloudSat observations. Cryosphere, 2020, 14, 2715-2727.	1.5	28
1687	Seasonal transition dates can reveal biases in Arctic sea ice simulations. Cryosphere, 2020, 14, 2977-2997.	1.5	11
1688	The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6. Cryosphere, 2020, 14, 3071-3096.	1.5	144
1689	A protocol for calculating basal melt rates in the ISMIP6 Antarctic ice sheet projections. Cryosphere, 2020, 14, 3111-3134.	1.5	53
1690	Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. Cryosphere, 2020, 14, 3155-3174.	1.5	77
1691	Sensitivity of Greenland ice sheet projections to spatial resolution in higher-order simulations: the Alfred Wegener Institute (AWI) contribution to ISMIP6 Greenland using the Ice-sheet and Sea-level System Model (ISSM). Cryosphere, 2020, 14, 3309-3327.	1.5	10
1692	Decomposing the response of the stratospheric Brewer–Dobson circulation to an abrupt quadrupling in CO ₂ . Weather and Climate Dynamics, 2020, 1, 155-174.	1.2	6
1693	Northern Hemisphere blocking simulation in current climate models: evaluating progress from the Climate Model Intercomparison Project PhaseÂ5 to 6 and sensitivity to resolution. Weather and Climate Dynamics, 2020, 1, 277-292.	1.2	49

#	Article	IF	CITATIONS
1694	The American monsoon system in HadGEM3 and UKESM1. Weather and Climate Dynamics, 2020, 1, 349-371.	1.2	9
1695	CMIP6 Data Citation of Evolving Data. Data Science Journal, 2017, 16, .	0.6	19
1696	A Heuristic Estimation of the Genesis Probability of Tropical Cyclones using Genesis Frequency and Genesis Potential Index. Journal of the Korean Earth Science Society, 2019, 40, 561-571.	0.0	2
1697	Infllunce of Irrigation on the Bias Between Orchidee and Fluxcom Evapotranspiration Products. , 2021, , .		1
1698	Global water budget of Exascale Earth System Model (E3SM) in CMIP6 and ERA5., 2021,,.		0
1699	Predicting Mango Sudden Decline Due to Ceratocystis fimbriata Under a Changing Climate. Arab Journal of Plant Protection, 2021, 39, 215-223.	0.1	0
1700	The Physical Climate at Global Warming Thresholds as Seen in the U.K. Earth System Model. Journal of Climate, 2022, 35, 29-48.	1.2	12
1701	Learning to Correct Climate Projection Biases. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002509.	1.3	19
1702	Amplified warming of extreme temperatures over tropical land. Nature Geoscience, 2021, 14, 837-841.	5.4	31
1703	Future sea-level rise projections for tide gauge locations in South Asia. Environmental Research Communications, 2021, 3, 115003.	0.9	6
1704	Machine-learning-based evidence and attribution mapping of 100,000 climate impact studies. Nature Climate Change, 2021, 11, 966-972.	8.1	77
1705	Including Host Availability and Climate Change Impacts on the Global Risk Area of Carpomya pardalina (Diptera: Tephritidae). Frontiers in Ecology and Evolution, 2021, 9, .	1.1	4
1706	Response of the Upper‣evel Monsoon Anticyclones and Ozone to Abrupt CO ₂ Changes. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034903.	1.2	0
1707	Projected changes in seasonal and extreme summertime temperature and precipitation in India in response to COVID-19 recovery emissions scenarios. Environmental Research Letters, 2021, 16, 114025.	2.2	9
1708	A stochastic locally diffusive model with neural networkâ€based deformations for global sea surface temperature. Stat, 2022, 11, e431.	0.3	3
1709	Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nature Climate Change, 2021, 11, 973-981.	8.1	96
1710	Transient and Quasiâ€Equilibrium Climate States at 1.5°C and 2°C Global Warming. Earth's Future, 2021, 9, e2021EF002274.	2.4	9
1711	The Influence of Ocean Coupling on Simulated and Projected Tropical Cyclone Precipitation in the HighResMIP–PRIMAVERA Simulations. Geophysical Research Letters, 2021, 48, e2021GL094801.	1.5	12

#	Article	IF	CITATIONS
1712	Identification of linear response functions from arbitrary perturbation experiments in the presence of noise $\hat{a} \in \text{``Part 1: Method development and toy model demonstration. Nonlinear Processes in Geophysics, 2021, 28, 501-532.}$	0.6	5
1713	Variations in Summer Extreme High-Temperature Events over Northern Asia and the Possible Mechanisms. Journal of Climate, 2022, 35, 335-357.	1.2	16
1714	Effects of Bias-Corrected Regional Climate Projections and Their Spatial Resolutions on Crop Model Results under Different Climatic and Soil Conditions in Austria. Agriculture (Switzerland), 2021, 11, 1029.	1.4	2
1715	The potential habitat of desert locusts is contracting: predictions under climate change scenarios. PeerJ, 2021, 9, e12311.	0.9	14
1716	Environmental records from coral skeletons: A decade of novel insights and innovation. Wiley Interdisciplinary Reviews: Climate Change, 2022, 13, e745.	3.6	28
1717	Identification of linear response functions from arbitrary perturbation experiments in the presence of noise $\hat{a} \in ``Part 2: Application to the land carbon cycle in the MPI Earth System Model. Nonlinear Processes in Geophysics, 2021, 28, 533-564.$	0.6	2
1718	A review of interactions between ocean heat transport and Arctic sea ice. Environmental Research Letters, 2021, 16, 123002.	2.2	17
1719	The Gulf Stream and Kuroshio Current are synchronized. Science, 2021, 374, 341-346.	6.0	12
1720	The Indian summer monsoon and Indian Ocean Dipole connection in the IITM Earth System Model (IITM-ESM). Climate Dynamics, 2022, 58, 1877-1897.	1.7	8
1721	Simulated Spatial and Temporal Distribution of Freezing and Thawing Fronts in CASâ€FGOALSâ€g3. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002152.	1.3	2
1722	Varied midlatitude shortwave cloud radiative responses to Southern Hemisphere circulation shifts. Atmospheric Science Letters, 2022, 23, .	0.8	4
1724	Influence of Decadal Ocean Signals on Meteorological Conditions Associated With the Winter Haze Over Eastern China. Frontiers in Environmental Science, 2021, 9, .	1.5	1
1725	ENSO diversity shows robust decadal variations that must be captured for accurate future projections. Communications Earth & Environment, 2021, 2, .	2.6	19
1726	Seasonally dependent future changes in the US Midwest hydroclimate and extremes. Journal of Climate, 2021, , 1-35.	1.2	5
1727	Combining distributionâ€based neural networks to predict weather forecast probabilities. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 4337-4357.	1.0	13
1728	Quantifying non-CO2 contributions to remaining carbon budgets. Npj Climate and Atmospheric Science, 2021, 4, .	2.6	10
1729	Evaluation and Projection of Wind Speed in the Arid Region of Northwest China Based on CMIP6. Remote Sensing, 2021, 13, 4076.	1.8	11
1730	Projections of the Transient Stateâ€Dependency of Climate Feedbacks. Geophysical Research Letters, 2021, 48, e2021GL094670.	1.5	5

#	Article	IF	CITATIONS
1731	The Regional Importance of Oxygen Demand and Supply for Historical Ocean Oxygen Trends. Geophysical Research Letters, 2021, 48, .	1.5	15
1732	Increasing large wildfires over the western United States linked to diminishing sea ice in the Arctic. Nature Communications, 2021, 12, 6048.	5.8	26
1733	The influence of emissions scenarios on future Antarctic ice loss is unlikely to emerge this century. Communications Earth $\&$ Environment, $2021, 2, .$	2.6	17
1734	Atlantic zonal mode-monsoon teleconnection in a warming scenario. Climate Dynamics, 2022, 58, 1829-1843.	1.7	3
1735	Ionization in the Earth's Atmosphere Due to Isotropic Energetic Electron Precipitation: Ion Production and Primary Electron Spectra. Remote Sensing, 2021, 13, 4161.	1.8	9
1736	Robust Evaluation of ENSO in Climate Models: How Many Ensemble Members Are Needed?. Geophysical Research Letters, 2021, 48, e2021GL095041.	1.5	21
1737	Geochemistry of major and trace elements in sediments from the Lubei Plain, China: Constraints for paleoclimate, paleosalinity, and paleoredox environment. Journal of Asian Earth Sciences: X, 2021, 6, 100071.	0.6	6
1738	Interaction between Arctic sea ice and the Atlantic meridional overturning circulation in a warming climate. Climate Dynamics, 2022, 58, 1811-1827.	1.7	19
1740	Atmospheric River Response to Arctic Sea Ice Loss in the Polar Amplification Model Intercomparison Project. Geophysical Research Letters, 2021, 48, e2021GL094883.	1.5	7
1741	Effect of horizontal resolution on the simulation of tropical cyclones in the Chinese Academy of Sciences FGOALS-f3 climate system model. Geoscientific Model Development, 2021, 14, 6113-6133.	1.3	17
1742	Conversion of the Knutson et al. (2020) Tropical Cyclone Climate Change Projections to Risk Model Baselines. Journal of Applied Meteorology and Climatology, 2021, , .	0.6	1
1743	The CORDEX-CORE EXP-I Initiative: Description and Highlight Results from the Initial Analysis. Bulletin of the American Meteorological Society, 2022, 103, E293-E310.	1.7	35
1744	Detection, Attribution, and Future Response of Global Soil Moisture in Summer. Frontiers in Earth Science, 2021, 9, .	0.8	7
1745	Natural variability vs forced signal in the 2015–2019 Central American drought. Climatic Change, 2021, 168, 1.	1.7	21
1746	Probabilistic Assessment of Extreme Heat Stress on Indian Wheat Yields Under Climate Change. Geophysical Research Letters, 2021, 48, e2021GL094702.	1.5	5
1747	Counterbalancing influences of aerosols and greenhouse gases on atmospheric rivers. Nature Climate Change, 2021, 11, 958-965.	8.1	25
1748	An Improved Parameterization of Windâ€Driven Turbulent Vertical Mixing Based on an Eddyâ€Resolving Climate Model. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002630.	1.3	1
1749	Quantifying the rarity of extreme multi-decadal trends: how unusual was the late twentieth century trend in the North Atlantic Oscillation?. Climate Dynamics, 2022, 58, 1555-1568.	1.7	12

#	Article	IF	CITATIONS
1750	Effectiveness of using representative subsets of global climate models in future crop yield projections. Scientific Reports, 2021, 11, 20565.	1.6	5
1751	Influence of the Interdecadal Pacific Oscillation on South Asian and East Asian summer monsoon rainfall in CMIP6 models. Climate Dynamics, 2022, 58, 1791-1809.	1.7	6
1752	Response of Western North Pacific Anomalous Anticyclones in the Summer of Decaying El Niño to Global Warming: Diverse Projections Based on CMIP6 and CMIP5 Models. Journal of Climate, 2022, 35, 359-372.	1.2	11
1753	Anthropogenic influence on extreme temperatures in China based on <scp>CMIP6</scp> models. International Journal of Climatology, 2022, 42, 2981-2995.	1.5	14
1754	Coupled modes of projected regional change in the Bering Sea from a dynamically downscaling model under CMIP6 forcing. Deep-Sea Research Part II: Topical Studies in Oceanography, 2021, 194, 104974.	0.6	8
1755	Increased risk of near term global warming due to a recent AMOC weakening. Nature Communications, 2021, 12, 6108.	5.8	25
1756	A Gaussian process emulator for simulating ice sheet–climate interactions on a multi-million-year timescale: CLISEMv1.0. Geoscientific Model Development, 2021, 14, 6373-6401.	1.3	2
1757	Soil organic carbon dynamics from agricultural management practices under climate change. Earth System Dynamics, 2021, 12, 1037-1055.	2.7	12
1758	Biases Beyond the Mean in CMIP6 Extreme Precipitation: A Global Investigation. Earth's Future, 2021, 9, e2021EF002196.	2.4	37
1760	Assessment of the Ability of CMIP6 GCMS to Simulate the Boreal Summer Intraseasonal Oscillation Over Southeast Asia. Frontiers in Climate, 2021, 3, .	1.3	5
1761	Evaluating cloud radiative effect from CMIP6 and two satellite datasets over the Tibetan Plateau based on CERES observation. Climate Dynamics, 2022, 58, 1755-1774.	1.7	6
1762	On the Development of GFDL's Decadal Prediction System: Initialization Approaches and Retrospective Forecast Assessment. Journal of Advances in Modeling Earth Systems, 2021, 13, .	1.3	14
1763	Robust detection of forced warming in the presence of potentially large climate variability. Science Advances, 2021, 7, eabh4429.	4.7	11
1764	Emergent constraints on tropical atmospheric aridityâ€"carbon feedbacks and the future of carbon sequestration. Environmental Research Letters, 2021, 16, 114008.	2.2	15
1765	Persistence and Variability of Earth's Interhemispheric Albedo Symmetry in 19 Years of CERES EBAF Observations. Journal of Climate, 2022, 35, 249-268.	1.2	6
1768	On the impossibility of extreme event thresholds in the absence of global warming. Environmental Research Letters, 2021, 16, 115014.	2.2	5
1769	Impact of rising temperatures on the biomass of humid old-growth forests of the world. Carbon Balance and Management, 2021, 16, 31.	1.4	8
1770	The influence of direct radiative forcing versus indirect sea surface temperature warming on southern hemisphere subtropical anticyclones under global warming. Climate Dynamics, 2022, 58, 2333-2350.	1.7	3

#	Article	IF	CITATIONS
1771	Mid-Pleistocene Transition as a trigger for diversification in the Irano-Anatolian region: Evidence revealed by phylogeography and distribution pattern of the eastern three-lined lizard. Global Ecology and Conservation, 2021, 31, e01839.	1.0	8
1774	A CENTURY-LONG GLOBAL OFFLINE SIMULATION TOWARD LAND SURFACE, SNOW, SOIL-MOISTURE MODEL INTERCOMPARISON PROJECT (LS3MIP). Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic) Tj ETQq1	10.70 84 314	rgBT /Over
1775	Climate Data for Physical Risk Assessment in Finance. SSRN Electronic Journal, 0, , .	0.4	0
1776	Dinâmica climática e biogeográfica do Brasil no Último Máximo Glacial: o estado da arte. Estudos Avancados, 2020, 34, 187-198.	0.2	3
1778	Contribution of Cross-Barrier Moisture Transport to Precipitation in the Upper Indus River Basin. Monthly Weather Review, 2020, 148, 2801-2818.	0.5	13
1779	Impacts of Madden–Julian oscillation on tropical cyclone activity over the South China Sea: Observations versus HiRAM simulations. International Journal of Climatology, 2021, 41, 830-845.	1.5	4
1780	Superparameterised cloud effects in the EMAC general circulation model (v2.50) $\hat{a} \in \text{``influences of model configuration. Geoscientific Model Development, 2020, 13, 2671-2694.}$	1.3	0
1782	Open weather and climate science in the digital era. Geoscience Communication, 2020, 3, 191-201.	0.5	7
1783	Past long-term summer warming over western Europe in new generation climate models: role of large-scale atmospheric circulation. Environmental Research Letters, 2020, 15, 084038.	2.2	5
1785	International Data Node System for CMIP6 Climate Change Projections. Journal of Climate Change Research, 2020, 11, 247-257.	0.1	3
1787	Use of meteorological data in biosecurity. Emerging Topics in Life Sciences, 2020, 4, 497-511.	1.1	4
1788	Inconsistent Variations Between the Northern and Southern North Pacific Storm Track. Geophysical Research Letters, 2021, 48, .	1.5	0
1789	Response of Northern North Atlantic and Atlantic Meridional Overturning Circulation to Reduced and Enhanced Wind Stress Forcing. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017902.	1.0	6
1790	Future intensification of precipitation and wind gust associated thunderstorms over Lake Victoria. Weather and Climate Extremes, 2021, 34, 100391.	1.6	8
1791	The Influence of Natural and Anthropogenic Forcing on Water and Energy Balance and on Photosynthesis. Land, 2021, 10, 1151.	1.2	0
1792	The El Niño–Southern Oscillation Pattern Effect. Geophysical Research Letters, 2021, 48, e2021GL095261.	1.5	5
1793	Global Shipping Emissions from a Well-to-Wake Perspective: The MariTEAM Model. Environmental Science &	4.6	24
1794	Coupling interactive fire with atmospheric composition and climate in the UK Earth System Model. Geoscientific Model Development, 2021, 14, 6515-6539.	1.3	5

#	Article	IF	CITATIONS
1795	Projected Changes in the Atmospheric Dynamics of Climate Extremes in France. Atmosphere, 2021, 12, 1440.	1.0	0
1796	Future Summer Marine Heatwaves in the Western South Atlantic. Geophysical Research Letters, 2021, 48, e2021GL094509.	1.5	9
1797	Representations of Precipitation Diurnal Cycle in the Amazon as Simulated by Observationally Constrained Cloudâ€System Resolving and Global Climate Models. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002586.	1.3	7
1798	Assessment of Climate Change Impacts on the Hydroclimatic Response in Burundi Based on CMIP6 ESMs. Sustainability, 2021, 13, 12037.	1.6	9
1799	Oceanic Harbingers of Pacific Decadal Oscillation Predictability in CESM2 Detected by Neural Networks. Geophysical Research Letters, 2021, 48, e2021GL095392.	1.5	15
1800	Arctic Amplification of Precipitation Changesâ€"The Energy Hypothesis. Geophysical Research Letters, 2021, 48, e2021GL094977.	1.5	10
1801	Improved representation of atmospheric dynamics in <scp>CMIP6</scp> models removes climate sensitivity dependence on Hadley cell climatological extent. Atmospheric Science Letters, 2022, 23, e1073.	0.8	3
1802	A ship navigation information service system for the Arctic Northeast Passage using 3D GIS based on big Earth data. Big Earth Data, 0 , $1-27$.	2.0	5
1803	Climate change in the High Mountain Asia in CMIP6. Earth System Dynamics, 2021, 12, 1061-1098.	2.7	40
1804	Regional Characteristics of Variability in the Northern Hemisphere Wintertime Polar Front Jet and Subtropical Jet in Observations and CMIP6 Models. Journal of Geophysical Research D: Atmospheres, 2021, 126, .	1.2	5
1805	Anthropogenic emissions and urbanization increase risk of compound hot extremes in cities. Nature Climate Change, 2021, 11, 1084-1089.	8.1	117
1806	Quantifying Spread in Spatiotemporal Changes of Upper-Ocean Heat Content Estimates: An Internationally Coordinated Comparison. Journal of Climate, 2022, 35, 851-875.	1.2	6
1807	Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nature Food, 2021, 2, 873-885.	6.2	263
1808	Multi-Frequency Analysis of Simulated versus Observed Variability in Tropospheric Temperature. Journal of Climate, 2020, 33, 10383-10402.	1.2	7
1809	Evaluation of CMIP5 and CMIP6 simulations of historical surface air temperature extremes using proper evaluation methods. Environmental Research Letters, 2020, 15, 124041.	2.2	29
1810	Assessment of CMIP6 models' skill for tropical Indian Ocean sea surface temperature variability. International Journal of Climatology, 2021, 41, 2568-2588.	1.5	17
1811	Improvement of Soil Moisture Simulation in Eurasia by the Beijing Climate Center Climate System Model from CMIP5 to CMIP6. Advances in Atmospheric Sciences, 2021, 38, 237-252.	1.9	17
1812	Annual Cycle of East Asian Precipitation Simulated by CMIP6 Models. Atmosphere, 2021, 12, 24.	1.0	9

#	Article	IF	CITATIONS
1813	Future rainfall and temperature changes in Brazil under global warming levels of $1.5 \text{Å}^{\circ}\text{C}$, $2 \text{Å}^{\circ}\text{C}$ and $4 \text{Å}^{\circ}\text{C}$. Sustentabilidade Em Debate, 2020, 11 , 57-90.	0.4	9
1814	Mor Çiçekli OrmangüIÃI¼nün (Rhododendron ponticum L.) Günümüz ve Gelecekteki İklim KoÅŸull Yayılış Alanlarının Modellenmesi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 0, , .	larına G⁄	öre
1815	Biases in the albedo sensitivity to deforestation in CMIP5 models and their impacts on the associated historical radiative forcing. Earth System Dynamics, 2020, 11, 1209-1232.	2.7	4
1816	Editorial: Evidence synthesis for accelerated learning on climate solutions. Campbell Systematic Reviews, 2020, 16, e1128.	1.2	4
1817	High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs. Renewable Energy, 2022, 182, 659-684.	4.3	82
1818	Responses and modeling of southern pine beetle and its host pines to climate change. , 2022, , 55-85.		2
1819	Insights into recent aerosol trends over Asia from observations and CMIP6 simulations. Science of the Total Environment, 2022, 807, 150756.	3.9	15
1820	The divergence between potential and actual evapotranspiration: An insight from climate, water, and vegetation change. Science of the Total Environment, 2022, 807, 150648.	3.9	16
1821	Climate change impact on major crop yield and water footprint under CMIP6 climate projections in repeated drought and flood areas in Thailand. Science of the Total Environment, 2022, 807, 150741.	3.9	77
1822	Evaluation of CMIP6 AMIP climate simulations with the ACCESS-AM2 model. Journal of Southern Hemisphere Earth Systems Science, 2020, 70, 166.	0.7	10
1824	FIO-ESM: The Earth System Model Coupled with Ocean Surface Gravity Waves. Climate Change Research Letters, 2020, 09, 26-39.	0.0	0
1825	The role of falling ice radiative effects on climate projections over Arctic under global warming. Terrestrial, Atmospheric and Oceanic Sciences, 2020, 31, 633-648.	0.3	O
1826	Reaching Broad Audiences from a Research Institute Setting. , 2020, , 307-318.		1
1827	Landslide Hazard Induced by Climate Changes in North-Eastern Romania. Climate Change Management, 2020, , 245-265.	0.6	3
1828	Scalable Aggregation Service for Satellite Remote Sensing Data. Lecture Notes in Computer Science, 2020, , 184-199.	1.0	1
1829	Fulfilling the Promises of Lossy Compression for Scientific Applications. Communications in Computer and Information Science, 2020, , 99-116.	0.4	7
1831	DEVELOPMENT OF COUPLED ATMOSPHERIC-SLAB OCEAN MODEL GLOBAL CLIMATE MODEL AND CLIMATE CHANGE IMPACTS ON TROPICAL CYCLONES. Journal of Japan Society of Civil Engineers Ser B2 (Coastal) Tj ETQq0	๎ ๛ orgBT /	Overlock 10
1834	Estimates of mass absorption cross sections of black carbon for filter-based absorption photometers in the Arctic. Atmospheric Measurement Techniques, 2021, 14, 6723-6748.	1.2	19

#	Article	IF	CITATIONS
1835	Anthropogenic–biogenic interaction amplifies warming from emission reduction over the southeastern US. Environmental Research Letters, 2021, 16, 124046.	2.2	2
1836	The Southern Ocean Radiative Bias, Cloud Compensating Errors, and Equilibrium Climate Sensitivity in CMIP6 Models. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035310.	1.2	23
1837	Evaluating the Ozone Valley over the Tibetan Plateau in CMIP6 Models. Advances in Atmospheric Sciences, 0 , , 1 .	1.9	7
1838	Do CMIP models capture long-term observed annual precipitation trends?. Climate Dynamics, 2022, 58, 2825-2842.	1.7	20
1839	Arctic black carbon during PAMARCMiP 2018 and previous aircraft experiments in spring. Atmospheric Chemistry and Physics, 2021, 21, 15861-15881.	1.9	11
1840	Comparison of Reanalysis and Observational Precipitation Datasets Including ERA5 and WFDE5. Atmosphere, 2021, 12, 1462.	1.0	51
1841	Evaluation of Surface Upward Longwave Radiation in the CMIP6 Models with Ground and Satellite Observations. Remote Sensing, 2021, 13, 4464.	1.8	3
1842	Comparison of precipitation projections of CMIP5 and CMIP6 global climate models over Yulin, China. Theoretical and Applied Climatology, 2022, 147, 535-548.	1.3	11
1843	Bias-corrected CMIP6 global dataset for dynamical downscaling of the historical and future climate (1979–2100). Scientific Data, 2021, 8, 293.	2.4	71
1844	The contribution of melt ponds to enhanced Arctic sea-ice melt during the Last Interglacial. Cryosphere, 2021, 15, 5099-5114.	1.5	4
1845	Simulation of Indian summer monsoon rainfall, interannual variability and teleconnections: evaluation of CMIP6 models. Climate Dynamics, 2022, 58, 2693-2723.	1.7	19
1846	A Study of AR-, TS-, and MCS-Associated Precipitation and Extreme Precipitation in Present and Warmer Climates. Journal of Climate, 2022, 35, 479-497.	1.2	16
1847	Ensemble Flood Risk Assessment in the Yangtze River Economic Belt under CMIP6 SSP-RCP Scenarios. Sustainability, 2021, 13, 12097.	1.6	9
1848	Flow dependence of wintertime subseasonal prediction skill over Europe. Weather and Climate Dynamics, 2021, 2, 1033-1049.	1.2	3
1849	Climate change impacts on solar power generation and its spatial variability in Europe based on CMIP6. Earth System Dynamics, 2021, 12, 1099-1113.	2.7	23
1850	Effects of climate change on the ecological niche of common hornbeam (Carpinus betulus L.). Ecological Informatics, 2021, 66, 101478.	2.3	10
1852	Climate change response in wintertime widespread fog conditions over the Indo-Gangetic Plains. Climate Dynamics, 2022, 58, 2745-2766.	1.7	4
1853	Climate Change Estimates Surpass Rates of Climatic Niche Evolution in Primates. International Journal of Primatology, 2022, 43, 40-56.	0.9	11

#	Article	IF	CITATIONS
1854	Nonlinear interactions of land carbon cycle feedbacks in Earth System Models. Global Change Biology, 2022, 28, 296-306.	4.2	5
1855	Bulk Processing of Multi-Temporal Modis Data, Statistical Analyses and Machine Learning Algorithms to Understand Climate Variables in the Indian Himalayan Region. Sensors, 2021, 21, 7416.	2.1	22
1856	Long-term analysis of the Antarctic total ozone zonal asymmetry by MERRA-2 and CMIP6 data. Ukrainian Antarctic Journal, 2020, , 41-55.	0.1	1
1857	The Arctic Ocean Observation Operator for 6.9 GHz (ARC3O) – PartÂ2: Development and evaluation. Cryosphere, 2020, 14, 2387-2407.	1.5	7
1858	Arctic Sea Ice Growth in Response to Synoptic- and Large-Scale Atmospheric Forcing from CMIP5 Models. Journal of Climate, 2020, 33, 6083-6099.	1.2	10
1860	Marine biogeochemical cycling and oceanic CO ₂ uptake simulated by the NUIST Earth System Model version 3 (NESM v3). Geoscientific Model Development, 2020, 13, 3119-3144.	1.3	0
1861	Statistical predictability of the Arctic sea ice volume anomaly: identifying predictors and optimal sampling locations. Cryosphere, 2020, 14, 2409-2428.	1.5	9
1862	Climate Models Accumulated Cyclone Energy Analysis. , 0, , .		2
1863	Increasing the Usability of Climate Models through the Use of Consumer-Report-Style Resources for Decision-Making. Bulletin of the American Meteorological Society, 2020, 101, E1709-E1717.	1.7	6
1864	Coupled Climate Model Simulation of Tropical–Extratropical Cloud Bands over Southern Africa. Journal of Climate, 2020, 33, 8579-8602.	1.2	6
1865	Quantifying the Anthropogenic Greenhouse Gas Contribution to the Observed Spring Snow-Cover Decline Using the CMIP6 Multimodel Ensemble. Journal of Climate, 2020, 33, 9261-9269.	1.2	8
1866	Role of atmospheric horizontal resolution in simulating tropical and subtropical South American precipitation in HadGEM3-GC31. Geoscientific Model Development, 2020, 13, 4749-4771.	1.3	6
1867	Quantifying CanESM5 and EAMv1 sensitivities to Mt. Pinatubo volcanic forcing for the CMIP6 historical experiment. Geoscientific Model Development, 2020, 13, 4831-4843.	1.3	9
1868	cfdm: A Python reference implementation of the CF data model. Journal of Open Source Software, 2020, 5, 2717.	2.0	1
1871	The effect of Arctic warming on Moscow climate continentality. IOP Conference Series: Earth and Environmental Science, 2020, 606, 012004.	0.2	1
1872	Construction of forecasts in environmental protection as a solution to the continuation problem. , 2020, , .		О
1873	Climatically Driven Minimum of Energy Demand for Heating in Cities at the Center of the European Part of Russia. Izvestiya - Atmospheric and Oceanic Physics, 2020, 56, 613-617.	0.2	1
1874	R ² D ² v2.0: accounting for temporal dependences in multivariate bias correction via analogue rank resampling. Geoscientific Model Development, 2020, 13, 5367-5387.	1.3	12

#	Article	IF	Citations
1875	A new end-to-end workflow for the Community Earth System Model (version 2.0) for the Coupled Model Intercomparison Project Phase 6 (CMIP6). Geoscientific Model Development, 2020, 13, 5567-5581.	1.3	2
1876	Substantially Reducing Deaths from PM _{2.5} Pollution Under SDG3.9 Requires Transitions in Sustainable Development and Healthcare. SSRN Electronic Journal, 0, , .	0.4	0
1877	Precipitation in Earth system models: advances and limitations. , 2022, , 637-659.		1
1878	Influence of Canary upwelling system on coastal SST warming along the 21st century using CMIP6 GCMs. Global and Planetary Change, 2022, 208, 103692.	1.6	18
1879	Inconsistency in historical simulations and future projections of temperature and rainfall: A comparison of CMIP5 and CMIP6 models over Southeast Asia. Atmospheric Research, 2022, 265, 105927.	1.8	76
1880	Decadal change of extreme consecutive dry days in spring over the middle and lower reaches of the Yangtze River around the early 2000s: The synergistic effect of mega-El Niño/Southern Oscillation, Atlantic Multidecadal Oscillation, and Arctic sea ice. Atmospheric Research, 2022, 266, 105936.	1.8	11
1881	Assessing the performance of 33 CMIP6 models in simulating the large-scale environmental fields of tropical cyclones. Climate Dynamics, 2022, 58, 1683-1698.	1.7	13
1882	Uncertainty in El Niño-like warming and California precipitation changes linked by the Interdecadal Pacific Oscillation. Nature Communications, 2021, 12, 6484.	5.8	15
1883	Decadal climate predictions with the Canadian Earth System Model version 5 (CanESM5). Geoscientific Model Development, 2021, 14, 6863-6891.	1.3	9
1884	Future changes of drought characteristics in Coupled Model Intercomparison Project phase 6 Shared Socioeconomic Pathway scenarios over Central Asia. International Journal of Climatology, 2022, 42, 3888-3908.	1.5	11
1885	SSTâ€driven variability of the East Asian summer jet on a decadal timeâ€scale in CMIP6 models. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 581-598.	1.0	1
1886	Climate response to the spatial and temporal evolutions of anthropogenic aerosol forcing. Climate Dynamics, 2022, 59, 1579-1595.	1.7	9
1887	Wind speed stilling and its recovery due to internal climate variability. Earth System Dynamics, 2021, 12, 1239-1251.	2.7	10
1888	Impact of internal variability on recent opposite trends in wintertime temperature over the Barents–Kara Seas and central Eurasia. Climate Dynamics, 2022, 58, 2941-2956.	1.7	5
1889	Ice Algae Model Intercomparison Project phase 2 (IAMIP2). Geoscientific Model Development, 2021, 14, 6847-6861.	1.3	4
1890	Atmospheric variability contributes to increasing wildfire weather but not as much as global warming. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
1891	Projecting climate-driven shifts in demersal fish thermal habitat in Iceland's waters. ICES Journal of Marine Science, 2021, 78, 3793-3804.	1,2	2
1892	Effects of a freshening trend on upper-ocean stratification over the central tropical Pacific and their representation by CMIP6 models. Deep-Sea Research Part II: Topical Studies in Oceanography, 2022, 195, 104999.	0.6	8

#	Article	IF	CITATIONS
1893	Estimated climate impact of replacing agriculture as the primary food production system. Environmental Research Letters, 0 , , .	2.2	1
1894	Projected Changes in Precipitation Extremes Over Jiulongjiang River Basin in Coastal Southeast China. Frontiers in Earth Science, 2021, 9, .	0.8	0
1895	Forecast-based attribution of a winter heatwave within the limit of predictability. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
1896	Evaluation and comparison of CMIP6 models and MERRA-2 reanalysis AOD against Satellite observations from 2000 to 2014 over China. Geoscience Frontiers, 2022, 13, 101325.	4.3	25
1897	Uncertainty of SW Cloud Radiative Effect in Atmospheric Models Due to the Parameterization of Liquid Cloud Optical Properties. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002742.	1.3	2
1898	Using Radiative Convective Equilibrium to Explore Clouds and Climate in the Community Atmosphere Model. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002539.	1.3	7
1899	Projections of cold air outbreaks in CMIP6 earth system models. Climatic Change, 2021, 169, 1.	1.7	0
1901	Extreme Water Vapor Transport During the March 2021 Sydney Floods in the Context of Climate Projections. Geophysical Research Letters, 2021, 48, e2021GL095335.	1.5	15
1902	Polar Amplification and Ice Free Conditions under 1.5, 2 and 3 \hat{A}° C of Global Warming as Simulated by CMIP5 and CMIP6 Models. Atmosphere, 2021, 12, 1494.	1.0	7
1903	Evaluating Global Climate Models for Hydrological Studies of the Upper Colorado River Basin. Journal of the American Water Resources Association, 2022, 58, 709-734.	1.0	4
1904	Shine a light: Under-ice light and its ecological implications in a changing Arctic Ocean. Ambio, 2022, 51, 307-317.	2.8	18
1905	Drivers of Recent North Pacific Decadal Variability: The Role of Aerosol Forcing. Earth's Future, 2021, 9, e2021EF002249.	2.4	13
1906	Level Variations in the Caspian Sea under Different Climate Conditions by the Data of Simulation under CMIP6 Project. Water Resources, 2021, 48, 844-853.	0.3	2
1907	Longâ€term singleâ€column model intercomparison of diurnal cycle of precipitation over midlatitude and tropical land. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 641-669.	1.0	6
1908	Temperature and pH mediate stoichiometric constraints of organically derived soil nutrients. Global Change Biology, 2022, 28, 1630-1642.	4.2	16
1909	A comprehensive and synthetic dataset for global, regional, and national greenhouse gas emissions by sector 1970–2018 with an extension to 2019. Earth System Science Data, 2021, 13, 5213-5252.	3.7	68
1910	Ocean Model Formulation Influences Transient Climate Response. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017633.	1.0	8
1911	In Situ Climate Modeling for Analyzing Extreme Weather Events. , 2021, , .		1

#	Article	IF	CITATIONS
1912	Predicting the current and future global distribution of the invasive freshwater hydrozoan Craspedacusta sowerbii. Scientific Reports, 2021, 11, 23099.	1.6	8
1913	On the dependency of GCM-based regional surface climate change projections on model biases, resolution and climate sensitivity. Climate Dynamics, 2022, 58, 2843-2862.	1.7	4
1914	Interâ€comparison of historical simulation and future projections of rainfall and temperature by CMIP5 and CMIP6 GCMs over Egypt. International Journal of Climatology, 2022, 42, 4316-4332.	1.5	45
1915	Trivial improvements in predictive skill due to direct reconstruction of the global carbon cycle. Earth System Dynamics, 2021, 12, 1139-1167.	2.7	2
1917	Future changes in daily snowfall events over China based on CMIP6 models. Atmospheric and Oceanic Science Letters, 2022, 15, 100137.	0.5	1
1918	Temperature effects on carbon storage are controlled by soil stabilisation capacities. Nature Communications, 2021, 12, 6713.	5.8	58
1919	Historical global land surface air apparent temperature and its future changes based on CMIP6 projections. Science of the Total Environment, 2022, 816, 151656.	3.9	18
1920	Improving the Estimation of Human Climate Influence by Selecting Appropriate Forcing Simulations. Geophysical Research Letters, 2021, 48, e2021GL095500.	1.5	7
1921	Persistent Uncertainties in Ocean Net Primary Production Climate Change Projections at Regional Scales Raise Challenges for Assessing Impacts on Ecosystem Services. Frontiers in Climate, 2021, 3, .	1.3	46
1922	Anthropogenic influence on compound dry and hot events in China based on Coupled Model Intercomparison Project Phase 6 models. International Journal of Climatology, 2022, 42, 4379-4390.	1.5	12
1923	Modellering av biogeokjemiske prosesser i den norske klimamodellen NorESM. Naturen, 2021, 145, 241-247.	0.0	0
1924	Simulations With the Marine Biogeochemistry Library (MARBL). Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002647.	1.3	37
1925	Water vapor and lapse rate feedbacks in the climate system. Reviews of Modern Physics, 2021, 93, .	16.4	25
1926	Resolution Dependence of Regional Hydro-Climatic Projection: A Case-Study for the Johor River Basin, Malaysia. Water (Switzerland), 2021, 13, 3158.	1.2	7
1927	Midlatitude Error Growth in Atmospheric GCMs: The Role of Eddy Growth Rate. Geophysical Research Letters, 2021, 48, e2021GL096126.	1.5	6
1928	Snow Depth Trends from CMIP6 Models Conflict with Observational Evidence. Journal of Climate, 2022, 35, 1293-1307.	1.2	10
1929	CMIP6 MultiModel Evaluation of Presentâ€Day Heatwave Attributes. Geophysical Research Letters, 2021, 48, e2021GL095161.	1.5	18
1930	Ocean warming and accelerating Southern Ocean zonal flow. Nature Climate Change, 2021, 11, 1090-1097.	8.1	39

#	Article	IF	CITATIONS
1931	The Phase‣ocking of Tropical North Atlantic and the Contribution of ENSO. Geophysical Research Letters, 2021, 48, e2021GL095610.	1.5	4
1932	New climate models reveal faster and larger increases in Arctic precipitation than previously projected. Nature Communications, 2021, 12, 6765.	5.8	102
1933	Simulation of potential suitable distribution of original species of Fritillariae Cirrhosae Bulbus in China under climate change scenarios. Environmental Science and Pollution Research, 2022, 29, 22237-22250.	2.7	16
1934	Monsoonal precipitation over Peninsular Malaysia in the CMIP6 HighResMIP experiments: the role of model resolution. Climate Dynamics, 2022, 58, 2783-2805.	1.7	15
1935	Parameter uncertainty dominates C-cycle forecast errors over most of Brazil for the 21st century. Earth System Dynamics, 2021, 12, 1191-1237.	2.7	8
1936	Evaluation of Soil Moisture in CMIP6 Simulations. Journal of Climate, 2022, 35, 779-800.	1.2	20
1937	Asian monsoon projection with a new large-scale monsoon definition. Theoretical and Applied Climatology, 2022, 147, 1003-1013.	1.3	4
1939	Cascading temperature demand: The limits of thermal nesting in naturally ventilated buildings. Building and Environment, 2022, 208, 108607.	3.0	2
1940	Reliability in Distribution Modeling—A Synthesis and Step-by-Step Guidelines for Improved Practice. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	7
1941	NorCPM1 and its contribution to CMIP6 DCPP. Geoscientific Model Development, 2021, 14, 7073-7116.	1.3	32
1942	Mechanisms of Internal Atlantic Multidecadal Variability in HadGEM3-GC3.1 at Two Different Resolutions. Journal of Climate, 2022, 35, 1365-1383.	1.2	6
1943	CMIP6 Model-projected Hydroclimatic and Drought Changes and Their Causes in the 21st Century. Journal of Climate, 2021, , 1-58.	1.2	19
1944	Future Global Convective Environments in CMIP6 Models. Earth's Future, 2021, 9, .	2.4	32
1946	Biases in sea surface temperature and the annual cycle of Greater Horn of Africa rainfall in <scp>CMIP6</scp> . International Journal of Climatology, 2022, 42, 4179-4186.	1.5	5
1947	Regional disparities and seasonal differences in climate risk to rice labour. Environmental Research Letters, 2021, 16, 124004.	2.2	4
1948	Assessment of <scp>CMIP6</scp> global climate models in reconstructing rainfall climatology of Bangladesh. International Journal of Climatology, 2022, 42, 3928-3953.	1.5	19
1949	The Boreal Summer Zonal Wavenumber-3 Trend Pattern and Its Connection with Surface Enhanced Warming. Journal of Climate, 2022, 35, 833-850.	1.2	7
1950	Future summer warming pattern under climate change is affected by lapse-rate changes. Weather and Climate Dynamics, 2021, 2, 1093-1110.	1.2	3

#	Article	IF	CITATIONS
1951	Double Intertropical Convergence Zones in Coupled Oceanâ€Atmosphere Models: Progress in CMIP6. Geophysical Research Letters, 2021, 48, e2021GL094779.	1.5	10
1952	Open Science Expectations for Simulation-Based Research. Frontiers in Climate, 2021, 3, .	1.3	3
1953	Future precipitation changes in three key sub-regions of East Asia: the roles of thermodynamics and dynamics. Climate Dynamics, 2022, 59, 1377-1398.	1.7	9
1954	Evaluation of the seasonality and spatial aspects of the Southern Annular Mode in <scp>CMIP6</scp> models. International Journal of Climatology, 2022, 42, 3820-3837.	1.5	4
1955	Spatioâ€temporal analysis of copulaâ€based probabilistic multivariate drought index using <scp>CMIP6</scp> model. International Journal of Climatology, 2022, 42, 4333-4350.	1.5	13
1956	Evaluation and projection of global marine heatwaves based on CMIP6 models. Deep-Sea Research Part II: Topical Studies in Oceanography, 2021, 194, 104998.	0.6	16
1957	Simulation of potential suitable distribution of Alnus cremastogyne Burk. In China under climate change scenarios. Ecological Indicators, 2021, 133, 108396.	2.6	19
1958	Modeling the Sulfate Aerosol Evolution After Recent Moderate Volcanic Activity, 2008–2012. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035472.	1.2	7
1959	Constraining decadal variability yields skillful projections of nearâ€ŧerm climate change. Geophysical Research Letters, 2021, 48, e2021GL094915.	1.5	8
1960	Evaluation of historical CMIP6 model simulations and future projections of temperature over the Pan-Third Pole region. Environmental Science and Pollution Research, 2022, 29, 26214-26229.	2.7	9
1962	Knowledge Gaps Update to the 2019 IPCC Special Report on the Ocean and Cryosphere: Prospects to Refine Coastal Flood Hazard Assessments and Adaptation Strategies With At-Risk Communities of Alaska. Frontiers in Climate, 2021, 3, .	1.3	5
1963	Perspectives on Marine Data Science as a Blueprint for Emerging Data Science Disciplines. Frontiers in Marine Science, 2021, 8, .	1.2	3
1964	A Cloudier Picture of Ice-Albedo Feedback in CMIP6 Models. Frontiers in Earth Science, 2021, 9, .	0.8	2
1965	Twenty-first century drought analysis across China under climate change. Climate Dynamics, 2022, 59, 1665-1685.	1.7	17
1966	Northern Hemisphere drought risk in a warming climate. Npj Climate and Atmospheric Science, 2021, 4,	2.6	47
1967	Observed and Coupled Model Intercomparison Project $\langle scp \rangle 6 \langle scp \rangle$ multimodel simulated changes in nearâ \in surface temperature properties over Ghana during the 20th century. International Journal of Climatology, 2022, 42, 3681-3701.	1.5	11
1968	Synoptic circulation changes over Central Europe from 1900 to 2100 – Reanalyses and CMIP6. International Journal of Climatology, 0, , .	1.5	6
1969	Objective Classification of Controlling Factors for the Occurrence of the Wide-spread Extreme Precipitation Events during the Baiu Season over Western Japan. Scientific Online Letters on the Atmosphere, 2021, 17, 251-256.	0.6	0

