A Historical Overview of the Classification, Evolution, a Parasites and Sandflies

PLoS Neglected Tropical Diseases 10, e0004349 DOI: 10.1371/journal.pntd.0004349

Citation Report

#	Article	IF	CITATIONS
1	Experimental infection of Phlebotomus perniciosus by bioluminescent Leishmania infantum using murine model and artificial feeder. Memorias Do Instituto Oswaldo Cruz, 2016, 111, 495-500.	0.8	4
2	Canine Visceral Leishmaniasis in Brazil. , 0, , .		1
3	Could Phlebotomus mascittii play a role as a natural vector for Leishmania infantum? New data. Parasites and Vectors, 2016, 9, 458.	1.0	30
4	Can <i>Sergentomyia</i> (Diptera, Psychodidae) play a role in the transmission of mammal-infecting <i>Leishmania</i> ?. Parasite, 2016, 23, 55.	0.8	54
5	Gold nanoparticle-based lateral flow biosensor for rapid visual detection of Leishmania-specific DNA amplification products. Journal of Microbiological Methods, 2016, 127, 51-58.	0.7	24
6	Para-kala-azar dermal Leishmaniasis cases in Indian subcontinent – A case series. Pathogens and Global Health, 2016, 110, 326-329.	1.0	6
7	Molecular detection of <i>Leishmania</i> parasites and host blood meal identification in wild sand flies from a new endemic rural region, south of Iran. Pathogens and Global Health, 2016, 110, 303-309.	1.0	23
8	Leishmaniasis in Thailand: A Review of Causative Agents and Situations. American Journal of Tropical Medicine and Hygiene, 2017, 96, 16-0604.	0.6	56
9	Caffeic acid and quercetin exert caspases-independent apoptotic effects on Leishmania major promastigotes, and reactivate the death of infected phagocytes derived from BALB/c mice. Asian Pacific Journal of Tropical Biomedicine, 2017, 7, 321-331.	0.5	13
10	Leishmania infections: Molecular targets and diagnosis. Molecular Aspects of Medicine, 2017, 57, 1-29.	2.7	220
11	Comparative genomics of canine-isolated Leishmania (Leishmania) amazonensis from an endemic focus of visceral leishmaniasis in Governador Valadares, southeastern Brazil. Scientific Reports, 2017, 7, 40804.	1.6	65
12	Intraspecific genetic variability in a population of Moroccan Leishmania infantum revealed by PCR-RFLP of kDNA minicircles. Acta Tropica, 2017, 169, 142-149.	0.9	12
13	The history of leishmaniasis. Parasites and Vectors, 2017, 10, 82.	1.0	274
14	The genome of Leishmania adleri from a mammalian host highlights chromosome fission in Sauroleishmania. Scientific Reports, 2017, 7, 43747.	1.6	34
15	Leishmania (V .) braziliensis infecting bats from Pantanal wetland, Brazil: First records for Platyrrhinus lineatus and Artibeus planirostris. Acta Tropica, 2017, 172, 217-222.	0.9	21
16	Evaluation of a Multilocus Sequence Typing (MLST) scheme for Leishmania (Viannia) braziliensis and Leishmania (Viannia) panamensis in Colombia. Parasites and Vectors, 2017, 10, 236.	1.0	36
17	Epidemic outbreak of anthroponotic cutaneous leishmaniasis in Kohat District, Khyber Pakhtunkhwa, Pakistan. Acta Tropica, 2017, 172, 147-155.	0.9	23
18	Prevalence of Leishmania species in rodents: A systematic review and meta-analysis in Iran. Acta Tropica, 2017, 172, 164-172.	0.9	29

~			_	
C^{-1}		ON	DEDC	NDT
	IAL		REPU	ואו

#	Article	IF	CITATIONS
19	What pre-Columbian mummies could teach us about South American leishmaniases?. Pathogens and Disease, 2017, 75, .	0.8	4
20	Characterization of the Protein Tyrosine Phosphatase LmPRL-1 Secreted by Leishmania major via the Exosome Pathway. Infection and Immunity, 2017, 85, .	1.0	34
21	Genetics and Evolution of Leishmania parasites. Infection, Genetics and Evolution, 2017, 50, 93-94.	1.0	3
22	Exploring the diversity of blood-sucking Diptera in caves of Central Africa. Scientific Reports, 2017, 7, 250.	1.6	12
23	Natural infection of Nesokia indica with Leishmania major and Leishmania infantum parasites in Damghan city, Northern Iran. Acta Tropica, 2017, 170, 134-139.	0.9	12
24	The Expanding World of Human Leishmaniasis. Trends in Parasitology, 2017, 33, 341-344.	1.5	27
25	Leishmania infection: painful or painless?. Parasitology Research, 2017, 116, 465-475.	0.6	35
26	Phylogenetic analysis of HSP70 and cyt b gene sequences for Chinese Leishmania isolates and ultrastructural characteristics of Chinese Leishmania sp Parasitology Research, 2017, 116, 693-702.	0.6	12
27	A pilot study on fingerprinting Leishmania species from the Old World using Fourier transform infrared spectroscopy. Analytical and Bioanalytical Chemistry, 2017, 409, 6907-6923.	1.9	14
28	In vitro antileishmanial activity of Mexican medicinal plants. Heliyon, 2017, 3, e00394.	1.4	20
29	Identification of Leishmania by Matrix-Assisted Laser Desorption Ionization–Time of Flight (MALDI-TOF) Mass Spectrometry Using a Free Web-Based Application and a Dedicated Mass-Spectral Library. Journal of Clinical Microbiology, 2017, 55, 2924-2933.	1.8	35
30	A systematic review and meta-analysis of the prevalence of Leishmania infection in blood donors. Transfusion and Apheresis Science, 2017, 56, 544-551.	0.5	14
31	Molecular Identification of Leishmania spp. in Sand Flies (Diptera: Psychodidae, Phlebotominae) From Ecuador. Journal of Medical Entomology, 2017, 54, 1704-1711.	0.9	18
32	The photodynamic action of pheophorbide a induces cell death through oxidative stress in Leishmania amazonensis. Journal of Photochemistry and Photobiology B: Biology, 2017, 174, 342-354.	1.7	21
33	Leishmania infantum -specific IFN-Î ³ production in stimulated blood from dogs with clinical leishmaniosis at diagnosis and during treatment. Veterinary Parasitology, 2017, 248, 39-47.	0.7	27
34	The evolution of trypanosomatid taxonomy. Parasites and Vectors, 2017, 10, 287.	1.0	123
35	Environmental risk modelling and potential sand fly vectors of cutaneous leishmaniasis in Chitral district: a leishmanial focal point of mount Tirich Mir, Pakistan. Tropical Medicine and International Health, 2017, 22, 1130-1140.	1.0	11
36	Resequencing of the Leishmania infantum (strain JPCM5) genome and de novo assembly into 36 contigs. Scientific Reports, 2017, 7, 18050.	1.6	47

