Dynamic Ridesharing: Exploration of Potential for Redu

Transportation Research Record 2542, 120-126 DOI: 10.3141/2542-15

Citation Report

#	Article	IF	CITATIONS
1	Long-term U.S transportation electricity use considering the effect of autonomous-vehicles: Estimates & amp; policy observations. Energy Policy, 2018, 122, 203-213.	8.8	22
2	Investigating the Influential Factors of Shared Travel Behavior: Comparison between App-Based Third Taxi Service and Free-Floating Bike Sharing in Nanjing, China. Sustainability, 2019, 11, 4318.	3.2	12
3	Benefits and Costs of Ride-Sharing in Shared Automated Vehicles across Austin, Texas: Opportunities for Congestion Pricing. Transportation Research Record, 2019, 2673, 548-556.	1.9	43
4	What are the determinants of the willingness to share rides in pooled on-demand services?. Transportation, 2021, 48, 1733-1765.	4.0	49
5	Approximate dynamic programming for planning a ride-hailing system using autonomous fleets of electric vehicles. European Journal of Operational Research, 2020, 284, 1088-1106.	5.7	82
6	Travel behaviours, user characteristics, and social-economic impacts of shared transportation: a comprehensive review. International Journal of Logistics Research and Applications, 2021, 24, 51-78.	8.8	16
7	Roads to opportunities. , 2021, , 499-514.		0
8	Exploring the Factors that Affect the Frequency of Use of Ridehailing and the Adoption of Shared Ridehailing in California. Transportation Research Record, 0, , 036119812098515.	1.9	16
9	Investigating socio-spatial differences between solo ridehailing and pooled rides in diverse communities. Journal of Transport Geography, 2021, 95, 103148.	5.0	13
10	Effects and feasibility of shared mobility with shared autonomous vehicles: An investigation based on data-driven modeling approach. Transportation Research, Part A: Policy and Practice, 2022, 156, 206-226.	4.2	8
11	Intelligent Shared Mobility Systems: A Survey on Whole System Design Requirements, Challenges and Future Direction. IEEE Access, 2022, 10, 35302-35320.	4.2	6
12	Effect of ride sharing on air quality: evidence from Shenzhen, China. Journal of Applied Economics, 2022, 25, 197-219.	1.3	4
13	A comprehensive review of shared mobility for sustainable transportation systems. International Journal of Sustainable Transportation, 2023, 17, 527-551.	4.1	12
14	Characterizing the adoption and frequency of use of a pooled rides service. Transportation Research Part C: Emerging Technologies, 2022, 138, 103632.	7.6	11
15	The Study of Passengers' Preference Heterogeneity on Ride-Sharing Considering Pick-Up/Drop Off Points. SSRN Electronic Journal, 0, , .	0.4	0
16	An empirical Bayes approach to quantifying the impact of transportation network companies (TNCs) operations on travel demand. Transportation Research, Part A: Policy and Practice, 2022, 161, 269-283.	4.2	3
17	Impact of New Mobility Solutions on Travel Behaviour and Its Incorporation into Travel Demand Models. Journal of Advanced Transportation, 2022, 2022, 1-24.	1.7	6
18	A tripartite evolutionary game analysis of providing subsidies for pick-up/drop-off strategy in carpooling problem. Autonomous Intelligent Systems, 2023, 3, .	3.1	1

#	Article	IF	CITATIONS
19	Operations management of shared transport: research status and prospect. Journal of Data Information and Management, 2023, 5, 281-316.	2.7	1
20	Examining the effects of climate change perception and commuting experience on the willingness to pay for micro-transit service in Tampa, FL. Humanities and Social Sciences Communications, 2023, 10, .	2.9	0
21	Assessing the Potential of Carpooling for Reducing Vehicle Kilometers Traveled. , 2023, , .		0