#	Article	IF	CITATIONS
1971	Impacts of $1.5 \rm \^A^{\circ}C$ and $2 \rm \^A^{\circ}C$ Global Warming on Eucalyptus Plantations in South America. SSRN Electronic Journal, 0 , , .	0.4	0
1972	Future changes in aridity in the Upper Indus Basin during the twenty-first century. Climate Research, 2022, 87, 117-132.	0.4	1
1973	Projection of future changes in summer thermal stress index in Romania using statistical downscaling and associated uncertainties. Climate Research, 0, , .	0.4	2
1974	Mismatch between the Optimal Ages for Gross Primary Production and Net Ecosystem Production in Norway Spruce Forests. SSRN Electronic Journal, 0, , .	0.4	0
1975	Uncertainty in Aerosol Optical Depth From Modern Aerosolâ€Climate Models, Reanalyses, and Satellite Products. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	15
1976	Estimating unprecedented extremes in UK summer daily rainfall. Environmental Research Letters, 2022, 17, 014041.	2.2	10
1977	Recent Eurasian winter cooling partly caused by internal multidecadal variability amplified by Arctic sea ice-air interactions. Climate Dynamics, 2022, 58, 3261-3277.	1.7	15
1978	Application of PPIE method to assess the uncertainty and accuracy of multi-climate model-based temperature and precipitation downscaling. Theoretical and Applied Climatology, 2022, 147, 1327-1343.	1.3	4
1979	Wild relatives of potato may bolster its adaptation to new niches under future climate scenarios. Food and Energy Security, 2022, 11, e360.	2.0	7
1980	A Simple Coupled Model of the Wind–Evaporation–SST Feedback with a Role for Stability. Journal of Climate, 2022, 35, 2149-2160.	1.2	1
1981	Projected changes in terrestrial water storage and associated flood potential across the Yangtze River basin. Science of the Total Environment, 2022, 817, 152998.	3.9	7
1982	KrigR—a tool for downloading and statistically downscaling climate reanalysis data. Environmental Research Letters, 2022, 17, 024005.	2.2	16
1983	The dependence of mean climate state on shortwave absorption by water vapor. Journal of Climate, 2022, , 1-54.	1.2	3
1984	Towards better characterization of global warming impacts in the environment through climate classifications with improved global models. International Journal of Climatology, 2022, 42, 5197-5217.	1.5	6
1985	Replicability of Annual and Seasonal Precipitation by CMIP5 and CMIP6 GCMs over East Asia. KSCE Journal of Civil Engineering, 2022, 26, 1978-1989.	0.9	10
1986	Fine Ashâ∈Bearing Particles as a Major Aerosol Component in Biomass Burning Smoke. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	13
1987	Evaluating Climate Models' Cloud Feedbacks Against Expert Judgment. Journal of Geophysical Research D: Atmospheres, 2022, 127, e2021JD035198.	1.2	24
1988	Influence of the Solar Cycle on the North Atlantic Oscillation. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	13

#	Article	IF	Citations
1989	Assessment of suitable cultivation region for Panax notoginseng under different climatic conditions using MaxEnt model and high-performance liquid chromatography in China. Industrial Crops and Products, 2022, 176, 114416.	2.5	31
1990	Global population densities, climate change, and the maximum monthly temperature threshold as a potential tipping point for high urban densities. Ecological Indicators, 2022, 135, 108512.	2.6	15
1991	On divergence- and gradient-preserving coarse-graining for finite volume primitive equation ocean models. Ocean Modelling, 2022, 170, 101941.	1.0	1
1992	Estimates of soil erosion rates in a principal watershed in Gozo, Malta under current and future climatic conditions. Catena, 2022, 210, 105900.	2.2	3
1993	Changes in extreme precipitation across South Asia for each 0.5°C of warming from 1.5°C to 3.0°C above pre-industrial levels. Atmospheric Research, 2022, 266, 105961.	1.8	30
1997	Climate Model Projections for Canada: A Comparison of CMIP5 and CMIP6. Atmosphere - Ocean, 2021, 59, 269-284.	0.6	11
1998	Optimal Growth of IPV Lags AMV Modulations by up to a Decade. Geophysical Research Letters, 2021, 48,	1.5	6
1999	Predicting Present and Future Suitable Climate Spaces (Potential Distributions) for an Armillaria Root Disease Pathogen (Armillaria solidipes) and Its Host, Douglas-fir (Pseudotsuga menziesii), Under Changing Climates. Frontiers in Forests and Global Change, 2021, 4, .	1.0	6
2000	The Influence of Climate Change on Three Dominant Alpine Species under Different Scenarios on the Qinghai–Tibetan Plateau. Diversity, 2021, 13, 682.	0.7	4
2001	Dynamics of ENSO Phase–Locking and Its Biases in Climate Models. Geophysical Research Letters, 2022, 49, .	1.5	5
2002	Historical and future runoff changes in the Yangtze River Basin from CMIP6 models constrained by a weighting strategy. Environmental Research Letters, 2022, 17, 024015.	2.2	13
2003	Diversity of ENSOâ€Related Surface Temperature Response in Future Projection in CMIP6 Climate Models: Climate Change Scenario Versus ENSO Intensity. Geophysical Research Letters, 2022, 49, .	1.5	5
2004	Assessing Changes in 21st Century Mean and Extreme Climate of the Sacramento–San Joaquin Delta in California. Climate, 2022, 10, 16.	1.2	2
2005	Reduced range size and Important Bird and Biodiversity Area coverage for the Harpy Eagle (<i>Harpia) Tj ETQq1</i>	l 0,78431	4 rgBT /Over
2006	Economic and sociopolitical evaluation of climate change for policy and legal formulations. , 2022, , 55-83.		0
2007	Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change. Geographies, 2022, 2, 12-30.	0.6	3
2008	Evaluation and optimisation of the I/O scalability for the next generation of Earth system models: IFS CY43R3 and XIOS 2.0 integration as a case study. Geoscientific Model Development, 2022, 15, 379-394.	1.3	8
2009	Characteristic changes in climate projections over Indus Basin using the bias corrected CMIP6 simulations. Climate Dynamics, 2022, 58, 3471-3495.	1.7	8

#	Article	IF	CITATIONS
2010	Maxent Modelling Predicts a Shift in Suitable Habitats of a Subtropical Evergreen Tree (Cyclobalanopsis glauca (Thunberg) Oersted) under Climate Change Scenarios in China. Forests, 2022, 13, 126.	0.9	18
2011	Increased ENSO sea surface temperature variability under four IPCC emission scenarios. Nature Climate Change, 2022, 12, 228-231.	8.1	85
2012	Sources of uncertainty in Greenland surface mass balance in the 21st century. Cryosphere, 2022, 16, 315-331.	1.5	3
2013	PARASO, a circum-Antarctic fully coupled ice-sheet–ocean–sea-ice–atmosphere–land model involving f.ETISh1.7, NEMO3.6, LIM3.6, COSMO5.0 and CLM4.5. Geoscientific Model Development, 2022, 15, 553-594.	1.3	15
2014	Predicting the potential distribution of the fall armyworm Spodoptera frugiperda (J.E. Smith) under climate change in China. Global Ecology and Conservation, 2022, 33, e01994.	1.0	8
2015	Uncertainties in projected surface mass balance over the polar ice sheets from dynamically downscaled EC-Earth models. Cryosphere, 2022, 16, 17-33.	1.5	2
2016	Ranking of CMIP6 based High-resolution Global Climate Models for India using TOPSIS. ISH Journal of Hydraulic Engineering, 2023, 29, 175-188.	1,1	7
2017	Relationship between the Indo-western Pacific Ocean capacitor mode and Indian summer monsoon rainfall in CMIP6 models. Climate Dynamics, 0 , 1 .	1.7	2
2019	Comparison of the Anthropogenic Emission Inventory for CMIP6 Models with a Country-Level Inventory over China and the Simulations of the Aerosol Properties. Advances in Atmospheric Sciences, 2022, 39, 80-96.	1.9	10
2020	Subsurface warm biases in the tropical Atlantic and their attributions to the role of wind forcing and ocean vertical mixing. Journal of Climate, 2022, , 1-28.	1.2	2
2021	Decreasing Dust Over the Middle East Partly Caused by Irrigation Expansion. Earth's Future, 2022, 10, .	2.4	9
2022	EuLerian Identification of ascending AirStreams (ELIAS 2.0) in numerical weather prediction and climate models â€" Part 2: Model application to different datasets. Geoscientific Model Development, 2022, 15, 731-744.	1.3	4
2023	Increasing Frequency of Extremely Severe Cyclonic Storms in the North Indian Ocean by Anthropogenic Warming and Southwest Monsoon Weakening. Geophysical Research Letters, 2022, 49, e2021GL094650.	1.5	8
2024	Contributions of anthropogenic aerosol forcing and multidecadal internal variability to midâ€20th century Arctic coolingX02014;CMIP6/DAMIP multimodel analysis. Geophysical Research Letters, 0, , .	1.5	6
2025	Impact of Decadal Trends in the Surface Climate of the North Atlantic Subpolar Gyre on the Marine Environment of the Barents Sea. Frontiers in Marine Science, 2022, 8, .	1.2	6
2026	Long-term trend of water vapor over the Tibetan Plateau in boreal summer under global warming. Science China Earth Sciences, 2022, 65, 662-674.	2.3	14
2027	Detectable anthropogenic influence on summer compound hot events over China from 1965 to 2014. Environmental Research Letters, 2022, 17, 034042.	2.2	13
2028	Present and future land surface and wet bulb temperatures in the Arabian Peninsula. Environmental Research Letters, 2022, 17, 044029.	2.2	13

#	Article	IF	CITATIONS
2029	Short and long-term projections of Rossby wave packets and blocking events with particular attention to the northern hemisphere. Global and Planetary Change, 2022, 209, 103750.	1.6	3
2030	Asian summer monsoon responses to the change of landâ€'sea thermodynamic contrast in a warming climate: CMIP6 projections. Advances in Climate Change Research, 2022, 13, 205-217.	2.1	14
2031	Change in Climate Sensitivity and Its Dependence on the Lapse-Rate Feedback in 4 \tilde{A} — CO2 Climate Model Experiments. Journal of Climate, 2022, 35, 2919-2932.	1.2	2
2032	On the Correspondence Between Atmosphereâ€Only and Coupled Simulations for Radiative Feedbacks and Forcing From CO ₂ . Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	10
2033	Finding Storm Track Activity Metrics that are Highly Correlated with Weather Impacts. Part 2: Estimating Precipitation Change Associated with Projected Storm Track Change over Europe. Journal of Climate, 2022, , 1-40.	1.2	0
2034	Evaluating the Nature and Extent of Changes to Climate Sensitivity Between FGOALSâ€g2 and FGOALSâ€g3. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	5
2035	Evolution of Tropical Cyclone Properties Across the Development Cycle of the GISS 3 Global Climate Model. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	2
2036	Decreasing Wintertime Mixedâ€Layer Depth in the Northwestern North Pacific Subtropical Gyre. Geophysical Research Letters, 2022, 49, .	1.5	6
2037	Increasing Future Precipitation in the Southwestern US in the Summer and Its Contrasting Mechanism With Decreasing Precipitation in the Spring. Geophysical Research Letters, 2022, 49, .	1.5	3
2038	Using Satellite Observations to Evaluate Model Microphysical Representation of Arctic Mixedâ€Phase Clouds. Geophysical Research Letters, 2022, 49, .	1.5	8
2039	The Effect of Wind Stress on Seasonal Sea-Level Change on the Northwestern European Shelf. Journal of Climate, 2022, , 1-31.	1.2	18
2040	The climate system and the second law of thermodynamics. Reviews of Modern Physics, 2022, 94, .	16.4	14
2041	Increased occurrence of high impact compound events under climate change. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	74
2042	A novel approach for air quality trend studies and its application to european urban environments: The ICARUS project. Atmospheric Environment, 2022, 273, 118973.	1.9	4
2043	An assessment of temperature simulations by CMIP6 climate models over the Tibetan Plateau and differences with CMIP5 climate models. Theoretical and Applied Climatology, 2022, 148, 223-236.	1.3	12
2044	Idealized simulations of the tropical climate and variability in the Single Column Atmosphere Model (SCAM). Part I: Radiativeâ€convective equilibrium. Journal of Advances in Modeling Earth Systems, 0, , .	1.3	0
2045	Projected impacts of climate change on major dams in the Upper Yangtze River Basin. Climatic Change, 2022, 170, 1.	1.7	7
2046	The DOE E3SM v1.2 Cryosphere Configuration: Description and Simulated Antarctic Iceâ€Shelf Basal Melting. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	15

#	Article	IF	CITATIONS
2047	Climate change research and implications of the use of near-term carbon budgets in public policy. , $2022, 1-30$.		0
2048	Reconstructed temperature change in late summer over the eastern Tibetan Plateau since 1867 CE and the role of anthropogenic forcing. Global and Planetary Change, 2022, 208, 103715.	1.6	4
2049	Assessment and projection of elevation-dependent warming over the Tibetan Plateau by CMIP6 models. Theoretical and Applied Climatology, 2022, 147, 1713-1723.	1.3	2
2050	Climate Sensitivity is Sensitive to Changes in Ocean Heat Transport. Journal of Climate, 2022, 35, 2653-2674.	1.2	6
2051	Will population exposure to heat extremes intensify over Southeast Asia in a warmer world?. Environmental Research Letters, 2022, 17, 044006.	2.2	19
2052	Land transpiration-evaporation partitioning errors responsible for modeled summertime warm bias in the central United States. Nature Communications, 2022, 13, 336.	5.8	25
2053	Improved Simulation of ENSO Variability Through Feedback From the Equatorial Atlantic in a Pacemaker Experiment. Geophysical Research Letters, 2022, 49, .	1.5	5
2054	Description and evaluation of a secondary organic aerosol and new particle formation scheme within TM5-MP v1.2. Geoscientific Model Development, 2022, 15 , $683-713$.	1.3	5
2055	The Response of Northern Hemisphere Polar Lows to Climate Change in a 25Âkm Highâ€Resolution Global Climate Model. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	4
2056	Differences in Radiative Forcing, Not Sensitivity, Explain Differences in Summertime Land Temperature Variance Change Between CMIP5 and CMIP6. Earth's Future, 2022, 10, .	2.4	2
2057	Radiocarbon in the Land and Ocean Components of the Community Earth System Model. Global Biogeochemical Cycles, 2022, 36, .	1.9	4
2058	Effects of Anthropogenic Aerosol and Greenhouse Gas Emissions on Northern Hemisphere Monsoon Precipitation: Mechanisms and Uncertainty. Journal of Climate, 2022, 35, 2305-2326.	1.2	18
2059	Tropospheric ozone changes and ozone sensitivity from the present day to the future under shared socio-economic pathways. Atmospheric Chemistry and Physics, 2022, 22, 1209-1227.	1.9	10
2060	Fewer Troughs, Not More Ridges, Have Led to a Drying Trend in the Western United States. Geophysical Research Letters, 2022, 49, .	1.5	10
2061	Predicting the potential habitat distribution of parthenium weed (Parthenium hysterophorus) globally and in Oman under projected climate change. Journal of the Saudi Society of Agricultural Sciences, 2022, 21, 469-478.	1.0	6
2062	Photosynthesis in action: The global view. , 2022, , 243-269.		0
2063	Prescreening-Based Subset Selection for Improving Predictions of Earth System Models With Application to Regional Prediction of Red Tide. Frontiers in Earth Science, 2022, 10, 1-19.	0.8	3
2064	Atmospheric regional climate projections for the Baltic Sea region until 2100. Earth System Dynamics, 2022, 13, 133-157.	2.7	21

#	Article	IF	CITATIONS
2065	The pacific decadal precession and its relationship to tropical pacific decadal variability in CMIP6 models. Climate Dynamics, 0 , 1 .	1.7	0
2066	Calculating the Climatology and Anomalies of Surface Cloud Radiative Effect Using Cloud Property Histograms and Cloud Radiative Kernels. Advances in Atmospheric Sciences, 2022, 39, 2124-2136.	1.9	4
2067	Detection and Attribution of Changes in Thermal Discomfort over China during 1961–2014 and Future Projections. Advances in Atmospheric Sciences, 2022, 39, 456-470.	1.9	7
2068	EuLerian Identification of ascending AirStreams (ELIAS 2.0) inÂnumerical weather prediction and climate models – Part 1: Development of deep learning model. Geoscientific Model Development, 2022, 15, 715-730.	1.3	10
2070	From Ecosystem Observation to Environmental Decision-Making: Model-Data Fusion as an Operational Tool. Frontiers in Forests and Global Change, 2022, 4, .	1.0	1
2071	Variations in Eurasian surface air temperature over multiple timescales and their possible causes. International Journal of Climatology, 2022, 42, 4788-4807.	1.5	2
2072	Dynamics of water-energy-food nexus interactions with climate change and policy options. Environmental Research Communications, 2022, 4, 015009.	0.9	7
2073	A Moderate Mitigation Can Significantly Delay the Emergence of Compound Hot Extremes. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	9
2074	ExoPlaSim: Extending the Planet Simulator for exoplanets. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3272-3303.	1.6	11
2075	Impacts of the Unforced Pattern Effect on the Cloud Feedback in CERES Observations and Climate Models. Geophysical Research Letters, 2022, 49, .	1.5	5
2076	Spurious Late Historicalâ€Era Warming in CESM2 Driven by Prescribed Biomass Burning Emissions. Geophysical Research Letters, 2022, 49, .	1.5	29
2077	Robustness of Competing Climatic States. Journal of Climate, 2022, 35, 2769-2784.	1.2	8
2079	Vegetation-based climate mitigation in a warmer and greener World. Nature Communications, 2022, 13, 606.	5.8	51
2080	Predicting compound coastal inundation in 2100 by considering the joint probabilities of landfalling tropical cyclones and sea-level rise. Environmental Research Letters, 2022, 17, 044055.	2.2	3
2081	North Atlantic Cooling is Slowing Down Mass Loss of Icelandic Glaciers. Geophysical Research Letters, 2022, 49, .	1.5	7
2082	Distinguishing Convective-Transition Moisture-Temperature Relationships with a Constellation of Polarimetric Radio Occultation Observations in and near Convection. Atmosphere, 2022, 13, 259.	1.0	O
2083	Evaluation of multidimensional simulations of summer air temperature in China from CMIP5 to CMIP6 by the BCC models: From trends to modes. Advances in Climate Change Research, 2022, 13, 28-41.	2.1	5
2084	Natural hazards and extreme events in the Baltic Sea region. Earth System Dynamics, 2022, 13, 251-301.	2.7	35

#	Article	IF	CITATIONS
2085	Performance of bias corrected monthly CMIP6 climate projections with different reference period data in Turkey. Acta Geophysica, 2022, 70, 777-789.	1.0	6
2086	Arctic warming-induced cold damage to East Asian terrestrial ecosystems. Communications Earth & Environment, 2022, 3, .	2.6	8
2087	High-resolution global population projections dataset developed with CMIP6 RCP and SSP scenarios for year 2010–2100. Data in Brief, 2022, 40, 107804.	0.5	16
2088	Minimal CMIP Emulator (MCE $v1.2$): a new simplified method for probabilistic climate projections. Geoscientific Model Development, 2022, 15, 951-970.	1.3	0
2089	Future change in extreme precipitation in East Asian spring and Mei-yu seasons in two high-resolution AGCMs. Weather and Climate Extremes, 2022, 35, 100408.	1.6	8
2090	Projection of climate change impacts on hydropower in the source region of the Yangtze River based on CMIP6. Journal of Hydrology, 2022, 606, 127453.	2.3	30
2091	A winner or a loser in climate change? Modelling the past, current, and future potential distributions of a rare charophyte species. Global Ecology and Conservation, 2022, 34, e02038.	1.0	4
2092	Including climate change to predict the global suitable area of an invasive pest: Bactrocera correcta (Diptera: Tephritidae). Global Ecology and Conservation, 2022, 34, e02021.	1.0	6
2093	Possible changes in Sudan's future precipitation under the high and medium emission scenarios based on bias adjusted GCMs. Atmospheric Research, 2022, 269, 106036.	1.8	4
2094	Weakening of carbon sink on the Qinghai–Tibet Plateau. Geoderma, 2022, 412, 115707.	2.3	20
2095	Global assessment of the distribution and conservation status of a key medicinal plant (Artemisia) Tj ETQq0 0 0 rg 821, 153378.	gBT /Overl 3.9	ock 10 Tf 50 13
2096	Overview of the MOSAiC expedition: Physical oceanography. Elementa, 2022, 10, .	1.1	54
2097	Climate-mediated stock redistribution causes increased risk and challenges for fisheries management. ICES Journal of Marine Science, 2022, 79, 1120-1132.	1.2	7
2098	Interhemispheric asymmetry of climate change projections of boreal winter surface winds in CanESM5 large ensemble simulations. Climatic Change, 2022, 170, 1.	1.7	O
2099	Data-driven stochastic model for cross-interacting processes with different time scales. Chaos, 2022, 32, 023111.	1.0	3
2100	Extreme Tropical Precipitation Clusters Show Strong Increases in Frequency Under Global Warming in CMIP6 Models. Geophysical Research Letters, 2022, 49, .	1.5	1
2101	Process Drivers, Inter-Model Spread, and the Path Forward: A Review of Amplified Arctic Warming. Frontiers in Earth Science, 2022, 9, .	0.8	31
2102	Predicting the future distributions of Calomicrus apicalis Demaison, 1891 (Coleoptera: Chrysomelidae) under climate change. Journal of Plant Diseases and Protection, 0, , 1.	1.6	6

#	Article	IF	CITATIONS
2103	Assessment of surface downward longwave radiation in CMIP6 with comparison to observations and CMIP5. Atmospheric Research, 2022, 270, 106056.	1.8	12
2104	The Mediterranean climate change hotspot in the CMIP5 and CMIP6 projections. Earth System Dynamics, 2022, 13, 321-340.	2.7	86
2105	Monthly North Atlantic Sea Level Pressure reconstruction back to 1750 CE using Artificial Intelligence optimization. Journal of Climate, 2022, , 1-56.	1.2	0
2106	Projected Changes in Socioeconomic Exposure to Heatwaves in South Asia Under Changing Climate. Earth's Future, 2022, 10, .	2.4	65
2107	Long-term rainfall projection based on CMIP6 scenarios for Kurau River Basin of rice-growing irrigation scheme, Malaysia. SN Applied Sciences, 2022, 4, 1.	1.5	9
2108	The July 2019 European Heat Wave in a Warmer Climate: Storyline Scenarios with a Coupled Model Using Spectral Nudging. Journal of Climate, 2022, 35, 2373-2390.	1.2	14
2109	El Niño/Southern Oscillation inhibited by submesoscale ocean eddies. Nature Geoscience, 2022, 15, 112-117.	5.4	16
2110	Observational constraint on the future projection of temperature in winter over the Tibetan Plateau in CMIP6 models. Environmental Research Letters, 2022, 17, 034023.	2.2	23
2111	Deciphering the projected changes in CMIP-6 based precipitation simulations over the Krishna River Basin. Journal of Water and Climate Change, 2022, 13, 1389-1407.	1.2	9
2112	Warming Pattern over the Northern Hemisphere Midlatitudes in Boreal Summer 1979–2020. Journal of Climate, 2022, 35, 3479-3494.	1.2	6
2113	Atmospheric Sciences Perspectives on Integrated, Coordinated, Open, Networked (ICON) Science. Earth and Space Science, 2022, 9, .	1.1	1
2114	Observations Indicate That Clouds Amplify Mechanisms of Southern Ocean Heat Uptake. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	4
2115	Potential distribution of Blumea balsamifera in China using MaxEnt and the ex situ conservation based on its effective components and fresh leaf yield. Environmental Science and Pollution Research, 2022, 29, 44003-44019.	2.7	13
2116	T-S and hydrodynamical structures within the deltaic regions and continental platforms adjacent to two northeastern Brazilian rivers. Regional Studies in Marine Science, 2022, 51, 102219.	0.4	2
2117	CMIP6 Simulations With the CMCC Earth System Model (CMCCâ€ESM2). Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	75
2118	A Decomposition of Feedback Contributions to the Arctic Surface Temperature Biases in the CMIP5 Climate Models. Asia-Pacific Journal of Atmospheric Sciences, 0 , , 1 .	1.3	0
2119	Evaluation of the temperature downscaling performance of PRECIS to the BCC-CSM2-MR model over China. Climate Dynamics, 2022, 59, 1143-1159.	1.7	4
2120	Constraining Arctic Climate Projections of Wintertime Warming With Surface Turbulent Flux Observations and Representation of Surface-Atmosphere Coupling. Frontiers in Earth Science, 2022, 10, .	0.8	6

#	Article	IF	CITATIONS
2121	Antarctic meltwater-induced dynamical changes in phytoplankton in the Southern Ocean. Environmental Research Letters, 2022, 17, 024022.	2.2	1
2122	Physical processes of summer extreme rainfall interannual variability in Eastern Chinaâ€"part II: evaluation of CMIP6 models. Climate Dynamics, 2022, 59, 455-469.	1.7	2
2123	Quantifying the uncertainty of internal variability in future projections of seasonal soil moisture droughts over China. Science of the Total Environment, 2022, 824, 153817.	3.9	13
2124	Projecting future changes in extreme climate for maize production in the North China Plain and the role of adjusting theÂsowing date. Mitigation and Adaptation Strategies for Global Change, 2022, 27, 1.	1.0	10
2125	A global climate model ensemble for downscaled monthly climate normals over North America. International Journal of Climatology, 2022, 42, 5871-5891.	1.5	29
2126	Impacts of $1.5~{\hat{A}}^{\circ}\text{C}$ and $2~{\hat{A}}^{\circ}\text{C}$ global warming on Eucalyptus plantations in South America. Science of the Total Environment, 2022, 825, 153820.	3.9	19
2127	Assessment of the potential of CMIP6 models in simulating the sea surface temperature variability over the tropical Indian Ocean. Theoretical and Applied Climatology, 2022, 148, 585-602.	1.3	2
2128	A Workshop on Improving Our Methodologies of Selecting Earth System Models for Climate Change Impact Applications. Bulletin of the American Meteorological Society, 2022, 103, E1213-E1219.	1.7	2
2129	Global water availability and its distribution under the Coupled Model Intercomparison Project Phase Six scenarios. International Journal of Climatology, 2022, 42, 5748-5767.	1.5	9
2130	Adiabatic and Diabatic Signatures of Ocean Temperature Variability. Journal of Climate, 2022, 35, 1459-1477.	1.2	3
2131	Comparison of CMIP5 and CMIP6 GCM performance for flood projections in the Mekong River Basin. Journal of Hydrology: Regional Studies, 2022, 40, 101035.	1.0	19
2132	Projected urban exposure to extreme precipitation over South Asia. Science of the Total Environment, 2022, 822, 153664.	3.9	11
2133	Global predictions of primary soil salinization under changing climate in the 21st century. Nature Communications, 2021, 12, 6663.	5.8	184
2134	Increased labor losses and decreased adaptation potential in a warmer world. Nature Communications, 2021, 12, 7286.	5.8	30
2135	Tropical and subtropical Asia's valued tree species under threat. Conservation Biology, 2022, 36, .	2.4	17
2137	Circulation type analysis of regional hydrology: the added value in using CMIP6 over CMIP5 simulations as exemplified from the MPI-ESM-LR model. Journal of Water and Climate Change, 2022, 13, 1046-1055.	1.2	9
2138	Ubiquity of human-induced changes in climate variability. Earth System Dynamics, 2021, 12, 1393-1411.	2.7	131
2139	Brief communication: A roadmap towards credible projections of ice sheet contribution to sea level. Cryosphere, 2021, 15, 5705-5715.	1.5	30

#	Article	IF	CITATIONS
2141	Assessment of global meteorological, hydrological and agricultural drought under future warming based on CMIP6. Atmospheric and Oceanic Science Letters, 2022, 15, 100143.	0.5	19
2142	Assessment of CMIP6-Based Future Climate Projections Selected for Impact Studies in Japan. Scientific Online Letters on the Atmosphere, 2022, 18, 96-103.	0.6	3
2143	Projected Changes and Uncertainty of Cold Surges Over Northern China Using the Cmip6 Weighted Multi-Model Ensemble. SSRN Electronic Journal, 0, , .	0.4	1
2145	Recommendations for Discipline-Specific FAIRness Evaluation Derived from Applying an Ensemble of Evaluation Tools. Data Science Journal, 2022, 21, .	0.6	4
2146	Spatio-temporal trend and frequency analysis of precipitation in South-southern Nigeria (SSN). Climate Research, 0, , .	0.4	0
2147	A Simulation-Based Framework for the Adequacy Assessment of Integrated Energy Systems Exposed to Climate Change. , 2022, , 1-35.		3
2148	Assessment of Climate Change Impact on Rice Production Over South and Southeast Asia Under CMIP6 Climate Scenarios., 2022,, 367-379.		0
2149	Effect of Climate Change on Rice Cultivation in South Korea – Runoff, Nitrogen Discharge, and Productivity Forecast Under Cmip6 Climate Scenarios Using the Apex-Paddy Model. SSRN Electronic Journal, 0, , .	0.4	0
2150	Slightly Enhanced Drought in the Yellow River Basin Under Future Warming Scenarios. SSRN Electronic Journal, 0, , .	0.4	0
2151	Extreme Precipitation in 150-year Continuous Simulations by 20-km and 60-km Atmospheric General Circulation Models with Dynamical Downscaling over Japan by a 20-km Regional Climate Model. Journal of the Meteorological Society of Japan, 2022, 100, 523-532.	0.7	5
2153	Characterizing Drought Stress for the Common Bean Breeding Purpose in East Africa Under Present and Future Climates. SSRN Electronic Journal, 0, , .	0.4	0
2154	Hydrological feedback from projected Earth greening in the 21st century. , 2022, 1, 100007.		12
2155	Future Changes in the Surface Water Balance over Western Canada Using the CanESM5 (CMIP6) Ensemble for the Shared Socioeconomic Pathways 5 Scenario. Water (Switzerland), 2022, 14, 691.	1.2	3
2156	The Biophysical Impacts of Deforestation on Precipitation: Results from the CMIP6 Model Intercomparison. Journal of Climate, 2022, 35, 3293-3311.	1.2	12
2157	It's the Heat and the Humidity: The Complementary Roles of Temperature and Specific Humidity to Recent Changes in the Energy Content of the Nearâ€Surface Atmosphere. Geophysical Research Letters, 2022, 49, .	1.5	5
2158	Emergent constraints on future precipitation changes. Nature, 2022, 602, 612-616.	13.7	29
2159	Rapid intensification of the emerging southwestern North American megadrought in 2020–2021. Nature Climate Change, 2022, 12, 232-234.	8.1	239
2160	Wavelet-based predictor screening for statistical downscaling of precipitation and temperature using the artificial neural network method. Hydrology Research, 2022, 53, 385-406.	1.1	6

#	Article	IF	CITATIONS
2161	When is an ensemble like a sample? "Model-based―inferences in climate modeling. SynthÈse, 2022, 200, 1.	0.6	4
2162	Water Availability for Biorefineries in the Contiguous United States and the Implications for Bioenergy Production Distribution. Environmental Science & Technology, 2022, 56, 3748-3757.	4.6	1
2163	Detection and Attribution of Changes in Summer Compound Hot and Dry Events over Northeastern China with CMIP6 Models. Journal of Meteorological Research, 2022, 36, 37-48.	0.9	17
2164	Uncertainties in the Projected Patterns of Wave-Driven Longshore Sediment Transport Along a Non-straight Coastline. Frontiers in Marine Science, 2022, 9, .	1.2	1
2165	The Spring Heat Source Over the Qinghai–Tibetan Plateau Linked With the Winter Warm Arctic–Cold Siberia Pattern Impacting Summer Drought in China. Frontiers in Earth Science, 2022, 10, .	0.8	1
2166	Prediction of the \hat{A} typhoon wind field in Hong Kong: integrating the effects of climate change using the Shared Socioeconomic Pathways. Climate Dynamics, 0, , 1.	1.7	4
2167	Observed poleward freshwater transport since 1970. Nature, 2022, 602, 617-622.	13.7	16
2168	Impact of resolution on the atmosphere–ocean coupling along the Gulf Stream in global high resolution models. Climate Dynamics, 2022, 58, 3317-3333.	1.7	6
2169	Spatiotemporal projections of precipitation and temperature over Afghanistan based on CMIP6 global climate models. Modeling Earth Systems and Environment, 0, , 1.	1.9	3
2170	A New Methodology for Reference Evapotranspiration Prediction and Uncertainty Analysis under Climate Change Conditions Based on Machine Learning, Multi Criteria Decision Making and Monte Carlo Methods. Sustainability, 2022, 14, 2601.	1.6	43
2171	Predicting climatic threats to an endangered freshwater mussel in Europe: The need to account for fish hosts. Freshwater Biology, 2022, 67, 842-856.	1.2	9
2172	Exploratory Precipitation Metrics: Spatiotemporal Characteristics, Process-Oriented, and Phenomena-Based. Journal of Climate, 2022, 35, 3659-3686.	1.2	11
2173	Tropical forest restoration under future climate change. Nature Climate Change, 2022, 12, 279-283.	8.1	35
2174	A circulation-based performance atlas of the CMIP5 and 6 models for regional climate studies in the Northern Hemisphere mid-to-high latitudes. Geoscientific Model Development, 2022, 15, 1375-1411.	1.3	11
2175	Improved Representation of Extratropical Cyclone Structure in HighResMIP Models. Geophysical Research Letters, 2022, 49, .	1.5	14
2176	Arctic amplification, and its seasonal migration, over a wide range of abrupt CO2 forcing. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	10
2177	Interannual variability of the sea surface salinity and its related freshwater flux in the tropical Pacific: A comparison of CMIP5 and CMIP6. Atmospheric and Oceanic Science Letters, 2022, 15, 100190.	0.5	3
2179	Combining the Effects of Global Warming, Land Use Change and Dispersal Limitations to Predict the Future Distributions of East Asian Cerris Oaks (Quercus Section Cerris, Fagaceae) in China. Forests, 2022, 13, 367.	0.9	2

#	Article	IF	CITATIONS
2180	How well do the CMIP6 models simulate dust aerosols?. Atmospheric Chemistry and Physics, 2022, 22, 2095-2119.	1.9	53
2181	A global dataset for the projected impacts of climate change on four major crops. Scientific Data, 2022, 9, 58.	2.4	36
2182	The role of an interactive Greenland ice sheet in the coupled climate-ice sheet model EC-Earth-PISM. Climate Dynamics, 2022, 59, 1189-1211.	1.7	4
2183	The Characteristics and Evaluation of Future Droughts across China through the CMIP6 Multi-Model Ensemble. Remote Sensing, 2022, 14, 1097.	1.8	26
2184	Distribution Expansion of Dengue Vectors and Climate Change in India. GeoHealth, 2022, 6, .	1.9	6
2185	Future Changes of PNA-like MJO Teleconnections in CMIP6 Models: Underlying Mechanisms and Uncertainty. Journal of Climate, 2022, 35, 3459-3478.	1.2	3
2186	How extreme could the near term evolution of the Indian Summer Monsoon rainfall be?. Environmental Research Letters, 2022, 17, 034009.	2.2	3
2187	Weakened amplitude and delayed phase of the future temperature seasonal cycle over China during the twentyâ€first century. International Journal of Climatology, 2022, 42, 7133-7145.	1.5	5
2188	The influence of thinning and prescribed burning on future forest fires in fire-prone regions of Europe. Environmental Research Letters, 2022, 17, 055010.	2.2	10
2189	East African population exposure to precipitation extremes under 1.5 \hat{A}° C and 2.0 \hat{A}° C warming levels based on CMIP6 models. Environmental Research Letters, 2022, 17, 044051.	2.2	13
2190	Advancing the mechanistic understanding of the priming effect on soil organic matter mineralisation. Functional Ecology, 2022, 36, 1355-1377.	1.7	69
2191	Projected climate-driven changes in pollen emission season length and magnitude over the continental United States. Nature Communications, 2022, 13, 1234.	5.8	7 5
2192	Roles of Meridional Overturning in Subpolar Southern Ocean SST Trends: Insights from Ensemble Simulations. Journal of Climate, 2022, 35, 1577-1596.	1.2	3
2193	Emergence of climate change in the tropical Pacific. Nature Climate Change, 2022, 12, 356-364.	8.1	34
2194	Evaluation and projection of precipitation in Pakistan using the Coupled Model Intercomparison Project Phase 6 model simulations. International Journal of Climatology, 2022, 42, 6665-6684.	1.5	30
2196	Revisiting the Existence of the Global Warming Slowdown during the Early Twenty-First Century. Journal of Climate, 2022, 35, 1853-1871.	1.2	5
2197	Oceanic and Atmospheric Drivers of Postâ€Elâ€Niño Chlorophyll Rebound in the Equatorial Pacific. Geophysical Research Letters, 2022, 49, .	1.5	5
2198	Biases and improvements of the ENSO-East Asian winter monsoon teleconnection in CMIP5 and CMIP6 models. Climate Dynamics, 2022, 59, 2467-2480.	1.7	8

#	Article	IF	CITATIONS
2199	Observational Constraint on the Climate Sensitivity to Atmospheric CO2 Concentrations Changes Derived from the 1971–2017 Global Energy Budget. Journal of Climate, 2022, 35, 4469-4483.	1.2	3
2200	Impact of Hydroclimate Change on the Management for the Multipurpose Reservoir: A Case Study in Meishan (China). Advances in Meteorology, 2022, 2022, 1-13.	0.6	O
2201	Multi-model errors and emergence times in climate attribution studies. Journal of Climate, 2022, , 1-42.	1.2	0
2202	Persistent Discrepancies between Observed and Modeled Trends in the Tropical Pacific Ocean. Journal of Climate, 2022, 35, 4571-4584.	1.2	39
2203	Cryosphere Sciences Perspectives on Integrated, Coordinated, Open, Networked (ICON) Science. Earth and Space Science, 2022, 9, .	1.1	0
2204	Variability and extremes: statistical validation of the Alfred Wegener Institute Earth System Model (AWI-ESM). Geoscientific Model Development, 2022, 15, 1803-1820.	1.3	4
2205	A Hybrid Neural Network Model for ENSO Prediction in Combination with Principal Oscillation Pattern Analyses. Advances in Atmospheric Sciences, 2022, 39, 889-902.	1.9	19
2206	Substantial increase in daytime-nighttime compound heat waves and associated population exposure in China projected by the CMIP6 multimodel ensemble. Environmental Research Letters, 2022, 17, 045007.	2.2	25
2207	Differential Adaptive Potential and Vulnerability to Climate-Driven Habitat Loss in Brazilian Mangroves. Frontiers in Conservation Science, 2022, 3, .	0.9	0
2208	Imminent loss of climate space for permafrost peatlands in Europe and Western Siberia. Nature Climate Change, 2022, 12, 373-379.	8.1	31
2209	Compound Effects of Climate Change on Future Transboundary Water Issues in the Middle East. Earth's Future, 2022, 10, .	2.4	4
2210	Hydrological Intensification Will Increase the Complexity of Water Resource Management. Earth's Future, 2022, 10, .	2.4	26
2211	Uncertainties in the global and continental surface solar radiation variations: inter-comparison of in-situ observations, reanalyses, and model simulations. Climate Dynamics, 2022, 59, 2499-2516.	1.7	6
2212	Future potential distribution and expansion trends of highland barley under climate change in the Qinghai-Tibet plateau (QTP). Ecological Indicators, 2022, 136, 108702.	2.6	16
2213	Atlantic multidecadal variability and the implications for North European precipitation. Environmental Research Letters, 2022, 17, 044040.	2.2	3
2214	Indo-Pacific warm pool present warming attribution and future projection constraint. Environmental Research Letters, 2022, 17, 054026.	2.2	9
2215	Machine learning–based observation-constrained projections reveal elevated global socioeconomic risks from wildfire. Nature Communications, 2022, 13, 1250.	5.8	19
2216	Sea Levels Dynamical Downscaling and Climate Change Projections at the Uruguayan Coast. Frontiers in Marine Science, 2022, 9, .	1.2	3

#	Article	IF	CITATIONS
2217	Effects of forcing differences and initial conditions on inter-model agreement in the VolMIP volc-pinatubo-full experiment. Geoscientific Model Development, 2022, 15, 2265-2292.	1.3	22
2218	Causal Impacts of El Niño–Southern Oscillation on Global Soil Moisture Over the Period 2015–2100. Earth's Future, 2022, 10, .	2.4	12
2219	Mass loss of the Greenland ice sheet until the year 3000 under a sustained late-21st-century climate. Journal of Glaciology, 2022, 68, 618-624.	1.1	5
2220	The role of the Near East surface pressure variations in recent past trends of wet season precipitation in the Levant. International Journal of Climatology, 0, , .	1.5	1
2221	Increases in Future AR Count and Size: Overview of the ARTMIP Tier 2 CMIP5/6 Experiment. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	35
2222	Less Surface Sea Ice Melt in the CESM2 Improves Arctic Sea Ice Simulation With Minimal Nonâ€Polar Climate Impacts. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	9
2223	Future changes in precipitation over the upper Yangtze River basin based on bias correction spatial downscaling of models from CMIP6. Environmental Research Communications, 2022, 4, 045002.	0.9	14
2224	Influence of Ozone Forcing on 21st Century Southern Hemisphere Surface Westerlies in CMIP6 Models. Geophysical Research Letters, 2022, 49, .	1.5	7
2225	Transient Precipitation Increase During Winter in the Eastern North America. Geophysical Research Letters, 2022, 49, .	1.5	1
2226	Representation of the Mean Atlantic Subtropical Cells in CMIP6 Models. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	5
2227	An NAO-dominated mode of atmospheric circulation drives large decadal changes in wintertime surface climate and snow mass over Eurasia. Environmental Research Letters, 2022, 17, 044025.	2.2	1
2228	Mesospheric Nitric Oxide Transport in WACCM. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	3
2229	Mean State of the Northern Hemisphere Stratospheric Polar Vortex in Three Generations of CMIP Models. Journal of Climate, 2022, 35, 4603-4625.	1.2	15
2230	Analysing the PMIP4-CMIP6 collection: a workflow and tool (pmip_p2fvar_analyzer v1). Geoscientific Model Development, 2022, 15, 2475-2488.	1.3	3
2231	A Review of the Effects of Climate Extremes on Agriculture Production. , 2022, , 198-219.		0
2232	Are Cut-off Lows simulated better in CMIP6 compared to CMIP5?. Climate Dynamics, 2022, 59, 2117-2136.	1.7	5
2233	Blocking Simulations in GFDL GCMs for CMIP5 and CMIP6. Journal of Climate, 2022, 35, 5053-5070.	1.2	1
2234	A Change in Climate State During a Preâ€Industrial Simulation of the CMIP6 Model HadGEM3 Driven by Deep Ocean Drift. Geophysical Research Letters, 2022, 49, .	1.5	0