#	Article	IF	CITATIONS
37	Overview of Leishmaniasis with Special Emphasis on Kala-azar in South Asia. Neglected Tropical Diseases, 2017, , 1-63.	0.4	1
38	Visceral Leishmaniasis and Natural Infection Rates of Leishmania in Lutzomyia longipalpis in Latin America. , 0, , .		2
39	Translational Rodent Models for Research on Parasitic Protozoa—A Review of Confounders and Possibilities. Frontiers in Cellular and Infection Microbiology, 2017, 7, 238.	1.8	33
40	Identification and Characterization of miRNAs in Response to Leishmania donovani Infection: Delineation of Their Roles in Macrophage Dysfunction. Frontiers in Microbiology, 2017, 8, 314.	1.5	58
41	Analytical Performance of Four Polymerase Chain Reaction (PCR) and Real Time PCR (qPCR) Assays for the Detection of Six Leishmania Species DNA in Colombia. Frontiers in Microbiology, 2017, 8, 1907.	1.5	33
42	Distribution and Seasonal Activity of Phlebotominae Sand Flies in Yazd and Its Outskirts, Center of Iran. Scientific World Journal, The, 2017, 2017, 1-5.	0.8	4
43	Leishmania enriettii (Muniz & Medina, 1948): A highly diverse parasite is here to stay. PLoS Pathogens, 2017, 13, e1006303.	2.1	28
44	An integrated overview of the midgut bacterial flora composition of Phlebotomus perniciosus, a vector of zoonotic visceral leishmaniasis in the Western Mediterranean Basin. PLoS Neglected Tropical Diseases, 2017, 11, e0005484.	1.3	38
45	A putative ATP/GTP binding protein affects Leishmania mexicana growth in insect vectors and vertebrate hosts. PLoS Neglected Tropical Diseases, 2017, 11, e0005782.	1.3	16
46	Combined Strategies to Improve the Expression of Recombinant Sterol C24-Methyltransferase from Leishmania braziliensis in E. coli. Molecular Biotechnology, 2018, 60, 271-278.	1.3	0
47	Recent advances in understanding <i>Leishmania donovani</i> infection: The importance of diverse host regulatory pathways. IUBMB Life, 2018, 70, 593-601.	1.5	13
48	Leishmaniasis: current challenges and prospects for elimination with special focus on the South Asian region. Parasitology, 2018, 145, 425-429.	0.7	34
49	Response to Hashiguchi and Gomez (2018). Journal of Medical Entomology, 2018, 55, 775-776.	0.9	0
50	Visceral and Cutaneous Leishmaniasis Recommendations for Solid Organ Transplant Recipients and Donors. Transplantation, 2018, 102, S8-S15.	0.5	29
51	A Brief Introduction to Leishmaniasis Epidemiology. , 2018, , 1-13.		8
52	Antimonial susceptibility and in vivo behaviour of Leishmania major isolates collected in Algeria before and after treatment. Acta Tropica, 2018, 180, 7-11.	0.9	4
53	A defined medium for Leishmania culture allows definition of essential amino acids. Experimental Parasitology, 2018, 185, 39-52.	0.5	33
54	Parasite Biology: The Vectors. , 2018, , 31-77.		19

	CITATION RE	PORT	
#	Article	IF	CITATIONS
55	Parasite Biology: The Reservoir Hosts. , 2018, , 79-106.		14
56	Composition of sand fly fauna (Diptera: Psychodidae) and detection of Leishmania DNA (Kinetoplastida:) Tj ETQq Parasites and Vectors, 2018, 11, 180.	1 0.7843 1.0	914 rgBT /0 19
57	Detection of DNA of Leishmania siamensis in Sergentomyia (Neophlebotomus) iyengari (Diptera:) Tj ETQq0 0 0 rg Thailand. Journal of Medical Entomology, 2018, 55, 1277-1283.	BT /Overlc 0.9	ock 10 Tf 50 22
58	Geographical distribution and molecular characterization for cutaneous leishmaniasis species by sequencing and phylogenetic analyses of kDNA and ITS1 loci markers in south-eastern Iran. Pathogens and Global Health, 2018, 112, 132-141.	1.0	18
59	Eligibility criteria and outcome measures adopted in clinical trials of treatments of cutaneous leishmaniasis: systematic literature review covering the period 1991–2015. Tropical Medicine and International Health, 2018, 23, 448-475.	1.0	6
60	A comprehensive review of chalcone derivatives as antileishmanial agents. European Journal of Medicinal Chemistry, 2018, 150, 920-929.	2.6	100
61	An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as <i>Leishmania</i> and <i>Endotrypanum</i> . Parasitology, 2018, 145, 430-442.	0.7	142
62	T cell suppression in the bone marrow of visceral leishmaniasis patients: impact of parasite load. Clinical and Experimental Immunology, 2018, 191, 318-327.	1.1	13
63	Gold nanoparticles $\hat{a} \in \hat{~}$ against parasites and insect vectors. Acta Tropica, 2018, 178, 73-80.	0.9	103
64	An overview on <i>Leishmania</i> (<i>Mundinia</i>) <i>enriettii</i> : biology, immunopathology, LRV and extracellular vesicles during the host–parasite interaction. Parasitology, 2018, 145, 1265-1273.	0.7	19
65	High-throughput sequencing of kDNA amplicons for the analysis ofLeishmaniaminicircles and identification of Neotropical species. Parasitology, 2018, 145, 585-594.	0.7	23
66	The potential use of melatonin to treat protozoan parasitic infections: A review. Biomedicine and Pharmacotherapy, 2018, 97, 948-957.	2.5	27
67	Geographic and ecological features of phlebotomine sand flies (Diptera: Psychodidae) as leishmaniasis in Central Iran. Journal of Parasitic Diseases, 2018, 42, 43-49.	0.4	7
68	Repurposing as a strategy for the discovery of new anti-leishmanials: the-state-of-the-art. Parasitology, 2018, 145, 219-236.	0.7	81
69	New antigens for the serological diagnosis of human visceral leishmaniasis identified by immunogenomic screening. PLoS ONE, 2018, 13, e0209599.	1.1	16
70	Exploiting genetic polymorphisms in metabolic enzymes for rapid screening of Leishmania infantum genotypes. Parasites and Vectors, 2018, 11, 572.	1.0	14
71	Vaccines for Human Leishmaniasis: Where Do We Stand and What Is Still Missing?. , 0, , .		16
72	Exploitation of Mangrove Endophytic Fungi for Infectious Disease Drug Discovery. Marine Drugs, 2018–16–376	2.2	21