#	Article	IF	CITATIONS
2235	Enhanced jet stream waviness induced by suppressed tropical Pacific convection during boreal summer. Nature Communications, 2022, 13, 1288.	5.8	23
2236	Today's 100 year droughts in Australia may become the norm by the end of the century. Environmental Research Letters, 2022, 17, 044034.	2.2	5
2237	Tripling of western US particulate pollution from wildfires in a warming climate. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2111372119.	3.3	29
2238	Future changes in the extratropical storm tracks and cyclone intensity, wind speed, and structure. Weather and Climate Dynamics, 2022, 3, 337-360.	1.2	46
2239	Little Influence of Asian Anthropogenic Aerosols on Summer Temperature in Central East Asia Since 1960. Geophysical Research Letters, 2022, 49, .	1.5	9
2240	Recent decadal weakening of the summer Eurasian westerly jet attributable to anthropogenic aerosol emissions. Nature Communications, 2022, 13, 1148.	5.8	22
2241	Understanding Future Increases in Precipitation Extremes in Global Land Monsoon Regions. Journal of Climate, 2022, 35, 1839-1851.	1.2	8
2242	Increase in compound dry-warm and wet-warm events under global warming in CMIP6 models. Global and Planetary Change, 2022, 210, 103773.	1.6	25
2243	Different climate response persistence causes warming trend unevenness at continental scales. Nature Climate Change, 2022, 12, 343-349.	8.1	21
2244	Utilizing Ecological Modeling to Follow the Potential Spread of Honey Bee Pest (Megaselia scalaris) from Nearby Countries towards Saudi Arabia under Climate Change Conditions. Diversity, 2022, 14, 261.	0.7	2
2245	East Asian summer monsoon enhanced by COVID-19. Climate Dynamics, 2022, 59, 2965-2978.	1.7	11
2246	Adaptation and application of the large LAERTES-EU regional climate model ensemble for modeling hydrological extremes: a pilot study for the Rhine basin. Natural Hazards and Earth System Sciences, 2022, 22, 677-692.	1.5	5
2247	Continental United States may lose 1.8 petagrams of soil organic carbon under climate change by 2100. Global Ecology and Biogeography, 2022, 31, 1147-1160.	2.7	15
2248	The Effect of Explicit Convection on Climate Change in the West African Monsoon and Central West African Sahel Rainfall. Journal of Climate, 2022, 35, 1537-1557.	1.2	3
2249	Scientific data from precipitation driver response model intercomparison project. Scientific Data, 2022, 9, 123.	2.4	5
2250	Evaluating the Eastward Propagation of the MJO in CMIP5 and CMIP6 Models Based on a Variety of Diagnostics. Journal of Climate, 2022, 35, 1719-1743.	1.2	5
2251	From emission scenarios to spatially resolved projections with a chain of computationally efficient emulators: coupling of MAGICC (v7.5.1) and MESMER (v0.8.3). Geoscientific Model Development, 2022, 15, 2085-2103.	1.3	12
2252	Strong increase in thawing of subsea permafrost in the 22nd century caused by anthropogenic climate change. Cryosphere, 2022, 16, 1057-1069.	1.5	8

#	Article	IF	CITATIONS
2253	Projections of Drought Characteristics Based on the CNRM-CM6 Model over Africa. Agriculture (Switzerland), 2022, 12, 495.	1.4	3
2254	Earlier emergence of a temperature response to mitigation by filtering annual variability. Nature Communications, 2022, 13, 1578.	5.8	4
2255	Potential distribution of White Syndrome in scleractinian corals in the eastern tropical Pacific. Marine Biology, 2022, 169, 1.	0.7	0
2257	Evaluation of Simulated Cloud Diurnal Variation in CMIP6 Climate Models. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	10
2258	Changes in anthropogenic precursor emissions drive shifts in the ozone seasonal cycle throughout the northern midlatitude troposphere. Atmospheric Chemistry and Physics, 2022, 22, 3507-3524.	1.9	10
2259	Projected 21st-Century Glacial Lake Evolution in High Mountain Asia. Frontiers in Earth Science, 2022, 10, .	0.8	12
2260	Contrasting changes in hydrological processes of the Volta River basin under global warming. Hydrology and Earth System Sciences, 2022, 26, 1481-1506.	1.9	12
2261	Could detection and attribution of climate change trends be spurious regression?. Climate Dynamics, 2022, 59, 2785-2799.	1.7	1
2262	Climate Benefits of Cleaner Energy Transitions in East and South Asia Through Black Carbon Reduction. Frontiers in Environmental Science, 2022, 10, .	1.5	6
2263	Stratospheric ozone depletion and tropospheric ozone increases drive Southern Ocean interior warming. Nature Climate Change, 2022, 12, 365-372.	8.1	22
2264	The impact of stratospheric aerosol intervention on the North Atlantic and Quasi-Biennial Oscillations in the Geoengineering Model Intercomparison Project (GeoMIP) G6sulfur experiment. Atmospheric Chemistry and Physics, 2022, 22, 2999-3016.	1.9	15
2265	Extreme events representation in CMCC-CM2 standard and high-resolution general circulation models. Geoscientific Model Development, 2022, 15, 1841-1854.	1.3	4
2266	Can We Use 1D Models to Predict 3D Model Response to Forcing in an Idealized Framework?. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	3
2267	Projected Aerosol Changes Driven by Emissions and Climate Change Using a Machine Learning Method. Environmental Science & Envi	4.6	15
2268	Local meridional circulation changes contribute to a projected slowdown of the Indian Ocean Walker circulation. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	4
2269	Unraveling forced responses of extreme El Niño variability over the Holocene. Science Advances, 2022, 8, eabm4313.	4.7	9
2270	Verification Data and the Skill of Decadal Predictions. Frontiers in Climate, 2022, 4, .	1.3	0
2271	A CMIP6 assessment of the potential climate change impacts on solar photovoltaic energy and its atmospheric drivers in West Africa. Environmental Research Letters, 2022, 17, 044016.	2.2	18

#	Article	IF	CITATIONS
2272	An energy budget approach to understand the Arctic warming during the Last Interglacial. Climate of the Past, 2022, 18, 607-629.	1.3	2
2273	Deficiencies of Phenology Models in Simulating Spatial and Temporal Variations in Temperate Spring Leaf Phenology. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	6
2274	Highâ€resolution mapping of the global silicate weathering carbon sink and its longâ€term changes. Global Change Biology, 2022, 28, 4377-4394.	4.2	44
2275	Characterizing Catchmentâ€Scale Nitrogen Legacies and Constraining Their Uncertainties. Water Resources Research, 2022, 58, .	1.7	8
2276	Comprehensive assessment of <scp>CMIP5</scp> and <scp>CMIP6</scp> models in simulating and projecting precipitation over the global land. International Journal of Climatology, 2022, 42, 6859-6875.	1.5	16
2277	Dispersal abilities favor commensalism in animal-plant interactions under climate change. Science of the Total Environment, 2022, 835, 155157.	3.9	12
2278	The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geoscientific Model Development, 2022, 15, 2973-3020.	1.3	192
2279	Potential geographic distribution of relict plant Pteroceltis tatarinowii in China under climate change scenarios. PLoS ONE, 2022, 17, e0266133.	1.1	6
2280	Uncertain response of ocean biological carbon export in a changing world. Nature Geoscience, 2022, 15, 248-254.	5 . 4	50
2281	Coincident evolution of glaciers and ice-marginal proglacial lakes across the Southern Alps, New Zealand: Past, present and future. Global and Planetary Change, 2022, 211, 103792.	1.6	10
2282	Selecting CMIP6 GCMs for CORDEX Dynamical Downscaling: Model Performance, Independence, and Climate Change Signals. Earth's Future, 2022, 10, .	2.4	31
2283	Identifying analogs of future thermal comfort under multiple projection scenarios in 352 Chinese cities. Sustainable Cities and Society, 2022, 82, 103889.	5.1	4
2284	Daily snowfall events on the Eurasian continent: <scp>CMIP6</scp> models evaluation and projection. International Journal of Climatology, 2022, 42, 6890-6907.	1.5	3
2285	Effective training strategies for deep-learning-based precipitation nowcasting and estimation. Computers and Geosciences, 2022, 161, 105072.	2.0	13
2286	Impact of climate change on wintertime European atmospheric blocking. Weather and Climate Dynamics, 2022, 3, 377-389.	1.2	5
2287	Historically inconsistent productivity and respiration fluxes in the global terrestrial carbon cycle. Nature Communications, 2022, 13, 1733.	5.8	25
2288	Multi-model ensemble of statistically downscaled GCMs over southeastern South America: historical evaluation and future projections of daily precipitation with focus on extremes. Climate Dynamics, 2022, 59, 3051-3068.	1.7	9
2289	Habitat shifts of Jatropha curcas L. in the Asia-Pacific region under climate change scenarios. Energy, 2022, 251, 123885.	4.5	11

#	Article	IF	Citations
2291	Multiphase processes in the EC-Earth model and their relevance to the atmospheric oxalate, sulfate, and iron cycles. Geoscientific Model Development, 2022, 15, 3079-3120.	1.3	9
2292	How reliable are Coupled Model Intercomparison Project Phase 6 models in representing the Asian summer monsoon anticyclone?. International Journal of Climatology, 2022, 42, 7047-7059.	1.5	2
2293	Using clustering, statistical modeling, and climate change projections to analyze recent and future regionâ€specific compound ozone and temperature burden over Europe. GeoHealth, 2022, 6, e2021GH000561.	1.9	4
2294	Reparameterization Required After Model Structure Changes From Carbon Only to Carbonâ€Nitrogen Coupling. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	2
2295	Evaluation and multimodel projection of seasonal precipitation extremes over central Asia based on CMIP6 simulations. International Journal of Climatology, 2022, 42, 7228-7251.	1.5	16
2296	Ocean Surface Flux Algorithm Effects on Tropical Indoâ€Pacific Intraseasonal Precipitation. Geophysical Research Letters, 2022, 49, .	1.5	4
2297	Assessing the synergic effect of land use and climate change on the upper Betwa River catchment in Central India under present, past, and future climate scenarios. Environment, Development and Sustainability, 2023, 25, 5163-5184.	2.7	6
2298	Organising a collaborative online hackathon for cuttingâ€edge climate research. Weather, 2022, 77, 221-226.	0.6	3
2299	Monotonic Increase of Extreme Precipitation Intensity With Temperature When Controlled for Saturation Deficit. Geophysical Research Letters, 2022, 49, .	1.5	3
2300	Effects of Sea Spray on Large-Scale Climatic Features over the Southern Ocean. Journal of Climate, 2022, 35, 4645-4663.	1.2	5
2301	Assessment of 21st Century Changing Sea Surface Temperature, Rainfall, and Sea Surface Height Patterns in the Tropical Pacific Islands Using CMIP6 Greenhouse Warming Projections. Earth's Future, 2022, 10, .	2.4	6
2302	Mesoscale Convective Systems Simulated by a Highâ€Resolution Global Nonhydrostatic Model Over the United States and China. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	6
2303	Climate Change Effects on Heating and Cooling Demands of Buildings in Canada. CivilEng, 2022, 3, 277-295.	0.8	6
2304	LGM Paleoclimate Constraints Inform Cloud Parameterizations and Equilibrium Climate Sensitivity in CESM2. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	26
2305	Exploring Radiation Biases Over the Tropical and Subtropical Oceans Based on Treatments of Frozenâ€Hydrometeor Radiative Properties in CMIP6 Models. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1,2	6
2306	Evaluations of the sixth phase of Coupled Model Intercomparison Project model performance on precipitation over Southeast Asia based on the moisture budget. International Journal of Climatology, 2022, 42, 7087-7102.	1.5	3
2307	The ICON Earth System Model Version 1.0. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	16
2308	Correlation Between Seaâ€Level Rise and Aspects of Future Tropical Cyclone Activity in CMIP6 Models. Earth's Future, 2022, 10, .	2.4	8

#	Article	IF	CITATIONS
2309	Distinctive South and East Asian monsoon circulation responses to global warming. Science Bulletin, 2022, 67, 762-770.	4.3	24
2310	Future Thermodynamic Impacts of Global Warming on Landfalling Typhoons and Their Induced Storm Surges to the Pearl River Delta Region as Inferred from High-Resolution Regional Models. Journal of Climate, 2022, 35, 4905-4926.	1.2	4
2311	Evidence of rapid adaptation integrated into projections of temperature-related excess mortality. Environmental Research Letters, 2022, 17, 044075.	2.2	8
2312	How Well Do CMIP6 and CMIP5 Models Simulate the Climatological Seasonal Variations in Ocean Salinity?. Advances in Atmospheric Sciences, 2022, 39, 1650-1672.	1.9	6
2313	Incorporating temperature-dependent fish bioenergetics into a Narragansett Bay food web model. Ecological Modelling, 2022, 466, 109911.	1.2	1
2314	Potential Impacts of Future Extreme Precipitation Changes on Flood Engineering Design Across the Contiguous United States. Water Resources Research, 2022, 58, .	1.7	11
2315	Projected changes in meteorological drought over East Africa inferred from bias-adjusted CMIP6 models. Natural Hazards, 2022, 113, 1151-1176.	1.6	21
2316	Using estimated radiation in crop models amplified the negative impacts of climate variability on maize and winter wheat yields in China. Agricultural and Forest Meteorology, 2022, 318, 108914.	1.9	6
2317	Rainfall extremes on the rise: Observations during 1951–2020 and bias-corrected CMIP6 projections for near- and late 21st century over Indian landmass. Journal of Hydrology, 2022, 608, 127682.	2.3	19
2318	Understanding climate-induced changes of snow hydrological processes in the Kaidu River Basin through the CemaNeige-GR6J model. Catena, 2022, 212, 106082.	2.2	7
2319	Climate change impact on water supply and hydropower generation potential in Northern Manitoba. Journal of Hydrology: Regional Studies, 2022, 41, 101077.	1.0	5
2320	The effect of experiment conditioning on estimates of human influence on extreme weather. Weather and Climate Extremes, 2022, 36, 100427.	1.6	7
2321	Uncertainties in evapotranspiration projections associated with estimation methods and CMIP6 GCMs for South Korea. Science of the Total Environment, 2022, 825, 153953.	3.9	21
2322	Decreasing causal impacts of El Niño–Southern Oscillation on future fire activities. Science of the Total Environment, 2022, 826, 154031.	3.9	4
2323	WRF ensemble dynamical downscaling of precipitation over China using different cumulus convective schemes. Atmospheric Research, 2022, 271, 106116.	1.8	7
2324	Quantifying CMIP6 model uncertainties in extreme precipitation projections. Weather and Climate Extremes, 2022, 36, 100435.	1.6	26
2325	Generating samples of extreme winters to support climate adaptation. Weather and Climate Extremes, 2022, 36, 100419.	1.6	3
2326	CMIP6-D&A: An R-based software with GUI for processing climate data available in network common data format. SoftwareX, 2022, 18, 101044.	1.2	2

#	Article	IF	CITATIONS
2327	A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality. Renewable and Sustainable Energy Reviews, 2022, 161, 112348.	8.2	80
2328	A generalized methodology for ranking climate models based on climate indices for sector-specific studies: An application to the Mekong sub-basin. Science of the Total Environment, 2022, 829, 154551.	3.9	9
2329	Climate change negative effects on the Neotropical fishery resources may be exacerbated by hydroelectric dams. Science of the Total Environment, 2022, 828, 154485.	3.9	12
2330	Unraveling the invisible leptospirosis in mainland Southeast Asia and its fate under climate change. Science of the Total Environment, 2022, 832, 155018.	3.9	8
2331	More than six billion people encountering more exposure to extremes with 1.5°C and 2.0°C warming. Atmospheric Research, 2022, 273, 106165.	1.8	14
2332	Occurrence of crop pests and diseases has largely increased in China since 1970. Nature Food, 2022, 3, 57-65.	6.2	39
2334	Incorporating decadal climate variability information in the operation and design of water infrastructure. Water Policy, 2021, 23, 232-249.	0.7	0
2335	Evaluation of SO ₂ , SO ₄ 2â^' and an updated SO ₂ dry deposition parameterization in the United Kingdom Earth System Model. Atmospheric Chemistry and Physics. 2021. 21. 18465-18497.	1.9	8
2337	Projecting global mariculture production and adaptation pathways under climate change. Global Change Biology, 2022, 28, 1315-1331.	4.2	12
2338	General Circulation Model Errors Are Variable across Exoclimate Parameter Spaces. Astrophysical Journal, 2021, 923, 39.	1.6	1
2340	Carbon storage estimation in a secondary tropical forest at CIEE Sustainability Center, Monteverde, Costa Rica. Scientific Reports, 2021, 11, 23464.	1.6	7
2341	Variability of ecosystem carbon source from microbial respiration is controlled by rainfall dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
2342	Nordic Seas Heat Loss, Atlantic Inflow, and Arctic Sea Ice Cover Over the Last Century. Reviews of Geophysics, 2022, 60, .	9.0	43
2343	Emergent Constraints on Future Expansion of the Indoâ€Pacific Warm Pool. Geophysical Research Letters, 2022, 49, .	1.5	9
2344	How might climate change affect river flows across West Africa?. Climatic Change, 2021, 169, 1.	1.7	13
2345	Projected Changes to Spring and Summer Precipitation in the Midwestern United States. Frontiers in Water, 2021, 3, .	1.0	3
2346	The role of anthropogenic aerosols in the anomalous cooling from 1960 to 1990 in the CMIP6 Earth system models. Atmospheric Chemistry and Physics, 2021, 21, 18609-18627.	1.9	14
2347	A new perspective on permafrost boundaries in France during the Last Glacial Maximum. Climate of the Past, 2021, 17, 2559-2576.	1.3	10

#	Article	IF	Citations
2350	Interbasin Interactions between the Pacific and Atlantic Oceans Depending on the Phase of Pacific Decadal Oscillation and Atlantic Multidecadal Oscillation. Journal of Climate, 2022, 35, 2883-2894.	1.2	8
2351	A storyline view of the projected role of remote drivers on summer air stagnation in Europe and the United States. Environmental Research Letters, 2022, 17, 014026.	2.2	5
2352	Identifying and correcting biases in localized downscaling estimates of daily precipitation return values. Climatic Change, 2021, 169, 1.	1.7	0
2353	Towards using state-of-the-art climate models to help constrain estimates of unprecedented UKÂstorm surges. Natural Hazards and Earth System Sciences, 2021, 21, 3693-3712.	1.5	3
2354	Model calibration using ESEm v1.1.0 – an open, scalable Earth system emulator. Geoscientific Model Development, 2021, 14, 7659-7672.	1.3	10
2355	Assessment of CMIP6 Model Performance for Wind Speed in China. Frontiers in Climate, 2021, 3, .	1.3	3
2356	Not all biodiversity rich spots are climate refugia. Biogeosciences, 2021, 18, 6567-6578.	1.3	5
2357	CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario. Climatic Change, 2021, 169, 1.	1.7	7
2358	Retreat and Regrowth of the Greenland Ice Sheet During the Last Interglacial as Simulated by the CESM2â€CISM2 Coupled Climate–Ice Sheet Model. Paleoceanography and Paleoclimatology, 2021, 36, .	1.3	7
2359	Increasing Causal Effects of El Niño–Southern Oscillation on the Future Carbon Cycle of Terrestrial Ecosystems. Geophysical Research Letters, 2021, 48, .	1.5	5
2360	Land Use Effects on Climate: Current State, Recent Progress, and Emerging Topics. Current Climate Change Reports, 2021, 7, 99-120.	2.8	51
2361	Impact of Climate Change on the Hydrology of the Forested Watershed That Drains to Lake Erken in Sweden: An Analysis Using SWAT+ and CMIP6 Scenarios. Forests, 2021, 12, 1803.	0.9	15
2363	Model assessments and future projections of spring climate extremes in China based on <scp>CMIP6</scp> models. International Journal of Climatology, 2022, 42, 4601-4620.	1.5	7
2364	Predicting the Hydrological Impacts of Future Climate Change in a Humid-Subtropical Watershed. Atmosphere, 2022, 13, 12.	1.0	4
2365	Mean states and future projections of precipitation over the monsoon transitional zone in China in CMIP5 and CMIP6 models. Climatic Change, 2021, 169, 1.	1.7	9
2367	A Hidden Climate Indices Modeling Framework for Multivariable Spaceâ€Time Data. Water Resources Research, 2022, 58, .	1.7	4
2368	Early-winter North Atlantic low-level jet latitude biases in climate models: implications for simulated regional atmosphere-ocean linkages. Environmental Research Letters, 2022, 17, 014025.	2.2	1
2369	Hysteresis of the intertropical convergence zone to CO2 forcing. Nature Climate Change, 2022, 12, 47-53.	8.1	32

#	Article	IF	CITATIONS
2370	The role of local topography and sea surface temperature on summer monsoon precipitation over Bangladesh and n <scp>ortheast</scp> India. International Journal of Climatology, 2022, 42, 4564-4579.	1.5	5
2372	Concurrent calculation of radiative transfer in the atmospheric simulation in ECHAM-6.3.05p2. Geoscientific Model Development, 2021, 14, 7439-7457.	1.3	0
2373	Mass loss of the Antarctic ice sheet until the year 3000 under a sustained late-21st-century climate. Journal of Glaciology, 2022, 68, 605-617.	1.1	8
2374	Tropical Cyclone Precipitation Response to Surface Warming in Aquaplanet Simulations With Uniform Thermal Forcing. Journal of Geophysical Research D: Atmospheres, 2021, 126, .	1.2	13
2375	Understanding Differences in North Atlantic Poleward Ocean Heat Transport and Its Variability in Global Climate Models. Geophysical Research Letters, 2022, 49, .	1.5	8
2376	Tackling Climate Change with Machine Learning. ACM Computing Surveys, 2023, 55, 1-96.	16.1	195
2377	The Impact of CO2-Driven Climate Change on the Arctic Atmospheric Energy Budget in CMIP6 Climate Model Simulations. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 74, 106-118.	0.8	2
2378	Robust and Uncertain Sea-Level Pressure Patterns over Summertime East Asia in the CMIP6 Multi-Model Future Projections. Journal of the Meteorological Society of Japan, 2022, 100, 631-645.	0.7	3
2379	Growing impact of wildfire on western US water supply. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	46
2380	Future Population Exposure to Daytime and Nighttime Heat Waves in South Asia. Earth's Future, 2022, 10, .	2.4	39
2381	Quantifying climate model representation of the wintertime Euro-Atlantic circulation using geopotential-jet regimes. Weather and Climate Dynamics, 2022, 3, 505-533.	1.2	6
2382	Recent Changes of Pacific Decadal Variability Shaped by Greenhouse Forcing and Internal Variability. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	6
2383	Synergistic impacts of westerlies and monsoon on interdecadal variations of late spring precipitation over the southeastern extension of the Tibetan Plateau. International Journal of Climatology, 2022, 42, 7342-7361.	1.5	2
2384	ENSO teleconnections and atmospheric mean state in idealised simulations. Climate Dynamics, 2022, 59, 3287-3304.	1.7	4
2385	Potential heat-risk avoidance from nationally determined emission reductions targets in the future. Environmental Research Letters, 2022, 17, 055007.	2.2	8
2386	Regional Signatures of Forced North Atlantic SST Variability: A Limited Role for Aerosols and Greenhouse Gases. Geophysical Research Letters, 2022, 49, .	1.5	7
2387	The Effect of Convective Injection of Ice on Stratospheric Water Vapor in a Changing Climate. Geophysical Research Letters, 2022, 49, .	1.5	3
2388	Advances in air quality research – current and emerging challenges. Atmospheric Chemistry and Physics, 2022, 22, 4615-4703.	1.9	63

#	Article	IF	Citations
2389	Mechanisms of Reduced Midâ€Holocene Precipitation in Arid Central Asia as Simulated by PMIP3/4 Models. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	3
2390	On deep learning-based bias correction and downscaling of multiple climate models simulations. Climate Dynamics, 2022, 59, 3451-3468.	1.7	23
2391	Changing ocean seasonal cycle escalates destructive marine heatwaves in a warming climate. Environmental Research Letters, 0, , .	2.2	2
2392	Absorbing Aerosol Choices Influences Precipitation Changes Across Future Scenarios. Geophysical Research Letters, 2022, 49, .	1.5	6
2393	Sea ice–air interactions amplify multidecadal variability in the North Atlantic and Arctic region. Nature Communications, 2022, 13, 2100.	5.8	15
2394	Airâ€Sea Interactions and Water Mass Transformation During a Katabatic Storm in the Irminger Sea. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	7
2395	Identifying climate refugia for highâ€elevation Alpine birds under current climate warming predictions. Global Change Biology, 2022, 28, 4276-4291.	4.2	24
2396	How Long Can the MJO be Predicted During the Combined Phases of ENSO and QBO?. Geophysical Research Letters, 2022, 49, .	1.5	3
2397	Future changes in mean and extreme precipitation over the Mediterranean and Sahara regions using biasâ€corrected CMIP6 models. International Journal of Climatology, 2022, 42, 7280-7297.	1.5	17
2398	Projection of Streamflow Changes Under CMIP6 Scenarios in the Urumqi River Head Watershed, Tianshan Mountain, China. Frontiers in Earth Science, 2022, 10, .	0.8	4
2399	Performance evaluations of CMIP6 and CMIP5 models for precipitation simulation over the Hanjiang River Basin, China. Journal of Water and Climate Change, 2022, 13, 2089-2106.	1.2	7
2400	Comparison of Relative and Absolute Heatwaves in Eastern China: Observations, Simulations and Future Projections. Atmosphere, 2022, 13, 649.	1.0	3
2401	Earth system models for regional environmental management of red tide: Prospects and limitations of current generation models and next generation development. Environmental Earth Sciences, 2022, 81, .	1.3	3
2402	Antarctic sea-ice expansion and Southern Ocean cooling linked to tropical variability. Nature Climate Change, 2022, 12, 461-468.	8.1	15
2403	Uncertainties in projections of climate extremes indices in South America via Bayesian inference. International Journal of Climatology, 2022, 42, 7362-7382.	1.5	6
2404	Climate Scenarios for Switzerland CH2018 – Approach and Implications. Climate Services, 2022, 26, 100288.	1.0	12
2405	Regional sensitivity patterns of Arctic Ocean acidification revealed with machine learning. Communications Earth & Environment, 2022, 3, .	2.6	2
2406	Causal influences of El Niño–Southern Oscillation on global dust activities. Atmospheric Chemistry and Physics, 2022, 22, 5253-5263.	1.9	6

#	Article	IF	CITATIONS
2407	The opposite response of the South Asian high to increasing $<$ scp>CO $<$ sub>2 $<$ /sub> $<$ /scp> at different heights. Atmospheric Science Letters, 2022, 23, .	0.8	2
2408	Rejoinder to the discussion on "A combined estimate of global temperature― Environmetrics, 2022, 33,	0.6	O
2409	On the multi-annual potential predictability of the Arctic Ocean climate state in the INM RAS climate model. Russian Journal of Numerical Analysis and Mathematical Modelling, 2022, 37, 119-129.	0.2	1
2410	Evaluation of East Asian Meiyu from CMIP6/AMIP simulations. Climate Dynamics, 2022, 59, 2429-2444.	1.7	8
2411	Constraining the increased frequency of global precipitation extremes under warming. Nature Climate Change, 2022, 12, 441-448.	8.1	63
2413	Global and Regional Trends and Drivers of Fire Under Climate Change. Reviews of Geophysics, 2022, 60,	9.0	182
2414	Superior Daily and Subâ€Daily Precipitation Statistics for Intense and Longâ€Lived Storms in Global Stormâ€Resolving Models. Geophysical Research Letters, 2022, 49, .	1.5	5
2415	Development of a forecast-oriented kilometre-resolution ocean–atmosphere coupled system for western Europe and sensitivity study for a severe weather situation. Natural Hazards and Earth System Sciences, 2022, 22, 1301-1324.	1.5	0
2416	Global Environmental Change Perspectives on Integrated, Coordinated, Open, and Networked (ICON) Science. Earth and Space Science, 0, , .	1,1	0
2417	Metalearning Approach Coupled with CMIP6 Multi-GCM for Future Monthly Streamflow Forecasting. Journal of Hydrologic Engineering - ASCE, 2022, 27, .	0.8	10
2418	Spatiotemporal evolution of the maximum freezing depth of seasonally frozen ground and permafrost continuity in historical and future periods in Heilongjiang Province, China. Atmospheric Research, 2022, 274, 106195.	1.8	7
2445	Simulation of the Climate and the Ocean Circulations in the Middle Miocene Climate Optimum by a Coupled Model Fgoals-G3. SSRN Electronic Journal, 0, , .	0.4	0
2446	Ocean Futures for the World's Largest Yellowfin Tuna Population Under the Combined Effects of Ocean Warming and Acidification. Frontiers in Marine Science, 2022, 9, .	1.2	9
2447	Merging and Downscaling Soil Moisture Data From CMIP6 Projections Using Deep Learning Method. Frontiers in Environmental Science, 2022, 10, .	1.5	8
2448	Role of Anthropogenic Climate Change in Autumn Drought Trend over China from 1961 to 2014. Journal of Meteorological Research, 2022, 36, 251-260.	0.9	3
2449	A planetary boundary for green water. Nature Reviews Earth & Environment, 2022, 3, 380-392.	12.2	95
2450	Changes in the length of the season with favorable environmental conditions for tropical cyclones in the North Atlantic basin during the last 40 years. Journal of Climate, 2022, , 1-40.	1.2	1
2451	Sensitivity of bias adjustment methods to low-frequency internal climate variability over the reference period: an ideal model study. , 0 , , .		1

#	Article	IF	CITATIONS
2452	Precipitation over southern Africa: is there consensus among global climate models (GCMs), regional climate models (RCMs) and observational data?. Geoscientific Model Development, 2022, 15, 3387-3404.	1.3	10
2453	Recurrence of Drought Events Over Iberia. Part II: Future Changes Using Regional Climate Projections. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 74, 262.	0.8	6
2454	Future evolution of global land surface air temperature trend based on Coupled Model Intercomparison Project Phase 6 models. International Journal of Climatology, 2022, 42, 7611-7627.	1.5	9
2455	Natural variability has dominated Atlantic Meridional Overturning Circulation since 1900. Nature Climate Change, 2022, 12, 455-460.	8.1	31
2456	July–September rainfall in the Greater Horn of Africa: the combined influence of the Mascarene and South Atlantic highs. Climate Dynamics, 2022, 59, 3621-3641.	1.7	3
2457	A globally consistent local-scale assessment of future tropical cyclone risk. Science Advances, 2022, 8, eabm8438.	4.7	41
2458	Projected Changes in Atmospheric Ridges over the Pacific–North American Region Using CMIP6 Models. Journal of Climate, 2022, 35, 5151-5171.	1.2	2
2459	Observed influence of anthropogenic climate change on tropical cyclone heavy rainfall. Nature Climate Change, 2022, 12, 436-440.	8.1	27
2460	Importance of the Antarctic Slope Current in the Southern Ocean Response to Ice Sheet Melt and Wind Stress Change. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	14
2461	Differential Impacts of Climatic and Land Use Changes on Habitat Suitability and Protected Area Adequacy across the Asian Elephant's Range. Sustainability, 2022, 14, 4933.	1.6	4
2462	Assessing the impacts of agricultural managements on soil carbon stocks, nitrogen loss, and crop production– a modelling study in eastern Africa. Biogeosciences, 2022, 19, 2145-2169.	1.3	2
2463	Discrepancies in Simulated Ocean Net Surface Heat Fluxes over the North Atlantic. Advances in Atmospheric Sciences, 2022, 39, 1941-1955.	1.9	3
2464	Evaluating observed and future spatiotemporal changes in precipitation and temperature across China based on <scp>CMIP6â€GCMs</scp> . International Journal of Climatology, 2022, 42, 7703-7729.	1.5	27
2465	Contrasting climate and carbon-cycle consequences of fossil-fuel use versus deforestation disturbance. Environmental Research Letters, 2022, 17, 064020.	2.2	5
2466	Water Security in an Uncertain Future: Contrasting Realities from an Availability-Demand Perspective. Water Resources Management, 2022, 36, 2571-2587.	1.9	5
2467	Human Influence on Seasonal Precipitation in Europe. Journal of Climate, 2022, 35, 5215-5231.	1.2	13
2468	MESMER-M: an Earth system model emulator for spatially resolved monthly temperature. Earth System Dynamics, 2022, 13, 851-877.	2.7	6
2469	Global Carbon Budget 2021. Earth System Science Data, 2022, 14, 1917-2005.	3.7	663

#	Article	IF	CITATIONS
2470	Antarctic Sea Ice Projections Constrained by Historical Ice Cover and Future Global Temperature Change. Geophysical Research Letters, 2022, 49, .	1.5	5
2471	The Coupled Atmosphere–Ocean Response to Antarctic Sea Ice Loss. Journal of Climate, 2022, 35, 4665-4685.	1.2	7
2472	Contrasting influences of biogeophysical and biogeochemical impacts of historical land use on global economic inequality. Nature Communications, 2022, 13, 2479.	5.8	16
2473	Observationally constrained projection of Afro-Asian monsoon precipitation. Nature Communications, 2022, 13, 2552.	5.8	23
2474	Sensitivity of the simulated atmospheric rivers over East Asia to horizontal resolution in the HadGEM3-GC3.1 general circulation model. Atmospheric Research, 2022, 275, 106244.	1.8	2
2475	Climate simulations: recognize the â€~hot model' problem. Nature, 2022, 605, 26-29.	13.7	141
2476	Potential fire risks in South America under anthropogenic forcing hidden by the Atlantic Multidecadal Oscillation. Nature Communications, 2022, 13, 2437.	5.8	9
2477	Trends, intensification, attribution and uncertainty of projected heatwaves in India. International Journal of Climatology, 2022, 42, 7563-7582.	1.5	1
2478	Nutrient Limitations Lead to a Reduced Magnitude of Disequilibrium in the Global Terrestrial Carbon Cycle. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	4
2479	Response of terrestrial net primary production to climate change associated with the quadrupling CO ₂ forcing in CMIP6 models. Atmospheric Science Letters, 2022, 23, .	0.8	2
2480	Subsurface Cooling in the Tropical Pacific Under a Warming Climate. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	1
2481	Global decline in ocean memory over the 21st century. Science Advances, 2022, 8, eabm3468.	4.7	20
2482	Future Amplification of Sea Surface Temperature Seasonality Due To Enhanced Ocean Stratification. Geophysical Research Letters, 2022, 49, .	1.5	8
2483	Impact of bias nonstationarity on the performance of uni- and multivariate bias-adjusting methods: a case study on data from Uccle, Belgium. Hydrology and Earth System Sciences, 2022, 26, 2319-2344.	1.9	10
2484	CO ₂ fertilization is spatially distinct from stomatal conductance reduction in controlling ecosystem water-use efficiency increase. Environmental Research Letters, 2022, 17, 054048.	2.2	10
2485	Projection of Hot and Cold Extremes in the Amu River Basin of Central Asia using GCMs CMIP6. Stochastic Environmental Research and Risk Assessment, 2022, 36, 3395-3416.	1.9	22
2486	Evolution and drought hazard mapping of future meteorological and hydrological droughts using CMIP6 model. Stochastic Environmental Research and Risk Assessment, 2022, 36, 3857-3874.	1.9	9
2487	Dynamic Simulation of Land Use/Cover Change and Assessment of Forest Ecosystem Carbon Storage under Climate Change Scenarios in Guangdong Province, China. Remote Sensing, 2022, 14, 2330.	1.8	46

#	ARTICLE	IF	CITATIONS
2488	Influence of the North Pacific Victoria Mode on the Spring Persistence Barrier of ENSO. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	3
2489	How does soil water content influence permafrost evolution on the Qinghai-Tibet plateau under climate warming?. Environmental Research Letters, 0, , .	2.2	5
2490	åŸºäºŽå«æ~Ÿé¥æ"Ÿ <bold>ã€</bold> å‱°"å†å^†æžåŠæ°"å€™æ¨¡å¼æ•°æ®çš"åŒ-	–åĞţ ∮æ~¥;	åÐ积é>ªåç
2491	An Investigation of the Effective Climate Sensitivity in GFDL's New Climate Models CM4.0 and SPEAR. Journal of Climate, 2022, 35, 5637-5660.	1.2	3
2492	Divergent Representation of Precipitation Recycling in the Amazon and the Congo in CMIP6 Models. Geophysical Research Letters, 2022, 49, .	1.5	11
2493	Relative performance of CMIP5 and CMIP6 models in simulating rainfall in Peninsular Malaysia. Theoretical and Applied Climatology, 2022, 149, 709-725.	1.3	8
2494	Future Land Precipitation Changes Over the North American Monsoon Region Using CMIP5 and CMIP6 Simulations. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	8
2495	Influences of atmospheric blocking on North American summer heatwaves in a changing climate: a comparison of two Canadian Earth system model large ensembles. Climatic Change, 2022, 172, .	1.7	9
2496	Broadâ€scale wood degradation dynamics in the face of climate change: A metaâ€analysis. GCB Bioenergy, 2022, 14, 941-958.	2.5	6
2497	Simulation and projection of the sudden stratospheric warming events in different scenarios by CESM2-WACCM. Climate Dynamics, 2022, 59, 3741-3761.	1.7	9
2498	Projected changes in population exposure to drought in China under CMIP6 forcing scenarios. Atmospheric Environment, 2022, 282, 119162.	1.9	10
2499	Uncertainty in the projected changes of Sahel summer rainfall under global warming in CMIP5 and CMIP6 multi-model ensembles. Climate Dynamics, 2022, 59, 3579-3597.	1.7	2
2500	Local and seasonal climate change and its influence on the hydrological cycle in a mountainous forested catchment. Journal of Hydrology, 2022, 610, 127914.	2.3	11
2501	Summertime changes in climate extremes over the peripheral Arctic regions after a sudden sea ice retreat. Weather and Climate Dynamics, 2022, 3, 555-573.	1.2	2
2502	Constrained Emergence of Air Temperature Change Signal in Northernâ€Central India From Background Variations. Geophysical Research Letters, 2022, 49, .	1.5	2
2503	Reconciling Roles of External Forcing and Internal Variability in Indian Ocean Decadal Variability Since 1920. Geophysical Research Letters, 2022, 49, .	1.5	2
2504	Predicting Slowdowns in Decadal Climate Warming Trends With Explainable Neural Networks. Geophysical Research Letters, 2022, 49, .	1.5	7
2505	Strengthening Amplitude and Impact of the Pacific Meridional Mode on ENSO in the Warming Climate Depicted by CMIP6 Models. Journal of Climate, 2022, 35, 5195-5213.	1.2	12

#	ARTICLE	IF	CITATIONS
2506	Skilful decadal-scale prediction of fish habitat and distribution shifts. Nature Communications, 2022, 13, 2660.	5.8	13
2507	Steps Toward Modelling the Past and Future North Sea Ecosystem With a Focus on Light Climate. Frontiers in Marine Science, 2022, 9, .	1.2	2
2508	Change in Precipitation over the Tibetan Plateau Projected by Weighted CMIP6 Models. Advances in Atmospheric Sciences, 2022, 39, 1133-1150.	1.9	11
2509	Revisiting the impact of Asian large-scale orography on the summer precipitation in Northwest China and surrounding arid and semi-arid regions. Climate Dynamics, 2023, 60, 33-46.	1.7	3
2510	Network connectivity between the winter Arctic Oscillation and summer sea ice in CMIP6 models and observations. Cryosphere, 2022, 16, 1653-1673.	1.5	4
2511	Long-Term Freezing Temperatures Frequency Change Effect on Wind Energy Gain (Eurasia and North) Tj ETQq $1\ 1$	0 _{1.6} 784314	rgBT/Over
2512	African Hydroclimate During the Early Eocene From the DeepMIP Simulations. Paleoceanography and Paleoclimatology, 2022, 37, .	1.3	3
2513	Modelling supraglacial debris-cover evolution from the single-glacier to the regional scale: an application to High Mountain Asia. Cryosphere, 2022, 16, 1697-1718.	1.5	10
2514	Properties, sensitivity, and stability of the Southern Hemisphere salinity minimum layer in the UKESM1 model. Climate Dynamics, 0 , 1 .	1.7	0
2515	<scp>Piecewiseâ€quantile</scp> mapping improves bias correction of global climate model daily precipitation towards preserving quantiles and extremes. International Journal of Climatology, 2022, 42, 7968-7986.	1.5	6
2516	Extreme precipitation indices over the Volta Basin: CMIP6 model evaluation. Scientific African, 2022, 16, e01181.	0.7	10
2517	Causal Links Between Arctic Sea Ice and Its Potential Drivers Based on the Rate of Information Transfer. Geophysical Research Letters, 2022, 49, .	1.5	17
2518	Assessing the consequences of including aerosol absorption in potential stratospheric aerosol injection climate intervention strategies. Atmospheric Chemistry and Physics, 2022, 22, 6135-6150.	1.9	3
2519	Projection of Extreme Temperature Events over the Mediterranean and Sahara Using Bias-Corrected CMIP6 Models. Atmosphere, 2022, 13, 741.	1.0	12
2520	Human influence on the 2021 British Columbia floods. Weather and Climate Extremes, 2022, 36, 100441.	1.6	24
2521	Training a supermodel with noisy and sparse observations: a case study with CPT and the synch rule on SPEEDO $\hat{a}\in$ v.1. Geoscientific Model Development, 2022, 15, 3831-3844.	1.3	2
2522	Limits to management adaptation for the Indus' irrigated agriculture. Agricultural and Forest Meteorology, 2022, 321, 108971.	1.9	6
2523	CMIP6 model simulation of concurrent continental warming holes in Eurasia and North America since 1990 and their relation to the Indo-Pacific SST warming. Global and Planetary Change, 2022, 213, 103824.	1.6	4

#	Article	IF	CITATIONS
2524	Orographic resolution driving the improvements associated with horizontal resolution increase in the Northern Hemisphere winter mid-latitudes. Weather and Climate Dynamics, 2022, 3, 535-553.	1.2	2
2525	Increased population exposure to Amphanâ \in scale cyclones under future climates. Climate Resilience and Sustainability, 2022, 1, .	0.9	3
2526	Modeling revealed the effect of root dynamics on the water adaptability of phreatophytes. Agricultural and Forest Meteorology, 2022, 320, 108959.	1.9	11
2527	Impacts of changing climate on the distribution of Solenopsis invicta Buren in Mainland China: Exposed urban population distribution and suitable habitat change. Ecological Indicators, 2022, 139, 108944.	2.6	12
2528	Characteristics analysis of drought at multiple spatiotemporal scale and assessment of CMIP6 performance over the Huaihe River Basin. Journal of Hydrology: Regional Studies, 2022, 41, 101103.	1.0	9
2529	Uncovering the strengths and weaknesses of an ensemble of quantile mapping methods for downscaling precipitation change in Southern Africa. Journal of Hydrology: Regional Studies, 2022, 41, 101104.	1.0	6
2530	High impact compound events in Australia. Weather and Climate Extremes, 2022, 36, 100457.	1.6	8
2531	Enabling dynamic and intelligent workflows for HPC, data analytics, and AI convergence. Future Generation Computer Systems, 2022, 134, 414-429.	4.9	17
2532	Systematic improvement in simulated latent and sensible heat fluxes over tropical oceans in AMIP6 models compared to AMIP5 models with the same resolutions. Atmospheric Research, 2022, 274, 106214.	1.8	0
2533	Changes in ENSO-driven Hadley circulation variability under global warming. Atmospheric Research, 2022, 274, 106220.	1.8	3
2534	Long-term change in low-cloud cover in Southeast China during cold seasons. Atmospheric and Oceanic Science Letters, 2022, 15, 100222.	0.5	2
2535	A Strong Anthropogenic Black Carbon Forcing Constrained by Pollution Trends over China. Geophysical Research Letters, 0, , .	1.5	1
2537	A defense of usable climate mitigation science: how science can contribute to social movements. Climatic Change, 2022, 172, .	1.7	3
2538	Building bridges between natural and social science disciplines: a standardized methodology to combine data on ecosystem quality trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210487.	1.8	10
2539	Description of historical and future projection simulations by the global coupled E3SMv1.0 model as used in CMIP6. Geoscientific Model Development, 2022, 15, 3941-3967.	1.3	1
2540	Human influence increases the likelihood of extremely early cherry tree flowering in Kyoto. Environmental Research Letters, 2022, 17, 054051.	2.2	6
2541	Projections of precipitation extremes based on biasâ€corrected Coupled Model Intercomparison Project phase 6 models ensemble over southern Africa. International Journal of Climatology, 2022, 42, 8269-8289.	1.5	18
2542	Improving discrimination between clouds and optically thick aerosol plumes in geostationary satellite data. Atmospheric Measurement Techniques, 2022, 15, 3031-3051.	1.2	2

#	Article	IF	CITATIONS
2543	Influence of anthropogenic activities on elevationâ€dependent weakening of annual temperature cycle amplitude over the Tibetan Plateau. Geophysical Research Letters, 0, , .	1.5	0
2544	The climate change perspective of photovoltaic power potential in Brazil. Renewable Energy, 2022, 193, 1019-1031.	4.3	22
2545	Projected ENSO Teleconnection Changes in CMIP6. Geophysical Research Letters, 2022, 49, .	1.5	20
2546	Impact of Internal Climate Variability on Wintertime Surface Air Temperature Trends Over Eurasia in the CESM1 Large Ensemble. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	2
2547	Comparing surface wind stress and sea surface temperature biases over the tropical and subtropical oceans in subsets of CMIP6 models categorized by frozen hydrometeors-radiation interactions. Environmental Research Communications, 2022, 4, 055009.	0.9	6
2548	Multi-century dynamics of the climate and carbon cycle under both high and net negative emissions scenarios. Earth System Dynamics, 2022, 13, 885-909.	2.7	17
2549	Spring snow-albedo feedback from satellite observation, reanalysis and model simulations over the Northern Hemisphere. Science China Earth Sciences, 0, , .	2.3	1
2550	Challenges in drought monitoring and assessment in India. Water Security, 2022, 16, 100120.	1.2	5
2551	Role of the eastern equatorial Indian Ocean warming in the Indian summer monsoon rainfall trend. Climate Dynamics, 2023, 60, 427-442.	1.7	6
2552	Projected global demand for air conditioning associated with extreme heat and implications for electricity grids in poorer countries. Energy and Buildings, 2022, 268, 112198.	3.1	16
2553	Increasing 2020â€Like Boreal Summer Rainfall Extremes Over Northeast Indian Subcontinent Under Greenhouse Warming. Geophysical Research Letters, 2022, 49, .	1.5	6
2554	Statistical calibrations to improve the 2–5-year prediction skill for SST over the North Atlantic. Meteorology and Atmospheric Physics, 2022, 134, .	0.9	2
2555	The intensification of winter mid-latitude storm tracks in the Southern Hemisphere. Nature Climate Change, 2022, 12, 553-557.	8.1	21
2556	Projection of droughts in Amu river basin for shared socioeconomic pathways CMIP6. Theoretical and Applied Climatology, 2022, 149, 1009-1027.	1.3	18
2557	Comparisons of statistical downscaling methods for air temperature over the Qilian Mountains. Theoretical and Applied Climatology, 0, , .	1.3	1
2558	Future Changes in African Heatwaves and Their Drivers at the Convective Scale. Journal of Climate, 2022, 35, 5981-6006.	1.2	4
2559	Performance assessment of CMIP5 models in tropical South America using TOPSISâ€based method. International Journal of Climatology, 0, , .	1.5	0
2560	Inter-comparison of past and projected climatic trends in Puerto Rico: 1950–2100. Journal of Water and Climate Change, 2022, 13, 2713-2724.	1.2	2

#	Article	IF	CITATIONS
2561	Surface wind over Europe: Data and variability. International Journal of Climatology, 2023, 43, 134-156.	1.5	2
2562	Multi-Model Forecast Quality Assessment of CMIP6 Decadal Predictions. Journal of Climate, 2022, 35, 4363-4382.	1.2	13
2563	Data-driven integrated assessment of global wild-caught seafood exported to Hong Kong by 2030 in different representative concentration and shared socioeconomic pathways. Advances in Climate Change Research, 2022, 13, 554-563.	2.1	1
2564	Species distribution modeling and machine learning in assessing the potential distribution of freshwater zooplankton in Northern Italy. Ecological Informatics, 2022, 69, 101682.	2.3	6
2565	A review of recent studies on wind resource projections under climate change. Renewable and Sustainable Energy Reviews, 2022, 165, 112596.	8.2	17
2566	Characteristics of top-of-atmosphere radiation budget over the Tibetan Plateau and its bias sources in climate models. Atmospheric Research, 2022, 276, 106256.	1.8	3
2567	Human Influence on Global-Scale Climate Change. Trends in the Sciences, 2022, 27, 1_66-1_69.	0.0	0
2568	Projection of hydrothermal condition in Central Asia under four SSP-RCP scenarios. Journal of Arid Land, 2022, 14, 521-536.	0.9	0
2569	Lowâ€Level Marine Tropical Clouds in Six CMIP6 Models Are Too Few, Too Bright but Also Too Compact and Too Homogeneous. Geophysical Research Letters, 2022, 49, .	1.5	12
2570	Multidecadal Changes in Zonal Displacement of Tropical Pacific MJO Variability Modulated by North Atlantic SST. Journal of Climate, 2022, 35, 5951-5966.	1.2	1
2571	Upper-Tropospheric Temperature Pattern Over the Asian-Pacific Region in CMIP6 Simulations: Climatology and Interannual Variability. Frontiers in Earth Science, 2022, 10, .	0.8	4
2572	Trivariate Analysis of Changes in Drought Characteristics in the CMIP6 Multimodel Ensemble at Global Warming Levels of 1.5°, 2°, and 3°C. Journal of Climate, 2022, 35, 5823-5837.	1.2	13
2573	Drought Occurrence Probability Analysis Using Multivariate Standardized Drought Index and Copula Function Under Climate Change. Water Resources Management, 2022, 36, 2865-2888.	1.9	18
2574	A compound event-oriented framework to tropical fire risk assessment in a changing climate. Environmental Research Letters, 2022, 17, 065015.	2.2	14
2575	The role of human-induced climate change in heavy rainfall events such as the one associated with Typhoon Hagibis. Climatic Change, 2022, 172, .	1.7	10
2576	Transitions to new climates (TNCs) in the 21st century. Environmental Research Letters, 0, , .	2.2	0
2577	Robust increase in population exposure to heat stress with increasing global warming. Environmental Research Letters, 2022, 17, 064049.	2.2	17
2578	Modelling of hydrological and environmental flow dynamics over a central Himalayan river basin through satellite altimetry and recent climate projections. International Journal of Climatology, 2022, 42, 8446-8471.	1.5	14

#	Article	IF	CITATIONS
2579	Intra-seasonal oscillations of South Asian summer monsoon in coupled climate model cohort CMIP6. Climate Dynamics, 2023, 60, 179-199.	1.7	2
2580	Earlyâ€toâ€Late Winter 20th Century North Atlantic Multidecadal Atmospheric Variability in Observations, CMIP5 and CMIP6. Geophysical Research Letters, 2022, 49, .	1.5	4
2581	Modeling and Mapping Habitat Suitability of Highland Bamboo under Climate Change in Ethiopia. Forests, 2022, 13, 859.	0.9	8
2582	Future Changes in Extreme Precipitation in Central Asia with 1.5–4 °C Global Warming Based on <scp>CMIP6</scp> Simulations. International Journal of Climatology, 0, , .	1.5	10
2583	Improvements and persistent biases in the southeast tropical Atlantic in CMIP models. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	18
2584	Consistent Trends in Dry Spell Length in Recent Observations and Future Projections. Geophysical Research Letters, 2022, 49, .	1.5	12
2585	The Forced Response and Decadal Predictability of the North Atlantic Oscillation: Nonstationary and Fragile Skills. Journal of Climate, 2022, 35, 5869-5882.	1.2	0
2586	Alternate Histories: Synthetic Large Ensembles of Seaâ€Air CO ₂ Flux. Global Biogeochemical Cycles, 2022, 36, .	1.9	3
2587	Using Machine Learning at scale in numerical simulations with SmartSim: An application to ocean climate modeling. Journal of Computational Science, 2022, 62, 101707.	1.5	18
2588	Global air-sea CO2 exchange flux since 1980s: results from CMIP6 Earth System Models. Journal of Oceanology and Limnology, 2022, 40, 1417-1436.	0.6	3
2589	Assessment of Sectoral Virtual Water Flows and Future Water Requirement in Agriculture Under SSP-RCP Scenarios: Reflections for Water Resources Management in Zhangye City. Frontiers in Ecology and Evolution, 0, 10, .	1,1	1
2590	Enhanced Interannual Variability in Temperature during the Last Glacial Maximum. Journal of Climate, 2022, 35, 5933-5950.	1.2	2
2591	Quantitative evaluations of subtropical westerly jet simulations over East Asia based on multiple CMIP5 and CMIP6 GCMs. Atmospheric Research, 2022, 276, 106257.	1.8	4
2592	Sea Surface Salinity Changes in Response to El Niño–like SST Warming and Relevant Ocean Dynamics in the Tropical Pacific under the CMIP6 Abrupt-4XCO2 Scenario. Journal of Climate, 2022, 35, 5839-5854.	1.2	2
2593	Future reversal of warming-enhanced vegetation productivity in the Northern Hemisphere. Nature Climate Change, 2022, 12, 581-586.	8.1	47
2594	Evaluation of CMIP6 models in the representation of observed extreme temperature indices trends in South America. Climatic Change, 2022, 172, .	1.7	10
2595	The Super-large Ensemble Experiments of CAS FGOALS-g3. Advances in Atmospheric Sciences, 2022, 39, 1746-1765.	1.9	12
2596	A framework for detection and attribution of regional precipitation change: Application to the United States historical record. Climate Dynamics, 2023, 60, 705-741.	1.7	4

#	ARTICLE	IF	CITATIONS
2597	Preliminary study on hydrological angular momentum determined from CMIP6 historical simulations. Earth, Planets and Space, 2022, 74, .	0.9	1
2598	Assessment of characteristic changes of regional estimation of extreme rainfall under climate change: A case study in a tropical monsoon region with the climate projections from CMIP6 model. Journal of Hydrology, 2022, 610, 128002.	2.3	28
2599	Ocean Reference Stations: Long-Term, Open-Ocean Observations of Surface Meteorology and Air–Sea Fluxes Are Essential Benchmarks. Bulletin of the American Meteorological Society, 2022, 103, E1968-E1990.	1.7	4
2600	Evaluating a reservoir parametrization in the vector-based global routing model mizuRoute (v2.0.1) for Earth system model coupling. Geoscientific Model Development, 2022, 15, 4163-4192.	1.3	11
2601	Overcoming the disconnect between energy system and climate modeling. Joule, 2022, 6, 1405-1417.	11.7	31
2627	Global Cropland Exposure to Compound Drought Heatwave Events Under Future Climate Change. SSRN Electronic Journal, 0, , .	0.4	0
2628	Tropical cyclone genesis over the western North Pacific simulated by Coupled Model Intercomparison Project Phase 6 models. Acta Oceanologica Sinica, 2022, 41, 64-77.	0.4	0
2629	Increased variability of the western Pacific subtropical high under greenhouse warming. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	29
2630	Potential Impacts of Climate Change on the Habitat Suitability of the Dominant Tree Species in Greece. Plants, 2022, 11, 1616.	1.6	18
2631	Evaluation and comparison of CMIP6 and CMIP5 model performance in simulating the runoff. Theoretical and Applied Climatology, 2022, 149, 1451-1470.	1.3	12
2632	Groundwater Level Fluctuations in Coastal Aquifer: Using Artificial Neural Networks to Predict the Impacts of Climatical CMIP6 Scenarios. Water Resources Management, 2022, 36, 3981-4001.	1.9	6
2633	Mechanical and Thermal Impacts of the Tibetan–Iranian Plateau on the North Pacific Storm Track: Numerical Experiments by FGOALSâ€f3‣. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	5
2634	Uncertainty in Projected Changes in Precipitation Minus Evaporation: Dominant Role of Dynamic Circulation Changes and Weak Role for Thermodynamic Changes. Geophysical Research Letters, 2022, 49, .	1.5	12
2635	Signals in temperature extremes emerge in China during the last millennium based on CMIP5 simulations. Climatic Change, 2022, 172, .	1.7	1
2636	Climate change and health in Kuwait: temperature and mortality projections under different climatic scenarios. Environmental Research Letters, 2022, 17, 074001.	2.2	6
2637	The roles of the Quasi-Biennial Oscillation and El Niño for entry stratospheric water vapor in observations and coupled chemistry–ocean CCMI and CMIP6 models. Atmospheric Chemistry and Physics, 2022, 22, 7523-7538.	1.9	6
2638	Trends in Temperature, Precipitation, Potential Evapotranspiration, and Water Availability across the Teesta River Basin under 1.5 and 2 \hat{A}° C Temperature Rise Scenarios of CMIP6. Atmosphere, 2022, 13, 941.	1.0	14
2639	Intensified Likelihood of Concurrent Warm and Dry Months Attributed to Anthropogenic Climate Change. Water Resources Research, 2022, 58, .	1.7	8

#	Article	IF	CITATIONS
2640	Estimates of natural methane emissions into the atmosphere in the regions of Western Siberia by model simulations. IOP Conference Series: Earth and Environmental Science, 2022, 1040, 012017.	0.2	0
2641	Processing tomato production is expected to decrease by 2050 due to the projected increase in temperature. Nature Food, 2022, 3, 437-444.	6.2	27
2642	The Future Potential Distribution and Sustainable Management of Ancient Pu'er Tea Trees (Camellia) Tj ETQqC	0 8.9 rgBT	Overlock 10
2643	Evaluation of CMIP6 models toward dynamical downscaling over 14 CORDEX domains. Climate Dynamics, 0, , .	1.7	16
2644	Observational constraint on the contribution of surface albedo feedback to the amplified Tibetan Plateau surface warming. Journal of Geophysical Research D: Atmospheres, 0, , .	1.2	1
2645	A multi-method framework for global real-time climate attribution. Advances in Statistical Climatology, Meteorology and Oceanography, 2022, 8, 135-154.	0.6	0
2646	Assessment of dry and heavy rainfall days and their projected changes over Northeast Brazil in Coupled Model Intercomparison Project Phase 6 models. International Journal of Climatology, 2022, 42, 8665-8686.	1.5	5
2647	Representation of moist convective processes in CMIP5 and CMIP6 models for the simulation of Indian Summer Monsoon intraseasonal variability. International Journal of Climatology, 0, , .	1.5	O
2648	The predictability of snow depth at the North Hemisphere originated from persistence and oceanic forcing. Climate Dynamics, 2023, 60, 945-958.	1.7	0
2649	Transient climate simulations of the Holocene (version 1) – experimental design and boundary conditions. Geoscientific Model Development, 2022, 15, 4469-4487.	1.3	3
2650	The Deep Ocean Observing Strategy: Addressing Global Challenges in the Deep Sea Through Collaboration. Marine Technology Society Journal, 2022, 56, 50-66.	0.3	7
2651	Wild Apples Are Not That Wild: Conservation Status and Potential Threats of Malus sieversii in the Mountains of Central Asia Biodiversity Hotspot. Diversity, 2022, 14, 489.	0.7	6
2652	Century-long column ozone records show that chemical and dynamical influences counteract each other. Communications Earth & Environment, 2022, 3, .	2.6	5
2653	Estimating multisite precipitation by a stepwise NHMM-VAR model considering the spatiotemporal correlations of precipitation amounts. Journal of Hydrology, 2022, 612, 128065.	2.3	1
2654	Polar night jet characterization through artificial intelligence. Computers and Geosciences, 2022, , 105176.	2.0	0
2655	The emergence of prolonged deadly humid heatwaves. International Journal of Climatology, 2022, 42, 8607-8618.	1.5	2
2656	Evaluation of CMIP6 models for simulations of surplus/deficit summer monsoon conditions over India. Climate Dynamics, 2023, 60, 1023-1042.	1.7	16
2657	Taking stock: Is recovery of a depleted population possible in a changing climate?. Fisheries Oceanography, 0, , .	0.9	0

#	Article	IF	CITATIONS
2658	Qinghaiâ€Tibet Plateau Permafrost at Risk in the Late 21st Century. Earth's Future, 2022, 10, .	2.4	28
2659	Bayesian retro- and prospective assessment of CMIP6 climatology in Pan Third Pole region. Climate Dynamics, 2023, 60, 767-784.	1.7	7
2660	Performance of CMIP6 HighResMIP on the Representation of Onset and Cessation of Seasonal Rainfall in Southern West Africa. Atmosphere, 2022, 13, 999.	1.0	2
2661	Quantifying the Role of Atmospheric and Surface Albedo on Polar Amplification Using Satellite Observations and CMIP6 Model Output. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	3
2662	The interaction of ice and law in Arctic marine accessibility. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
2663	Interbasin and interhemispheric impacts of a collapsed Atlantic Overturning Circulation. Nature Climate Change, 2022, 12, 558-565.	8.1	26
2664	Representing the Dynamic Response of Vegetation to Nitrogen Limitation via Biological Nitrogen Fixation in the CLASSIC Land Model. Global Biogeochemical Cycles, 2022, 36, .	1.9	9
2665	Circulation Patterns and Associated Rainfall Over South Tropical South America: GCMs Evaluation During the Dryâ€∓oâ€Wet Transition Season. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	7
2666	Disentangling physical and dynamical drivers of the 2016/17 record-breaking warm winter in China. Environmental Research Letters, 2022, 17, 074024.	2.2	5
2667	The Overlooked Role of the Stratosphere Under a Solar Constant Reduction. Geophysical Research Letters, 2022, 49, .	1.5	4
2668	The ability of climate models to reproduce the weakening of the annual air temperature cycle over the central part of the Russian Plain. IOP Conference Series: Earth and Environmental Science, 2022, 1040, 012029.	0.2	0
2669	Internal Variability of Allâ€Sky and Clearâ€Sky Surface Solar Radiation on Decadal Timescales. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	4
2670	Evaluation and selection of CMIP6 climate models in Upper Awash Basin (UBA), Ethiopia. Theoretical and Applied Climatology, 2022, 149, 1521-1547.	1.3	17
2671	Increasing Inhomogeneity of the Global Oceans. Geophysical Research Letters, 2022, 49, .	1.5	3
2672	Properties, Changes, and Controls of Deepâ€Convecting Clouds in Radiativeâ€Convective Equilibrium. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	8
2673	Northward migration of the East Asian summer monsoon northern boundary during the twenty-first century. Scientific Reports, 2022, 12, .	1.6	8
2674	Gridded value-added of primary, secondary and tertiary industries in China under Shard Socioeconomic Pathways. Scientific Data, 2022, 9, .	2.4	15
2675	Recent marine heatwaves in the North Pacific warming pool can be attributed to rising atmospheric levels of greenhouse gases. Communications Earth & Environment, 2022, 3, .	2.6	15

#	Article	IF	Citations
2676	Contributions of internal climate variability in driving global and ocean temperature variations using multi-layer perceptron neural network. Advances in Climate Change Research, 2022, 13, 459-472.	2.1	1
2677	Impacts of Different Land Use Scenarios on Future Global and Regional Climate Extremes. Atmosphere, 2022, 13, 995.	1.0	5
2679	Meteoritic materials within sulfate aerosol particles in the troposphere are detected with transmission electron microscopy. Communications Earth & Environment, 2022, 3, .	2.6	2
2680	The Leeds Africa Climate Hackathon – experiences of running a hackathon and highlights of results. Weather, 2023, 78, 36-42.	0.6	3
2681	Robust Anthropogenic Signal Identified in the Seasonal Cycle of Tropospheric Temperature. Journal of Climate, 2022, 35, 6075-6100.	1.2	6
2682	Framing the Use of Climate Model Projections in Infrastructure Engineering: Practices, Uncertainties, and Recommendations. Journal of Infrastructure Systems, 2022, 28, .	1.0	1
2683	Increase in seasonal precipitation over the Tibetan Plateau in the 21st century projected using CMIP6 models. Atmospheric Research, 2022, 277, 106306.	1.8	19
2684	Barking up the wrong tree? Can forest expansion help meet climate goals?. Environmental Science and Policy, 2022, 136, 237-249.	2.4	2
2685	ACCESS datasets for CMIP6: methodology and idealised experiments. Journal of Southern Hemisphere Earth Systems Science, 2022, 72, 93-116.	0.7	9
2686	Evaluation of climate variability and change in ACCESS historical simulations for CMIP6. Journal of Southern Hemisphere Earth Systems Science, 2022, 72, 73-92.	0.7	6
2688	Intensification of precipitation extremes in the United States under global warming., 2022, , 117-129.		0
2691	Advances in weather and climate extremes. , 2022, , 49-63.		0
2692	The role of climate datasets in understanding climate extremes. , 2022, , 19-48.		0
2693	Snow Cover in the Three Stable Snow Cover Areas of China and Spatio-Temporal Patterns of the Future. Remote Sensing, 2022, 14, 3098.	1.8	13
2694	Present-Day PM2.5 over Asia: Simulation and Uncertainty in CMIP6 ESMs. Journal of Meteorological Research, 2022, 36, 429-449.	0.9	2
2695	Exploring the Tropical Pacific Manifold in Models and Observations. Physical Review X, 2022, 12, .	2.8	4
2696	Combination of Decadal Predictions and Climate Projections in Time: Challenges and Potential Solutions. Geophysical Research Letters, 2022, 49, .	1.5	4
2697	Storylines of South Pacific Convergence Zone Changes in a Warmer World. Journal of Climate, 2022, 35, 2949-2967.	1.2	5

#	Article	IF	Citations
2698	Increased Exposure of Chinaâ \in TM s Cropland to Droughts under 1.5 °C and 2 °C Global Warming. Atmosphere, 2022, 13, 1035.	1.0	3
2699	An Assessment of Short-term Global and East Asian Local Climate Feedbacks using New Radiative Kernels. Climate Dynamics, 2023, 60, 1329-1349.	1.7	2
2700	Gas exchange analysers exhibit large measurement error driven by internal thermal gradients. New Phytologist, 2022, 236, 369-384.	3.5	6
2701	21st-century stagnation in unvegetated sand-sea activity. Nature Communications, 2022, 13, .	5.8	9
2702	Projected near-term changes in monsoon precipitation over Peninsular Malaysia in the HighResMIP multi-model ensembles. Climate Dynamics, 2023, 60, 1151-1171.	1.7	1
2703	Air quality improvements are projected to weaken the Atlantic meridional overturning circulation through radiative forcing effects. Communications Earth & Environment, 2022, 3, .	2.6	5
2704	Future Southern Ocean warming linked to projected ENSO variability. Nature Climate Change, 2022, 12, 649-654.	8.1	23
2705	National attribution of historical climate damages. Climatic Change, 2022, 172, .	1.7	19
2706	Assessing the Implication of Climate Change to Forecast Future Flood Using CMIP6 Climate Projections and HEC-RAS Modeling. Forecasting, 2022, 4, 582-603.	1.6	6
2707	Potential Impact of Climate Change on Fish Reproductive Phenology: A Case Study in Gonochoric and Hermaphrodite Commercially Important Species from the Southern Gulf of Mexico. Fishes, 2022, 7, 156.	0.7	7
2708	The interdecadal variations and causes of the relationship between Autumn Precipitation Anomalies in Eastern China and SSTA over the Southeastern tropical Indian Ocean. Climate Dynamics, 2023, 60, 899-911.	1.7	3
2709	Two Approaches of the Spring North Atlantic Sea Surface Temperature Affecting the Following July Precipitation over Central China: The Tropical and Extratropical Pathways. Journal of Climate, 2022, 35, 2969-2986.	1.2	11
2710	A New Chemistry-Climate Model GRIMs-CCM: Model Evaluation of Interactive Chemistry-Meteorology Simulations. Asia-Pacific Journal of Atmospheric Sciences, 2022, 58, 647-666.	1.3	1
2711	Spatio-Temporal Variation of Precipitation in the Qinling Mountains from 1970 to 2100 Based on CMIP6 Data. Sustainability, 2022, 14, 8654.	1.6	5
2712	Rising ecosystem water demand exacerbates the lengthening of tropical dry seasons. Nature Communications, 2022, 13, .	5.8	8
2713	Projected mean and extreme precipitation based on bias-corrected simulation outputs of CORDEX Southeast Asia. Weather and Climate Extremes, 2022, 37, 100484.	1.6	7
2714	Assessment of climate change impact on temperature extremes in a tropical region with the climate projections from CMIP6 model. Climate Dynamics, 2023, 60, 603-622.	1.7	8
2715	Increasing health risks during outdoor sports due to climate change in Texas: Projections vs. attitudes. GeoHealth, 0 , , .	1.9	1

#	Article	IF	CITATIONS
2716	Volume, evolution, and sedimentation of future glacier lakes in Switzerland over the 21st century. Earth Surface Dynamics, 2022, 10, 723-741.	1.0	8
2717	Intraseasonal Air–Sea Interaction Over the Southeastern Indian Ocean and its Impact on Indian Summer Monsoon. Frontiers in Marine Science, 0, 9, .	1.2	O
2718	Multi-year El Niñ0 events tied to the North Pacific Oscillation. Nature Communications, 2022, 13, .	5.8	25
2719	Anthropogenic aerosol impacts on Pacific Coast precipitation in CMIP6 models., 2022, 1, 015005.		3
2720	Widespread shift from ecosystem energy to water limitation with climate change. Nature Climate Change, 2022, 12, 677-684.	8.1	64
2721	The biological carbon pump in CMIP6 models: 21st century trends and uncertainties. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	21
2722	Varying contributions of fast and slow responses cause asymmetric tropical rainfall change between CO2 ramp-up and ramp-down. Science Bulletin, 2022, 67, 1702-1711.	4.3	9
2723	Was there a volcanic-induced long-lasting cooling over the Northern Hemisphere in the mid-6th–7th century?. Climate of the Past, 2022, 18, 1601-1623.	1.3	10
2724	Independent Quality Assessment of Essential Climate Variables: Lessons learnt from the Copernicus Climate Change Service. Bulletin of the American Meteorological Society, 2022, , .	1.7	1
2725	Projection of Precipitation Extremes and Flood Risk in the China–Pakistan Economic Corridor. Frontiers in Environmental Science, 0, 10, .	1.5	2
2726	The anthropogenic acceleration and intensification of flash drought over the southeastern coastal region of China will continue into the future. Atmospheric and Oceanic Science Letters, 2022, 15, 100262.	0.5	2
2727	CAS FGOALS-f3-H Dataset for the High-Resolution Model Intercomparison Project (HighResMIP) Tier 2. Advances in Atmospheric Sciences, 2022, 39, 1873-1884.	1.9	4
2728	Effective radiative forcing of anthropogenic aerosols in E3SM version 1: historical changes, causality, decomposition, and parameterization sensitivities. Atmospheric Chemistry and Physics, 2022, 22, 9129-9160.	1.9	16
2729	Computation of longwave radiative flux and vertical heating rate with 4A-Flux v1.0 as an integral part of the radiative transfer code 4A/OP v1.5. Geoscientific Model Development, 2022, 15, 5211-5231.	1.3	2
2730	Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia. Nature Communications, 2022, 13 , .	5.8	15
2731	Projecting environmental and krill fishery impacts on the Antarctic Peninsula food web in 2100. Progress in Oceanography, 2022, 206, 102862.	1.5	4
2732	Evaluation of Sea Ice Simulation of CAS-ESM 2.0 in Historical Experiment. Atmosphere, 2022, 13, 1056.	1.0	1
2733	Benchmarking Simulated Precipitation Variability Amplitude across Time Scales. Journal of Climate, 2022, 35, 3173-3196.	1.2	2

#	Article	IF	CITATIONS
2734	Description and Evaluation of an Emissionâ€Driven and Fully Coupled Methane Cycle in UKESM1. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	9
2735	Estimated cloud-top entrainment index explains positive low-cloud-cover feedback. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	2
2736	Competing and accelerating effects of anthropogenic nutrient inputs on climate-driven changes in ocean carbon and oxygen cycles. Science Advances, 2022, 8, .	4.7	5
2737	Potential impacts of climate change on agriculture and fisheries production in 72 tropical coastal communities. Nature Communications, 2022, 13, .	5.8	17
2739	Anthropogenic influence of temperature changes across East Asia using CMIP6 simulations. Scientific Reports, 2022, 12, .	1.6	7
2740	High-Resolution Decadal Drought Predictions for German Water Boards: A Case Study for the Wupper Catchment. Frontiers in Climate, 0, 4, .	1.3	3
2741	Terrestrial Stilling Projected to Continue in the Northern Hemisphere Mid‣atitudes. Earth's Future, 2022, 10, .	2.4	8
2742	A generalizable framework for spatially explicit exploration of soil organic carbon sequestration on global marginal land. Scientific Reports, 2022, 12, .	1.6	2
2743	Historical and future weather data for dynamic building simulations in Belgium using the regional climate model MAR: typical and extreme meteorological year and heatwaves. Earth System Science Data, 2022, 14, 3039-3051.	3.7	10
2745	A novel multivariate ecological approach to modeling freshwater mussel habitats verified by ground truthing. Hydrobiologia, 0, , .	1.0	2
2746	Global/Regional Impacts on Present and Near-Future Climate Regimes in the Metropolitan Region of Belém, Eastern Amazon. Atmosphere, 2022, 13, 1077.	1.0	3
2747	Attribution of Stratospheric and Tropospheric Ozone Changes Between 1850 and 2014 in CMIP6 Models. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	5
2748	The Role of Anthropogenic Aerosol Forcing in the 1850–1985 Strengthening of the AMOC in CMIP6 Historical Simulations. Journal of Climate, 2022, 35, 3243-3263.	1.2	11
2749	Volcanic stratospheric injections up to 160 Tg(S) yield a Eurasian winter warming indistinguishable from internal variability. Atmospheric Chemistry and Physics, 2022, 22, 8843-8862.	1.9	6
2750	Pervasive alterations to snow-dominated ecosystem functions under climate change. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13
2751	Barents-Kara sea-ice decline attributed to surface warming in the Gulf Stream. Nature Communications, 2022, 13, .	5.8	14
2752	Atmospheric river representation in the Energy Exascale Earth System Model (E3SM) version 1.0. Geoscientific Model Development, 2022, 15, 5461-5480.	1.3	1
2753	Projected climate change impacts on groundwater recharge in the Urucuia aquifer system, Brazil. International Journal of Climatology, 2022, 42, 8822-8838.	1.5	2

#	Article	IF	CITATIONS
2754	The eWaterCycle platform for open and FAIR hydrological collaboration. Geoscientific Model Development, 2022, 15, 5371-5390.	1.3	8
2755	Precipitation efficiency constraint on climate change. Nature Climate Change, 2022, 12, 642-648.	8.1	18
2756	Detection of Forced Change Within Combined Climate Fields Using Explainable Neural Networks. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	6
2757	Biophysical impacts of northern vegetation changes on seasonal warming patterns. Nature Communications, 2022, 13, .	5.8	26
2758	Common EOFs: a tool for multi-model comparison and evaluation. Climate Dynamics, 2023, 60, 1689-1703.	1.7	2
2759	Changes in Extreme Temperature Events and Their Contribution to Mean Temperature Changes during Historical and Future Periods over Mainland China. Atmosphere, 2022, 13, 1127.	1.0	1
2760	On the Detection of Externally Forced Decadal Modulations of the Sahel Rainfall over the Whole Twentieth Century in the CMIP6 Ensemble. Journal of Climate, 2022, 35, 6939-6954.	1.2	2
2761	Comprehensive assessment of global atmospheric downward longwave radiation in the state-of-the-art reanalysis using satellite and flux tower observations. Climate Dynamics, 0, , .	1.7	2
2762	Investigating stable oxygen and carbon isotopic variability in speleothem records over the last millennium using multiple isotope-enabled climate models. Climate of the Past, 2022, 18, 1625-1654.	1.3	5
2764	Evaluation of events of extreme temperature change between neighboring days in CMIP6 models over China. Theoretical and Applied Climatology, 2022, 150, 53-72.	1.3	11
2765	General circulation and global heat transport in a quadrupling CO2 pulse experiment. Scientific Reports, 2022, 12, .	1.6	3
2766	Representation and annual to decadal predictability of Euroâ€Atlantic weather regimes in the CMIP6 version of the ECâ€Earth coupled climate model. Journal of Geophysical Research D: Atmospheres, 0, , .	1.2	0
2767	How well have CMIP3, CMIP5 and CMIP6 future climate projections portrayed the recently observed warming. Scientific Reports, 2022, 12, .	1.6	21
2768	Scenario-Based Forecasts of Changes in the Temperature and Hydrological Regime of Crimea in the XXI Century by Data of CMIP6 Climate Models. Water Resources, 2022, 49, 661-670.	0.3	3
2769	AREAdata: A worldwide climate dataset averaged across spatial units at different scales through time. Data in Brief, 2022, 43, 108438.	0.5	0
2770	Unraveling the global teleconnections of Indian summer monsoon clouds: expedition from CMIP5 to CMIP6. Global and Planetary Change, 2022, 215, 103873.	1.6	7
2771	Warmer western tropical South Atlantic during the Last Interglacial relative to the current interglacial period. Global and Planetary Change, 2022, 215, 103889.	1.6	4
2772	Regional extreme precipitation index: Evaluations and projections from the multi-model ensemble CMIP5 over Thailand. Weather and Climate Extremes, 2022, 37, 100475.	1.6	8

#	Article	IF	CITATIONS
2773	Importance of the seasonal temperature and precipitation variation on glacial evolutions during the LGM at monsoonal Himalaya based on Cogarbu valley. Palaeogeography, Palaeoclimatology, Palaeoclogy, 2022, 601, 111132.	1.0	8
2774	General circulation models for rainfall simulations: Performance assessment using complex networks. Atmospheric Research, 2022, 278, 106333.	1.8	15
2775	Projected changes and uncertainty in cold surges over northern China using the CMIP6 weighted multi-model ensemble. Atmospheric Research, 2022, 278, 106334.	1.8	4
2776	Improving the <scp>CFSv2</scp> prediction of the Indian Ocean Dipole based on a physicalâ€empirical model and a deepâ€earning approach. International Journal of Climatology, 2022, 42, 9200-9214.	1.5	2
2777	Future Changes of East Asian Extratropical Cyclones in the CMIP5 Models. Journal of Climate, 2022, 35, 6911-6921.	1.2	2
2778	Interâ€Model Spread of North Tropical Atlantic Transâ€Basin Effect Substantially Biases Tropical Pacific Sea Surface Temperature Multiyear Prediction. Geophysical Research Letters, 0, , .	1.5	2
2779	Increasing Temperature Facilitates Polyp Spreading and Medusa Appearance of the Invasive Hydrozoan Craspedacusta sowerbii. Biology, 2022, 11, 1100.	1.3	0
2780	swNEMO_v4.0: an ocean model based on NEMO4 for the new-generation Sunway supercomputer. Geoscientific Model Development, 2022, 15, 5739-5756.	1.3	3
2781	Thermal bioclimatic indicators over Southeast Asia: present status and future projection using CMIP6. Environmental Science and Pollution Research, 2022, 29, 91212-91231.	2.7	20
2782	Are We at Risk of Losing the Current Generation of Climate Researchers to Data Science?. AGU Advances, 2022, 3, .	2.3	4
2783	Aridityâ€dependent Land Surface Skin Temperature Biases in CMIP5/6. Geophysical Research Letters, 0, , .	1.5	0
2784	Improved representation of plant physiology in the JULES-vn5.6 land surface model: photosynthesis, stomatal conductance and thermal acclimation. Geoscientific Model Development, 2022, 15, 5567-5592.	1.3	8
2785	Response of Natural Gas Consumption to Temperature and Projection under SSP Scenarios during Winter in Beijing. Atmosphere, 2022, 13, 1178.	1.0	0
2786	Role of tropical lower stratosphere winds in quasi-biennial oscillation disruptions. Science Advances, 2022, 8, .	4.7	6
2787	The potential impact of model horizontal resolution on the simulation of atmospheric cloud radiative effect in CMIP6 models. Terrestrial, Atmospheric and Oceanic Sciences, 2022, 33, .	0.3	2
2788	Cloud-based framework for inter-comparing submesoscale-permitting realistic ocean models. Geoscientific Model Development, 2022, 15, 5829-5856.	1.3	8
2789	Warming-induced vegetation growth cancels out soil carbon-climate feedback in the northern Asian permafrost region in the 21st century. Environmental Research Letters, 2022, 17, 084009.	2.2	3
2790	Climate change will likely threaten areas of suitable habitats for the most relevant medicinal plants native to the Caatinga dry forest. Ethnobiology and Conservation, 0, 11, .	0.0	3

#	Article	IF	CITATIONS
2791	A Guide to Updating the US Government's Social Cost of Carbon. Review of Environmental Economics and Policy, 2022, 16, 196-218.	3.1	10
2792	Representation of Atmospheric Water Budget and Uncertainty Quantification of Future Changes in CMIP6 for the Seven U.S. National Climate Assessment Regions. Journal of Climate, 2022, 35, 7235-7258.	1.2	1
2793	Regional climate model emulator based on deep learning: concept and first evaluation of a novel hybrid downscaling approach. Climate Dynamics, 2023, 60, 1751-1779.	1.7	14
2794	Attributing decadal climate variability in coastal sea-level trends. Ocean Science, 2022, 18, 1093-1107.	1.3	0
2795	Soil carbon loss in warmed subarctic grasslands is rapid and restricted to topsoil. Biogeosciences, 2022, 19, 3381-3393.	1.3	11
2798	Response of Meridional Wind to Greenhouse Gas Forcing, Arctic Sea-Ice Loss, and Arctic Amplification. Journal of Climate, 2022, 35, 7275-7297.	1.2	0
2799	Seasonally and Regionally Dependent Shifts of the Atmospheric Westerly Jets under Global Warming. Journal of Climate, 2022, 35, 5433-5447.	1.2	4
2800	Reduced ENSO Variability due to a Collapsed Atlantic Meridional Overturning Circulation. Journal of Climate, 2022, 35, 5307-5320.	1.2	5
2801	The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). II. Moist Casesâ€"The Two Waterworlds. Planetary Science Journal, 2022, 3, 212.	1.5	34
2802	Possible Climate Change in Russia in the 21st Century Based on the INM-CM5-0 Climate Model. Russian Meteorology and Hydrology, 2022, 47, 327-333.	0.2	3
2803	Contrasting projections of the ENSO-driven CO ₂ flux variability in the equatorial Pacific under high-warming scenario. Earth System Dynamics, 2022, 13, 1097-1118.	2.7	14
2804	The changing nature of Earth's reflected sunlight. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .	1.0	8
2805	Low-level circulation over Central Equatorial Africa as simulated from CMIP5 to CMIP6 models. Climate Dynamics, 0, , .	1.7	4
2806	An Interdecadal Enhancement of the Impact of ENSO on the Summer Northeast Asian Circulation around 1999/2000 through the Silk Road Pattern. Journal of Climate, 2022, 35, 7481-7497.	1.2	2
2807	Plant phenology changes and drivers on the Qinghai–Tibetan Plateau. Nature Reviews Earth & Environment, 2022, 3, 633-651.	12.2	90
2808	Use of genetic algorithms for ocean model parameter optimisation: a case study using PISCES-v2_RC for North Atlantic particulate organic carbon. Geoscientific Model Development, 2022, 15, 5713-5737.	1.3	3
2809	Climate Change Impact on the Habitat Suitability of Pseudotsuga menziesii Mirb. Franco in Mexico: An Approach for Its Conservation. Sustainability, 2022, 14, 8888.	1.6	3
2810	Performance of CMIP6 HighResMIP Simulations on West African Drought. Frontiers in Earth Science, 0, 10, .	0.8	4

#	Article	IF	CITATIONS
2811	Assessment of the impacts of biological nitrogen fixation structural uncertainty in CMIP6 earth system models. Biogeosciences, 2022, 19, 3491-3503.	1.3	4
2812	The Earth system model CLIMBER-X v1.0 – Part 1: Climate model description and validation ‷‷‷‷‷‷‷‷‷‷‷‷‷â	€ ₁ â•	€çậ€câ€câ€c
2813	Sea surface salinity changes and trans-basin water vapor transport between the Atlantic and Pacific under CMIP6 abrupt-4xCO2 scenario. Climate Dynamics, 2023, 60, 1907-1924.	1.7	1
2814	Towards Informed Water Resources Planning and Management. Hydrology, 2022, 9, 136.	1.3	3
2815	CMIP6 model fidelity at simulating large-scale atmospheric circulation patterns and associated temperature and precipitation over the Pacific Northwest. Climate Dynamics, 2023, 60, 2199-2218.	1.7	7
2816	Projected Changes of Surface Winds Over the Antarctic Continental Margin. Geophysical Research Letters, 2022, 49, .	1.5	9
2817	Present and future European heat wave magnitudes: climatologies, trends, and their associated uncertainties in GCM-RCM model chains. Earth System Dynamics, 2022, 13, 1197-1214.	2.7	7
2818	Pacific Decadal Oscillation modulates the Arctic sea-ice loss influence on the midlatitude atmospheric circulation in winter. Weather and Climate Dynamics, 2022, 3, 845-861.	1.2	5
2819	Future growth and decline of high mountain Asia's ice-dammed lakes and associated risk. Communications Earth & Environment, 2022, 3, .	2.6	15
2820	Toward Regional Marine Ecological Forecasting Using Global Climate Model Predictions From Subseasonal to Decadal Timescales: Bottlenecks and Recommendations. Frontiers in Marine Science, 0, 9, .	1.2	1
2821	Climate Services Toolbox (CSTools) v4.0: from climate forecasts to climate forecast information. Geoscientific Model Development, 2022, 15, 6115-6142.	1.3	4
2823	The Planetary Theory of Solar Activity Variability: A Review. Frontiers in Astronomy and Space Sciences, 0, 9, .	1.1	11
2824	Recent progress in simulating two types of ENSO – from CMIP5 to CMIP6. Frontiers in Marine Science, 0, 9, .	1.2	10
2825	Data science and climate risk analytics. Environmetrics, 0, , .	0.6	1
2826	Predictability of sea surface temperature anomalies at the eastern pole of the Indian Ocean Dipole—using a convolutional neural network model. Frontiers in Climate, 0, 4, .	1.3	4
2827	Projection of Future Extreme Precipitation in China Based on the CMIP6 from a Machine Learning Perspective. Remote Sensing, 2022, 14, 4033.	1.8	11
2828	Why do the Global Warming Responses of Landâ€Surface Models and Climatic Dryness Metrics Disagree?. Earth's Future, 2022, 10, .	2.4	5
2829	Simulated contribution of the interdecadal Pacific oscillation to the west Eurasia cooling in 1998–2013. Environmental Research Letters, 2022, 17, 094021.	2,2	O