#	Article	IF	CITATIONS
73	Potential application of rLc36 protein for diagnosis of canine visceral leishmaniasis. Memorias Do Instituto Oswaldo Cruz, 2018, 113, 197-201.	0.8	6
74	Management of Leishmaniases in the Era of Climate Change in Morocco. International Journal of Environmental Research and Public Health, 2018, 15, 1542.	1.2	37
75	Immunodetection and molecular determination of visceral and cutaneous Leishmania infection using patients' urine. Infection, Genetics and Evolution, 2018, 63, 257-268.	1.0	13
76	Epidemiological and genetic studies suggest a common Leishmania infantum transmission cycle in wildlife, dogs and humans associated to vector abundance in Southeast Spain. Veterinary Parasitology, 2018, 259, 61-67.	0.7	31
77	Leishmania major and Trypanosoma lewisi infection in invasive and native rodents in Senegal. PLoS Neglected Tropical Diseases, 2018, 12, e0006615.	1.3	10
78	Geospatial-temporal distribution of Tegumentary Leishmaniasis in Colombia (2007–2016). PLoS Neglected Tropical Diseases, 2018, 12, e0006419.	1.3	12
79	Insect-Borne Pathogens and Skin Interface. , 2018, , 193-238.		0
80	Repurposing isoxazoline veterinary drugs for control of vector-borne human diseases. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6920-E6926.	3.3	62
81	First detection of <i>Leishmania donovani</i> in sand flies from Cameroon and its epidemiological implications. Tropical Medicine and International Health, 2018, 23, 1014-1021.	1.0	8
82	Leishmania (Mundinia) orientalis n. sp. (Trypanosomatidae), a parasite from Thailand responsible for localised cutaneous leishmaniasis. Parasites and Vectors, 2018, 11, 351.	1.0	62
83	Leishmania Hijacks Myeloid Cells for Immune Escape. Frontiers in Microbiology, 2018, 9, 883.	1.5	82
84	Leishmania Infection Induces MicroRNA hsa-miR-346 in Human Cell Line-Derived Macrophages. Frontiers in Microbiology, 2018, 9, 1019.	1.5	19
85	Human leishmaniasis in Brazil: A general review. Revista Da Associação Médica Brasileira, 2018, 64, 281-289.	0.3	74
86	Population genetics analysis of Phlebotomus papatasi sand flies from Egypt and Jordan based on mitochondrial cytochrome b haplotypes. Parasites and Vectors, 2018, 11, 214.	1.0	13
87	Sandflies species composition, activity, and natural infection with Leishmania, parasite identity in lesion isolates of cutaneous leishmaniasis, central Iran. Journal of Parasitic Diseases, 2018, 42, 252-258.	0.4	7
88	Molecular Evolution and Phylogeny of Leishmania. , 2018, , 19-57.		4
89	Parasites and their (endo)symbiotic microbes. Parasitology, 2018, 145, 1261-1264.	0.7	8
90	Depression of lymphocyte activity during cutaneous leishmaniasis: a case report. Diagnostic Microbiology and Infectious Disease, 2018, 92, 230-234.	0.8	5

#	Article	IF	CITATIONS
91	Prospects for antimicrobial peptide-based immunotherapy approaches in <i>Leishmania</i> control. Expert Review of Anti-Infective Therapy, 2018, 16, 461-469.	2.0	15
92	Diversity patterns, Leishmania DNA detection, and bloodmeal identification of Phlebotominae sand flies in villages in northern Colombia. PLoS ONE, 2018, 13, e0190686.	1.1	22
93	Promising nanotherapy in treating leishmaniasis. International Journal of Pharmaceutics, 2018, 547, 421-431.	2.6	59
94	Antitrypanosomal and Antileishmanial Activities. , 2018, , 175-196.		3
95	A rapid diagnostic test for human Visceral Leishmaniasis using novel <i>Leishmania</i> antigens in a Laser Direct-Write Lateral Flow Device. Emerging Microbes and Infections, 2019, 8, 1178-1185.	3.0	13
96	Biological activity of Morita-Baylis-Hillman adduct homodimers in L. infantum and L. amazonensis: anti-Leishmania activity and cytotoxicity. Parasitology Research, 2019, 118, 3067-3076.	0.6	7
97	Ecological niche modelling for predicting the risk of cutaneous leishmaniasis in the Neotropical moist forest biome. PLoS Neglected Tropical Diseases, 2019, 13, e0007629.	1.3	29
99	Noncoding RNAs in Parasite–Vector–Host Interactions. Trends in Parasitology, 2019, 35, 715-724.	1.5	22
100	Identification of HLA-I restricted epitopes in six vaccine candidates of Leishmania tropica using immunoinformatics and molecular dynamics simulation approaches. Infection, Genetics and Evolution, 2019, 75, 103953.	1.0	22
101	Proteomics and Leishmaniasis: Potential Clinical Applications. Proteomics - Clinical Applications, 2019, 13, e1800136.	0.8	14
102	Leishmania tarentolae: Taxonomic classification and its application as a promising biotechnological expression host. PLoS Neglected Tropical Diseases, 2019, 13, e0007424.	1.3	46
103	Identification of sex determination genes and their evolution in Phlebotominae sand flies (Diptera,) Tj ETQq1 1 0	.784314 r _{ 1.2	gBT_/Overloc
104	Exploring Leishmania infantum cathepsin as a new molecular marker for phylogenetic relationships and visceral leishmaniasis diagnosis. BMC Infectious Diseases, 2019, 19, 895.	1.3	6
105	Site specific microbiome of Leishmania parasite and its cross-talk with immune milieu. Immunology Letters, 2019, 216, 79-88.	1.1	8
106	Geospatial analysis of tegumentary leishmaniasis in Rio de Janeiro state, Brazil from 2000 to 2015: Species typing and flow of travelers and migrants with leishmaniasis. PLoS Neglected Tropical Diseases, 2019, 13, e0007748.	1.3	4
107	Genetic diversity and phylogenetic relationships between <i>Leishmania infantum</i> from dogs, humans and wildlife in southâ€east Spain. Zoonoses and Public Health, 2019, 66, 961-973.	0.9	16
108	Antileishmanial activity and ultrastructural changes of related tetrahydrofuran dineolignans isolated from Saururus cernuus L. (Saururaceae). Journal of Pharmacy and Pharmacology, 2019, 71, 1871-1878.	1.2	15
109	Effect of isoxazole derivatives of tetrahydrofuran neolignans on intracellular amastigotes of <i>Leishmania </i> (<i>Leishmania </i>) <i> amazonensis</i> : A structure–activity relationship comparative study with triazoleâ€neolignanâ€based compounds. Chemical Biology and Drug Design, 2019, 94. 2004-2012.	1.5	18