#	Article	IF	CITATIONS
2830	Uncertainty Analysis in Multiâ€Sector Systems: Considerations for Risk Analysis, Projection, and Planning for Complex Systems. Earth's Future, 2022, 10, .	2.4	16
2831	Relative importance of largeâ€scale environmental variables to the worldâ€wide variability of thunderstorms. Journal of Geophysical Research D: Atmospheres, 0, , .	1.2	1
2832	Seamless Integration of the Coastal Ocean in Global Marine Carbon Cycle Modeling. Journal of Advances in Modeling Earth Systems, 2022, 14 , .	1.3	14
2833	What Causes Anthropogenic Ocean Warming to Emerge from Internal Variability in a Coupled Model?. Journal of Climate, 2022, 35, 7435-7454.	1.2	3
2834	Comparisons between CMIP5 and CMIP6 models in simulations of the climatology and interannual variability of the east asian summer Monsoon. Climate Dynamics, 2023, 60, 2183-2198.	1.7	6
2835	Investigating and predicting spatiotemporal variations in vegetation cover in transitional climate zone: a case study of Gansu (China). Theoretical and Applied Climatology, 2022, 150, 283-307.	1.3	4
2836	Analysis of heatwave characteristics under climate change over three highly populated cities of South India: a CMIP6-based assessment. Environmental Science and Pollution Research, 2023, 30, 99013-99025.	2.7	17
2837	Evaluation of the Carbon Sink Capacity of the Proposed Kunlun Mountain National Park. International Journal of Environmental Research and Public Health, 2022, 19, 9887.	1.2	34
2838	North Pacific trade wind precursors to ENSO in the CMIP6 HighResMIP multimodel ensemble. Climate Dynamics, 2023, 60, 2501-2516.	1.7	2
2839	High flux of small sulfate aerosols during the 1970s reconstructed from the SEâ€Dome ice core in Greenland. Journal of Geophysical Research D: Atmospheres, 0, , .	1.2	1
2840	Anthropogenic impacts on changes in summer extreme precipitation over China during 1961–2014: roles of greenhouse gases and anthropogenic aerosols. Climate Dynamics, 2023, 60, 2633-2643.	1.7	5
2841	Future population transgress climatic risk boundaries of extreme temperature and precipitation. Environmental Research Communications, 2022, 4, 081001.	0.9	4
2842	Pacific Equatorial Undercurrent: Mean state, sources, and future changes across models. Frontiers in Climate, 0, 4, .	1.3	1
2843	Greenhouse-gas forced changes in the Atlantic meridional overturning circulation and related worldwide sea-level change. Climate Dynamics, 2023, 60, 2003-2039.	1.7	7
2844	Modulation of the Predictability of the East Asian Summer Monsoon by the Interdecadal Pacific Oscillation. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	3
2845	Tracking the Effects of Climate Change on the Distribution of Plecia nearctica (Diptera, Bibionidae) in the USA Using MaxEnt and GIS. Diversity, 2022, 14, 690.	0.7	1
2846	Source attribution of cloud condensation nuclei and their impact on stratocumulus clouds and radiation in the south-eastern Atlantic. Atmospheric Chemistry and Physics, 2022, 22, 10789-10807.	1.9	3
2847	What Controls the Interannual Variability of the Boreal Winter Atmospheric River Activities over the Northern Hemisphere?. Journal of Climate, 2022, 35, 7555-7573.	1.2	4

#	Article	IF	CITATIONS
2848	Incorporating uncertainty from downscaled rainfall projections into climate resilience planning in U.S. cities. Environmental Research: Infrastructure and Sustainability, 2022, 2, 045006.	0.9	1
2849	Climate Change Impacts on the Marine Cycling of Biogenic Sulfur: A Review. Microorganisms, 2022, 10, 1581.	1.6	11
2850	Intensification of Very Wet Monsoon Seasons in India Under Global Warming. Geophysical Research Letters, 2022, 49, .	1.5	9
2851	Reversed and comparable climate impacts from historical anthropogenic aerosol and GHG on global-scale tropical cyclone genesis potential. Environmental Research Letters, 2022, 17, 094027.	2.2	4
2853	Future Changes of the Eddy Moisture Convergence in Winter over Coastal Lands in Eastern North America and East Asia. Journal of Geophysical Research D: Atmospheres, 0, , .	1.2	0
2854	Projected changes in thermal bioclimatic indicators over the Middle East and North Africa under Paris climate agreement. Stochastic Environmental Research and Risk Assessment, 2023, 37, 577-594.	1.9	20
2855	The Relation Between the Latitudinal Shifts of Midlatitude Diabatic Heating, Eddy Heat Flux, and the Eddyâ€Driven Jet in CMIP6 Models. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	1
2856	Forced changes in El Niño–Southern Oscillation due to global warming and the associated uncertainties in ACCESS-ESM1.5 large ensembles. Frontiers in Climate, 0, 4, .	1.3	1
2857	Climate change expected to improve digestive rate and trigger range expansion in outbreaking locusts. Ecological Monographs, 2023, 93, .	2.4	5
2858	A high-resolution projected climate dataset for Vietnam: Construction and preliminary application in assessing future change. Journal of Water and Climate Change, 2022, 13, 3379-3399.	1.2	3
2859	Impacts of the PMIP4 ice sheets on Northern Hemisphere climate during the last glacial period. Climate Dynamics, 0, , .	1.7	1
2860	The effect of climate change on <scp>Arctoâ€√ertiary</scp> Mexican beech forests: Exploring their past, present, and future distribution. Ecology and Evolution, 2022, 12, .	0.8	6
2861	Increased extreme swings of Atlantic intertropical convergence zone in a warming climate. Nature Climate Change, 2022, 12, 828-833.	8.1	7
2862	Comparison between CMIP5 and CMIP6 Models over MENA Region Using Historical Simulations and Future Projections. Sustainability, 2022, 14, 10375.	1.6	25
2863	ENSO atmospheric feedbacks under global warming and their relation to mean-state changes. Climate Dynamics, 2023, 60, 2613-2631.	1.7	6
2864	Modeling Global Carbon Costs of Plant Nitrogen and Phosphorus Acquisition. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	13
2865	A short note on the use of daily climate data to calculate Humidex heatâ€stress indices. International Journal of Climatology, 2023, 43, 837-849.	1.5	5
2866	FOCI-MOPS v1 – integration of marine biogeochemistry within the Flexible Ocean and Climate Infrastructure version 1 (FOCI 1) Earth system model. Geoscientific Model Development, 2022, 15, 5987-6024.	1.3	6

#	Article	IF	CITATIONS
2867	Future projections of extreme temperature events in Southwest China using nine models in CMIP6. Frontiers in Earth Science, $0,10,10$	0.8	3
2868	Climate nonlinearities: selection, uncertainty, projections, and damages. Environmental Research Letters, 2022, 17, 084025.	2.2	2
2869	Multiyear ENSO Dynamics as Revealed in Observations, Climate Model Simulations, and the Linear Recharge Oscillator. Journal of Climate, 2022, 35, 7625-7642.	1.2	4
2870	气候å•̃化ä¸∢陆地产氧é‡å•̃化. SCIENTIA SINICA Terrae, 2022, 52, 2166-2180.	0.1	1
2871	Emerging Themes and Future Directions of Multi-Sector Nexus Research and Implementation. Frontiers in Environmental Science, 0, 10, .	1.5	6
2872	Projected Changes and Time of Emergence of Temperature Extremes Over Australia in CMIP5 and CMIP6. Earth's Future, 2022, 10, .	2.4	3
2873	Acute climate risks in the financial system: examining the utility of climate model projections. , 2022, 1, 025002.		6
2874	The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment, 2022, 3, .	2.6	605
2875	Impact of climate change on site characteristics of eight major astronomical observatories using high-resolution global climate projections until 2050. Astronomy and Astrophysics, 2022, 665, A149.	2.1	5
2876	Improved skill of Coupled Model Intercomparison Project phase 6 over phase 5 models in reproducing weather regimes in East Asia. International Journal of Climatology, 0, , .	1.5	0
2877	Projected dry/wet regimes in China using <scp>SPEI</scp> under four <scp>SSPâ€RCPs</scp> based on statistically downscaled <scp>CMIP6</scp> data. International Journal of Climatology, 2022, 42, 9357-9384.	1.5	4
2878	Errors in Simple Climate Model Emulations of Past and Future Global Temperature Change. Geophysical Research Letters, 2022, 49, .	1.5	4
2879	Summertime Rossby waves in climate models: substantial biases in surface imprint associated with small biases in upper-level circulation. Weather and Climate Dynamics, 2022, 3, 905-935.	1.2	5
2880	Centennial Memory of the Arctic Ocean for Future Arctic Climate Recovery in Response to a Carbon Dioxide Removal. Earth's Future, 2022, 10, .	2.4	5
2881	Intermittent Behavior in the AMOCâ€AMV Relationship. Geophysical Research Letters, 2022, 49, .	1.5	3
2882	How the CMIP6 climate models project the historical terrestrial GPP in China. International Journal of Climatology, 2022, 42, 9449-9461.	1.5	5
2883	Warming Climate and Elevated CO2 Will Enhance Future Winter Wheat Yields in North China Region. Atmosphere, 2022, 13, 1275.	1.0	3
2884	On the Effect of Historical SST Patterns on Radiative Feedback. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	24

#	Article	IF	Citations
2885	Deciphering China's Complex Pattern of Summer Precipitation Trends. Earth's Future, 2022, 10, .	2.4	3
2886	Potential of breadfruit cultivation to contribute to climate-resilient low latitude food systems., 2022, 1, e0000062.		4
2887	Influences of El Niño–Southern Oscillation on summertime ozone pollution over central-eastern China during 1950–2014. Environmental Science and Pollution Research, 0, , .	2.7	0
2888	Model-Based Yield Gap Assessment in Nepal's Diverse Agricultural Landscape. Land, 2022, 11, 1355.	1.2	2
2889	Evaluation of atmospheric circulations for dynamic downscaling in CMIP6 models over East Asia. Climate Dynamics, 2023, 60, 2437-2458.	1.7	1
2890	Showcasing MESMERâ€X: Spatially resolved emulation of annual maximum temperatures of Earth System Models. Geophysical Research Letters, 0, , .	1.5	5
2891	Decadal Prediction of Marine Heatwaves in MPIâ€ESM. Geophysical Research Letters, 2022, 49, .	1.5	7
2892	Multiâ€season climate projections forecast declines in migratory monarch butterflies. Global Change Biology, 2022, 28, 6135-6151.	4.2	9
2893	Climate impact emergence and flood peak synchronization projections in the Ganges, Brahmaputra and Meghna basins under CMIP5 and CMIP6 scenarios. Environmental Research Letters, 2022, 17, 094036.	2.2	1
2894	Relations of Enhanced Highâ€Latitude Concurrent Blockings With Recent Warm Arcticâ€Cold Continent Patterns. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	7
2895	The Role of Midâ€latitude Westerly Jet in the Impacts of November Ural Blocking on Earlyâ€Winter Warmer Arcticâ€Colder Eurasia Pattern. Geophysical Research Letters, 2022, 49, .	1.5	7
2896	A Transition Towards an Unusually Wet Condition Will Not Alleviate Water Scarcity Risk in Xinjiang, China. AGU Advances, 2022, 3, .	2.3	1
2897	Antarctic Peninsula warming triggers enhanced basal melt rates throughout West Antarctica. Science Advances, 2022, 8, .	4.7	20
2898	Variations in terrestrial oxygen sources under climate change. Science China Earth Sciences, 2022, 65, 1810-1823.	2.3	4
2899	Madden–Julian Oscillation-induced extreme rainfalls constrained by global warming mitigation. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	3
2900	Twenty-five years of the IPCC Data Distribution Centre at the DKRZ and the Reference Data Archive for CMIP data. Geoscientific Model Development, 2022, 15, 6047-6058.	1.3	2
2901	Mechanisms of a Meteorological Drought Onset: Summer 2020 to Spring 2021 in Southwestern North America. Journal of Climate, 2022, 35, 7367-7385.	1.2	8
2902	Future projections of daily maximum and minimum temperatures over East Asia for the carbon neutrality period of 2050-2060. Theoretical and Applied Climatology, 2022, 150, 203-213.	1.3	2

#	Article	IF	CITATIONS
2903	Global sensitivity analysis using the ultra″ow resolution Energy Exascale Earth System Model. Journal of Advances in Modeling Earth Systems, 0, , .	1.3	0
2904	Predicting the northward expansion of tropical lineage Rhipicephalus sanguineus sensu lato ticks in the United States and its implications for medical and veterinary health. PLoS ONE, 2022, 17, e0271683.	1.1	8
2905	Improved teleconnection between Arctic sea ice and the North Atlantic Oscillation through stochastic process representation. Weather and Climate Dynamics, 2022, 3, 951-975.	1.2	6
2906	Impact of climate change on nearly zero-energy dwelling in temperate climate: Time-integrated discomfort, HVAC energy performance, and GHG emissions. Building and Environment, 2022, 223, 109397.	3.0	27
2907	Past and future terrestrial water storage changes in the lower Mekong River basin: The influences of climatic and non-climatic factors. Journal of Hydrology, 2022, 612, 128275.	2.3	3
2908	Robustness of BSISO and air-sea interactions in the CMIP (Phase-6) models over the North Indian Ocean. Dynamics of Atmospheres and Oceans, 2022, 99, 101316.	0.7	4
2909	Future changes in extreme precipitation from 1.0°C more warming in the Tienshan Mountains, Central Asia. Journal of Hydrology, 2022, 612, 128269.	2.3	8
2910	How explosive volcanic eruptions reshape daily precipitation distributions. Weather and Climate Extremes, 2022, 37, 100489.	1.6	2
2911	Seasonality and Variability of Snowfall to Total Precipitation Ratio over High Mountain Asia Simulated by the GFDL High-Resolution AM4. Journal of Climate, 2022, 35, 5573-5589.	1.2	6
2912	Evolution of Uncertainty in Terrestrial Carbon Storage in Earth System Models from CMIP5 to CMIP6. Journal of Climate, 2022, 35, 5483-5499.	1.2	14
2913	ENSO Asymmetry in CMIP6 Models. Journal of Climate, 2022, 35, 5555-5572.	1.2	8
2914	Projection of suitability for the typical agro-ecological types in Central Asia under four SSP-RCP scenarios. European Journal of Agronomy, 2022, 140, 126599.	1.9	6
2915	A case for object capabilities as the foundation of a distributed environmental model and simulation infrastructure. Environmental Modelling and Software, 2022, 156, 105471.	1.9	1
2916	Future changes in drought over Central Asia under CMIP6 forcing scenarios. Journal of Hydrology: Regional Studies, 2022, 43, 101191.	1.0	8
2917	The capability of CMIP6 models on seasonal precipitation extremes over Central Asia. Atmospheric Research, 2022, 278, 106364.	1.8	9
2918	Surface air temperature changes over the Tibetan Plateau: Historical evaluation and future projection based on CMIP6 models. Geoscience Frontiers, 2022, 13, 101452.	4.3	8
2919	How well do the CMIP6 HighResMIP models simulate precipitation over the Tibetan Plateau?. Atmospheric Research, 2022, 279, 106393.	1.8	9
2920	Projections of Hydroclimatic Extremes in Southeast Alaska under the RCP8.5 Scenario. Earth Interactions, 2022, 26, 180-194.	0.7	3

#	Article	IF	CITATIONS
2921	Evaluation of the interannual variability in the East Asian summer monsoon in AMIP and historical experiments of CAS FGOALS-f3-L. Atmospheric and Oceanic Science Letters, 2022, , 100275.	0.5	0
2922	CMIP6 GCM ensemble members versus global surface temperatures. Climate Dynamics, 2023, 60, 3091-3120.	1.7	16
2923	Diazotrophy as a key driver of the response of marine net primary productivity to climate change. Biogeosciences, 2022, 19, 4267-4285.	1.3	13
2924	Glacial state of the global carbon cycle: time-slice simulations for the last glacial maximum with an Earth-system model. Climate of the Past, 2022, 18, 1997-2019.	1.3	3
2926	Downscaling approaches of climate change projections for watershed modeling: Review of theoretical and practical considerations., 2022, 1, e0000046.		10
2927	Suppressed Atlantic Niño/Niña variability under greenhouse warming. Nature Climate Change, 2022, 12, 814-821.	8.1	14
2928	Positive feedback mechanism between biogenic volatile organic compounds and the methane lifetime in future climates. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	6
2930	Assessment of CMIP6 models' performance in simulating present-day climate in Brazil. Frontiers in Climate, 0, 4, .	1.3	10
2931	Evolution of land surface feedbacks on extreme heat: Adapting existing coupling metrics to a changing climate. Frontiers in Environmental Science, 0, 10, .	1.5	7
2932	Changes in mean and extreme climate in southern South America under global warming of 1.5°C, 2°C, and 3°C. Theoretical and Applied Climatology, 2022, 150, 787-803.	1.3	5
2934	Projecting Future Precipitation in the Yellow River Basin Based on CMIP6 Models. Journal of Applied Meteorology and Climatology, 2022, 61, 1399-1417.	0.6	3
2935	Improvement of evapotranspiration simulation in a physically based ecohydrological model for the groundwater–soil–plant–atmosphere continuum. Journal of Hydrology, 2022, 613, 128440.	2.3	5
2936	Climate change on Eucalyptus plantations and adaptive measures for sustainable forestry development across Brazil. Industrial Crops and Products, 2022, 188, 115538.	2.5	14
2937	Recommendations for the formulation of grazing in marine biogeochemical and ecosystem models. Progress in Oceanography, 2022, 208, 102878.	1.5	5
2938	Estimating the global technical potential of building-integrated solar energy production using a high-resolution geospatial model. Journal of Cleaner Production, 2022, 375, 134133.	4.6	10
2939	Hourly water-carbon interactions modulate decadal water-use efficiency trends inferred from ecosystem-scale measurements. Agricultural and Forest Meteorology, 2022, 326, 109158.	1.9	3
2940	TIMCOM model datasets for the CMIP6 Ocean Model Intercomparison Project. Ocean Modelling, 2022, 179, 102109.	1.0	1
2941	Evaluation of the CAMS-CSM Model in predicting a Northeast Cold Vortex Event at the early Onset of 2020 Mei-yu season. Atmospheric Research, 2022, 280, 106430.	1.8	1

#	Article	IF	CITATIONS
2942	Slightly enhanced drought in the Yellow River Basin under future warming scenarios. Atmospheric Research, 2022, 280, 106423.	1.8	5
2943	Detection and attribution of extreme precipitation events over the Asian monsoon region. Weather and Climate Extremes, 2022, 38, 100497.	1.6	8
2944	Evaluation of the simulated aerosol optical properties over India: COALESCE model inter-comparison of three GCMs with ground and satellite observations. Science of the Total Environment, 2022, 852, 158442.	3.9	2
2945	Climatology and trends of wintertime diurnal temperature range over East Asia in CMIP6 models: Evaluation and attribution. Atmospheric Research, 2022, 280, 106438.	1.8	4
2946	High emissions could increase the future risk of maize drought in China by 60–70 %. Science of the Total Environment, 2022, 852, 158474.	3.9	20
2947	Observed and CMIP6 simulated occurrence and intensity of compound agroclimatic extremes over maize harvested areas in China. Weather and Climate Extremes, 2022, 38, 100503.	1.6	4
2948	A spatiotemporal stochastic climate model for benchmarking causal discovery methods for teleconnections. , 2022, 1, .		2
2949	Climate Change and the Increase of Extreme Events in Azores. Climate Change Management, 2022, , 349-365.	0.6	O
2950	Aerosol–climate modeling. , 2022, , 187-248.		0
2951	Future Projections of Atmospheric Icing in Norway. SSRN Electronic Journal, 0, , .	0.4	O
2952	Anthropogenic Emissions of Reactive Compounds in the Mediterranean Region. , 2022, , 79-103.		5
2953	Historical changes in aerosol., 2022,, 249-297.		0
2954	Snow redistribution onto young sea ice: Observations and implications for climate models. Elementa, 2022, 10, .	1.1	3
2955	Cascading effects augment the direct impact of CO2 on phytoplankton growth in a biogeochemical model. Elementa, 2022, 10 , .	1.1	2
2956	Effects of Temperature Variability on Global, Regional, and National Incidence Rates of Meningitis. SSRN Electronic Journal, 0, , .	0.4	0
2957	Current and Future Tropical Cyclone Wind Risk in the Small Island Developing States. Hurricane Risk B, 2022, , 121-142.	0.1	3
2958	Chapter 3. Negative Emissions: The Role and Response of the Climate System. RSC Energy and Environment Series, 2022, , 27-56.	0.2	1
2959	Changes in dust emissions in the Gobi Desert due to global warming using MRI-ESM2.0. Scientific Online Letters on the Atmosphere, 2022, , .	0.6	1

#	Article	IF	CITATIONS
2960	Hydrological risk of dam failure under climate change. Revista Brasileira De Recursos Hidricos, 0, 27, .	0.5	0
2961	Biases of the Mean and Shape Properties in CMIP6 Extreme Precipitation Over Central Asia. Frontiers in Earth Science, 0, 10 , .	0.8	2
2962	Contributions of Climate Changes in Temperature and Salinity to the Formation of North Atlantic Thermohaline Circulation Trends in 1951–2017. Moscow University Physics Bulletin (English) Tj ETQq0 0 0 rgBT	⁄© ¥erlock	4 0 Tf 50 65
2963	Statistical Aspects of Quantitative Estimation of Polar Amplification. Part 1: The Ratio of Trends. Russian Meteorology and Hydrology, 2022, 47, 419-427.	0.2	2
2964	Projecting the Potential Evapotranspiration of Egypt Using a High-Resolution Regional Climate Model (RegCM4). , 0, , .		6
2965	The Seasonal-to-Multiyear Large Ensemble (SMYLE) prediction system using the Community Earth System Model version 2. Geoscientific Model Development, 2022, 15, 6451-6493.	1.3	12
2967	gdess: A framework for evaluating simulated atmospheric CO2 in Earth System Models. Journal of Open Source Software, 2022, 7, 4326.	2.0	0
2968	Is Anthropogenic Global Warming Accelerating?. Journal of Climate, 2022, 35, 7873-7890.	1.2	13
2969	Changes in temperature–precipitation correlations over Europe: are climate models reliable?. Climate Dynamics, 2023, 60, 2713-2733.	1.7	12
2970	Impact of Saharan dust on landfalling North Atlantic tropical cyclones over North America in September. Atmospheric and Oceanic Science Letters, 2023, 16, 100276.	0.5	1
2971	Evaluating the Influence of CAM5 Aerosol Configuration on Simulated Tropical Cyclones in the North Atlantic. Climate, 2022, 10, 130.	1.2	0
2972	Atmospheric forcing dominates winter Barents-Kara sea ice variability on interannual to decadal time scales. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
2973	Atmospheric Circulation Constraints on 21st Century Seasonal Precipitation Storylines for the Southwestern United States. Geophysical Research Letters, 2022, 49, .	1.5	4
2975	Evaluation of the CMIP6 Performance in Simulating Precipitation in the Amazon River Basin. Climate, 2022, 10, 122.	1.2	9
2976	Temperatures of Anvil Clouds and Radiative Tropopause in a Wide Array of Cloud-Resolving Simulations. Journal of Climate, 2022, 35, 8065-8078.	1.2	1
2977	Climate Feedback to Stratospheric Aerosol Forcing: The Key Role of the Pattern Effect. Journal of Climate, 2022, 35, 7903-7917.	1.2	4
2978	Soil Carbon Losses Reduce Soil Moisture in Global Climate Model Simulations. Earth Interactions, 2022, 26, 195-208.	0.7	1
2979	On the Effects of Mixed and Deep Ocean Layers on Climate Change and Variability. Journal of Marine Science and Engineering, 2022, 10, 1216.	1.2	O

#	Article	IF	Citations
2980	Greenland ice sheet climate disequilibrium and committed sea-level rise. Nature Climate Change, 2022, 12, 808-813.	8.1	40
2981	Decadal Change of the Linkage between Sea Ice over the Barents-Kara Seas in November-December and the Stratospheric Polar Vortex in Subsequent January. Journal of Meteorological Research, 2022, 36, 601-617.	0.9	3
2982	An exponential-interval sampling method for evaluating equilibrium climate sensitivity via reducing internal variability noise. Geoscience Letters, 2022, 9, .	1.3	1
2983	Optimizing the Land Use and Land Cover Pattern to Increase Its Contribution to Carbon Neutrality. Remote Sensing, 2022, 14, 4751.	1.8	17
2985	Detailing cloud property feedbacks with a regime-based decomposition. Climate Dynamics, 2023, 60, 2983-3003.	1.7	3
2986	Midlatitude jet position spread linked to atmospheric convective types. Journal of Climate, 2022, , 1-44.	1.2	3
2987	Attributing observed permafrost warming in the northern hemisphere to anthropogenic climate change. Environmental Research Letters, 2022, 17, 095014.	2.2	4
2988	ClimateBench v1.0: A benchmark for dataâ€driven climate projections. Journal of Advances in Modeling Earth Systems, 0, , .	1.3	11
2989	Termite sensitivity to temperature affects global wood decay rates. Science, 2022, 377, 1440-1444.	6.0	41
2990	Long-term evolution of ocean eddy activity in a warming world. Nature Climate Change, 2022, 12, 910-917.	8.1	25
2992	A Realistic Projection of Climate Change in the Upper Atmosphere Into the 21st Century. Geophysical Research Letters, 2022, 49, .	1.5	7
2993	CMIP6 projections of ocean warming and the impact on dimethylsulfide emissions from the Great Barrier Reef, Australia. Frontiers in Marine Science, 0, 9, .	1.2	1
2994	Predicting potential global and future distributions of the African armyworm (Spodoptera exempta) using species distribution models. Scientific Reports, 2022, 12, .	1.6	1
2995	Cloud Response Is Significantly Biased by CMIP6 Over the Tibetan Plateau. Geophysical Research Letters, 2022, 49, .	1.5	5
2996	Anthropogenic aerosol and cryosphere changes drive Earth's strong but transient clear-sky hemispheric albedo asymmetry. Communications Earth & Environment, 2022, 3, .	2.6	2
2997	How do coupled models represent the African Easterly Jets and their associated dynamics over Central Africa during the September–November rainy season?. Climate Dynamics, 2023, 60, 2907-2929.	1.7	2
2998	Future Projections and Uncertainties of CMIP6 for Hydrological Indicators and Their Discrepancies from CMIP5 over South Korea. Water (Switzerland), 2022, 14, 2926.	1.2	5
2999	Evaluating Long-Term Variability of the Arctic Stratospheric Polar Vortex Simulated by CMIP6 Models. Remote Sensing, 2022, 14, 4701.	1.8	2

#	ARTICLE	IF	Citations
3000	Performance of CMIP6 models in simulating the dynamic sea level: Mean and interannual variance. Atmospheric and Oceanic Science Letters, 2023, 16, 100288.	0.5	3
3001	Increases in the temperature seasonal cycle indicate long-term drying trends in Amazonia. Communications Earth & Environment, 2022, 3, .	2.6	5
3002	Decomposition of Fast and Slow Cloud Responses to Quadrupled CO2 Forcing in BCC-AGCM2.0 over East Asia. Advances in Atmospheric Sciences, 0, , .	1.9	2
3003	The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). I. Dry Casesâ€"The Fellowship of the GCMs. Planetary Science Journal, 2022, 3, 211.	1.5	25
3004	The Copernicus Climate Change Service: Climate Science in Action. Bulletin of the American Meteorological Society, 2022, 103, E2669-E2687.	1.7	13
3005	Cloud and Surface Albedo Feedbacks Reshape 21st Century Warming in Successive Generations of An Earth System Model. Geophysical Research Letters, 2022, 49, .	1.5	3
3006	Lake Ice Will Be Less Safe for Recreation and Transportation Under Future Warming. Earth's Future, 2022, 10, .	2.4	7
3008	Evaluation and Projection of Surface PM2.5 and Its Exposure on Population in Asia Based on the CMIP6 GCMs. International Journal of Environmental Research and Public Health, 2022, 19, 12092.	1.2	3
3009	Using Ice Cores to Evaluate CMIP6 Aerosol Concentrations Over the Historical Era. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	3
3010	Global decline of pelagic fauna in a warmer ocean. Nature Climate Change, 2022, 12, 928-934.	8.1	17
3011	Of Atlantic Meridional Overturning Circulation in the CMIP6 Project. Deep-Sea Research Part II: Topical Studies in Oceanography, 2022, 206, 105193.	0.6	7
3012	Heatwave–blocking relation change likely dominates over decrease in blocking frequency under global warming. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	9
3013	Rapid changes in heatwaves pose dual challenge in Eastern China and its adjacent seas. Frontiers in Marine Science, 0, 9, .	1.2	1
3014	Downscaling multi-model climate projection ensembles with deep learning (DeepESD): contribution to CORDEX EUR-44. Geoscientific Model Development, 2022, 15, 6747-6758.	1.3	12
3015	Compensating Errors in Cloud Radiative and Physical Properties over the Southern Ocean in the CMIP6 Climate Models. Advances in Atmospheric Sciences, 2022, 39, 2156-2171.	1.9	8
3016	Representation of the Mozambique channel trough and its link to southern African rainfall in CMIP6 models. Climate Dynamics, 0, , .	1.7	2
3017	Robust evidence for reversal of the trend in aerosol effective climate forcing. Atmospheric Chemistry and Physics, 2022, 22, 12221-12239.	1.9	33
3018	Ningaloo Niño/Niña in CMIP6 Models: Characteristics, Mechanisms, and Climate Impacts. Geophysical Research Letters, 2022, 49, .	1.5	1

#	ARTICLE	IF	CITATIONS
3019	Contrasting Fate of Western Third Pole's Water Resources Under 21st Century Climate Change. Earth's Future, 2022, 10, .	2.4	17
3020	Correcting ozone biases in a global chemistry–climate model: implications for future ozone. Atmospheric Chemistry and Physics, 2022, 22, 12543-12557.	1.9	6
3021	Further improvement and evaluation of nudging in the E3SM Atmosphere Model version 1 (EAMv1): simulations of the mean climate, weather events, and anthropogenic aerosol effects. Geoscientific Model Development, 2022, 15, 6787-6816.	1.3	3
3022	Multivariate bias corrections of CMIP6 model simulations of compound dry and hot events across China. Environmental Research Letters, 2022, 17, 104005.	2.2	6
3023	Drivers and distribution of global ocean heat uptake over the last half century. Nature Communications, 2022, 13, .	5.8	14
3024	Evaluation of Soil Moisture in CMIP6 Multimodel Simulations Over Conterminous China. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	5
3026	Climate change impacts the vertical structure of marine ecosystem thermal ranges. Nature Climate Change, 2022, 12, 935-942.	8.1	10
3027	Role of Interhemispheric Heat Transport and Global Atmospheric Cooling in Multidecadal Trends of Northern Hemisphere Precipitation. Geophysical Research Letters, 2022, 49, .	1.5	0
3028	Diminishing seasonality of subtropical water availability in a warmer world dominated by soil moisture–atmosphere feedbacks. Nature Communications, 2022, 13, .	5.8	14
3029	Effectiveness of causality-based predictor selection for statistical downscaling: a case study of rainfall in an Ecuadorian Andes basin. Theoretical and Applied Climatology, 2022, 150, 987-1013.	1.3	1
3030	Evaluation of Present-Day CMIP6 Model Simulations of Extreme Precipitation and Temperature over the Australian Continent. Atmosphere, 2022, 13, 1478.	1.0	5
3031	Projection of future climate change in the Poyang Lake Basin of China under the global warming of 1.5–3°C. Frontiers in Environmental Science, 0, 10, .	1.5	1
3033	Future Projections of Extreme Precipitation Climate Indices over South America Based on CORDEX-CORE Multimodel Ensemble. Atmosphere, 2022, 13, 1463.	1.0	12
3034	The roadmap of climate models. Nature Computational Science, 2022, 2, 536-538.	3.8	3
3035	Influences of Antarctic Ozone Depletion on Southern Ocean Aerosols. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	4
3036	Present and Future Changes in Winter Cyclonic Activity in the Mediterranean–Black Sea Region in the 21st Century Based on an Ensemble of CMIP6 Models. Atmosphere, 2022, 13, 1573.	1.0	0
3037	Prediction of Multi-Scale Meteorological Drought Characteristics over the Yangtze River Basin Based on CMIP6. Water (Switzerland), 2022, 14, 2996.	1.2	7
3038	An artificial intelligence reconstruction of global gridded surface winds. Science Bulletin, 2022, 67, 2060-2063.	4.3	2

#	Article	IF	CITATIONS
3039	A Quantitative Analysis of the Source of Interâ€Model Spread in Arctic Surface Warming Response to Increased CO ₂ Concentration. Geophysical Research Letters, 2022, 49, .	1.5	5
3040	Reduction in Nearâ€6urface Wind Speeds With Increasing CO ₂ May Worsen Winter Air Quality in the Indoâ€Gangetic Plain. Geophysical Research Letters, 2022, 49, .	1.5	2
3041	Projections of future precipitation and air temperature over the Tibetan Plateau based on Coupled Model Intercomparison Project Phase 6 multimodel ensembles. International Journal of Climatology, 2022, 42, 9788-9822.	1.5	3
3042	Changes in Early Summer Precipitation Characteristics Over South China and Taiwan: CESM2‣E and CMIP6 Multiâ€Model Simulations and Projections. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	2
3044	Projected changes in early summer ridging and drought over the Central Plains. Environmental Research Letters, 2022, 17, 104020.	2.2	1
3045	Is natural variability really natural? The case of Atlantic Multidecadal Oscillation investigated by a neural network model. Theoretical and Applied Climatology, 2022, 150, 881-892.	1.3	2
3046	Projections of moisture conditions in the Sevastopol region for grapes growing. RUDN Journal of Ecology and Life Safety, 2022, 30, 300-311.	0.0	0
3048	Tracking the impacts of precipitation phase changes through the hydrologic cycle in snowy regions: From precipitation to reservoir storage. Frontiers in Earth Science, 0, 10, .	0.8	2
3049	High Resolution Future Projections of Drought Characteristics in Greece Based on SPI and SPEI Indices. Atmosphere, 2022, 13, 1468.	1.0	9
3050	Characteristics of the Turkana low-level jet stream and the associated rainfall in CMIP6 models. Climate Dynamics, 0, , .	1.7	4
3051	Impact of Grids and Dynamical Cores in CESM2.2 on the Surface Mass Balance of the Greenland Ice Sheet. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	5
3052	Improved representativeness of simulated climate using natural units and monthly resolution. Frontiers in Climate, 0, 4, .	1.3	1
3053	Analog data assimilation for the selection of suitable general circulation models. Geoscientific Model Development, 2022, 15, 7203-7220.	1.3	1
3054	Evaluation of tropical water vapour from CMIP6 global climate models using the ESA CCI Water Vapour climate data records. Atmospheric Chemistry and Physics, 2022, 22, 12591-12606.	1.9	2
3055	Apportionment of the Preâ€Industrial to Presentâ€Day Climate Forcing by Methane using UKESM1: The role of the cloud radiative effect. Journal of Advances in Modeling Earth Systems, 0, , .	1.3	4
3056	Hadley Cell Edge Modulates the Role of Ekman Heat Flux in a Future Climate. Geophysical Research Letters, 2022, 49, .	1.5	0
3057	Sahel Rainfall Projections Constrained by Past Sensitivity to Global Warming. Geophysical Research Letters, 2022, 49, .	1.5	2
3058	Improvements in the relationship between tropical precipitation and sea surface temperature from CMIP5 to CMIP6. Climate Dynamics, 2023, 60, 3319-3337.	1.7	7

#	ARTICLE	IF	Citations
3059	A Bayesian Attribution Analysis of Extreme Temperature Changes at Global and Regional Scales. Journal of Climate, 2022, 35, 8189-8203.	1.2	1
3060	A Numerical reassessment of the Gulf of Mexico carbon system in connection with the Mississippi River and global ocean. Biogeosciences, 2022, 19, 4589-4618.	1.3	0
3061	Marginal ice zone dynamics: future research perspectives and pathways. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, .	1.6	5
3062	Continued Warming of the Permafrost Regions Over the Northern Hemisphere Under Future Climate Change. Earth's Future, 2022, 10, .	2.4	5
3063	Teleconnection Patterns of Different El Ni $\tilde{A}\pm$ o Types Revealed by Climate Network Curvature. Geophysical Research Letters, 2022, 49, .	1.5	3
3064	Exploration of Atmosphereâ€Only Model Deficiencies in Reproducing the 1992–2011 Pacific Trade Wind Acceleration. Geophysical Research Letters, 2022, 49, .	1.5	0
3065	Systematic Climate Model Biases in the Largeâ€Scale Patterns of Recent Seaâ€Surface Temperature and Seaâ€Level Pressure Change. Geophysical Research Letters, 2022, 49, .	1.5	54
3066	Multi-Scenario Simulation of Land Use Carbon Emissions from Energy Consumption in Shenzhen, China. Land, 2022, 11, 1673.	1.2	10
3068	Climate change may outpace current wheat breeding yield improvements in North America. Nature Communications, 2022, 13, .	5.8	17
3069	Winter Orographic Precipitation and ENSO in Sapporo, Japan. Atmosphere, 2022, 13, 1413.	1.0	0
3070	More accurate specification of water supply shows its importance for global crop production. Nature Food, 2022, 3, 753-763.	6.2	20
3071	Downwind control of oceanic air by land: the land wake and its sensitivity to CO ₂ . Environmental Research Letters, 0, , .	2.2	0
3072	Polar amplification comparison among Earth's three poles under different socioeconomic scenarios from CMIP6 surface air temperature. Scientific Reports, 2022, 12, .	1.6	9
3073	Projected Changes in Increased Drought Risks Over South Asia Under a Warmer Climate. Earth's Future, 2022, 10, .	2.4	22
3074	Evaluation of soil carbon simulation in CMIP6 Earth system models. Biogeosciences, 2022, 19, 4671-4704.	1.3	15
3075	Evaluation of CMIP6 GCMs Over the CONUS for Downscaling Studies. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	11
3076	Predicting the potential suitable habitats of genus Nymphaea in India using MaxEnt modeling. Environmental Monitoring and Assessment, 2022, 194, .	1.3	5
3077	Cloud Climatologies from Global Climate Modelsâ€"A Comparison of CMIP5 and CMIP6 Models with Satellite Data. Journal of Climate, 2023, 36, 281-311.	1.2	4

#	Article	IF	CITATIONS
3078	The Contribution of Climate Change to Increasing Extreme Ocean Warming Around Japan. Geophysical Research Letters, 2022, 49, .	1.5	4
3079	Amplification of the Temperature Seasonality in the Mediterranean Region Under Anthropogenic Climate Change. Geophysical Research Letters, 2022, 49, .	1.5	7
3080	Tropospheric Expansion Under Global Warming Reduces Tropical Lower Stratospheric Ozone. Geophysical Research Letters, 2022, 49, .	1.5	6
3081	Implications of future climate change on crop and irrigation water requirements in a semi-arid river basin using CMIP6 GCMs. Journal of Arid Land, 2022, 14, 1234-1257.	0.9	8
3082	Evaluation of Ocean Biogeochemistry and Carbon Cycling in CMIP Earth System Models With the International Ocean Model Benchmarking (IOMB) Software System. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	11
3083	The strong role of external forcing in seasonal forecasts of European summer temperature. Environmental Research Letters, 2022, 17, 104033.	2.2	5
3084	Coupled Model Intercomparison Project Phase 6 simulations of the spatial structure of rainfall variability over East Africa: Evaluation and projection. International Journal of Climatology, 2022, 42, 9865-9885.	1.5	6
3085	Assessment of the impact of climate change on urban flooding: A case study of Beijing, China. Journal of Water and Climate Change, 2022, 13, 3692-3715.	1.2	12
3086	Clean air policies are key for successfully mitigating Arctic warming. Communications Earth & Environment, 2022, 3, .	2.6	9
3087	Investigating future changes in precipitation interannual variability and extremes over southern China. International Journal of Climatology, 2023, 43, 914-931.	1.5	3
3088	How do value-judgements enter model-based assessments of climate sensitivity?. Climatic Change, 2022, 174, .	1.7	5
3089	How Well Can Current Climate Models Simulate the Connection of the Early Spring Aleutian Low to the Following Winter ENSO?. Journal of Climate, 2023, 36, 603-624.	1.2	0
3090	Projected changes in mean annual cycle of temperature and precipitation over the Czech Republic: Comparison of CMIP5 and CMIP6. Frontiers in Earth Science, 0, 10, .	0.8	3
3091	Using CMIP6 Models to Assess the Significance of the Observed Trend in the Atlantic Meridional Overturning Circulation. Geophysical Research Letters, 2022, 49, .	1.5	2
3092	Projection of precipitation extremes in China's mainland based on the statistical downscaled data from 27 GCMs in CMIP6. Atmospheric Research, 2022, 280, 106462.	1.8	10
3093	Application of bias corrected FGOALS-g3 model products for detecting changes in extreme precipitation in the Tienshan Mountains, Central Asia. Atmospheric Research, 2022, 280, 106455.	1.8	0
3094	Evaluation of extreme precipitation climate indices and their projected changes for Brazil: From CMIP3 to CMIP6. Weather and Climate Extremes, 2022, 38, 100511.	1.6	21
3095	The empirical analysis of climate change impacts and adaptation in agriculture. Handbook of Agricultural Economics, 2021, , 3981-4073.	0.9	12

#	Article	IF	CITATIONS
3096	CORDEX Southeast Asia: Providing Regional Climate Change Information for Enabling Adaptation. , 2022, , 3-21.		2
3098	ã,¹ãƒ©ãƒ—æµ∙æ´‹çµå•å¨ç∮å∰æ°—å∰徳環モデルã,'用ã¸ãŸæœ^å>ºå®šEA実铓ã∢ã,^ã,‹æ°—候å‱å‹•ã®á	å °é¢ïē ;ã®å	½±éŸ¿è©•ä
3099	Projected changes in Antarctic daily temperature in CMIP6 under different warming scenarios during two future periods. Journal of Southern Hemisphere Earth Systems Science, 2022, , .	0.7	0
3100	Mediterranean viticulture in the context of climate change. Ciencia E Tecnica Vitivinicola, 2022, 37, 139-158.	0.3	5
3101	Advancing interpretability of machine-learning prediction models. , 2022, 1, .		1
3102	Exploring Light-weight Cryptography for Efficient and Secure Lossy Data Compression. , 2022, , .		2
3103	Globally unequal effect of extreme heat on economic growth. Science Advances, 2022, 8, .	4.7	35
3104	Links between winter dust over the Tibetan Plateau and preceding autumn sea ice variability in the Barents and Kara Seas. Advances in Climate Change Research, 2022, 13, 896-908.	2.1	2
3105	Changes in IPCC Scenario Assessment Emulators Between SR1.5 and AR6 Unraveled. Geophysical Research Letters, 2022, 49, .	1.5	5
3106	Influence of Stratospheric Ozone Changes on Stratospheric Temperature Trends in Recent Decades. Remote Sensing, 2022, 14, 5364.	1.8	6
3107	Negative Storm Surges in the Elbe Estuaryâ€"Large-Scale Meteorological Conditions and Future Climate Change. Atmosphere, 2022, 13, 1634.	1.0	0
3108	Global tropospheric ozone trends, attributions, and radiative impacts in 1995–2017: an integrated analysis using aircraft (IAGOS) observations, ozonesonde, and multi-decadal chemical model simulations. Atmospheric Chemistry and Physics, 2022, 22, 13753-13782.	1.9	18
3109	Coupling Process-Based Crop Model and Extreme Climate Indicators with Machine Learning Can Improve the Predictions and Reduce Uncertainties of Global Soybean Yields. Agriculture (Switzerland), 2022, 12, 1791.	1.4	6
3110	Impact of Inclusion of the Indirect Effects of Sulfate Aerosol on Radiation and Cloudiness in the INMCM Model. Izvestiya - Atmospheric and Oceanic Physics, 2022, 58, 486-493.	0.2	4
3111	Socio-demographic factors shaping the future global health burden from air pollution. Nature Sustainability, 2023, 6, 58-68.	11.5	24
3112	A modeling framework to understand historical and projected ocean climate change in large coupled ensembles. Geoscientific Model Development, 2022, 15, 7683-7713.	1.3	3
3113	Constraining CMIP6 Projections of an Iceâ€Free Arctic Using a Weighting Scheme. Earth's Future, 2022, 10, .	2.4	4
3114	Globally Increasing Atmospheric Aridity Over the 21st Century. Earth's Future, 2022, 10, .	2.4	13

#	Article	IF	CITATIONS
3115	Rarest rainfall events will see the greatest relative increase in magnitude under future climate change. Communications Earth & Environment, 2022, 3, .	2.6	17
3116	Estimating Ocean Heat Uptake Using Boundary Green's Functions: A Perfectâ€Model Test of the Method. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	2
3117	Causes of the Extreme Drought in Late Summer–Autumn 2019 in Eastern China and Its Future Risk. Journal of Climate, 2023, 36, 1085-1104.	1.2	9
3118	Multi-year observations reveal a larger than expected autumn respiration signal across northeast Eurasia. Biogeosciences, 2022, 19, 4779-4799.	1.3	5
3119	Quantifying the Uncertainty Sources of Future Climate Projections and Narrowing Uncertainties With Bias Correction Techniques. Earth's Future, 2022, 10, .	2.4	19
3120	Multidecadal Variations in East Asian Winter Temperature Since 1880: Internal Variability Versus External Forcing. Geophysical Research Letters, 2022, 49, .	1.5	2
3121	Mangrove forests as a nature-based solution for coastal flood protection: Biophysical and ecological considerations. Water Science and Engineering, 2023, 16, 1-13.	1.4	12
3122	Ice Shelf Basal Melt Rates in the Amundsen Sea at the End of the 21st Century. Geophysical Research Letters, 2022, 49, .	1.5	9
3123	Weakened Submesoscale Eddies in the Equatorial Pacific Under Greenhouse Warming. Geophysical Research Letters, 2022, 49, .	1.5	1
3124	Increasing Hurricane Intensification Rate Near the US Atlantic Coast. Geophysical Research Letters, 2022, 49, .	1.5	13
3125	Review of the Observed Energy Flow in the Earth System. Atmosphere, 2022, 13, 1738.	1.0	0
3126	Greater Climate Sensitivity and Variability on TRAPPIST-1e than Earth. Astrophysical Journal, 2022, 938, 114.	1.6	4
3127	Reviving autoencoder pretraining. Neural Computing and Applications, 0, , .	3.2	0
3128	Projecting Changes in Rainfall Extremes for the Huai River Basin in the Context of 1.5 \hat{A}° C and 2 \hat{A}° C Global Warming. Atmosphere, 2022, 13, 1708.	1.0	1
3129	Assessment of climate change impacts on glacio-hydrological processes and their variations within critical zone. Natural Hazards, 2023, 115, 2721-2748.	1.6	4
3130	Assessing the Projected Changes in European Air Stagnation due to Climate Change. Journal of Climate, 2023, 36, 917-930.	1.2	1
3131	Dynamic Downscaling Simulation and Projection of Precipitation Extremes Over China Under a Shared Socioeconomic Pathway Scenario. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	1
3132	Projections of future air quality are uncertain. But which source of uncertainty is most important?. Journal of Geophysical Research D: Atmospheres, 0, , .	1,2	2

#	Article	IF	Citations
3133	Constraining low-frequency variability in climate projections to predict climate on decadal to multi-decadal timescales – a poor man's initialized prediction system. Earth System Dynamics, 2022, 13, 1437-1450.	2.7	7
3134	Estimating Carbon Sink Strength of Norway Spruce Forests Using Machine Learning. Forests, 2022, 13, 1721.	0.9	1
3136	Simulation Performance and Case Study of Extreme Events in Northwest China Using the BCC-CSM2 Model. Remote Sensing, 2022, 14, 4922.	1.8	3
3137	Projected Effects of Climate Change on the Energy Footprints of U.S. Drinking Water Utilities. Hydrology, 2022, 9, 182.	1.3	2
3139	Projection of Thermal Bioclimate of Egypt for the Paris Agreement Goals. Sustainability, 2022, 14, 13259.	1.6	3
3140	Future Changes in Active and Inactive Atlantic Hurricane Seasons in the Energy Exascale Earth System Model. Geophysical Research Letters, 0, , .	1.5	1
3141	Climate Change and Dispersal Ability Jointly Affects the Future Distribution of Crocodile Lizards. Animals, 2022, 12, 2731.	1.0	2
3142	Antarctic surface climate and surface mass balance in the Community Earth System Model versionÂ2 during the satellite era and into the future (1979–2100). Cryosphere, 2022, 16, 4163-4184.	1.5	9
3144	The Antarctic contribution to 21st-century sea-level rise predicted by the UK Earth System Model with an interactive ice sheet. Cryosphere, 2022, 16, 4053-4086.	1.5	14
3145	Long-term projection of future climate change over the twenty-first century in the Sahara region in Africa under four Shared Socio-Economic Pathways scenarios. Environmental Science and Pollution Research, 2023, 30, 22319-22329.	2.7	11
3146	Evaluation of historical and future precipitation changes in CMIP6 over the Tarim River Basin. Theoretical and Applied Climatology, 2022, 150, 1659-1675.	1.3	3
3147	Climate Change Determines Future Population Exposure to Summertime Compound Dry and Hot Events. Earth's Future, 2022, 10, .	2.4	14
3148	Explainable Artificial Intelligence for Bayesian Neural Networks: Toward Trustworthy Predictions of Ocean Dynamics. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	4
3149	Comprehensive analysis on the energy resilience performance of urban residential sector in hot-humid area of China under climate change Sustainable Cities and Society, 2023, 88, 104233.	5.1	13
3150	Deforestation Drives Desiccation in Global Monsoon Region. Earth's Future, 2022, 10, .	2.4	2
3151	Inappropriateness of space-for-time and variability-for-time approaches to infer future dryland productivity changes. Frontiers in Environmental Science, $0,10,10$	1.5	2
3152	Understanding the sub-seasonal variation in the wintertime AO spatial pattern from the viewpoint of El Ni $\tilde{A}\pm$ o-Southern Oscillation. Climate Dynamics, 0, , .	1.7	0
3153	TriCCo v1.1.0 – a cubulation-based method for computing connected components on triangular grids. Geoscientific Model Development, 2022, 15, 7489-7504.	1.3	0

#	Article	IF	CITATIONS
3154	Low sensitivity of three terrestrial biosphere models to soil texture over the South American tropics. Geoscientific Model Development, 2022, 15, 7573-7591.	1.3	0
3155	Coupling future climate and landâ€use projections reveals where to strengthen the protection of Mediterranean Key Biodiversity Areas. Conservation Science and Practice, 2022, 4, .	0.9	1
3156	Evaluation of cloud and precipitation processes in regional and global models with ULTIMATE (ULTra-site for Measuring Atmosphere of Tokyo metropolitan Environment): a case study using the dual-polarization Doppler weather radars. Progress in Earth and Planetary Science, 2022, 9, .	1.1	1
3158	Clear-sky control of anvils in response to increased CO2 or surface warming or volcanic eruptions. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	2
3159	Mechanisms behind large-scale inconsistencies between regional and global climate model-based projections over Europe. Climate Dynamics, 2023, 60, 3813-3838.	1.7	11
3160	Importance of Minorâ€Looking Treatments in Global Climate Models. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	2
3161	Detection and attribution of the summer length changes in the Northern Hemisphere. Climate Dynamics, 0 , , .	1.7	1
3162	The Role of Irrigation Expansion on Historical Climate Change: Insights From CMIP6. Earth's Future, 2022, 10, .	2.4	9
3163	Projected Changes of Day-to-Day Precipitation and Choco Low-Level Jet Relationships over the Far Eastern Tropical Pacific and Western Colombia from Two CMIP6 GCM Models. Atmosphere, 2022, 13, 1776.	1.0	1
3164	Global Marine Heatwaves and Coldâ€Spells in Present Climate to Future Projections. Earth's Future, 2022, 10, .	2.4	13
3165	Higher Sensitivity of Northern Hemisphere Monsoon to Anthropogenic Aerosol Than Greenhouse Gases. Geophysical Research Letters, 2022, 49, .	1.5	13
3166	Projected changes in hydro-climatic extremes with CMIP6 climate model outputs: a case of rain-fed river systems in Western Nepal. Stochastic Environmental Research and Risk Assessment, 2023, 37, 965-987.	1.9	4
3167	Future Projection of Precipitation Bioclimatic Indicators over Southeast Asia Using CMIP6. Sustainability, 2022, 14, 13596.	1.6	3
3168	Influence of the Atlantic Multidecadal Oscillation on South American Atmosphere Dynamics and Precipitation. Atmosphere, 2022, 13, 1778.	1.0	2
3169	Desert dunes transformed by end-of-century changes in wind climate. Nature Climate Change, 2022, 12, 999-1006.	8.1	8
3170	Reducing uncertainty in local temperature projections. Science Advances, 2022, 8, .	4.7	10
3171	Seasonal variability of future extreme precipitation and associated trends across the Contiguous U.S Frontiers in Climate, 0, 4, .	1.3	2
3172	Past and future ocean warming. Nature Reviews Earth & Environment, 2022, 3, 776-794.	12.2	39

#	Article	IF	CITATIONS
3173	Biases in CMIP6 historical U.S. severe convective storm environments driven by biases in meanâ€state nearâ€surface moist static energy. Geophysical Research Letters, 0, , .	1.5	1
3174	Weâ \in ™re building it up to burn it down: fire occurrence and fire-related climatic patterns in Brazilian biomes. PeerJ, 0, 10, e14276.	0.9	2
3175	Post-processing climate projections of precipitation for the Po river basin: will Italy's North become water-constrained?. Hydrology Research, 2022, 53, 1414-1427.	1.1	3
3176	Global patterns of sea surface climate connectivity for marine species. Communications Earth & Environment, 2022, 3, .	2.6	4
3177	Internal multi-centennial variability of the Atlantic Meridional Overturning Circulation simulated by EC-Earth3. Climate Dynamics, 2023, 60, 3695-3712.	1.7	14
3179	Variations in Projections of Precipitations of CMIP6 Global Climate Models under SSP 2–45 and SSP 5–85. KSCE Journal of Civil Engineering, 2022, 26, 5404-5416.	0.9	5
3180	Historical Changes of Black Carbon in Snow and Its Radiative Forcing in CMIP6 Models. Atmosphere, 2022, 13, 1774.	1.0	0
3181	Evaluation and projections of surface air temperature over the Tibetan Plateau from CMIP6 and CMIP5: warming trend and uncertainty. Climate Dynamics, 2023, 60, 3863-3883.	1.7	7
3183	The DOE E3SM Model Version 2: Overview of the Physical Model and Initial Model Evaluation. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	27
3184	Vegetation clumping modulates global photosynthesis through adjusting canopy light environment. Global Change Biology, 2023, 29, 731-746.	4.2	9
3185	Small Impact of Stratospheric Dynamics and Chemistry on the Surface Temperature of the Last Glacial Maximum in CESM2(WACCM6ma). Geophysical Research Letters, 2022, 49, .	1.5	3
3186	Comparison of Future Changes in Frequency of Climate Extremes between Coastal and Inland Locations of Bengal Delta Based on CMIP6 Climate Models. Atmosphere, 2022, 13, 1747.	1.0	1
3187	Cerrado native vegetation is a refuge for birds under the current climate change trajectory. Austral Ecology, 2022, 47, 1622-1635.	0.7	4
3188	Deforestation intensifies daily temperature variability in the northern extratropics. Nature Communications, 2022, 13, .	5.8	10
3189	Substantial regional climate change expected following cessation of CO ₂ emissions. Environmental Research Letters, 2022, 17, 114046.	2.2	2
3190	An Evaluation of Tropical Cyclone Rainfall Structures in the HighResMIP Simulations against Satellite Observations. Journal of Climate, 2022, 35, 7315-7338.	1.2	2
3191	Global rainbow distribution under current and future climates. Global Environmental Change, 2022, 77, 102604.	3.6	3
3192	A new halocarbon absorption model based on HITRAN crossâ€section data and new estimates of halocarbon instantaneous clearâ€sky radiative forcing. Journal of Advances in Modeling Earth Systems, 0, , .	1.3	O

#	Article	IF	CITATIONS
3193	Weather Index Insurance Can Offset Heatâ€Induced Rice Losses Under Global Warming. Earth's Future, 2022, 10, .	2.4	0
3194	Characterizing vertical stratification of the cloud thermodynamic phase with a combined use of CALIPSO lidar and MODIS SWIR measurements. Journal of Geophysical Research D: Atmospheres, 0, , .	1.2	0
3195	Historical and future shifts of a sharp zonal aridity gradient: A case study of the Hu Line in China. Journal of Hydrology, 2022, 614, 128590.	2.3	3
3196	Constraining extreme precipitation projections using past precipitation variability. Nature Communications, 2022, 13, .	5.8	15
3197	Evaluating sea ice thickness simulation is critical for projecting a summer ice-free Arctic Ocean. Environmental Research Letters, 2022, 17, 114033.	2.2	5
3198	Frequency of the winter temperature extremes over Siberia dominated by the Atlantic Meridional Overturning Circulation. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	4
3199	Desert ecosystems in China: Past, present, and future. Earth-Science Reviews, 2022, 234, 104206.	4.0	14
3200	Multi-centennial Holocene climate variability in proxy records and transient model simulations. Quaternary Science Reviews, 2022, 296, 107801.	1.4	8
3201	High Sensitivity of Compound Drought and Heatwave Events to Global Warming in the Future. Earth's Future, 2022, 10, .	2.4	25
3202	Roles of external forcing and internal variability to precipitation changes in a subâ€region of the U.S. midâ€Atlantic during 1979â€2019. Journal of Geophysical Research D: Atmospheres, 0, , .	1.2	0
3203	Diurnal cycle of precipitation over global monsoon systems in CMIP6 simulations. Climate Dynamics, 2023, 60, 3947-3968.	1.7	3
3204	Anthropogenic Influence on the Diurnal Temperature Range since 1901. Journal of Climate, 2022, 35, 7183-7198.	1.2	9
3205	How certain are El Niño–Southern Oscillation frequency changes in Coupled Model Intercomparison Project Phase 6 models?. International Journal of Climatology, 2023, 43, 1167-1178.	1.5	1
3206	Extending the global high-resolution downscaled projections dataset to include CMIP6 projections at increased resolution coherent with the ERA5-Land reanalysis. Data in Brief, 2022, 45, 108669.	0.5	3
3207	Downscaling ensemble climate projections to urban scale: Brussels's future climate at 1.5°C, 2°C, and 3°C global warming. Urban Climate, 2022, 46, 101319.	2.4	5
3208	Application-specific optimal model weighting of global climate models: A red tide example. Climate Services, 2022, 28, 100334.	1.0	3
3209	Climate change increases the suitable area and suitability degree of rubber tree powdery mildew in China. Industrial Crops and Products, 2022, 189, 115888.	2.5	7
3210	Ecosystem services values at risk in the Atlantic coastal zone due to sea-level rise and socioeconomic development. Ecosystem Services, 2022, 58, 101492.	2.3	4

#	Article	IF	CITATIONS
3211	Assessments on simulation of Pacific blocking frequency during boreal winter in CMIP6 climate models. Dynamics of Atmospheres and Oceans, 2022, 100, 101333.	0.7	1
3212	Evaluating late spring frost risks of apple in the Loess Plateau of China under future climate change with phenological modeling approach. Scientia Horticulturae, 2023, 308, 111604.	1.7	6
3213	Impact of climate change on coastal water quality and its interaction with pollution prevention efforts. Journal of Environmental Management, 2023, 325, 116557.	3.8	8
3214	Mediterranean climate. , 2023, , 41-91.		4
3215	Historical evaluation and projection of precipitation phase changes in the cold season over the Tibetan Plateau based on CMIP6 multimodels. Atmospheric Research, 2023, 281, 106494.	1.8	3
3216	Climate change impact on photovoltaic power potential in China based on CMIP6 models. Science of the Total Environment, 2023, 858, 159776.	3.9	17
3217	Drought monitoring of sugarcane and dynamic variation characteristics under global warming: A case study of Guangxi, China. Agricultural Water Management, 2023, 275, 108035.	2.4	5
3218	Present-day and future PM2.5 and O3-related global and regional premature mortality in the EVAv6.0 health impact assessment model. Environmental Research, 2023, 216, 114702.	3.7	14
3219	Assessment of future wind resources under climate change using a multi-model and multi-method ensemble approach. Applied Energy, 2023, 329, 120290.	5.1	8
3220	Re-examining the impact of annual weather fluctuations on global livestock production. Ecological Economics, 2023, 204, 107662.	2.9	2
3221	Increases in ozone-related mortality in China over 2013–2030 attributed to historical ozone deterioration and future population aging. Science of the Total Environment, 2023, 858, 159972.	3.9	4
3222	Distinct Responses of North Pacific and North Atlantic Summertime Subtropical Anticyclones to Global Warming. Journal of Climate, 2022, 35, 8117-8132.	1.2	4
3223	Linking Large-Scale Double-ITCZ Bias to Local-Scale Drizzling Bias in Climate Models. Journal of Climate, 2022, 35, 7965-7979.	1.2	2
3224	Modulation by the QBO of the Relationship between the NAO and Northeast China Temperature in Late Winter. Journal of Climate, 2022, 35, 7995-8011.	1.2	O
3225	FIO-ESM v2.0 CORE2-forced experiment for the CMIP6 Ocean Model Intercomparison Project. Acta Oceanologica Sinica, 2022, 41, 22-31.	0.4	2
3226	Future Projection of Temperature over The Korean Peninsula under Global Warming Targets of 1.5 and $2.0\hat{a}_{n,f}$, Using the Multi-RCM Ensemble in CORDEX-EA Phase 2 . Journal of Climate Change Research, 2022 , 13 , $525-543$.	0.1	1
3227	The atmospheric hinder for intraseasonal sea-air interaction over the Bay of Bengal during Indian summer monsoon in CMIP6. Acta Oceanologica Sinica, 2022, 41, 119-130.	0.4	1
3228	The tropical Atlantic as a negative feedback on ENSO. Climate Dynamics, 0, , .	1.7	1

#	Article	IF	CITATIONS
3229	Quantification of human contribution to soil moisture-based terrestrial aridity. Nature Communications, 2022, 13 , .	5.8	5
3230	Joint effect of the North Pacific Victoria mode and the tropical Pacific on El Niñ0 diversity. Climate Dynamics, 2023, 61, 151-168.	1.7	2
3231	The simulation of mineral dust in the United Kingdom Earth System Model UKESM1. Atmospheric Chemistry and Physics, 2022, 22, 14503-14528.	1.9	6
3232	Impact of Climate Change and Drought Attributes in Nigeria. Atmosphere, 2022, 13, 1874.	1.0	2
3233	Machine learning-based downscaling: application of multi-gene genetic programming for downscaling daily temperature at Dogonbadan, Iran, under CMIP6 scenarios. Theoretical and Applied Climatology, 2023, 151, 153-168.	1.3	13
3234	Compound droughts and hot extremes: Characteristics, drivers, changes, and impacts. Earth-Science Reviews, 2022, 235, 104241.	4.0	33
3235	A simple hybrid statistical–dynamical downscaling method for emulating regional climate models over Western Europe. Evaluation, application, and role of added value?. Climate Dynamics, 2023, 61, 271-294.	1.7	6
3237	Modeling Isoprene Emission Response to Drought and Heatwaves Within MEGAN Using Evapotranspiration Data and by Coupling With the Community Land Model. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	4
3238	Variation of Runoff and Runoff Components of the Lhasa River Basin in the Qinghai-Tibet Plateau under Climate Change. Atmosphere, 2022, 13, 1848.	1.0	4
3239	Impact of ocean data assimilation on climate predictions with ICON-ESM. Climate Dynamics, 2023, 61, 357-373.	1.7	1
3240	Addressing the dichotomy of fishing and climate in fishery management with the FishClim model. Communications Biology, 2022, 5, .	2.0	5
3241	Evaluation and spatio-temporal analysis of surface energy flux in permafrost regions over the Qinghai-Tibet Plateau and Arctic using CMIP6 models. International Journal of Digital Earth, 2022, 15, 1947-1965.	1.6	7
3242	Importance of different parameterization changes for the updated dust cycle modeling in the Community Atmosphere Model (version 6.1). Geoscientific Model Development, 2022, 15, 8181-8219.	1.3	6
3243	The influence of recent and future climate change on spring Arctic cyclones. Nature Communications, 2022, 13, .	5.8	9
3244	Observed variability and trends in global precipitation during 1979–2020. Climate Dynamics, 2023, 61, 131-150.	1.7	6
3245	Factors influencing the effectiveness of group interactions among international and interdisciplinary early-career researchers working toward environmental sustainability in climate change. Environment, Development and Sustainability, 2024, 26, 841-868.	2.7	0
3246	Peak refreezing in the Greenland firn layer under future warming scenarios. Nature Communications, 2022, 13, .	5.8	5
3247	Nonâ€Stationary Probabilistic Tsunami Hazard Assessments Compounding Tides and Sea Level Rise. Earth's Future, 2022, 10, .	2.4	3

#	Article	IF	CITATIONS
3248	Evaluation of coupled model intercomparison project phase 6 models in simulating precipitation and its possible relationship with sea surface temperature over Myanmar. Frontiers in Environmental Science, 0, 10, .	1.5	3
3249	Modulation of the Eastern Equatorial Pacific Seasonal Cycle by Tropical Instability Waves. Geophysical Research Letters, 2022, 49, .	1.5	4
3250	Evaluation of the N ₂ O Rate of Change to Understand the Stratospheric Brewerâ€Dobson Circulation in a Chemistryâ€Climate Model. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	2
3251	The Role of Anthropogenic Forcing in Western United States Hydroclimate Extremes. Geophysical Research Letters, 2022, 49, .	1.5	2
3252	STITCHES: creating new scenarios of climate model output by stitching together pieces of existing simulations. Earth System Dynamics, 2022, 13, 1557-1609.	2.7	6
3253	Future climate imposes pressure on vulnerable ecological regions in China. Science of the Total Environment, 2023, 858, 159995.	3.9	7
3254	Using a Green's Function Approach to Diagnose the Pattern Effect in GFDL AM4 and CM4. Journal of Climate, 2023, 36, 1105-1124.	1.2	5
3255	A potential explanation for the global increase in tropical cyclone rapid intensification. Nature Communications, 2022, 13, .	5.8	17
3256	Assessment and Constraint of Mesozooplankton in CMIP6 Earth System Models. Global Biogeochemical Cycles, 2022, 36, .	1.9	7
3258	Extreme temperature indices over the Volta Basin: CMIP6 model evaluation. Climate Dynamics, 2023, 61, 203-228.	1.7	0
3259	Climate Change and Impact on Renewable Energies in the Azores Strategic Visions for Sustainability. Sustainability, 2022, 14, 15174.	1.6	4
3260	The Multiâ€Decadal Response to Net Zero CO ₂ Emissions and Implications for Emissions Policy. Geophysical Research Letters, 2022, 49, .	1.5	5
3261	Current and future potential distribution of the invasive scale <scp><i>Ceroplastes rusci</i></scp> (L., 1758) (Hemiptera: Coccidae) under climate niche. Pest Management Science, 2023, 79, 1184-1192.	1.7	2
3262	Varying contributions of greenhouse gases, aerosols and natural forcings to Arctic land surface air temperature changes. Environmental Research Letters, 0, , .	2.2	0
3263	Influence of fast ice on future ice shelf melting in the Totten Glacier area, East Antarctica. Cryosphere, 2022, 16, 4745-4761.	1.5	4
3265	Increased synoptic variability along the subtropical Meiyu front under global warming. Climate Dynamics, 0, , .	1.7	0
3266	The Impact of Climate Change on Operational Probable Maximum Precipitation Estimates. Water Resources Research, 2022, 58, .	1.7	9
3267	Emergence of changing Central-Pacific and Eastern-Pacific El Ni $ ilde{A}\pm$ o-Southern Oscillation in a warming climate. Nature Communications, 2022, 13, .	5.8	21

#	Article	IF	Citations
3268	Assessing Responses and Impacts of Solar climate intervention on the Earth system with stratospheric aerosol injection (ARISE-SAI): protocol and initial results from the first simulations. Geoscientific Model Development, 2022, 15, 8221-8243.	1.3	20
3269	Modality of the Tropical Rain Belt across Models and Simulated Climates. Journal of Climate, 2023, 36, 1331-1345.	1.2	3
3270	Anthropogenic Contributions to the 2021 Pacific Northwest Heatwave. Geophysical Research Letters, 2022, 49, .	1.5	19
3271	Assessment of a New Fire Risk Index for the Atlantic Forest, Brazil. Forests, 2022, 13, 1844.	0.9	2
3272	The Climatic Impactâ€Driver Framework for Assessment of Riskâ€Relevant Climate Information. Earth's Future, 2022, 10, .	2.4	11
3273	Global Carbon Budget 2022. Earth System Science Data, 2022, 14, 4811-4900.	3.7	492
3275	Anthropogenic aerosols dominated the decreased solar radiation in eastern China over the last five decades. Journal of Cleaner Production, 2022, 380, 135150.	4.6	3
3276	The Physical Processes Dominating the Impact of the Summer North Atlantic Oscillation on the Eastern Tibetan Plateau Summer Rainfall. Journal of Climate, 2022, 35, 7677-7690.	1.2	6
3277	Future changes in annual runoff and hydroclimatic extremes in the upper Yangtze River Basin. Journal of Hydrology, 2022, 615, 128738.	2.3	14
3278	Hydrological response to future climate change in a mountainous watershed in the Northeast of Tibetan Plateau. Journal of Hydrology: Regional Studies, 2022, 44, 101256.	1.0	3
3279	Soil carbon stocks can be negatively affected by land use and climate change in natural ecosystems of semi-arid environment of Iran. Geoderma Regional, 2022, 31, e00591.	0.9	3
3280	Marine heatwaves and cold-spells in global coral reef zones. Progress in Oceanography, 2022, 209, 102920.	1.5	12
3281	A review of the El Niño-Southern Oscillation in future. Earth-Science Reviews, 2022, 235, 104246.	4.0	9
3282	Inferring probable distributional gaps and climate change impacts on the medically important viper Echis leucogaster in the western Sahara-Sahel: An ecological niche modeling approach. Biodiversitas, 2022, 23, .	0.2	0
3283	A decline in atmospheric CO2 levels under negative emissions may enhance carbon retention in the terrestrial biosphere. Communications Earth & Environment, 2022, 3, .	2.6	4
3284	Disentangling the North Pacific Meridional Mode from tropical Pacific variability. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	9
3285	Do Emergent Constraints on Carbon Cycle Feedbacks hold in CMIP6?. Journal of Geophysical Research G: Biogeosciences, 0, , .	1.3	0
3286	A comparison of multiple statistically downscaled climate change datasets for the conterminous USA. Environmental Research Communications, 0, , .	0.9	0

#	Article	IF	CITATIONS
3287	Southern Ocean cloud and shortwave radiation biases in a nudged climate model simulation: does the model ever get it right?. Atmospheric Chemistry and Physics, 2022, 22, 14603-14630.	1.9	6
3288	Evaluation of CMIP6 GCMs performance to simulate precipitation over Southeast Asia. Atmospheric Research, 2023, 282, 106522.	1.8	11
3289	Identifying crucial emission sources under low forcing scenarios by a comprehensive attribution analysis. One Earth, 2022, , .	3.6	0
3290	Effects of anthropogenic forcing and atmospheric circulation on the record-breaking welt bulb heat event over southern China in September 2021. Advances in Climate Change Research, 2022, 13, 778-786.	2.1	6
3291	Warming climate and ENSO variability enhance the risk of sequential extremes in India. One Earth, 2022, 5, 1250-1259.	3.6	7
3292	Internal variability and forcing influence model–satellite differences in the rate of tropical tropospheric warming. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
3293	Simulation and Projection of Tropical Cyclone Activities over the Western North Pacific by CMIP6 HighResMIP. Journal of Climate, 2022, 35, 7771-7794.	1.2	3
3294	æμ…è°îå§æ°"ç§'å-d与地èˆ*å-dçs,å-dç§'ä°\$‰. Diqiu Kexue - Zhongguo Dizhi Daxue Xuebao/Earth Science - J Geosciences, 2022, 47, 3569.	ournal of China	University (
3295	A dependent multimodel approach to climate prediction with Gaussian processes. , 2022, 1, .		0
3296	Ambient heat stress and urolithiasis attacks in China: Implication for climate change. Environmental Research, 2023, 217, 114850.	3.7	1
3297	Symmetric and asymmetric response of Indian Summer Monsoon rainfall to different ENSO decay phases in observations and CMIP6 models. Global and Planetary Change, 2023, 220, 104000.	1.6	1
3298	Incorporating non-stationarity from climate change into rainfall frequency and intensity-duration-frequency (IDF) curves. Journal of Hydrology, 2023, 616, 128757.	2.3	17
3299	Association between temperature variability and global meningitis incidence. Environment International, 2023, 171, 107649.	4.8	7
3300	A comprehensive comparison of the fifth and sixth phases of the coupled model intercomparison project based on the Canadian earth system models in spatio-temporal variability of long-term flood susceptibility using remote sensing and flood frequency analysis. Journal of Hydrology, 2023, 617, 128851.	2.3	8
3301	Effects of climate change and drought attributes in Nigeria based on RCP 8.5 climate scenario. Physics and Chemistry of the Earth, 2023, 129, 103339.	1.2	7
3302	Use of meta-heuristic approach in the estimation of aquifer's response to climate change under shared socioeconomic pathways. Groundwater for Sustainable Development, 2023, 20, 100882.	2.3	3
3303	Climate change impacts on long-term field experiments in Germany. Agricultural Systems, 2023, 205, 103578.	3.2	6
3304	Ensemble projections of fish distribution in response to climate changes in the Yellow and Bohai Seas, China. Ecological Indicators, 2023, 146, 109759.	2.6	8

#	Article	IF	CITATIONS
3305	Projecting multi-attribute flood regime changes for the Yangtze River basin. Journal of Hydrology, 2023, 617, 128846.	2.3	7
3306	Assessing the complementarity of future hybrid wind and solar photovoltaic energy resources for North America. Renewable and Sustainable Energy Reviews, 2023, 173, 113101.	8.2	16
3307	Probabilistic Sea Level Rise Hazard Analysis Based on the Current Generation of Data and Protocols. Journal of Structural Engineering, 2023, 149, .	1.7	1
3308	Historical and projected relationships between the Tibetan Plateau summer monsoon and precipitation in Central Asia based on multi-CMIP6 models. Atmospheric Research, 2023, 283, 106564.	1.8	2
3309	Future Köppen-Geiger climate zones over Southeast Asia using CMIP6 Multimodel Ensemble. Atmospheric Research, 2023, 283, 106560.	1.8	9
3310	Recent changes in circulation patterns and their opposing impact on extreme precipitation at the west coast of Norway. Weather and Climate Extremes, 2023, 39, 100530.	1.6	1
3311	Coupled and Stand-Alone Regional Climate Modeling of Intensive Storms in Western Canada. Journal of Hydrologic Engineering - ASCE, 2023, 28, .	0.8	0
3312	Dynamic downscaling of wind speed over the North Atlantic Ocean using CMIP6 projections: Implications for offshore wind power density. Energy Reports, 2023, 9, 873-885.	2.5	7
3313	Detection and attribution of climate change: A deep learning and variational approach., 2022, 1, .		0
3314	A SPATIOTEMPORAL-AWARE WEIGHTING SCHEME FOR IMPROVING CLIMATE MODEL ENSEMBLE PREDICTIONS. Journal of Machine Learning for Modeling and Computing, 2022, 3, 29-55.	0.9	3
3315	Climate stress impacts on livestock health: Implications for farming livelihoods and animal disease in Karnataka, India. , 0, , .		2
3316	Seasonality and Variability of Snowfall to Total Precipitation Ratio over High Mountain Asia Simulated by the GFDL High-Resolution AM4. Journal of Climate, 2022, , 1-29.	1.2	1
3317	Antarctic Sea Ice Holds the Fate of Antarctic Ice-Shelf Basal Melting in a Warming Climate. Journal of Climate, 2023, 36, 713-743.	1.2	3
3318	Streamflow of the Betwa River under the Combined Effect of LU-LC and Climate Change. Agriculture (Switzerland), 2022, 12, 2005.	1.4	O
3319	A novel expert-driven methodology to develop thermal response curves and project habitat thermal suitability for cetaceans under a changing climate. Science of the Total Environment, 2022, , 160376.	3.9	0
3320	Evidence of localised Amazon rainforest dieback in CMIP6 models. Earth System Dynamics, 2022, 13, 1667-1675.	2.7	11
3321	基于CMIP6çš"ä¸é«~温å≢æƒæ™-å-¹ä¸å»½æœªæ¥å¾"æμ的预估. SCIENTIA SINICA Terrae, 2022, , .	0.1	0
3322	Uncertainty in Reconstructing Paleoâ€Elevation of the Antarctic Ice Sheet From Temperatureâ€Sensitive Ice Core Records. Geophysical Research Letters, 2022, 49, .	1.5	O

#	Article	IF	CITATIONS
3323	Introducing uncertainties in composite indicators. The case of the Impact Chain risk assessment framework. Frontiers in Climate, $0,4,.$	1.3	1
3324	Can low-resolution CMIP6 ScenarioMIP models provide insight into future European post-tropical-cyclone risk?. Weather and Climate Dynamics, 2022, 3, 1359-1379.	1.2	2
3325	Exploring Global Climate Model Downscaling Based on Tile-Level Output. Journal of Applied Meteorology and Climatology, 2023, 62, 171-190.	0.6	4
3326	Climate change and the potential distribution of the glassy-winged sharpshooter (Homalodisca) Tj ETQq $1\ 1\ 0.784$	-314 rgBT	/Qverlock 1
3327	Anthropogenic influence on the occurrence of extreme drought like that in eastern China in 2019. Atmospheric and Oceanic Science Letters, 2023, 16, 100296.	0.5	2
3328	Climate change information over Fenno-Scandinavia produced with a convection-permitting climate model. Climate Dynamics, 2023, 61, 519-541.	1.7	4
3329	How Can Climate Change Limit the Distribution of Cooperative Pseudoscorpions in Brazil?. Neotropical Entomology, 0, , .	0.5	0
3330	The performance of CMIP6 models in simulating surface energy fluxes over global continents. Climate Dynamics, 0, , .	1.7	2
3331	Divergence in Climate Model Projections of Future Arctic Atlantification. Journal of Climate, 2023, 36, 1727-1748.	1.2	18
3332	Assessment of Relationship between Climate Change, Drought, and Land Use and Land Cover Changes in a Semi-Mountainous Area of the Vietnamese Mekong Delta. Land, 2022, 11, 2175.	1.2	8
3333	Suitability of Natura 2000 sites for threatened freshwater species under projected climate change. Aquatic Conservation: Marine and Freshwater Ecosystems, 2022, 32, 1872-1887.	0.9	1
3334	Diverging Fates of the Pacific Ocean Oxygen Minimum Zone and Its Core in a Warming World. AGU Advances, 2022, 3, .	2.3	18
3335	Sown alfalfa pasture decreases grazing intensity while increasing soil carbon: Experimental observations and DNDC model predictions. Frontiers in Plant Science, 0, 13, .	1.7	3
3336	Emit now, mitigate later? Earth system reversibility under overshoots of different magnitudes and durations. Earth System Dynamics, 2022, 13, 1641-1665.	2.7	7
3337	Wildflower phenological escape differs by continent and spring temperature. Nature Communications, 2022, 13 , .	5.8	19
3338	CAMEMBERT: A Mini-Neptunes General Circulation Model Intercomparison, Protocol Version 1.0.A CUISINES Model Intercomparison Project. Planetary Science Journal, 2022, 3, 261.	1.5	4
3339	Increased occurrences of early Indian Ocean Dipole under global warming. Science Advances, 2022, 8, .	4.7	4
3340	Spatiotemporal variation of drought in Iraq for shared socioeconomic pathways. Stochastic Environmental Research and Risk Assessment, 2023, 37, 1321-1331.	1.9	5

#	Article	IF	CITATIONS
3341	Strong cloud–circulation coupling explains weak trade cumulus feedback. Nature, 2022, 612, 696-700.	13.7	13
3342	Reconciling disagreement on global river flood changes in a warming climate. Nature Climate Change, 2022, 12, 1160-1167.	8.1	26
3343	South Asian summer rainfall from CMIP3 to CMIP6 models: biases and improvements. Climate Dynamics, 0 , , .	1.7	2
3344	Can agricultural policy achieve environmental goals through an indicator-based direct payment system?. Q Open, 0, , .	0.7	1
3345	Predicting Climate Change Effects on the Potential Distribution of Two Invasive Cryptic Species of the Bemisia tabaci Species Complex in China. Insects, 2022, 13, 1081.	1.0	2
3346	Near-term regional climate change in East Africa. Climate Dynamics, 2023, 61, 961-978.	1.7	6
3348	Response of Terrestrial Net Primary Production to Quadrupled CO2 Forcing: A Comparison between the CAS-ESM2 and CMIP6 Models. Biology, 2022, 11, 1693.	1.3	1
3349	Abrupt loss and uncertain recovery from fires of Amazon forests under low climate mitigation scenarios. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5
3350	Current and future wind energy resources in the North Sea according to CMIP6. Wind Energy Science, 2022, 7, 2373-2391.	1.2	12
3351	Observed and CMIP6 Modeled Internal Variability Feedbacks and Their Relation to Forced Climate Feedbacks. Geophysical Research Letters, 2022, 49, .	1.5	3
3352	Comparisons of simulated radiation, surface wind stress and SST fields over tropical pacific by the GISS CMIP6 versions of global climate models with observations. Environmental Research Communications, 2023, 5, 015005.	0.9	3
3353	Uncertainty constraints on economic impact assessments of climate change simulated by an impact emulator. Environmental Research Letters, 2022, 17, 124028.	2.2	2
3354	It is high time we monitor the deep ocean. Environmental Research Letters, 2022, 17, 121002.	2.2	2
3355	Predicting crop yields in Senegal using machine learning methods. International Journal of Climatology, 2023, 43, 1817-1838.	1.5	4
3356	Conducting Climate Change Risk Assessments for Companies: Lessons Learned. Bulletin of the American Meteorological Society, 2022, 103, E2836-E2844.	1.7	0
3357	Consistency of Seasonal Mean and Extreme Precipitation Projections Over Europe Across a Range of Climate Model Ensembles. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	5
3358	UniFHy v0.1.1: a community modelling framework for the terrestrial water cycle in Python. Geoscientific Model Development, 2022, 15, 9177-9196.	1.3	1
3359	Future Changes in Temperature and Precipitation over Northeastern Brazil by CMIP6 Model. Water (Switzerland), 2022, 14, 4118.	1.2	2

#	Article	IF	CITATIONS
3360	Climatological changes in East Asian winter monsoon circulation in a warmer future. Atmospheric Research, 2022, , 106593.	1.8	1
3361	Reasons for East Siberia Winter Snow Water Equivalent Increase in the Recent Decades. Remote Sensing, 2023, 15, 134.	1.8	1
3362	Coupling a global glacier model to a global hydrological model prevents underestimation of glacier runoff. Hydrology and Earth System Sciences, 2022, 26, 5971-5986.	1.9	1
3363	The costs of Arctic infrastructure damages due to permafrost degradation. Environmental Research Letters, 2023, 18, 015006.	2.2	13
3364	The historical ozone trends simulated with the SOCOLv4 and their comparison with observations and reanalyses. Atmospheric Chemistry and Physics, 2022, 22, 15333-15350.	1.9	3
3365	An assessment of the simulation of East-Asia precipitation in the high-resolution community earth system model. Climate Dynamics, 2023, 61, 745-763.	1.7	1
3366	Analysis and prediction of marine heatwaves in the Western North Pacific and Chinese coastal region. Frontiers in Marine Science, 0, 9, .	1.2	5
3367	Predicting the Effects of Climate Change on Dengue Vector Densities in Southeast Asia through Process-Based Modeling. Environmental Health Perspectives, 2022, 130, .	2.8	5
3368	Notes on environmental forecasting in the current conditions. , 2022, , .		0
3369	Predicting the Impact of Climate Change on the Distribution of a Neglected Arboviruses Vector (ArmigeresÂsubalbatus) in China. Tropical Medicine and Infectious Disease, 2022, 7, 431.	0.9	2
3370	Potential impact of tropopause sharpness on the structure and strength of the general circulation. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	3
3371	Changes in Sahel summer rainfall in a global warming climate: contrasting the mid-Pliocene and future regional hydrological cycles. Climate Dynamics, 2023, 61, 1353-1370.	1.7	3
3372	Arctic Troposphere Warming Driven by External Radiative Forcing and Modulated by the Pacific and Atlantic. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	5
3373	Multi-task machine learning improves multi-seasonal prediction of the Indian Ocean Dipole. Nature Communications, 2022, 13, .	5.8	16
3374	Global evaluation of the "dry gets drier, and wet gets wetter―paradigm from a terrestrial water storage change perspective. Hydrology and Earth System Sciences, 2022, 26, 6457-6476.	1.9	8
3375	Global Evaluation of Runoff Simulation From Climate, Hydrological and Land Surface Models. Water Resources Research, 2023, 59, .	1.7	11
3376	Coextinctions dominate future vertebrate losses from climate and land use change. Science Advances, 2022, 8, .	4.7	22
3377	Water Year 2021 Compound Precipitation and Temperature Extremes in California and Nevada. Bulletin of the American Meteorological Society, 2022, 103, E2905-E2911.	1.7	1