#	Article	IF	CITATIONS
110	Molecular detection of Leishmania spp in Lutzomyia longipalpis in the city of Lavras, Minas Gerais, Brazil. Brazilian Journal of Medical and Biological Research, 2019, 52, e8224.	0.7	2
111	Pharmacokinetics of neutron-irradiated meglumine antimoniate in Leishmania amazonensis-infected BALB/c mice. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2019, 25, e144618.	0.8	1
112	Detection of Leishmania and Trypanosoma DNA in Field-Caught Sand Flies from Endemic and Non-Endemic Areas of Leishmaniasis in Southern Thailand. Insects, 2019, 10, 238.	1.0	25
113	Biodiversity, Leishmania genetic typing and host identification of phlebotomine species in endemic foci of southeastern Iran. Heliyon, 2019, 5, e02369.	1.4	3
114	Synthesis, biological activity, and mechanism of action of new 2-pyrimidinyl hydrazone and N-acylhydrazone derivatives, a potent and new classes of antileishmanial agents. European Journal of Medicinal Chemistry, 2019, 184, 111742.	2.6	25
115	Nitric oxide-loaded chitosan nanoparticles as an innovative antileishmanial platform. Nitric Oxide - Biology and Chemistry, 2019, 93, 25-33.	1.2	30
116	Leishmania cytochrome b gene sequence polymorphisms in southern Iran: relationships with different cutaneous clinical manifestations. BMC Infectious Diseases, 2019, 19, 98.	1.3	9
117	Leishmania tropica: What we know from its experimental models. Advances in Parasitology, 2019, 104, 1-38.	1.4	12
118	Plant Terpenoids as Lead Compounds Against Malaria and Leishmaniasis. Studies in Natural Products Chemistry, 2019, 62, 243-306.	0.8	7
119	Application of qPCR method to hair and cerumen samples for the diagnosis of canine leishmaniosis in Araçatuba, Brazil. Veterinary Parasitology: Regional Studies and Reports, 2019, 15, 100267.	0.3	2
120	Phlebotomine Sand Flies and Moth Flies (Psychodidae). , 2019, , 191-211.		11
121	Characterization of Sv129 Mice as a Susceptible Model to Leishmania amazonensis. Frontiers in Medicine, 2019, 6, 100.	1.2	2
122	Synthesis of quinones with highlighted biological applications: A critical update on the strategies towards bioactive compounds with emphasis on lapachones. European Journal of Medicinal Chemistry, 2019, 179, 863-915.	2.6	51
123	Immunotherapy in clinical canine leishmaniosis: a comparative update. Research in Veterinary Science, 2019, 125, 218-226.	0.9	13
124	Potential animal reservoirs (dogs and bats) of human visceral leishmaniasis due to Leishmania infantum in French Guiana. PLoS Neglected Tropical Diseases, 2019, 13, e0007456.	1.3	25
125	Paromomycin-loaded mannosylated chitosan nanoparticles: Synthesis, characterization and targeted drug delivery against leishmaniasis. Acta Tropica, 2019, 197, 105045.	0.9	23
126	Characterization of α-Glucosidases From Lutzomyia longipalpis Reveals Independent Hydrolysis Systems for Plant or Blood Sugars. Frontiers in Physiology, 2019, 10, 248.	1.3	11
127	Oral activity of the antimalarial endoperoxide 6-(1,2,6,7-tetraoxaspiro[7.11]nonadec-4-yl)hexan-1-ol (N-251) against Leishmania donovani complex. PLoS Neglected Tropical Diseases, 2019, 13, e0007235.	1.3	6

#	Article	IF	CITATIONS
128	A novel multilocus sequence typing scheme identifying genetic diversity amongst Leishmania donovani isolates from a genetically homogeneous population in the Indian subcontinent. International Journal for Parasitology, 2019, 49, 555-567.	1.3	15
129	Leishmaniasis control: limitations of current drugs and prospects of natural products. , 2019, , 293-350.		4
130	Complete assembly of the Leishmania donovani (HU3 strain) genome and transcriptome annotation. Scientific Reports, 2019, 9, 6127.	1.6	18
131	Serine Proteinases in Leishmania (Viannia) braziliensis Promastigotes Have Distinct Subcellular Distributions and Expression. International Journal of Molecular Sciences, 2019, 20, 1315.	1.8	4
132	Multi-locus characterization and phylogenetic inference of Leishmania spp. in snakes from Northwest China. PLoS ONE, 2019, 14, e0210681.	1.1	12
133	Understanding Resistance vs. Susceptibility in Visceral Leishmaniasis Using Mouse Models of Leishmania infantum Infection. Frontiers in Cellular and Infection Microbiology, 2019, 9, 30.	1.8	26
134	Chemical Constituents with Leishmanicidal Activity from a Pink-Yellow Cultivar of Lantana camara var. aculeata (L.) Collected in Central Mexico. International Journal of Molecular Sciences, 2019, 20, 872.	1.8	10
135	White jute (Corchorus capsularis L.) leaf extract has potent leishmanicidal activity against Leishmania donovani. Parasitology International, 2019, 71, 41-45.	0.6	8
136	In silico characterization of multiple genes encoding the GP63 virulence protein from Leishmania braziliensis: identification of sources of variation and putative roles in immune evasion. BMC Genomics, 2019, 20, 118.	1.2	15
137	Cutaneous leishmaniasis: an evolving disease with ancient roots. International Journal of Dermatology, 2019, 58, 834-843.	0.5	5
138	Phylogenetic Studies. Methods in Molecular Biology, 2019, 1971, 9-68.	0.4	4
139	Inventory and taxonomy of phlebotomine sand flies of the Mokolo leishmaniasis focus, northern Cameroon, with description of new Sergentomyia taxa (Diptera: Psychodidae). Acta Tropica, 2019, 194, 172-180.	0.9	7
140	A review on the occurrence of companion vector-borne diseases in pet animals in Latin America. Parasites and Vectors, 2019, 12, 145.	1.0	80
141	Development of Phytomonas lipae sp. n. (Kinetoplastea: Trypanosomatidae) in the true bug Coreus marginatus (Heteroptera: Coreidae) and insights into the evolution of life cycles in the genus Phytomonas. PLoS ONE, 2019, 14, e0214484.	1.1	12
142	Total serum IgD from healthy and sick dogs with leishmaniosis. Parasites and Vectors, 2019, 12, 119.	1.0	2
143	Detection, genotyping, and phylogenetic analysis of Leishmania isolates collected from infected Jordanian residents and Syrian refugees who suffered from cutaneous leishmaniasis. Parasitology Research, 2019, 118, 793-805.	0.6	7
144	Potential application of Leishmania tarentolae as an alternative platform for antibody expression. Critical Reviews in Biotechnology, 2019, 39, 380-394.	5.1	8
145	Evaluation of three recombinant proteins for the development of ELISA and immunochromatographic tests for visceral leishmaniasis serodiagnosis. Memorias Do Instituto Oswaldo Cruz, 2019, 114, e180405.	0.8	6

#	Article	IF	CITATIONS
146	The complete coding region of the maxicircle as a superior phylogenetic marker for exploring evolutionary relationships between members of the Leishmaniinae. Infection, Genetics and Evolution, 2019, 70, 90-100.	1.0	18
147	In vitro activity and mode of action of phenolic compounds on Leishmania donovani. PLoS Neglected Tropical Diseases, 2019, 13, e0007206.	1.3	57
148	In silico and in vitro comparative activity of green tea components against Leishmania infantum. Journal of Global Antimicrobial Resistance, 2019, 18, 187-194.	0.9	17
149	Re-Emerging foci of visceral leishmaniasis in Armenia – first molecular diagnosis of clinical samples. Parasitology, 2019, 146, 857-864.	0.7	3
150	Immunization with the HisAK70 DNA Vaccine Induces Resistance against Leishmania Amazonensis Infection in BALB/c Mice. Vaccines, 2019, 7, 183.	2.1	13
151	Insect trypanosomatids in Papua New Guinea: high endemism and diversity. International Journal for Parasitology, 2019, 49, 1075-1086.	1.3	12
152	Molecular Characterization of Leishmania RNA virus 2 in Leishmania major from Uzbekistan. Genes, 2019, 10, 830.	1.0	23
154	Plasma membrane repair involvement in parasitic and other pathogen infections. Current Topics in Membranes, 2019, 84, 217-238.	0.5	7
155	A single-group trial of end-stage patients with anthroponotic cutaneous leishmaniasis: Levamisole in combination with Glucantime in field and laboratory models. Microbial Pathogenesis, 2019, 128, 162-170.	1.3	15
156	Cutaneous leishmaniasis: an epidemiological study in southwest of Iran. Journal of Parasitic Diseases, 2019, 43, 190-197.	0.4	13
157	The crystal structure of glucokinase from Leishmania braziliensis. Molecular and Biochemical Parasitology, 2019, 227, 47-52.	0.5	5
158	The role of myeloid-derived suppressor cells in chronic infectious diseases and the current methodology available for their study. Journal of Leukocyte Biology, 2019, 105, 857-872.	1.5	22
159	Occurrence of Phlebotominae (Diptera: Psychodidae) in Urban Leishmaniasis Transmission Foci in North-Eastern Brazil. Journal of Medical Entomology, 2019, 56, 247-253.	0.9	10
160	Leishmanicidal therapy targeted to parasite proteases. Life Sciences, 2019, 219, 163-181.	2.0	24
161	Meta-analysis and discussion on challenges to translate Leishmania drug resistance phenotyping into the clinic. Acta Tropica, 2019, 191, 204-211.	0.9	15
162	Aerobic midgut microbiota of sand fly vectors of zoonotic visceral leishmaniasis from northern Iran, a step toward finding potential paratransgenic candidates. Parasites and Vectors, 2019, 12, 10.	1.0	25
163	On monoxenous trypanosomatids from lesions of immunocompetent patients with suspected cutaneous leishmaniasis in Iran. Tropical Medicine and International Health, 2019, 24, 127-128.	1.0	8
164	Morphological and Molecular Identification of Phlebotomus mascittii Grassi, 1908 Populations From Slovenia. Journal of Medical Entomology, 2019, 56, 565-568.	0.9	8

#	Article	IF	CITATIONS
165	Sporotrichoid dissemination of cutaneous leishmaniasis possibly triggered by a diagnostic puncture. Journal of Travel Medicine, 2020, 27, .	1.4	2
166	Development of a Multilocus sequence typing (MLST) scheme for Pan-Leishmania. Acta Tropica, 2020, 201, 105189.	0.9	7
167	Real-time PCR to differentiate among Leishmania (Viannia) subgenus, Leishmania (Leishmania) infantum and Leishmania (Leishmania) amazonensis: Application on Brazilian clinical samples. Acta Tropica, 2020, 201, 105178.	0.9	13
169	Phylogenetic insights on Leishmania detected in cats as revealed by nucleotide sequence analysis of multiple genetic markers. Infection, Genetics and Evolution, 2020, 77, 104069.	1.0	16
170	Wild mammals as potential silent reservoirs of Leishmania infantum in a Mediterranean area. Preventive Veterinary Medicine, 2020, 175, 104874.	0.7	24
171	Universal highly efficient conditional knockout system in Leishmania , with a focus on untranscribed region preservation. Cellular Microbiology, 2020, 22, e13159.	1.1	13
172	Nutrition, malnutrition, and leishmaniasis. Nutrition, 2020, 73, 110712.	1.1	27
173	2-furyl(phenyl)methanol isolated from Atractilis gummifera rhizome exhibits anti-leishmanial activity. Fìtoterapìâ, 2020, 140, 104420.	1.1	1
174	Trans-Atlantic Spillover: Deconstructing the Ecological Adaptation of Leishmania infantum in the Americas. Genes, 2020, 11, 4.	1.0	10
175	Environmental and socioeconomic risk factors associated with visceral and cutaneous leishmaniasis: a systematic review. Parasitology Research, 2020, 119, 365-384.	0.6	63
176	The Leishmania donovani species complex: A new insight into taxonomyâ~†. International Journal for Parasitology, 2020, 50, 1079-1088.	1.3	17
177	Expanded genome-wide comparisons give novel insights into population structure and genetic heterogeneity of Leishmania tropica complex. PLoS Neglected Tropical Diseases, 2020, 14, e0008684.	1.3	14
178	Recent advancement and development of chitin and chitosan-based nanocomposite for drug delivery: Critical approach to clinical research. Arabian Journal of Chemistry, 2020, 13, 8935-8964.	2.3	59
179	Hybridization in Phlebotominae (Diptera: Psychodidae): A mini-review. Infection, Genetics and Evolution, 2020, 86, 104593.	1.0	5
180	Dataset on recombinant expression of an ancient chitinase gene from different species of Leishmania parasites in bacteria and in Spodoptera frugiperda cells using baculovirus. Data in Brief, 2020, 32, 106259.	0.5	1
181	Leishmaniasis: A spectrum of diseases shaped by evolutionary pressures across diverse life cycle. Evolution, Medicine and Public Health, 2020, 2020, 139-140.	1.1	1
182	(±)-trans-2-phenyl-2,3-dihydrobenzofurans as leishmanicidal agents: Synthesis, inÂvitro evaluation and SAR analysis. European Journal of Medicinal Chemistry, 2020, 205, 112493.	2.6	6
183	Complex ecological interactions across a focus of cutaneous leishmaniasis in Eastern Colombia: novel description of <i>Leishmania</i> species, hosts and phlebotomine fauna. Royal Society Open Science, 2020, 7, 200266.	1.1	10