#	Article	IF	CITATIONS
3378	Record High Warm 2021 February Temperature over East Asia. Bulletin of the American Meteorological Society, 2022, 103, E2917-E2922.	1.7	0
3379	Human Contribution to 2020/21-like Persistent Iran Meteorological Droughts. Bulletin of the American Meteorological Society, 2022, 103, E2930-E2936.	1.7	0
3381	Typicality of the 2021 Western North America summer heatwave. Environmental Research Letters, 2023, 18, 015004.	2.2	8
3382	Hotspots and drivers of compound marine heatwaves and low net primary production extremes. Biogeosciences, 2022, 19, 5807-5835.	1.3	11
3383	Interâ∈Model Differences in Future Summer Onset Over the Northern High Latitudes. Geophysical Research Letters, 2022, 49, .	1.5	0
3384	Modeling current geographic distribution and future range shifts of Sanghuangporus under multiple climate change scenarios in China. Frontiers in Microbiology, 0, 13, .	1.5	2
3385	Projection of extreme precipitation in the Minjiang River Basin, Southeast China. Journal of Water and Climate Change, 0, , .	1.2	1
3386	The trend and spatial spread of multisectoral climate extremes in CMIP6 models. Scientific Reports, 2022, 12, .	1.6	12
3387	Examining the Ability of CMIP6 Models to Reproduce the Upwelling SST Imprint in the Eastern Boundary Upwelling Systems. Journal of Marine Science and Engineering, 2022, 10, 1970.	1.2	1
3388	Aerosol sensitivity simulations over East Asia in a convection-permitting climate model. Climate Dynamics, 2023, 61, 861-881.	1.7	0
3389	Common Error Patterns in the Regional Atmospheric Circulation Simulated by the CMIP Multiâ€Model Ensemble. Geophysical Research Letters, 2022, 49, .	1.5	3
3390	Temperature and urban heat island effect in Lublin city in Poland under changing climate. Theoretical and Applied Climatology, 2023, 151, 667-690.	1.3	11
3391	Quantifying the role of variability in future intensification of heat extremes. Nature Communications, 2022, 13, .	5.8	11
3392	Snowmelt Runoff in the Yarlung Zangbo River Basin and Runoff Change in the Future. Remote Sensing, 2023, 15, 55.	1.8	7
3393	The Turning Point of the Aerosol Era. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	6
3394	Attribution of the Unprecedented 2021 October Heatwave in South Korea. Bulletin of the American Meteorological Society, 2022, 103, E2923-E2929.	1.7	0
3395	Intraseasonal to seasonal evolution of soil moistureâ€based droughts and floods in observationâ€based datasets and <scp>CMIP6</scp> models. International Journal of Climatology, 0, , .	1.5	0
3396	Performance of Twoâ€Moment Stratiform Microphysics With Prognostic Precipitation in GFDL's CM4.0. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	0

#	Article	IF	CITATIONS
3397	An assessment of land energy balance over East Asia from multiple lines of evidence and the roles of the Tibet Plateau, aerosols, and clouds. Atmospheric Chemistry and Physics, 2022, 22, 15867-15886.	1.9	3
3398	Assessing water and energy fluxes in a regional hydrosystem: case study of the Seine basin. Comptes Rendus - Geoscience, 2023, 355, 143-163.	0.4	2
3399	Projection of compound wind and precipitation extremes in China based on Phase 6 of the Coupled Model Intercomparison Project models. International Journal of Climatology, 2023, 43, 1396-1406.	1.5	5
3400	Heteroscedastic Characteristics of Precipitation with Climate Changes in China. Atmosphere, 2022, 13, 2116.	1.0	1
3401	Benefit of vertical localization for sea surface temperature assimilation in isopycnal coordinate model. Frontiers in Climate, 0, 4, .	1.3	1
3402	Evaluation of Global Climate Models (GCMs) in Representing Climate Phenomena Signatures Over Maritime Continent. IOP Conference Series: Earth and Environmental Science, 2022, 1105, 012014.	0.2	0
3403	Global climate-related predictors at kilometer resolution for the past and future. Earth System Science Data, 2022, 14, 5573-5603.	3.7	36
3405	Deepâ€learningâ€based harmonization and superâ€resolution of nearâ€surface air temperature from CMIP6 models (1850–2100). International Journal of Climatology, 2023, 43, 1461-1479.	1.5	1
3406	Capturing and Attributing the Rainfall Regime Intensification in the West African Sahel with CMIP6 Models. Journal of Climate, 2023, 36, 1823-1843.	1.2	1
3407	Forced signal and predictability in a prototype climate model: Implications for fingerprinting based detection in the presence of multidecadal natural variability. Chaos, 2022, 32, .	1.0	4
3408	Present-day warm pool constrains future tropical precipitation. Communications Earth & Environment, 2022, 3, .	2.6	9
3409	21st Century Global and Regional Surface Temperature Projections. Earth and Space Science, 2022, 9, .	1.1	5
3410	Evaluation of simulated responses to climate forcings: a flexible statistical framework using confirmatory factor analysis and structural equation modelling $\hat{a} \in \text{Model}$ Part 1: Theory. Advances in Statistical Climatology, Meteorology and Oceanography, 2022, 8, 225-248.	0.6	1
3411	Selection of CMIP6 GCM with projection of climate over the Amu Darya River Basin. Theoretical and Applied Climatology, 2023, 151, 1185-1203.	1.3	7
3412	Evaluation of Historical Simulations of CMIP6 Models for Temperature and Precipitation in Guatemala. Earth Systems and Environment, 2023, 7, 43-65.	3.0	4
3413	An assessment of basal melt parameterisations for Antarctic ice shelves. Cryosphere, 2022, 16, 4931-4975.	1.5	12
3414	Evaluation of longâ€ŧerm changes in precipitation over Bolivia based on observations and Coupled Model Intercomparison Project models. International Journal of Climatology, 2023, 43, 1431-1447.	1.5	1
3415	Climate conditions in the near-term, mid-term and distant future for growing soybeans in Canada. Canadian Journal of Plant Science, 2023, 103, 161-174.	0.3	4

#	Article	IF	Citations
3416	Global and Regional Discrepancies between Early 20th Century Coastal Air and Sea-Surface Temperature Detected by a Coupled Energy-Balance Analysis. Journal of Climate, 2022, , 1-34.	1.2	0
3418	Potential for bias in effective climate sensitivity from state-dependent energetic imbalance. Earth System Dynamics, 2022, 13, 1715-1736.	2.7	1
3419	Attribution of the human influence on heavy rainfall associated with flooding events during the 2012, 2016, and 2018 March-April-May seasons in Kenya. Weather and Climate Extremes, 2022, 38, 100529.	1.6	4
3420	Future Changes in Global Runoff and Runoff Coefficient From CMIP6 Multiâ€Model Simulation Under SSP1â€2.6 and SSP5â€8.5 Scenarios. Earth's Future, 2022, 10, .	2.4	3
3421	Changes to population-based emergence of climate change from CMIP5 to CMIP6. Environmental Research Letters, 0, , .	2.2	2
3422	Sea Level and Socioeconomic Uncertainty Drives Highâ€End Coastal Adaptation Costs. Earth's Future, 2022, 10, .	2.4	4
3423	The impacts of climate changes on watershed streamflow and total dissolved nitrogen in Danjiang Watershed, China. Journal of Water and Climate Change, 2023, 14, 104-122.	1.2	1
3424	Record-breaking statistics detect islands of cooling in a sea of warming. Atmospheric Chemistry and Physics, 2022, 22, 16111-16122.	1.9	1
3425	Modulation of weather type transitions on temperature and precipitation across the continental U.S Climate Dynamics, 0, , .	1.7	1
3426	Developing Representative Impact Scenarios from Climate Projection Ensembles, with Application to UKCP18 and EURO ORDEX Precipitation. Journal of Advances in Modeling Earth Systems, 0, , .	1.3	1
3427	Simple Hybrid Sea Ice Nudging Method for Improving Control Over Partitioning of Sea Ice Concentration and Thickness. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	2
3428	The Extremely Wet May of 2021 in the United Kingdom. Bulletin of the American Meteorological Society, 2022, 103, E2912-E2916.	1.7	0
3429	Rapid attribution analysis of the extraordinary heat wave on the Pacific coast of the US and Canada in JuneÂ2021. Earth System Dynamics, 2022, 13, 1689-1713.	2.7	71
3430	<scp>CMIP6</scp> projected response of the East Asian winter climate to the sea iceâ€free Arctic. International Journal of Climatology, 0, , .	1.5	0
3431	Net Equatorward Shift of the Jet Streams When the Contribution From Seaâ€lce Loss Is Constrained by Observed Eddy Feedback. Geophysical Research Letters, 2022, 49, .	1.5	9
3432	Clarifying the Role of ENSO on Easter Island Precipitation Changes: Potential Environmental Implications for the Last Millennium. Paleoceanography and Paleoclimatology, 2022, 37, .	1.3	4
3433	Process-based climate change assessment for European winds using EURO-CORDEX and global models. Environmental Research Letters, 2022, 17, 124047.	2.2	10
3434	Can the cropping systems of the Nile basin be adapted to climate change?. Regional Environmental Change, 2023, 23, .	1.4	4

#	Article	IF	CITATIONS
3435	The evolution of 21st century sea-level projections from IPCC AR5 to AR6 and beyond., 2023, 1, .		4
3436	Future trends in atmospheric circulation patterns over Africa south of the equator. Journal of Water and Climate Change, 2022, 13, 4194-4212.	1,2	3
3437	Understanding CMIP6 biases in the representation of the Greater Horn of Africa long and short rains. Climate Dynamics, 2023, 61, 1229-1255.	1.7	2
3438	An increase in marine heatwaves without significant changes in surface ocean temperature variability. Nature Communications, $2022,13,.$	5.8	23
3439	Mid-summer snow-free albedo across the Arctic tundra was mostly stable or increased over the past two decades. Environmental Research Letters, 2022, 17, 124026.	2.2	2
3440	Predicting the Impact of Climate Change on the Habitat Distribution of Parthenium hysterophorus around the World and in South Korea. Biology, 2023, 12, 84.	1.3	7
3441	Future hydrological drought changes over the upper Yellow River basin: The role of climate change, land cover change and reservoir operation. Journal of Hydrology, 2023, 617, 129128.	2.3	5
3443	Evaluation of native Earth system model output with ESMValTool v2.6.0. Geoscientific Model Development, 2023, 16, 315-333.	1.3	2
3444	Time of emergence of compound events: contribution of univariate and dependence properties. Natural Hazards and Earth System Sciences, 2023, 23, 21-44.	1.5	1
3445	The Impact of Climate Change on Evapotranspiration and Flow in a Major Basin in Northern Mexico. Sustainability, 2023, 15, 847.	1.6	5
3446	Evolution of offshore wind resources in Northern Europe under climate change. Energy, 2023, 269, 126655.	4.5	12
3447	Tipping point in North American Arctic-Boreal carbon sink persists in new generation Earth system models despite reduced uncertainty. Environmental Research Letters, 2023, 18, 025008.	2.2	6
3448	Future fire risk under climate change and deforestation scenarios in tropical Borneo. Environmental Research Letters, 0, , .	2.2	0
3449	Mineral dust aerosol impacts on global climate and climate change. Nature Reviews Earth & Environment, 2023, 4, 71-86.	12.2	63
3450	Increasing Precipitation Efficiency Amplifies Climate Sensitivity by Enhancing Tropical Circulation Slowdown and Eastern Pacific Warming Pattern. Geophysical Research Letters, 2023, 50, .	1.5	5
3451	Future climate or land use? Attribution of changes in surface runoff in a typical Sahelian landscape. Comptes Rendus - Geoscience, 2023, 355, 411-438.	0.4	9
3452	UVBoost: An erythemal weighted ultraviolet radiation estimator based on a machine learning gradient boosting algorithm. Journal of Quantitative Spectroscopy and Radiative Transfer, 2023, 298, 108490.	1,1	0
3453	Projections of drought characteristics based on combined drought index under CMIP6 models. Water Practice and Technology, 2023, 18, 2818-2833.	1.0	1

#	Article	IF	CITATIONS
3454	The underestimation of spring precipitation over <scp>South China</scp> is caused by the weak simulations of the dynamic motion in <scp>CMIP6</scp> models. International Journal of Climatology, 2023, 43, 2586-2600.	1.5	1
3455	Effect of anthropogenic forcing on increased winter precipitation in Southeast Asia from 1979 to 2014. Frontiers in Environmental Science, 0, 10, .	1.5	1
3456	Using Satellite-Based Terrestrial Water Storage Data: A Review. Surveys in Geophysics, 2023, 44, 1489-1517.	2.1	14
3458	Amazon windthrow disturbances are likely to increase with storm frequency under global warming. Nature Communications, 2023, 14, .	5.8	14
3459	Diurnal cycles of cloud cover and its vertical distribution over the Tibetan Plateau revealed by satellite observations, reanalysis datasets, and CMIP6 outputs. Atmospheric Chemistry and Physics, 2023, 23, 743-769.	1.9	9
3460	Climate response and sensitivity: time scales and late tipping points. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2023, 479, .	1.0	2
3461	Rainfall Projections from Coupled Model Intercomparison Project Phase 6 in the Volta River Basin: Implications on Achieving Sustainable Development. Sustainability, 2023, 15, 1472.	1.6	1
3462	Tropical Stratospheric Forcings Weaken the Response of the East Asian Winter Temperature to ENSO. , 2023, 2, .		1
3463	Does Increasing Climate Model Horizontal Resolution Be Beneficial for the Mediterranean Region?: Multimodel Evaluation Framework for Highâ€Resolution Model Intercomparison Project. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	5
3464	Robustness of precipitation Emergent Constraints in CMIP6 models. Climate Dynamics, 2023, 61, 1439-1450.	1.7	1
3465	Global and northern-high-latitude net ecosystem production in the 21st century from CMIP6 experiments. Earth System Dynamics, 2023, 14, 1-16.	2.7	3
3466	Potential Weakening of the June 2012 North American Derecho Under Future Warming Conditions. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	0
3467	Classification of extreme heatwave events in the Northern Hemisphere through a new method. Climate Dynamics, 2023, 61, 1947-1969.	1.7	3
3468	Machine learning of cloud types in satellite observations and climate models. Atmospheric Chemistry and Physics, 2023, 23, 523-549.	1.9	5
3469	Diversity patterns and conservation of the Vigna spp. in Mozambique: A comprehensive study. Frontiers in Ecology and Evolution, 0, 10 , .	1.1	0
3470	How well do CMIP6 models simulate the climatological northern boundary of the East Asian summer monsoon?. Global and Planetary Change, 2023, 221, 104034.	1.6	2
3471	Assessing the Future wind Energy Potential in Portugal Using a CMIP6 Model Ensemble and WRF High-Resolution Simulations. Energies, 2023, 16, 661.	1.6	3
3472	Change of the wintertime multidecadal land precipitation variability in the midâ€1970s in the observation and <scp>CMIP6</scp> simulations. International Journal of Climatology, 0, , .	1.5	0

#	Article	IF	CITATIONS
3473	Evaluation of the CAS-ESM2-0 Performance in Simulating the Global Ocean Salinity Change. Atmosphere, 2023, 14, 107.	1.0	1
3474	The effect of ash, water vapor, and heterogeneous chemistry on the evolution of a Pinatubo-size volcanic cloud. Atmospheric Chemistry and Physics, 2023, 23, 471-500.	1.9	4
3475	No changes in overall AMOC strength in interglacial PMIP4 time slices. Climate of the Past, 2023, 19, 107-121.	1.3	3
3476	Northern Hemisphere Heat Extremes in a Warmer Climate: More Probable but Less Colocated With Blocking. Geophysical Research Letters, 2023, 50, .	1.5	0
3477	Learning from weather and climate science to prepare for a future pandemic. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	2
3478	How adequately are elevated moist layers represented in reanalysis and satellite observations?. Atmospheric Chemistry and Physics, 2023, 23, 725-741.	1.9	1
3479	To what extent horizontal resolution improves the simulation of precipitation in CMIP6 HighResMIP models over Southwest China?. Frontiers in Earth Science, 0, 10, .	0.8	2
3480	Strong nonlinearity of land climateâ€carbon cycle feedback under a high CO ₂ growth scenario. Earth's Future, 0, , .	2.4	0
3481	Dependence of strategic solar climate intervention on background scenario and model physics. Atmospheric Chemistry and Physics, 2023, 23, 163-182.	1.9	7
3482	Patterns of atmospheric circulation linking the positive tropical Indian Ocean dipole and southern African rainfall during summer. Journal of Earth System Science, 2023, 132, .	0.6	5
3483	Antarctic contribution to future sea level from ice shelf basal melt as constrained by ice discharge observations. Cryosphere, 2023, 17, 79-103.	1.5	3
3484	Question-Driven Ensembles of Flexible ETAS Models. Seismological Research Letters, 2023, 94, 829-843.	0.8	3
3485	Developmental Differentiations of Major Maize Stemborers Due to Global Warming in Temperate and Tropical Climates. Insects, 2023, 14, 51.	1.0	2
3486	Indian heatwaves in a future climate with varying hazard thresholds. , 2023, 2, 015002.		6
3487	Climate change multi-model projections in CMIP6 scenarios in Central Hokkaido, Japan. Scientific Reports, 2023, 13, .	1.6	15
3488	An assessment of the subduction rate in the CMIP6 historical experiment. Acta Oceanologica Sinica, 2023, 42, 44-60.	0.4	0
3489	Revised historical Northern Hemisphere black carbon emissions based on inverse modeling of ice core records. Nature Communications, 2023, 14, .	5.8	4
3490	Spatiotemporal Distribution of CO in the UTLS Region in the Asian Summer Monsoon Season: Analysis of MLS Observations and CMIP6 Simulations. Remote Sensing, 2023, 15, 367.	1.8	0

#	Article	IF	CITATIONS
3491	\hat{A} Restoration and coral adaptation delay, but do not prevent, climate-driven reef framework erosion of an inshore site in the Florida Keys. Scientific Reports, 2023, 13, .	1.6	5
3492	Mesoscale convective systems over the Amazon basin in a changing climate under global warming. Climate Dynamics, 2023, 61, 1815-1827.	1.7	1
3493	Sub-seasonal to seasonal drivers of dry extreme rainfall events over Northeast Thailand. Frontiers in Climate, 0, 4, .	1.3	3
3494	Southern hemisphere eastern boundary upwelling systems emerging as future marine heatwave hotspots under greenhouse warming. Nature Communications, 2023, 14, .	5.8	9
3495	Optimizing the sowing window for direct-seeded rice (Oryza sativa L.) considering high yield and methane emissions in Central China. Agricultural Systems, 2023, 205, 103594.	3.2	3
3496	Why Is Climate Sensitivity for Solar Forcing Smaller than for an Equivalent CO2 Forcing?. Journal of Climate, 2023, 36, 775-789.	1.2	0
3497	Research trends and gaps in climate change impacts and adaptation potentials in major crops. Current Opinion in Environmental Sustainability, 2023, 60, 101249.	3.1	10
3498	Agricultural risk assessment of compound dry and hot events in China. Agricultural Water Management, 2023, 277, 108128.	2.4	11
3499	Attribution of observed changes in extreme temperatures to anthropogenic forcing using CMIP6 models. Weather and Climate Extremes, 2023, 39, 100548.	1.6	5
3500	Zonal current structure of the Indian Ocean in CMIP6 models. Deep-Sea Research Part II: Topical Studies in Oceanography, 2023, 208, 105260.	0.6	1
3501	A qualitative assessment of integrated active cooling systems: A review with a focus on system flexibility and climate resilience. Renewable and Sustainable Energy Reviews, 2023, 175, 113179.	8.2	10
3514	Changes of Water Vapor Budget over East Asia in Response to 4xCO2 Concentration Forcing. Sustainability, 2023, 15, 313.	1.6	0
3515	Persistent anomalies of the North Atlantic jet stream and associated surface extremes over Europe. Environmental Research Letters, 2023, 18, 024017.	2.2	3
3517	Increased moist heat stress risk across China under warming climate. Scientific Reports, 2022, 12, .	1.6	5
3518	Assessment of CMIP6 Multi-Model Projections Worldwide: Which Regions Are Getting Warmer and Are Going through a Drought in Africa and Morocco? What Changes from CMIP5 to CMIP6?. Sustainability, 2023, 15, 690.	1.6	8
3519	Potential Global Distribution of the Habitat of Endangered Gentiana rhodantha Franch: Predictions Based on MaxEnt Ecological Niche Modeling. Sustainability, 2023, 15, 631.	1.6	1
3520	Coupling PLUS–InVEST Model for Ecosystem Service Research in Yunnan Province, China. Sustainability, 2023, 15, 271.	1.6	12
3522	Evaluation of Dynamical Seasonal Prediction Skills for Tropical Cyclone Activity over the South China Sea in FGOALS-f2. Atmosphere, 2023, 14, 85.	1.0	O

#	Article	IF	CITATIONS
3523	Global temperature shocks and real exchange rates. , 2022, 1, 100004.		5
3524	Projection of temperature extremes of Egypt using CMIP6 GCMs under multiple shared socioeconomic pathways. Environmental Science and Pollution Research, 2023, 30, 38063-38075.	2.7	3
3525	Climate Downscaling for Fire Management. World Sustainability Series, 2021, , 465-491.	0.3	3
3527	Investigation of Fire Weather Danger under a Changing Climate at High Resolution in Greece. Sustainability, 2023, 15, 2498.	1.6	4
3528	The Challenge of Providing Information About Regional Climate Change. Lernweltforschung, 2023, , 15-46.	0.1	0
3529	Construction of an ecological model of Sambucus javanica blume in China under different climate scenarios based on maxent model. Plant Ecology, 2023, 224, 221-237.	0.7	5
3530	Revealing historical observations and future projections of precipitation over Northwest China based on dynamic downscaled CMIP6 simulations. Frontiers in Earth Science, 0, 10, .	0.8	2
3531	Future Local Groundâ€Level Ozone in the European Area From Statistical Downscaling Projections Considering Climate and Emission Changes. Earth's Future, 2023, 11, .	2.4	2
3532	Spatiotemporal projections of extreme precipitation over Algeria based on CMIP6 global climate models. Modeling Earth Systems and Environment, 2023, 9, 3011-3028.	1.9	3
3533	Geostrophic flows control future changes of oceanic eastern boundary upwelling. Nature Climate Change, 0, , .	8.1	1
3534	Changes in characterising extremes. , 2023, , 17-80.		0
3535	Variable temperature thresholds of melt pond formation on Antarctic ice shelves. Nature Climate Change, 2023, 13, 161-166.	8.1	10
3536	Possible Effects of Climate Change on the Occurrence and Distribution of the Rare Moss Buxbaumia viridis in Serbia (SE Europe). Plants, 2023, 12, 557.	1.6	0
3537	Opposite Impacts of Interannual and Decadal Pacific Variability in the Extratropics. Geophysical Research Letters, 2023, 50, .	1.5	2
3538	Multiyear Dry Periods in Southern Africa. International Journal of Climatology, 0, , .	1.5	0
3539	Colder Eastern Equatorial Pacific and Stronger Walker Circulation in the Early 21st Century: Separating the Forced Response to Global Warming From Natural Variability. Geophysical Research Letters, 2023, 50, .	1.5	12
3540	Subseasonal reversals of winter surface air temperature in mid-latitude Asia and the roles of westward-shift NAO. Environmental Research Letters, 2023, 18, 034018.	2.2	3
3541	Impacts of Solar Activity Variations on Climate. , 2023, , 445-459.		0

#	Article	IF	CITATIONS
3542	The benefits of being smaller: Consistent pattern for climate-induced range shift and morphological difference of three falconiforme species. Avian Research, 2023, 14, 100079.	0.5	2
3543	Indian Ocean mixed layer depth changes under global warming. Frontiers in Climate, 0, 5, .	1.3	1
3544	Resolving the 21st century temperature trends of the upper troposphere–lower stratosphere with satellite observations. Scientific Reports, 2023, 13, .	1.6	5
3545	Introducing CRYOWRF v1.0: multiscale atmospheric flow simulations with advanced snow cover modelling. Geoscientific Model Development, 2023, 16, 719-749.	1.3	8
3546	Data-driven predictions of the time remaining until critical global warming thresholds are reached. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	33
3547	Interannual Variability of Extreme Precipitation during the Boreal Summer over Northwest China. Remote Sensing, 2023, 15, 785.	1.8	2
3548	Effect of Plankton Composition Shifts in the North Atlantic on Atmospheric pCO ₂ . Geophysical Research Letters, 2023, 50, .	1.5	0
3549	Asia Faces a Growing Threat From Intraseasonal Compound Weather Whiplash. Earth's Future, 2023, 11 ,	2.4	3
3550	Changes in the ground surface temperature in permafrost regions along the Qinghai–Tibet engineering corridor from 1900 to 2014: A modified assessment of CMIP6. Advances in Climate Change Research, 2023, 14, 85-96.	2.1	5
3551	Investigating hydroclimatic impacts of the 168–158 BCE volcanic quartet and their relevance to the Nile River basin and Egyptian history. Climate of the Past, 2023, 19, 249-275.	1.3	2
3552	A spatiotemporal 3D convolutional neural network model for ENSO predictions: A test case for the 2020/21 La Niña conditions. Atmospheric and Oceanic Science Letters, 2023, 16, 100330.	0.5	2
3553	Recent progress in understanding the interaction between ENSO and the East Asian winter monsoon: A review. Frontiers in Earth Science, $0,11,.$	0.8	0
3554	Flood frequency and flood intensity changes in the post embankment period in the Kosi sub-basin India: Impact of location, caste, and class on the flood vulnerability of the marginal communities. Frontiers in Water, 0, 5, .	1.0	1
3555	Northern-high-latitude permafrost and terrestrial carbon response to two solar geoengineering scenarios. Earth System Dynamics, 2023, 14, 55-79.	2.7	3
3556	Predicting the current and future suitable-habitat distribution of tropical adult and juvenile targeted fishes in multi-sector fisheries of central Queensland, Australia. Marine and Freshwater Research, 2023, , .	0.7	0
3557	Why could ENSO directly affect the occurrence frequency of Arctic daily warming events after the late 1970s?. Environmental Research Letters, 2023, 18, 024009.	2.2	1
3558	Bioclimatic change as a function of global warming from CMIP6 climate projections. Biogeosciences, 2023, 20, 451-488.	1.3	1
3559	Attribution of the July 2021 Record-Breaking Northwest Pacific Marine Heatwave to Global Warming, Atmospheric Circulation, and ENSO. Bulletin of the American Meteorological Society, 2023, 104, E291-E297.	1.7	13

#	Article	IF	CITATIONS
3560	The April 2021 Cape Town Wildfire: Has Anthropogenic Climate Change Altered the Likelihood of Extreme Fire Weather?. Bulletin of the American Meteorological Society, 2023, 104, E298-E304.	1.7	2
3561	Use of quality controlled and homogenized data. , 2023, , 253-270.		0
3562	Storylines of Maritime Continent dry period precipitation changes under global warming. Environmental Research Letters, 2023, 18, 034017.	2.2	3
3563	A modern-day Mars climate in the Met Office Unified Model: dry simulations. Geoscientific Model Development, 2023, 16, 621-657.	1.3	3
3564	Historical and Projected Changes in Temperature Extremes Over China and the Inconsistency Between Multimodel Ensembles and Individual Models From CMIP5 and CMIP6. Earth and Space Science, 2023, 10, .	1.1	3
3565	Soil erosion modeling under future climate change: a case study on Marinduque Island, Philippines. , 2023, , 381-398.		1
3566	Indian Ocean dynamic sea level, its variability and projections in CMIP6 models. Climate Dynamics, 2023, 61, 2229-2252.	1.7	2
3567	Anthropogenic Influence on the 2021 Wettest September in Northern China. Bulletin of the American Meteorological Society, 2023, 104, E243-E248.	1.7	0
3568	Asymmetric impacts of El Niño–Southern Oscillation on the winter precipitation over South China: the role of the India–Burma Trough. Climate Dynamics, 2023, 61, 2211-2227.	1.7	6
3569	Future changes in atmospheric rivers over East Asia under stratospheric aerosol intervention. Atmospheric Chemistry and Physics, 2023, 23, 1687-1703.	1.9	3
3570	Uncertainty in Simulating Twentieth Century West African Precipitation Trends: The Role of Anthropogenic Aerosol Emissions. Earth's Future, 2023, 11 , .	2.4	3
3571	Modeling Massive Highly Multivariate Nonstationary Spatial Data with the Basis Graphical Lasso. Journal of Computational and Graphical Statistics, 2023, 32, 1472-1487.	0.9	0
3572	Challenges with interpreting the impact of Atlantic Multidecadal Variability using SST-restoring experiments. Npj Climate and Atmospheric Science, 2023, 6, .	2.6	5
3573	Assessment of climate change impact on hydrological components of Ponnaiyar river basin, Tamil Nadu using CMIP6 models. Journal of Water and Climate Change, 2023, 14, 730-747.	1.2	8
3574	Cloud transition across the daily cycle illuminates model responses of trade cumuli to warming. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	4
3575	Anticipating the effects of climate warming and natural habitat conversion on waterbird communities to address protection gaps. Biological Conservation, 2023, 279, 109939.	1.9	0
3576	Connections between Upper Tropospheric and Lower Stratospheric Circulation Responses to Increased CO2. Journal of Climate, 2023, 36, 4101-4112.	1.2	1
3577	Climate-driven zooplankton shifts cause large-scale declines in food quality for fish. Nature Climate Change, 2023, 13, 470-477.	8.1	17

#	Article	IF	CITATIONS
3578	Regime-oriented causal model evaluation of Atlantic–Pacific teleconnections in CMIP6. Earth System Dynamics, 2023, 14, 309-344.	2.7	2
3579	Reproducible and relocatable regional ocean modelling: fundamentals and practices. Geoscientific Model Development, 2023, 16, 1481-1510.	1.3	1
3580	Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater. Nature, 2023, 615, 841-847.	13.7	40
3581	Warming Overwhelms the Efficacy of Wet Conditions to Moderate Extreme Heat and Atmospheric Aridity Across the Central Plains. Geophysical Research Letters, 2023, 50, .	1.5	0
3582	Monthly Arctic Seaâ€ice Prediction With a Linear Inverse Model. Geophysical Research Letters, 2023, 50, .	1.5	1
3583	Response of damaging Philippines tropical cyclones to a warming climate using the pseudo global warming approach. Climate Dynamics, 2023, 61, 3499-3523.	1.7	3
3584	The role of the western North Pacific (WNP) as an El Niño–Southern Oscillation (ENSO) precursor in a warmer future climate. Climate Dynamics, 2023, 61, 3755-3773.	1.7	2
3585	The Improvement of the Discrete Wavelet Transform. Mathematics, 2023, 11, 1770.	1.1	1
3586	Evapotranspiration responses to CO2 and its driving mechanisms in four ecosystems based on CMIP6 simulations: Forest, shrub, farm and grass. Environmental Research, 2023, 223, 115417.	3.7	0
3587	Evolution and prediction of drought-flood abrupt alternation events in Huang-Huai-Hai River Basin, China. Science of the Total Environment, 2023, 869, 161707.	3.9	14
3588	Frequency and Intensity of Landfalling Tropical Cyclones in East Asia: Past Variations and Future Projections. Meteorology, 2023, 2, 171-190.	0.6	3
3589	A Regional Airâ€Sea Coupled Model Developed for the East Asia and Western North Pacific Monsoon Region. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	1
3590	Contribution of the deepened Amundsen sea low to the record low Antarctic sea ice extent in February 2022. Environmental Research Letters, 2023, 18, 054002.	2.2	7
3591	Revealing the long-term trend of the global-scale Ginkgo biloba distribution and the impact of future climate change based on the ensemble modeling. Biodiversity and Conservation, 2023, 32, 2077-2100.	1.2	4
3592	The representation of alkalinity and the carbonate pump from CMIP5 to CMIP6 Earth system models and implications for the carbon cycle. Biogeosciences, 2023, 20, 1195-1257.	1.3	6
3593	Sources of Uncertainty in the Time of Emergence of Tropical Pacific Climate Change Signal: Role of Internal Variability. Journal of Climate, 2023, 36, 2535-2549.	1.2	0
3594	The increasing risk of future simultaneous droughts over the Yangtze River basin based on CMIP6 models. Stochastic Environmental Research and Risk Assessment, 2023, 37, 2577-2601.	1.9	6
3595	Extreme temperatures detection and attribution related to external forcing in Madagascar. International Journal of Climatology, 2023, 43, 3907-3924.	1.5	1

#	Article	IF	CITATIONS
3596	Evaluation and projection of precipitation and temperature in a coastal climatic transitional zone in China based on CMIP6 GCMs. Climate Dynamics, 2023, 61, 3911-3933.	1.7	5
3597	CMIP6 Earth System Models Project Greater Acceleration of Climate Zone Change Due To Stronger Warming Rates. Earth's Future, 2023, 11, .	2.4	6
3598	Increase of Simultaneous Soybean Failures Due To Climate Change. Earth's Future, 2023, 11, .	2.4	6
3600	A global transition to flash droughts under climate change. Science, 2023, 380, 187-191.	6.0	111
3602	Assessing hydrological performance for optimized integrated grey-green infrastructure in response to climate change based on shared socio-economic pathways. Sustainable Cities and Society, 2023, 91, 104436.	5.1	20
3603	Climate change impacts on regional agricultural irrigation water use in semi-arid environments. Agricultural Water Management, 2023, 281, 108239.	2.4	7
3604	How does ecological protection redline policy affect regional land use and ecosystem services?. Environmental Impact Assessment Review, 2023, 100, 107062.	4.4	20
3605	Conservation challenges to the useful neotropical palm Babaçu (Attalea pindobassu Bondar) in the face of climate change. Flora: Morphology, Distribution, Functional Ecology of Plants, 2023, 302, 152262.	0.6	0
3606	Projected seasonal changes in future rainfall erosivity over the Lancang-Mekong River basin under the CMIP6 scenarios. Journal of Hydrology, 2023, 620, 129444.	2.3	5
3607	Projecting the excess mortality due to heatwave and its characteristics under climate change, population and adaptation scenarios. International Journal of Hygiene and Environmental Health, 2023, 250, 114157.	2.1	4
3608	Climate change sensitive sizing and design for nearly zero-energy office building systems in Brussels. Energy and Buildings, 2023, 286, 112971.	3.1	15
3609	Interdecadal variability of the warm Arctic-cold Eurasia pattern linked to the Barents oscillation. Atmospheric Research, 2023, 287, 106712.	1.8	3
3610	How the new climate scenarios will affect air quality trends: An exploratory research. Urban Climate, 2023, 49, 101479.	2.4	1
3611	Overheating analysis of optimized nearly Zero-Energy dwelling during current and future heatwaves coincided with cooling system outage. Energy and Buildings, 2023, 287, 112998.	3.1	8
3612	A stochastic model of future extreme temperature events for infrastructure analysis. Environmental Modelling and Software, 2023, 163, 105663.	1,9	3
3613	Compound and successive events of extreme precipitation and extreme runoff under heatwaves based on CMIP6 models. Science of the Total Environment, 2023, 878, 162980.	3.9	6
3614	Land use and land cover dynamics: Implications for thermal stress and energy demands. Renewable and Sustainable Energy Reviews, 2023, 179, 113274.	8.2	6
3615	Interdecadal Pacific Variability dominated the decadal variation of cold season precipitation in arid West Asia. Atmospheric Research, 2023, 288, 106730.	1.8	1

#	Article	IF	CITATIONS
3616	Impacts of land use conversions on soil organic carbon in a warming-induced agricultural frontier in Northern Ontario, Canada under historical and future climate. Journal of Cleaner Production, 2023, 404, 136902.	4.6	3
3617	Dust emission response to precipitation and temperature anomalies under different climatic conditions. Science of the Total Environment, 2023, 874, 162335.	3.9	3
3618	Substantial increase in abrupt shifts between drought and flood events in China based on observations and model simulations. Science of the Total Environment, 2023, 876, 162822.	3.9	20
3619	Global cropland exposure to extreme compound drought heatwave events under future climate change. Weather and Climate Extremes, 2023, 40, 100559.	1.6	10
3620	European projections of West Nile virus transmission under climate change scenarios. One Health, 2023, 16, 100509.	1.5	12
3621	Projected changes in extreme streamflow and inland flooding in the mid-21st century over Northeastern United States using ensemble WRF-Hydro simulations. Journal of Hydrology: Regional Studies, 2023, 47, 101371.	1.0	2
3622	Impact of Climate Change on Streamflow in the Middle–Upper Reaches of the Weihe River Basin, China. Journal of Hydrologic Engineering - ASCE, 2023, 28, .	0.8	1
3623	Assessment of Chinese suitable habitats of Zanthoxylum nitidum in different climatic conditions by Maxent model, HPLC, and chemometric methods. Industrial Crops and Products, 2023, 196, 116515.	2.5	4
3624	Predicting the potential distribution of wheatear birds using stacked generalization-based ensembles. Ecological Informatics, 2023, 75, 102084.	2.3	1
3625	Future projections of atmospheric icing in Norway. Cold Regions Science and Technology, 2023, 210, 103836.	1.6	1
3626	Overstating the effects of anthropogenic climate change? A critical assessment of attribution methods in climate science. European Journal for Philosophy of Science, 2023, 13, .	0.6	4
3627	Human-induced weakening of the Northern Hemisphere tropical circulation. Nature, 2023, 617, 529-532.	13.7	3
3628	Emergent constraints for the climate system as effective parameters of bulk differential equations. Earth System Dynamics, 2023, 14, 433-442.	2.7	0
3629	Projected increase in global runoff dominated by land surface changes. Nature Climate Change, 2023, 13, 442-449.	8.1	16
3630	Climate Change Impacts on the Availability of Anti-malarial Plants in Kenya. Climate Change Ecology, 2023, 5, 100070.	0.9	3
3631	Simulation of the climate and ocean circulations in the Middle Miocene Climate Optimum by a coupled model FGOALS-g3. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 617, 111509.	1.0	1
3632	Future perspectives for wind and solar electricity production under high-resolution climate change scenarios. Journal of Cleaner Production, 2023, 404, 136997.	4.6	7
3657	Temporal and Spatial Variation Characteristics of Soil Moisture in Spring in the Arid Regions of Northwest China in the Past 60s years. Journal of Geoscience and Environment Protection, 2022, 10, 273-282.	0.2	0

#	Article	IF	CITATIONS
3658	Climate Change: An Overview. , 2022, , 1-30.		0
3659	Global evaluation of model agreement and uncertainty in terrestrial water storage simulations from ISIMIP 2b framework. Journal of Hydrology, 2023, 617, 129137.	2.3	3
3660	Tropical instability waves in a high-resolution oceanic and coupled GCM. Ocean Modelling, 2023, 182, 102169.	1.0	2
3661	Assessment of total and extreme precipitation over central Asia via statistical downscaling: Added value and multi-model ensemble projection. Advances in Climate Change Research, 2023, 14, 62-76.	2.1	2
3662	Human influence on historical heaviest precipitation events in the Yangtze River Valley. Environmental Research Letters, 2023, 18, 024044.	2.2	3
3664	Inequality of Global Thermal Comfort Conditions Changes in a Warmer World. Earth's Future, 2023, 11, .	2.4	6
3665	Impact of Stratospheric Aerosol Injection on the East Asian Winter Monsoon. Geophysical Research Letters, 2023, 50, .	1.5	1
3667	Exploring Data Corruption Inside SZ. , 2022, , .		1
3668	DCPViz: A Visual Analytics Approach for Downscaled Climate Projections. , 2022, , .		0
3669	What controls the future phytoplankton change over the Yellow and East China Seas under global warming?. Frontiers in Marine Science, 0, 10, .	1.2	1
3670	Robust global detection of forced changes in mean and extreme precipitation despite observational disagreement on the magnitude of change. Earth System Dynamics, 2023, 14, 81-100.	2.7	4
3671	Simulation of Northern Winter Stratospheric Polar Vortex Regimes in CESM2-WACCM. Atmosphere, 2023, 14, 243.	1.0	0
3672	Interdecadal Variations of the Scandinavian Pattern. Journal of Climate, 2023, 36, 3275-3288.	1.2	0
3673	Large scale hydrologic and tracer aided modelling: A review. Journal of Hydrology, 2023, 618, 129177.	2.3	6
3674	Reconstructions and predictions of the global carbon budget with an emission-driven Earth system model. Earth System Dynamics, 2023, 14, 101-119.	2.7	2
3675	Evaluating Northern Hemisphere Growing Season Net Carbon Flux in Climate Models Using Aircraft Observations. Global Biogeochemical Cycles, 2023, 37, .	1.9	2
3676	Assessing Precipitation Over the Amazon Basin as Simulated by a Stormâ€Resolving Model. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	0
3677	Hydrometeorological Conditions of the Volga Flow Generation into the Caspian Sea during the Last Glacial Maximum. Climate, 2023, 11, 36.	1.2	1