#	Article	IF	CITATIONS
184	Natural and synthetic coumarins as antileishmanial agents: A review. European Journal of Medicinal Chemistry, 2020, 203, 112514.	2.6	53
185	Proteomic analysis of exosomes derived from procyclic and metacyclic-like cultured Leishmania infantum chagasi. Journal of Proteomics, 2020, 227, 103902.	1.2	31
186	Epitope Selection for Fighting Visceral Leishmaniosis: Not All Peptides Function the Same Way. Vaccines, 2020, 8, 352.	2.1	2
187	Population Genetics of Phlebotomus papatasi from Endemic and Nonendemic Areas for Zoonotic Cutaneous Leishmaniasis in Morocco, as Revealed by Cytochrome Oxidase Gene Subunit I Sequencing. Microorganisms, 2020, 8, 1010.	1.6	8
188	Engineering a vector-based pan-Leishmania vaccine for humans: proof of principle. Scientific Reports, 2020, 10, 18653.	1.6	11
189	Nano amphotericin B: a good anti-leishmanial drug with effect on cathelicidin gene expression. Journal of Parasitic Diseases, 2020, 45, 366-371.	0.4	3
190	The potential of live attenuated vaccines against Cutaneous Leishmaniasis. Experimental Parasitology, 2020, 210, 107849.	0.5	22
191	Can We Harness Immune Responses to Improve Drug Treatment in Leishmaniasis?. Microorganisms, 2020, 8, 1069.	1.6	16
192	Scientific considerations for global drug development. Science Translational Medicine, 2020, 12, .	5.8	8
193	Molecular modeling and simulation study of homoserine kinase as an effective leishmanial drug target. Journal of Molecular Modeling, 2020, 26, 218.	0.8	3
194	Protein glycosylation in <i>Leishmania</i> spp Molecular Omics, 2020, 16, 407-424.	1.4	17
195	Laboratory Diagnosis of Cutaneous and Visceral Leishmaniasis: Current and Future Methods. Microorganisms, 2020, 8, 1632.	1.6	36
196	Assessing the composition of the plasma membrane of Leishmania (Leishmania) infantum and L. (L.) amazonensis using label-free proteomics. Experimental Parasitology, 2020, 218, 107964.	0.5	3
197	Pseudoirreversible slowâ€binding inhibition of trypanothione reductase by a protein–protein interaction disruptor. British Journal of Pharmacology, 2020, 177, 5163-5176.	2.7	7
198	Conserved and distinct morphological aspects of the salivary glands of sand fly vectors of leishmaniasis: an anatomical and ultrastructural study. Parasites and Vectors, 2020, 13, 441.	1.0	3
199	Central Asian Rodents as Model Animals for Leishmania major and Leishmania donovani Research. Microorganisms, 2020, 8, 1440.	1.6	9
200	Trypanosomatid Infections among Vertebrates of Chile: A Systematic Review. Pathogens, 2020, 9, 661.	1.2	18
201	Canine Leishmaniasis: Serological Results in Private and Kennel Dogs Tested over a Six-Year Period (2009–2014) in Abruzzo and Molise Regions, Italy. Microorganisms, 2020, 8, 1915.	1.6	5

#	Article	IF	CITATIONS
202	Effect of DODAB Nano-Sized Cationic Bilayer Fragments against Leishmania amazonensis. Molecules, 2020, 25, 5741.	1.7	4
203	Leishmania infantum Seroprevalence in Cats From Touristic Areas of Italy and Greece. Frontiers in Veterinary Science, 2020, 7, 616566.	0.9	17
204	Integrative Approach to Phlebotomus mascittii Grassi, 1908: First Record in Vienna with New Morphological and Molecular Insights. Pathogens, 2020, 9, 1032.	1.2	8
205	Targeting the Trypanothione Reductase of Tissue-Residing <i>Leishmania</i> in Hosts' Reticuloendothelial System: A Flexible Water-Soluble Ferrocenylquinoline-Based Preclinical Drug Candidate. Journal of Medicinal Chemistry, 2020, 63, 15621-15638.	2.9	24
206	In-vitro and in-vivo comparative effects of the spring and autumn-harvested Artemisia aucheri Bioss extracts on Leishmania major. Journal of Ethnopharmacology, 2020, 257, 112910.	2.0	15
207	<p>Isolation and Functions of Extracellular Vesicles Derived from Parasites: The Promise of a New Era in Immunotherapy, Vaccination, and Diagnosis</p> . International Journal of Nanomedicine, 2020, Volume 15, 2957-2969.	3.3	26
208	Who Bites Me? A Tentative Discriminative Key to Diagnose Hematophagous Ectoparasites Biting Using Clinical Manifestations. Diagnostics, 2020, 10, 308.	1.3	11
209	Virtual Screening and the In Vitro Assessment of the Antileishmanial Activity of Lignans. Molecules, 2020, 25, 2281.	1.7	17
210	Overview of herbal and traditional remedies in the treatment of cutaneous leishmaniasis based on <scp>Traditional Persian Medicine</scp> . Dermatologic Therapy, 2020, 33, e13566.	0.8	10
211	Use of the high-content imaging system equipment to evaluate in vitro infection by Leishmania braziliensis in response to sand fly Nyssomyia neivai saliva. Acta Tropica, 2020, 209, 105540.	0.9	2
212	Host Species Determines the Composition of the Prokaryotic Microbiota in Phlebotomus Sandflies. Pathogens, 2020, 9, 428.	1.2	16
213	Reconciling protective and pathogenic roles of the NLRP3 inflammasome in leishmaniasis. Immunological Reviews, 2020, 297, 53-66.	2.8	14
214	A Multi-Species Phenotypic Screening Assay for Leishmaniasis Drug Discovery Shows That Active Compounds Display a High Degree of Species-Specificity. Molecules, 2020, 25, 2551.	1.7	14
215	Systems Studies Uncover miR-146a as a Target in <i>Leishmania major</i> Infection Model. ACS Omega, 2020, 5, 12516-12526.	1.6	21
216	Metabarcoding: A Powerful Yet Still Underestimated Approach for the Comprehensive Study of Vector-Borne Pathogen Transmission Cycles and Their Dynamics. , 0, , .		7
217	Evaluation of NanoLuc, RedLuc and Luc2 as bioluminescent reporters in a cutaneous leishmaniasis model. Acta Tropica, 2020, 206, 105444.	0.9	6
218	Characterization of copulatory courtship song in the Old World sand fly species Phlebotomus argentipes. Scientific Reports, 2020, 10, 5116.	1.6	3
219	Noninvasive Biological Samples to Detect and Diagnose Infections due to Trypanosomatidae Parasites: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 2020, 21, 1684.	1.8	14

#	Article	IF	CITATIONS
220	Diversity of phlebotomine sand flies and molecular detection of trypanosomatids in Brumadinho, Minas Gerais, Brazil. PLoS ONE, 2020, 15, e0234445.	1.1	6
221	Toxicity and Anti-promastigote Activity of Benzoxazinoid Analogs Against Leishmania (Viannia) braziliensis and Leishmania (Leishmania) infantum. Advanced Pharmaceutical Bulletin, 2020, 10, 119-124.	0.6	1
222	Place of Serology in the Diagnosis of Zoonotic Leishmaniases With a Focus on Visceral Leishmaniasis Due to Leishmania infantum. Frontiers in Cellular and Infection Microbiology, 2020, 10, 67.	1.8	19
223	Cutaneous leishmaniasis in a 65-year-old North Texas male, treated with cryotherapy: A case report. SAGE Open Medical Case Reports, 2020, 8, 2050313X2090459.	0.2	2
224	Phlebotomine sand flies and Leishmania species in a focus of cutaneous leishmaniasis in Algeria. PLoS Neglected Tropical Diseases, 2020, 14, e0008024.	1.3	10
225	Next-Generation Molecular Surveillance of TriTryp Diseases. Trends in Parasitology, 2020, 36, 356-367.	1.5	10
226	European Brown hare (<i>Lepus europaeus</i>) as a source of emerging and reâ€emerging pathogens of Public Health importance: A review. Veterinary Medicine and Science, 2020, 6, 550-564.	0.6	16
227	Leishmania presence in bats in areas endemic for leishmaniasis in central-west Brazil. International Journal for Parasitology: Parasites and Wildlife, 2020, 11, 261-267.	0.6	15
228	Commercially approved vaccines for canine leishmaniosis: a review of available data on their safety and efficacy. Tropical Medicine and International Health, 2020, 25, 540-557.	1.0	65
229	Cutaneous and mucocutaneous leishmaniasis: experience of a Mediterranean hospital. Parasites and Vectors, 2020, 13, 24.	1.0	24
230	Cellular localization, cloning and expression of Leishmania braziliensis Phospholipase A1. Microbial Pathogenesis, 2020, 141, 104010.	1.3	5
231	Liposome-based nanocarrier loaded with a new quinoxaline derivative for the treatment of cutaneous leishmaniasis. Materials Science and Engineering C, 2020, 110, 110720.	3.8	21
232	A review of the systematics, species identification and diagnostics of the Trypanosomatidae using the maxicircle kinetoplast DNA: from past to present. International Journal for Parasitology, 2020, 50, 449-460.	1.3	5
233	An interactive database of Leishmania species distribution in the Americas. Scientific Data, 2020, 7, 110.	2.4	37
234	Exploring Lutzomyia longipalpis Sand Fly Vector Competence for Leishmania major Parasites. Journal of Infectious Diseases, 2020, 222, 1199-1203.	1.9	10
235	<p>Leishmania donovani Growth Inhibitors from Pathogen Box Compounds of Medicine for Malaria Venture</p> . Drug Design, Development and Therapy, 2020, Volume 14, 1307-1317.	2.0	7
236	Regulation of Translation in the Protozoan Parasite Leishmania. International Journal of Molecular Sciences, 2020, 21, 2981.	1.8	24
237	Molecular detection of Leishmania infantum in sand flies (Diptera: Psychodidae: Phlebotominae) from Veracruz, Mexico. Acta Tropica, 2020, 207, 105492.	0.9	17