#	Article	IF	CITATIONS
3678	Future global streamflow declines are probably more severe than previously estimated., 2023, 1, 261-271.		18
3680	The ERA5 Extreme Seasons Explorer as a Basis for Research at the Weather and Climate Interface. Bulletin of the American Meteorological Society, 2023, 104, E631-E644.	1.7	1
3681	The projected future degradation in air quality is caused by more abundant natural aerosols in a warmer world. Communications Earth & Environment, 2023, 4, .	2.6	7
3682	Changes in Winter Temperature Extremes From Future Arctic Seaâ€Ice Loss and Ocean Warming. Geophysical Research Letters, 2023, 50, .	1.5	5
3683	Assessing risk from invasive alien plants in China: Reconstructing invasion history and estimating distribution patterns of Lolium temulentum and Aegilops tauschii. Frontiers in Plant Science, 0, 14, .	1.7	2
3684	Southern Hemisphere Response to the Quasi-Biennial Oscillation in the CMIP5/6 Models. Journal of Climate, 2023, 36, 2603-2623.	1.2	5
3685	Influence of the North American dipole on the Atlantic warm pool. Frontiers in Earth Science, 0, 11, .	0.8	0
3686	Modelling Distributions of Asian and African Rice Based on MaxEnt. Sustainability, 2023, 15, 2765.	1.6	1
3687	Assessing sensitivities of climate model weighting to multiple methods, variables, and domains in the south-central United States. Earth System Dynamics, 2023, 14, 121-145.	2.7	4
3688	Climate Change Impacts on Water Resources in Arid and Semi-Arid Regions: A Case Study in Saudi Arabia. Water (Switzerland), 2023, 15, 606.	1.2	20
3689	Uncertainties in estimating the effect of climate change on 100-year return value for significant wave height. Ocean Engineering, 2023, 272, 113840.	1.9	2
3690	Terrestrial amplification of past, present, and future climate change. Science Advances, 2023, 9, .	4.7	5
3692	The Subsurface and Surface Indian Ocean Dipoles and Their Association with ENSO in CMIP6 models. Advances in Atmospheric Sciences, 2023, 40, 975-987.	1.9	0
3693	Vapor buoyancy increases clear-sky thermal emission. , 2023, 2, 015006.		0
3694	Projected changes in synoptic circulations over Europe and their implications for summer precipitation: A <scp>CMIP6</scp> perspective. International Journal of Climatology, 2023, 43, 3373-3390.	1.5	4
3695	Comparing the Arctic climate in Chinese and other CMIP6 models. Atmospheric and Oceanic Science Letters, 2023, , 100334.	0.5	0
3696	Underestimated relationship between westerly wind bursts and ENSO in CMIP6 models. Atmospheric and Oceanic Science Letters, 2023, 16, 100336.	0.5	1
3697	Subseasonal variability and the "Arctic warming-Eurasia cooling―trend. Science Bulletin, 2023, 68, 528-535.	4.3	7

#	Article	IF	CITATIONS
3698	Detection of the anthropogenic signal and urbanization effects in extreme temperature changes in eastern China. Atmospheric and Oceanic Science Letters, 2023, 16, 100332.	0.5	0
3699	Comparative assessment of future solar power potential based on CMIP5 and CMIP6 multi-model ensembles. Renewable Energy, 2023, 206, 324-335.	4.3	5
3700	Ecological niche model transferability of the white star apple (Chrysophyllum albidum G. Don) in the context of climate and global changes. Scientific Reports, 2023, 13, .	1.6	5
3701	Effects of Climate Change on the Spatial Distribution of the Threatened Species Rhododendron purdomii in Qinling-Daba Mountains of Central China: Implications for Conservation. Sustainability, 2023, 15, 3181.	1.6	4
3702	CMIP6 GCM Validation Based on ECS and TCR Ranking for 21st Century Temperature Projections and Risk Assessment. Atmosphere, 2023, 14, 345.	1.0	9
3703	The Atlantic Meridional Mode and Associated Wind–SST Relationship in the CMIP6 Models. Atmosphere, 2023, 14, 359.	1.0	4
3705	Tools and Solutions for Watershed Management and Planning Under Climate Change. Springer Climate, 2023, , 521-548.	0.3	0
3707	Projection of the diurnal temperature range over Africa based on CMIP6 simulations. Journal of African Earth Sciences, 2023, 200, 104883.	0.9	2
3709	Future weather generator for building performance research: An open-source morphing tool and an application. Building and Environment, 2023, 233, 110104.	3.0	11
3710	Optimizing Soil Moisture Station Networks for Future Climates. Geophysical Research Letters, 2023, 50, .	1.5	1
3711	Assessment of the potential for hydrokinetic energy production in the Douro river estuary under sea level rise scenarios. Energy, 2023, 271, 126960.	4.5	1
3713	Future trends of reference evapotranspiration in Sicily based on CORDEX data and Machine Learning algorithms. Agricultural Water Management, 2023, 280, 108232.	2.4	21
3714	Modelling Climatically Suitable Areas for Mahogany (Swietenia macrophylla King) and Their Shifts across Neotropics: The Role of Protected Areas. Forests, 2023, 14, 385.	0.9	8
3716	Application of the Pseudoâ€Global Warming Approach in a Kilometerâ€Resolution Climate Simulation of the Tropics. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	2
3717	Past and future climate change effects on the thermal regime and oxygen solubility of four peri-alpine lakes. Hydrology and Earth System Sciences, 2023, 27, 837-859.	1.9	4
3718	Revisiting Interior Water Mass Responses to Surface Forcing Changes and the Subsequent Effects on Overturning in the Southern Ocean. Journal of Geophysical Research: Oceans, 2023, 128, .	1.0	3
3719	The data processing and analysis methods for stratospheric ozone and planetary wave study. Ukrainian Antarctic Journal, 2022, 20, .	0.1	0
3720	Unraveling the Arctic Sea Ice Change since the Middle of the Twentieth Century. Geosciences (Switzerland), 2023, 13, 58.	1.0	2

#	Article	IF	Citations
3721	Bias-Correcting the Maximum and Minimum Air Temperatures of Egypt Using a High-Resolution Regional Climate Model (RegCM4). , 0 , , .		1
3722	CMIP6 simulations with the compact Earth system model OSCAR v3.1. Geoscientific Model Development, 2023, 16, 1129-1161.	1.3	5
3723	Projected 21 st-century changes in marine heterotrophic bacteria under climate change. Frontiers in Microbiology, $0,14,.$	1.5	1
3724	Mechanisms and Impacts of Earth System Tipping Elements. Reviews of Geophysics, 2023, 61, .	9.0	10
3725	Climateâ€change modelling at reduced floatingâ€point precision with stochastic rounding. Quarterly Journal of the Royal Meteorological Society, 2023, 149, 843-855.	1.0	2
3726	Projections of fire emissions and the consequent impacts on air quality under 1.5°C and 2°C global warming. Environmental Pollution, 2023, 323, 121311.	3.7	3
3727	Historical and projected changes in Extreme High Temperature events over East Africa and associated with meteorological conditions using CMIP6 models. Global and Planetary Change, 2023, 222, 104068.	1.6	7
3728	Mesoscale Convective Systems in DYAMOND Global Convectionâ€Permitting Simulations. Geophysical Research Letters, 2023, 50, .	1.5	11
3729	Origins of Multidecadal SST Variations in the Southern Atlantic and Indian Oceans Since the 1960s. Geophysical Research Letters, 2023, 50, .	1.5	0
3730	Projection of China's future runoff based on the CMIP6 mid-high warming scenarios. Science China Earth Sciences, 2023, 66, 528-546.	2.3	4
3731	Important role of stratosphere-troposphere coupling in the Arctic mid-to-upper tropospheric warming in response to sea-ice loss. Npj Climate and Atmospheric Science, 2023, 6, .	2.6	6
3732	Asymmetric response of South Asian summer monsoon rainfall in a carbon dioxide removal scenario. Npj Climate and Atmospheric Science, 2023, 6, .	2.6	3
3733	Antarctic shelf ocean warming and sea ice melt affected by projected El Niño changes. Nature Climate Change, 2023, 13, 235-239.	8.1	11
3734	Assessment on the Climate Change Impact Using CMIP6. IOP Conference Series: Earth and Environmental Science, 2023, 1140, 012005.	0.2	1
3735	Australian climate warming: observed change from 1850 and global temperature targets. Journal of Southern Hemisphere Earth Systems Science, 2023, 73, 30-43.	0.7	5
3736	The Warm Arctic—Cold Eurasia Pattern and Its Key Region in Winter in CMIP6 Model Simulations. Advances in Atmospheric Sciences, 2023, 40, 2138-2153.	1.9	1
3737	Enhanced Asian warming increases Arctic amplification. Environmental Research Letters, 2023, 18, 034041.	2.2	2
3738	Recent decrease of the impact of tropical temperature on the carbon cycle linked to increased precipitation. Nature Communications, 2023, 14, .	5.8	2

#	Article	IF	CITATIONS
3739	碳达峰碳ä¸å'Œç›®æ‡ä¸‹é•è—é«~原土地å^©ç"¨å•北趋势. SCIENTIA SINICA Terrae, 2023, , .	0.1	0
3740	AtmoDist: Self-supervised representation learning for atmospheric dynamics. , 2023, 2, .		0
3741	Southern South China Sea Dynamics: Sea Level Change from Coupled Model Intercomparison Project Phase 6 (CMIP6) in the 21st Century. Journal of Marine Science and Engineering, 2023, 11, 458.	1.2	0
3742	Understanding Models' Global Sea Surface Temperature Bias in Mean State: From CMIP5 to CMIP6. Geophysical Research Letters, 2023, 50, .	1.5	13
3743	Impacts of soil erosion and climate change on the built heritage of the Pambamarca Fortress Complex in northern Ecuador. PLoS ONE, 2023, 18, e0281869.	1.1	0
3744	Can global warming bring more dust?. Climate Dynamics, 2023, 61, 2693-2715.	1.7	3
3745	Skillful statistical prediction of subseasonal temperature by training on dynamical model data. , 2023, 2, .		1
3746	Daytime-only mean data enhance understanding of land–atmosphere coupling. Hydrology and Earth System Sciences, 2023, 27, 861-872.	1.9	3
3747	Rapid 21st Century Weakening of the Agulhas Current in a Warming Climate. Geophysical Research Letters, 2023, 50, .	1.5	1
3748	The impacts of global warming on arid climate and drought features. Theoretical and Applied Climatology, 2023, 152, 693-708.	1.3	2
3749	Hadley circulation dynamics in the IITM-Earth System Model simulations: evaluation and future projections. Theoretical and Applied Climatology, 2023, 152, 213-226.	1.3	1
3750	Global variations in critical drought thresholds that impact vegetation. National Science Review, 2023, 10, .	4.6	20
3751	Future projections of seasonal temperature and precipitation for India. Frontiers in Climate, 0, 5, .	1.3	3
3752	When Will the Unprecedented 2022 Summer Heat Waves in Yangtze River Basin Become Normal in a Warming Climate?. Geophysical Research Letters, 2023, 50, .	1.5	26
3753	Predicting how climate change and globally invasive piscivorous fishes will interact to threaten populations of endemic fishes in a freshwater biodiversity hotspot. Biological Invasions, 2023, 25, 1907-1920.	1.2	4
3754	The representation of dry-season low-level clouds over Western Equatorial Africa in reanalyses and historical CMIP6 simulations. Climate Dynamics, 2023, 61, 2815-2837.	1.7	2
3755	Weakened interannual Tropical Atlantic variability in CMIP6 historical simulations. Climate Dynamics, 2023, 61, 2797-2813.	1.7	0
3758	Projected changes in surface air temperature over Pakistan under bias-constrained CMIP6 models. Arabian Journal of Geosciences, 2023, 16, .	0.6	0

#	Article	IF	CITATIONS
3759	On the use of Infrared Atmospheric Sounding Interferometer (IASI) spectrally resolved radiances to test the EC-Earth climate model (ν 3.3.3) in clear-sky conditions. Geoscientific Model Development, 2023, 16, 1379-1394.	1.3	0
3760	Functionality of Ice Line Latitudinal EBM Tenacity (FILLET). Protocol Version 1.0. A CUISINES Intercomparison Project. Planetary Science Journal, 2023, 4, 39.	1.5	2
3761	Changes in concurrent precipitation and temperature extremes over the Asian monsoon region: observation and projection. Environmental Research Letters, 2023, 18, 044021.	2.2	5
3762	Intermodel spread of historical Indian monsoon rainfall change in CMIP6: The role of the tropical Pacific mean-state. Journal of Climate, 2023, , 1-42.	1.2	0
3763	Non-monotonic changes in Asian Water Towers' streamflow at increasing warming levels. Nature Communications, 2023, 14, .	5.8	21
3765	Soil moisture-evaporation coupling shifts into new gears under increasing CO2. Nature Communications, 2023, 14, .	5.8	12
3766	Large increases in methane emissions expected from North America's largest wetland complex. Science Advances, 2023, 9, .	4.7	6
3767	Projected expansion of hottest climate zones over Africa during the mid and late 21st century. , 2023, 2, 025002.		2
3768	Modulation of daily PM _{2.5} concentrations over China in winter by large-scale circulation and climate change. Atmospheric Chemistry and Physics, 2023, 23, 2829-2842.	1.9	1
3769	Representation of land–atmosphere coupling processes over Africa in coupled model intercomparison project Phase 6. Climate Dynamics, 0, , .	1.7	3
3770	A deep learning architecture for energy service demand estimation in transport sector for Shared Socioeconomic Pathways. Scientific Reports, 2023, 13, .	1.6	0
3771	Large Contribution of Ozoneâ€Depleting Substances to Global and Arctic Warming in the Late 20th Century. Geophysical Research Letters, 2023, 50, .	1.5	2
3772	Sahel Droughts Induced by Large Volcanic Eruptions Over the Last Millennium in PMIP4/Past1000 Simulations. Geophysical Research Letters, 2023, 50, .	1.5	0
3774	Adaptability analysis of snow in the Zhangjiakou competition zone of the Beijing Olympic Winter Games for the next 30 years. Journal of Hydrology: Regional Studies, 2023, 46, 101358.	1.0	2
3775	Shortest path length for evaluating general circulation models for rainfall simulation. Climate Dynamics, 0, , .	1.7	1
3776	New and Noteworthy Taxa of the Genus Dactylorhiza Necker ex Nevski (Orchidaceae Juss.) in Kazakhstan Flora and Its Response to Global Warming. Diversity, 2023, 15, 369.	0.7	3
3777	An inconsistency in aviation emissions between CMIP5 and CMIP6 and the implications for short-lived species and their radiative forcing. Geoscientific Model Development, 2023, 16, 1459-1466.	1.3	2
3778	QBO/Solar Influences on the Tropical Maddenâ€Julian Oscillation: A Mechanism Based on Extratropical Wave Forcing in Late Fall and Early Winter. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	2

#	Article	IF	CITATIONS
3779	Evaluating Carbon Sink Potential of Forest Ecosystems under Different Climate Change Scenarios in Yunnan, Southwest China. Remote Sensing, 2023, 15, 1442.	1.8	3
3780	Mechanisms for African easterly wave changes in simulations of the mid-Holocene. Climate Dynamics, 0, , .	1.7	0
3781	Regional climate simulation of tropical cyclone at gray-zone resolution over western North Pacific: with/without cumulus parameterization. Climate Dynamics, 0 , , .	1.7	0
3782	A comparison of CMIP5 and CMIP6 climate model projections for hydrological impacts in China. Hydrology Research, 2023, 54, 330-347.	1.1	3
3783	Pacific Decadal Oscillation Modulates the Relationship Between Pacific Meridional Mode and Tropical Cyclone Genesis in the Western North Pacific. Geophysical Research Letters, 2023, 50, .	1.5	2
3784	A deep learning–based U-Net model for ENSO-related precipitation responses to sea surface temperature anomalies over the tropical Pacific. Atmospheric and Oceanic Science Letters, 2023, 16, 100351.	0.5	1
3785	Framework for an Oceanâ€Connected Supermodel of the Earth System. Journal of Advances in Modeling Earth Systems, 2023, 15, .	1.3	1
3786	Human influence on growing-period frosts like in early April 2021 in central France. Natural Hazards and Earth System Sciences, 2023, 23, 1045-1058.	1.5	3
3787	Projection of future dryâ€wet evolution in Northwest China and its uncertainty attribution analysis. , 2023, 2, 65-78.		0
3788	Bioclimatic Characterization Relating to Temperature and Subsequent Future Scenarios of Vine Growing across the Apulia Region in Southern Italy. Agriculture (Switzerland), 2023, 13, 644.	1.4	4
3789	Surface Wave Mixing Modifies Projections of 21st Century Ocean Heat Uptake. Atmosphere, 2023, 14, 532.	1.0	0
3790	Adapting reforestation programs to observed and projected climate change. Mitigation and Adaptation Strategies for Global Change, 2023, 28, .	1.0	0
3793	The time of emergence of climate-induced hydrologic change in Australian rivers. Journal of Hydrology, 2023, 619, 129371.	2.3	1
3794	Spatial-temporal transformer network for multi-year ENSO prediction. Frontiers in Marine Science, 0, 10, .	1.2	2
3795	The changing precipitation storm properties under future climate change. Hydrology Research, 0, , .	1.1	1
3796	Radiative Energy Budget for East Asia Based on GK-2A/AMI Observation Data. Remote Sensing, 2023, 15, 1558.	1.8	0
3798	Future Projection of Extreme Precipitation Indices over the Qilian Mountains under Global Warming. International Journal of Environmental Research and Public Health, 2023, 20, 4961.	1.2	1
3799	Adaptations to the stressful combination of serpentine soils and Mediterranean climate drive plant functional groups and trait richness. Frontiers in Plant Science, 0, 14, .	1.7	1

#	Article	IF	CITATIONS
3801	Where are the coexisting parallel climates? Large ensemble climate projections from the point of view of chaos theory. Chaos, 2023, 33, 031104.	1.0	1
3802	Assessing Future Climate Change Impacts on Potato Yields — A Case Study for Prince Edward Island, Canada. Foods, 2023, 12, 1176.	1.9	10
3805	Evaluation of the Pacific Decadal Oscillation from 1901 to 2014 in CMIP6 models. Climate Research, 2023, 90, 1-15.	0.4	2
3806	Global modeling of SDG indicators related to small-scale farmers: testing in a changing climate. Environmental Research Communications, 2023, 5, 031006.	0.9	2
3807	Potentially suitable habitat prediction of Pinus massoniana Lamb. in China under climate change using Maxent model. Frontiers in Forests and Global Change, 0, 6, .	1.0	3
3808	Projection of Flash Droughts in the Headstream Area of Tarim River Basin Under Climate Change Through Bayesian Uncertainty Analysis. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	3
3809	Thermodynamics of Evaporation from the Ocean Surface. Atmosphere, 2023, 14, 560.	1.0	1
3811	Contrasting the Biophysical and Radiative Effects of Rising CO ₂ Concentrations on Ozone Dry Deposition Fluxes. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	0
3812	Projecting the Changes in Multifaceted Characteristics of Heatwave Events Across China. Earth's Future, 2023, 11, .	2.4	8
3813	Ventilation of the deep Gulf of Mexico and potential insights to the Atlantic Meridional Overturning Circulation. Science Advances, 2023, 9, .	4.7	1
3814	Air-conditioning adoption and electricity demand highlight climate change mitigation–adaptation tradeoffs. Scientific Reports, 2023, 13, .	1.6	9
3815	21st Century Scenario Forcing Increases More for CMIP6 Than CMIP5 Models. Geophysical Research Letters, 2023, 50, .	1.5	4
3816	Variability in Projected North American Mean and Extreme Temperature and Precipitation Trends for the 21st Century: Model‶oâ€Model Differences Versus Internal Variability. Earth's Future, 2023, 11, .	2.4	0
3818	UKESM1.1: development and evaluation of an updated configuration of the UK Earth System Model. Geoscientific Model Development, 2023, 16, 1569-1600.	1.3	4
3819	Drivers and impacts of Eastern African rainfall variability. Nature Reviews Earth & Environment, 2023, 4, 254-270.	12.2	43
3821	The implications of maintaining Earth's hemispheric albedo symmetry for shortwave radiative feedbacks. Earth System Dynamics, 2023, 14, 345-365.	2.7	0
3822	Impact of Changing Wind Loads on the Reliability of Power Transmission Lines in Different Regions of Russia. Doklady Physics, 2022, 67, 173-179.	0.2	0
3823	Projected Climateâ€Driven Changes of Water Table Depth in the World's Major Groundwater Basins. Earth's Future, 2023, 11, .	2.4	3

#	Article	IF	CITATIONS
3824	Global Surface Ocean Acidification Indicators From 1750 to 2100 . Journal of Advances in Modeling Earth Systems, 2023 , 15 , .	1.3	10
3825	Evaluating CMIP6 Historical Mean Precipitation over Africa and the Arabian Peninsula against Satellite-Based Observation. Atmosphere, 2023, 14, 607.	1.0	5
3826	Interannual variability and trends of summertime PM2.5-based air quality in the Intermountain West. Environmental Research Letters, 2023, 18, 044032.	2.2	1
3827	Climate warming and increasing Vibrio vulnificus infections in North America. Scientific Reports, 2023, 13, .	1.6	20
3828	Dynamic sea-level changes and potential implications for storm surges in the UK: a storylines perspective. Environmental Research Letters, 2023, 18, 044033.	2.2	0
3829	Future changes of dryâ€wet climate regions and its contributing climatic factors in China based on <scp>CMIP6</scp> models. International Journal of Climatology, 2023, 43, 3570-3589.	1.5	0
3830	Alkalinity responses to climate warming destabilise the Earth's thermostat. Nature Communications, 2023, 14, .	5.8	2
3831	Toward Earth system modeling with resolved clouds and ocean submesoscales on heterogeneous many-core HPCs. National Science Review, 2023, 10, .	4.6	4
3832	Assessing the Performance of CMIP6 Models in Simulating Droughts across Global Drylands. Advances in Atmospheric Sciences, 2024, 41, 193-208.	1.9	5
3833	Forecasting the circum-Mediterranean firs (Abies spp., Pinaceae) distribution: an assessment of a threatened conifers' group facing climate change in the twenty-first century. New Forests, 2024, 55, 143-156.	0.7	2
3834	Influence of anthropogenic and natural forcings on future changes in precipitation projected by the <scp>CMIP6–DAMIP</scp> models. International Journal of Climatology, 2023, 43, 3892-3906.	1.5	1
3835	Geographic isolation and climatic heterogeneity drive population differentiation of <i>Rosa chinensis</i> var. <i>spontanea</i> complex. Plant Biology, 0, , .	1.8	0
3836	Indian Ocean variability changes in the Paleoclimate Modelling Intercomparison Project. Climate of the Past, 2023, 19, 681-701.	1.3	3
3837	Impacts of a weakened AMOC on precipitation over the Euro-Atlantic region in the EC-Earth3 climate model. Climate Dynamics, 2023, 61, 3397-3416.	1.7	4
3838	Reduced Tropical Climate Land Area Under Global Warming. Geophysical Research Letters, 2023, 50, .	1.5	2
3839	Connecting Hemispheric Asymmetries of Planetary Albedo and Surface Temperature. Geophysical Research Letters, 2023, 50, .	1.5	2
3840	Relationships between the Hadley circulation and tropical sea surface temperature with different meridional structures simulated in CMIP6 models. Frontiers in Marine Science, 0, 10, .	1.2	1
3841	Overview of the Spectral Coherence between Planetary Resonances and Solar and Climate Oscillations. Climate, 2023, 11, 77.	1.2	3

#	Article	IF	Citations
3842	Human Contribution to the Risk of 2021 Northwestern Pacific Concurrent Marine and Terrestrial Summer Heat. Bulletin of the American Meteorological Society, 2023, 104, E673-E679.	1.7	0
3843	Modeling impacts of climate change on the distribution of invasive Opuntia ficus-indica (L.) Mill. in Ethiopia: Implications on biodiversity conservation. Heliyon, 2023, 9, e14927.	1.4	5
3845	A framework for estuarine future sea-level scenarios: Response of the industrialised Elbe estuary to projected mean sea level rise and internal variability. Frontiers in Marine Science, $0,10,10$	1.2	1
3848	Northwestward advance of the northern boundary of the East Asian summer monsoon over the 21st century in CMIP6 projections. International Journal of Climatology, 2023, 43, 3859-3876.	1.5	0
3850	Increasing risk of simultaneous occurrence of flash drought in major global croplands. Environmental Research Letters, 2023, 18, 044044.	2.2	10
3852	Future Indian Ocean warming patterns. Nature Communications, 2023, 14, .	5.8	6
3853	Decomposing Fast and Slow Responses of Global Cloud Cover to Quadrupled CO2 Forcing in CMIP6 Models. Atmosphere, 2023, 14, 653.	1.0	0
3854	Pacific Decadal Oscillation Influences Tropical Oxygen Minimum Zone Extent and Obscures Anthropogenic Changes. Geophysical Research Letters, 2023, 50, .	1.5	1
3855	<scp>ENSO</scp> â€induced decadal variability in the tropical Pacific subsurface in <scp>CMIP6</scp> models. International Journal of Climatology, 2023, 43, 4033-4046.	1.5	1
3856	Suitability changes of Citrus medica L. var. sarcodactylis Swingle, a medicine-food plants affected by climate warming using the optimized MaxEnt model. PLoS ONE, 2023, 18, e0282659.	1.1	2
3857	Clustering future scenarios based on predicted range maps. Methods in Ecology and Evolution, 2023, 14, 1346-1360.	2.2	0
3858	Using Multi-Source Data to Assess the Hydrologic Alteration and Extremes under a Changing Environment in the Yalong River Basin. Water (Switzerland), 2023, 15, 1357.	1.2	1
3859	Enhanced impact of the Aleutian Low on increasing the Central Pacific ENSO in recent decades. Npj Climate and Atmospheric Science, 2023, 6, .	2.6	15
3860	Modelling impacts of climate change and anthropogenic activities on inflows and sediment loads of wetlands: case study of the Anzali wetland. Scientific Reports, 2023, 13, .	1.6	45
3861	Current and future trends in heat-related mortality in the MENA region: a health impact assessment with bias-adjusted statistically downscaled CMIP6 (SSP-based) data and Bayesian inference. Lancet Planetary Health, The, 2023, 7, e282-e290.	5.1	11
3862	Sea Ice Remote Sensingâ€"Recent Developments in Methods and Climate Data Sets. Surveys in Geophysics, 2023, 44, 1653-1689.	2.1	4
3863	Southern Ocean warming and its climatic impacts. Science Bulletin, 2023, 68, 946-960.	4.3	9
3864	Can GRACE and CMIP6 historical data identify groundwater drought in North China Plain?. Theoretical and Applied Climatology, 2023, 152, 1203-1219.	1.3	4

#	Article	IF	CITATIONS
3865	Prediction of forest fire occurrence in China under climate change scenarios. Journal of Forestry Research, 2023, 34, 1217-1228.	1.7	4
3866	Climate change scenarios in fisheries and aquatic conservation research. ICES Journal of Marine Science, 2023, 80, 1163-1178.	1.2	7
3867	Climate impacts of 2009/2010 mixed-type El Ni $ ilde{A}$ ±0 on double ITCZs over the eastern Pacific Ocean. Frontiers in Marine Science, 0, 10, .	1.2	0
3868	Assessment of Top of Atmosphere, Atmospheric and Surface Energy Budgets in CMIP6 Models on Regional Scales. Earth and Space Science, 2023, 10, .	1.1	1
3869	Spatial Distribution Characteristics of Suitable Planting Areas for Pyrus Species under Climate Change in China. Plants, 2023, 12, 1559.	1.6	3
3870	Regionally high risk increase for precipitation extreme events under global warming. Scientific Reports, 2023, 13, .	1.6	5
3871	Potential Impacts on Ozone and Climate From a Proposed Fleet of Supersonic Aircraft. Earth's Future, 2023, 11, .	2.4	0
3872	Understanding AMOC stability: the North Atlantic Hosing Model Intercomparison Project. Geoscientific Model Development, 2023, 16, 1975-1995.	1.3	9
3873	Towards an ensemble-based evaluation of land surface models in light of uncertain forcings and observations. Biogeosciences, 2023, 20, 1313-1355.	1.3	3
3874	Uncertainty in US forest carbon storage potential due to climate risks. Nature Geoscience, 2023, 16, 422-429.	5.4	15
3875	Global Warming, Home Runs, and the Future of America's Pastime. Bulletin of the American Meteorological Society, 2023, 104, E1006-E1016.	1.7	1
3877	Increased U.S. coastal hurricane risk under climate change. Science Advances, 2023, 9, .	4.7	14
3878	Climatic Niche Divergence and Conservatism Promote Speciation in Snake-Eyed Skinks (Sauria:) Tj ETQq0 0 0 rgBT Biology, 2023, 50, 249-263.	/Overlock 0.5	2 10 Tf 50 26 1
3879	Global concurrent climate extremes exacerbated by anthropogenic climate change. Science Advances, 2023, 9, .	4.7	39
3880	The Role of Tropical Atlantic in ENSO Predictability Barrier. Geophysical Research Letters, 2023, 50, .	1.5	2
3882	Weak persistence of Northwest Pacific anomalous anticyclone during post-El Niño summers in CMIP5 and CMIP6 models. Climate Dynamics, 2023, 61, 3805-3830.	1.7	O
3883	Acceleration of U.S. Southeast and Gulf coast sea-level rise amplified by internal climate variability. Nature Communications, 2023, 14, .	5.8	21
3884	Coherent Mechanistic Patterns of Tropical Land Hydroclimate Changes. Geophysical Research Letters, 2023, 50, .	1.5	1

#	Article	IF	CITATIONS
3885	Climate change may reduce suitable habitat for freshwater fish in a tropical watershed. Climatic Change, 2023, 176, .	1.7	3
3887	Exploring the Future of Rainfall Extremes Over CONUS: The Effects of High Emission Climate Change Trajectories on the Intensity and Frequency of Rare Precipitation Events. Earth's Future, 2023, 11, .	2.4	4
3888	Time-varying changes and uncertainties in the CMIP6Âocean carbon sink from global to local scale. Earth System Dynamics, 2023, 14, 383-398.	2.7	2
3889	Future strengthening of the Nordic Seas overturning circulation. Nature Communications, 2023, 14, .	5. 8	4
3890	Emergent Constraint for Future Decline in Arctic Phytoplankton Concentration. Earth's Future, 2023, 11, .	2.4	1
3891	Evaluation of General Circulation Models CMIP6 Performance and Future Climate Change over the Omo River Basin, Ethiopia. Sustainability, 2023, 15, 6507.	1.6	3
3892	Evaluation of NEX-GDDP-CMIP6 in simulation performance and drought capture utility over China – based on DISO. Hydrology Research, 2023, 54, 703-721.	1.1	11
3893	Environmental drivers of the current and future distribution of high-yielding lacquer trees (<i>Toxicodendron vernicifluum</i> (stokes) F. A. Barkley). Forestry, 0, , .	1.2	0
3894	Biogeophysical Effects of Land-Use and Land-Cover Changes in South Asia: An Analysis of CMIP6 Models. Land, 2023, 12, 880.	1.2	0
3895	Evaluation of bias correction techniques for generating high-resolution daily temperature projections from CMIP6 models. Climate Dynamics, 2023, 61, 3893-3910.	1.7	2
3896	Assessment of Antarctic Sea Ice Cover in CMIP6 Prediction with Comparison to AMSR2 during 2015–2021. Remote Sensing, 2023, 15, 2048.	1.8	0
3897	A review and comparison of surface incident shortwave radiation from multiple data sources: satellite retrievals, reanalysis data and GCM simulations. International Journal of Digital Earth, 2023, 16, 1332-1357.	1.6	4
3898	chelsaâ€cmip6 1.0: a python package to create high resolution bioclimatic variables based on CHELSA ver. 2.1 and CMIP6 data. Ecography, 2023, 2023, .	2.1	5
3899	Projections of Global Land Runoff Changes and Their Uncertainty Characteristics During the 21st Century. Earth's Future, 2023, 11, .	2.4	1
3900	Advancing research on compound weather and climate events via large ensemble model simulations. Nature Communications, 2023, 14, .	5.8	18
3901	The Rising Threat of Atmospheric CO2: A Review on the Causes, Impacts, and Mitigation Strategies. Environments - MDPI, 2023, 10, 66.	1.5	25
3902	Historical assessment and future projection of extreme precipitation in <scp>CMIP6</scp> models: Global and continental. International Journal of Climatology, 2023, 43, 4119-4135.	1.5	4
3903	Exploring the impact of a frontal ablation parameterization on projected 21st-century mass change for Northern Hemisphere glaciers. Journal of Glaciology, 0, , 1-16.	1.1	2

#	Article	IF	CITATIONS
3904	Study on fractional vegetation cover dynamic in the Yellow River Basin, China from 1901 to 2100. Frontiers in Forests and Global Change, 0, 6, .	1.0	2
3905	Biases and improvements of the boreal winter–spring equatorial undercurrent in the Indian Ocean in the CMIP5 and CMIP6 models. Frontiers in Marine Science, 0, 10, .	1.2	1
3906	Future transition in climate extremes over Western Ghats of India based on CMIP6 models. Environmental Monitoring and Assessment, 2023, 195, .	1.3	1
3907	Projection of Future Meteorological Droughts in Lake Urmia Basin, Iran. Water (Switzerland), 2023, 15, 1558.	1.2	7
3908	Projected Future Flooding Pattern of Wabash River in Indiana and Fountain Creek in Colorado: An Assessment Utilizing Bias-Corrected CMIP6 Climate Data. Forecasting, 2023, 5, 405-423.	1.6	1
3909	Evaluation of bias correction methods for a multivariate drought index: case study of the Upper Jhelum Basin. Geoscientific Model Development, 2023, 16, 2055-2076.	1.3	0
3910	Skillful Coupled Atmosphereâ€Ocean Forecasts on Interannual to Decadal Timescales Using a Linear Inverse Model. Earth and Space Science, 2023, 10, .	1.1	0
3911	Assessment of future Antarctic amplification of surface temperature change under different Scenarios from CMIP6. Journal of Mountain Science, 2023, 20, 1074-1089.	0.8	0
3912	The emergence of the Gulf Stream and interior western boundary as key regions to constrain the future North Atlantic carbon uptake. Geoscientific Model Development, 2023, 16, 2095-2117.	1.3	1
3913	Future Projection of Drought Risk over Indian Meteorological Subdivisions Using Bias-Corrected CMIP6 Scenarios. Atmosphere, 2023, 14, 725.	1.0	3
3914	Assessment of the Sea Surface Salinity Simulation and Projection Surrounding the Asian Waters in the CMIP6 Models. Atmosphere, 2023, 14, 726.	1.0	2
3915	Ocean Barotropic Vorticity Balances: Theory and Application to Numerical Models. Journal of Advances in Modeling Earth Systems, 2023, 15, .	1.3	0
3916	Bias adjustment to preserve changes in variability: the unbiased mapping of GCM changes. Hydrological Sciences Journal, 2023, 68, 1184-1201.	1.2	2
3917	Trends in the atmospheric jet streams are emerging in observations and could be linked to tropical warming. Communications Earth & Environment, 2023, 4, .	2.6	6
3918	Exploring the Factors Controlling the Longâ€Term Trend (1988–2019) of Surface Organic Aerosols in the Continental United States by Simulations. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	3
3919	Global 3-hourly wind-wave and swell data for wave climate and wave energy resource research from 1950 to 2100. Scientific Data, 2023, 10, .	2.4	4
3920	Bias and Uncertainty of the Relationship between AO and Winter Synoptic Temperature Variability over the Northern Hemisphere under Present and Future Climate. Journal of Climate, 2023, 36, 3245-3259.	1.2	1
3921	Temperature neutrality and Irish methane policy. Climate Policy, 2023, 23, 1229-1242.	2.6	0

#	Article	IF	Citations
3923	Methodology for constructing a flood-hazard map for a future climate. Hydrology and Earth System Sciences, 2023, 27, 1627-1644.	1.9	5
3924	Direct observation of Earth's spectral long-wave feedback parameter. Nature Geoscience, 2023, 16, 416-421.	5.4	3
3925	Projected Changes to Wintertime Airâ€Sea Turbulent Heat Fluxes Over the Subpolar North Atlantic Ocean. Earth's Future, 2023, 11, .	2.4	0
3926	Improving statistical projections of ocean dynamic sea-level change using pattern recognition techniques. Ocean Science, 2023, 19, 499-515.	1.3	O
3927	Effects of Equatorial Ocean Current Bias on Simulated El Niño Pattern in CMIP6 Models. Geophysical Research Letters, 2023, 50, .	1.5	2
3928	Effects of Climate Change on the Habitat Suitability and Distribution of Endemic Freshwater Fish Species in Semi-Arid Central Anatolian Ecoregion in Týrkiye. Water (Switzerland), 2023, 15, 1619.	1.2	0
3929	Study of hydrologically critical subbasins under the climate change. Journal of Water and Climate Change, 0, , .	1.2	0
3930	Probability of continued local-scale warming and extreme events during and after decarbonization. , 2023, 2, 021003.		2
3931	Performance-based sub-selection of CMIP6 models for impact assessments in Europe. Earth System Dynamics, 2023, 14, 457-483.	2.7	7
3933	A CMIP6-based multi-model downscaling ensemble to underpin climate change services in Australia. Climate Services, 2023, 30, 100368.	1.0	6
3934	Potential changes in climate indices in Alberta under projected global warming of 1.5–5°C. Journal of Hydrology: Regional Studies, 2023, 47, 101390.	1.0	4
3973	Big Data in Earth system science and progress towards a digital twin. Nature Reviews Earth & Environment, 2023, 4, 319-332.	12.2	29
3985	Soil organic carbon models need independent time-series validation for reliable prediction. Communications Earth & Environment, 2023, 4, .	2.6	9
4055	Al for climate impacts: applications in flood risk. Npj Climate and Atmospheric Science, 2023, 6, .	2.6	2
4122	Projecting 21st century global and regional sea-level changes. , 2023, , .		0
4167	The Climate System with Human Actors $\hat{a}\in$ A Time Scale Perspective. Mathematics Online First Collections, 2023, , 71-93.	0.1	2
4168	Anthropogenic impacts on twentieth-century ENSO variability changes. Nature Reviews Earth & Environment, 2023, 4, 407-418.	12.2	10
4203	Approximation and Optimization of Global Environmental Simulations with Neural Networks., 2023,,.		O

#	Article	IF	CITATIONS
4205	Future Prediction of Radiative Forcing by Scenarios and Global Temperature Rise., 2023, , 1-19.		0
4213	Causal inference for time series. Nature Reviews Earth & Environment, 2023, 4, 487-505.	12.2	19
4221	Implications of Model-Based Uncertainty: Scientific Responses and Philosophical Interpretations. Handbooks in Philosophy, 2023, , 1-23.	0.1	0
4251	Differentiable modelling to unify machine learning and physical models for geosciences. Nature Reviews Earth & Environment, 2023, 4, 552-567.	12.2	16
4303	Evidence and attribution of the enhanced land carbon sink. Nature Reviews Earth & Environment, 2023, 4, 518-534.	12.2	18
4310	GCM., 2023, , 1127-1133.		O
4315	The seas around China in a warming climate. Nature Reviews Earth & Environment, 2023, 4, 535-551.	12.2	12
4332	A Simulation-Based Framework for the Adequacy Assessment of Integrated Energy Systems Exposed to Climate Change. , 2023, , 1045-1079.		0
4334	Machine Learning for Building Energy Modeling. , 2023, , 667-688.		0
4376	Estimating the Effective Radiative Forcing of Anthropogenic Aerosols with the Use of CMIP6 Earth System Models., 0,,.		0
4414	AR6 scenarios database: an assessment of current practices and future recommendations. , 2023, 2, .		3
4505	Evolution of Agroclimatic Indicators in Senegal Using CMIP6 Simulations. , 0, , .		0
4589	Impact Analysis ofÂClimate Change onÂFloods inÂanÂIndian Region Using Machine Learning. Lecture Notes in Computer Science, 2023, , 370-383.	1.0	0
4595	CAS-ESM2.0 Successfully Reproduces Historical Atmospheric CO2 in a Coupled Carbon-Climate Simulation. Advances in Atmospheric Sciences, 2024, 41, 572-580.	1.9	0
4603	Future Prediction of Radiative Forcing by Scenarios and Global Temperature Rise., 2023,, 1045-1063.		0
4619	Revisiting the bias correction of climate models for impact studies. Climatic Change, 2023, 176, .	1.7	0
4664	Mechanisms of tropical Pacific decadal variability. Nature Reviews Earth & Environment, 2023, 4, 754-769.	12.2	3
4715	Data Foundation for Actionable Science. , 2023, , 31-54.		O

#	ARTICLE	IF	CITATIONS
4731	Climate change and variability overview. , 2024, , 7-48.		1
4732	The need to operationalize climate modelling. Nature Climate Change, 2023, 13, 1158-1160.	8.1	1
4751	Divergent data-driven estimates of global soil respiration. Communications Earth & Environment, 2023, 4, .	2.6	0
4754	Actionable AI for Climate and Environment. , 2023, , 327-354.		0
4784	End-to-End Workflows for Climate Science: Integrating HPC Simulations, Big Data Processing, and Machine Learning. , 2023, , .		0
4821	Implications of Model-Based Uncertainty: Scientific Responses and Philosophical Interpretations. Handbooks in Philosophy, 2023, , 45-66.	0.1	0
4827	Assessing carbon cycle projections from complex and simple models under SSP scenarios. Climatic Change, 2023, 176, .	1.7	1
4893	The impact of carbon dioxide removal on temperature parameters over West Africa. Meteorology and Atmospheric Physics, 2023, 135, .	0.9	0
4895	History and Status of Atmospheric Dynamical Core Model Development in China. Springer Atmospheric Sciences, 2023, , 3-36.	0.4	0
4994	Climate Modeling of the Anthropocene. , 2024, , 69-76.		O
4999	Scalability ofÂtheÂINM RAS Earth System Model. Lecture Notes in Computer Science, 2023, , 202-216.	1.0	0
5001	Biome Change in Southern Africa. Ecological Studies, 2024, , 369-405.	0.4	O
5002	Physical Drivers of Southwest African Coastal Upwelling and Its Response to Climate Variability and Change. Ecological Studies, 2024, , 221-257.	0.4	0
5018	Deep Learning Models in Climate Forecasting: Algorithms, Uncertainties and Benchmark Comparison. , 2023, , .		O
5019	Projected Changes in Etesians Regime over Eastern Mediterranean in CMIP6 Simulations According to SSP2-4.5 and SSP5-8.5 Scenarios., 0,,.		0
5049	Projections of biologically weighted solar irradiance doses based on simulations of CMIP6 models. AIP Conference Proceedings, 2024, , .	0.3	O
5062	A Graph Data Model-based Micro-Provenance Approach for Multi-level Provenance Exploration in End-to-End Climate Workflows., 2023,,.		0
5068	TensorBank: Tensor Lakehouse for Foundation Model Training. , 2023, , .		O

#	Article	IF	CITATIONS
5085	Big Data Supported Analytics for Next Generation Energy Performance Certificates. Learning and Analytics in Intelligent Systems, 2024, , 153-202.	0.5	O
5091	Composition and Climate Impacts of increasing launches to Low Earth Orbit. , 2024, , .		0
5110	The jump in global temperatures in September 2023 is extremely unlikely due to internal climate variability alone. Npj Climate and Atmospheric Science, 2024, 7, .	2.6	0
5143	Short- and long-term variability of the Antarctic and Greenland ice sheets. Nature Reviews Earth & Environment, 2024, 5, 193-210.	12.2	O
5167	Hybrid Model forÂlmpact Analysis ofÂClimate Change onÂDroughts inÂlndian Region. Lecture Notes in Computer Science, 2024, , 227-242.	1.0	0
5170	A systematic review of regional and global climate extremes in CMIP6 models under shared socio-economic pathways. Theoretical and Applied Climatology, 2024, 155, 2523-2543.	1.3	0
5179	Climate Change in Global Cities. , 2024, , 47-57.		0
5236	Climate Feedbacks. , 2024, , .		0
5275	Globale Modellierung des Klimawandels. , 2023, , 7-18.		0
5276	Klimawandel und Extremereignisse: Temperatur inklusive Hitzewellen. , 2023, , 61-72.		0
5302	Using Generative Models toÂCreate aÂVisual Description ofÂClimate Change. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2024, , 202-212.	0.2	0