#	Article	IF	CITATIONS
238	Differential Regulation of <scp>l</scp> -Arginine Metabolism through Arginase 1 during Infection with Leishmania mexicana Isolates Obtained from Patients with Localized and Diffuse Cutaneous Leishmaniasis. Infection and Immunity, 2020, 88, .	1.0	7
239	Genomic analysis of natural intra-specific hybrids among Ethiopian isolates of Leishmania donovani. PLoS Neglected Tropical Diseases, 2020, 14, e0007143.	1.3	17
240	Low Serum Levels of Selenium, Zinc, Iron, and Zinc/Copper Ratio in an Endemic Region of Cutaneous Leishmaniasis in Southwest Iran. Biological Trace Element Research, 2021, 199, 1291-1296.	1.9	7
241	Exploring the ability of dihydropyrimidine-5-carboxamide and 5-benzyl-2,4-diaminopyrimidine-based analogues for the selective inhibition of L.Âmajor dihydrofolate reductase. European Journal of Medicinal Chemistry, 2021, 210, 112986.	2.6	22
242	Status of ILâ€4 and ILâ€10 driven markers in experimental models of Visceral Leishmaniasis. Parasite Immunology, 2021, 43, e12783.	0.7	12
243	InÂvitro identification of imidazo[1,2-a]pyrazine-based antileishmanial agents and evaluation of L.Âmajor casein kinase 1 inhibition. European Journal of Medicinal Chemistry, 2021, 210, 112956.	2.6	14
244	Insects' potential: Understanding the functional role of their gut microbiome. Journal of Pharmaceutical and Biomedical Analysis, 2021, 194, 113787.	1.4	32
245	Capsid Structure of <i>Leishmania</i> RNA Virus 1. Journal of Virology, 2021, 95, .	1.5	10
246	Discovery of Alternative Chemotherapy Options for Leishmaniasis through Computational Studies of Asteraceae. ChemMedChem, 2021, 16, 1234-1245.	1.6	5
247	A historical review of the role of cytokines involved in leishmaniasis. Cytokine, 2021, 145, 155297.	1.4	17
248	Neoteric strategies for vector control and identification of zoonotic reservoirs. , 2021, , 27-43.		0
249	Effectiveness of miltefosine in cutaneous leishmaniasis caused by Leishmania tropica in Pakistan after antimonial treatment failure or contraindications to first line therapy—A retrospective analysis. PLoS Neglected Tropical Diseases, 2021, 15, e0008988.	1.3	6
250	Marine Natural Products with Bioactivity Against Neglected Tropical Diseases. Topics in Heterocyclic Chemistry, 2021, , 209-251.	0.2	0
251	Bats as Hosts of Important Unicellular Endoparasites. Fascinating Life Sciences, 2021, , 331-348.	0.5	3
252	Antileishmanial Activity of Lignans, Neolignans, and Other Plant Phenols. Progress in the Chemistry of Organic Natural Products, 2021, 115, 115-176.	0.8	1
253	Colonization and genetic diversification processes of Leishmania infantum in the Americas. Communications Biology, 2021, 4, 139.	2.0	32
254	Protista., 2021, , 90-134.		0
256	Vaccine as immunotherapy for leishmaniasis. , 2021, , 29-46.		0

#	Article	IF	CITATIONS
257	Detection of Changuinola virus (Reoviridae: <i>Orbivirus</i>) in field-caught sand flies in southern Thailand. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2021, 115, 1039-1044.	0.7	5
258	<i>Leishmania</i> : manipulation of signaling pathways to inhibit host cell apoptosis. Therapeutic Advances in Infectious Disease, 2021, 8, 204993612110149.	1.1	7
259	Understanding the immune responses involved in mediating protection or immunopathology during leishmaniasis. Biochemical Society Transactions, 2021, 49, 297-311.	1.6	13
261	Leishmaniasis Beyond East Africa. Frontiers in Veterinary Science, 2021, 8, 618766.	0.9	23
262	The In Silico Identification of Potential Members of the Ded1/DDX3 Subfamily of DEAD-Box RNA Helicases from the Protozoan Parasite Leishmania infantum and Their Analyses in Yeast. Genes, 2021, 12, 212.	1.0	3
263	Standing genetic variation in laboratory populations of insecticideâ€susceptible <i>Phlebotomus papatasi</i> and <i>Lutzomyia longipalpis</i> (Diptera: Psychodidae: Phlebotominae) for the evolution of resistance. Evolutionary Applications, 2021, 14, 1248-1262.	1.5	2
264	Urine-Based Molecular Diagnostic Tests for Leishmaniasis Infection in Human and Canine Populations: A Meta-Analysis. Pathogens, 2021, 10, 269.	1.2	3
265	Updates on Geographical Dispersion of Leishmania Parasites Causing Cutaneous Affections in Algeria. Pathogens, 2021, 10, 267.	1.2	4
266	A "Golden Age―for the discovery of new antileishmanial agents: Current status of leishmanicidal gold complexes and prospective targets beyond the trypanothione system. ChemMedChem, 2021, 16, 1682-1696.	1.6	17
267	The Leishmania donovani LDBPK_220120.1 Gene Encodes for an Atypical Dual Specificity Lipid-Like Phosphatase Expressed in Promastigotes and Amastigotes; Substrate Specificity, Intracellular Localizations, and Putative Role(s). Frontiers in Cellular and Infection Microbiology, 2021, 11, 591868.	1.8	0
268	Protein methyltransferase 7 deficiency in Leishmania major increases neutrophil associated pathology in murine model. PLoS Neglected Tropical Diseases, 2021, 15, e0009230.	1.3	8
269	Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biology, 2021, 11, 200407.	1.5	102
270	Bio-guided isolation of anti-leishmanial natural products from Diospyros gracilescens L. (Ebenaceae). BMC Complementary Medicine and Therapies, 2021, 21, 106.	1.2	15
271	Construction of PX-LmGP63 Using CRISPR-Cas9 as Primary Goal for GP63 gene Knockout in Leishmania major and Leishmanization. Jundishapur Journal of Microbiology, 2021, 14, .	0.2	5
272	Investigations on the effects of anti-Leishmania major serum on the progression of Leishmania infantum infection in vivo and in vitro – implications of heterologous exposure to Leishmania spp. Parasitology Research, 2021, 120, 1771-1780.	0.6	1
273	Systematic in silico Evaluation of Leishmania spp. Proteomes for Drug Discovery. Frontiers in Chemistry, 2021, 9, 607139.	1.8	4
274	Comparative Analysis of Virulence Mechanisms of Trypanosomatids Pathogenic to Humans. Frontiers in Cellular and Infection Microbiology, 2021, 11, 669079.	1.8	20
275	Investigation of Phlebotominae (Diptera: Psychodidae) Fauna, Seasonal Dynamics, and Natural Leishmania spp. Infection in MuÄŸla, Southwest of Turkey. Acta Tropica, 2021, 216, 105827.	0.9	6

#	ARTICLE Characterization of Glycoside Hydrolase Families 13 and 31 Reveals Expansion and Diversification of	IF	CITATIONS
276	I±-Amylase Genes in the Phlebotomine Lutzomyia longipalpis and Modulation of Sandfly Glycosidase Activities by Leishmania Infection. Frontiers in Physiology, 2021, 12, 635633.	1.3	11
277	Comparison of the Effects of Sambucus ebulus Leaf and Fruit Extracts on Leishmania major In Vitro. Infectious Disorders - Drug Targets, 2021, 21, 49-54.	0.4	4
278	Effect of Itraconazole-Ezetimibe-Miltefosine Ternary Therapy in Murine Visceral Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	10
279	Bats are key hosts in the radiation of mammal-associated Bartonella bacteria. Infection, Genetics and Evolution, 2021, 89, 104719.	1.0	23
280	Chalcones in Dermatology. , 0, , .		0
281	Development and Characterization of PLGA Nanoparticles Containing 17-DMAG, an Hsp90 Inhibitor. Frontiers in Chemistry, 2021, 9, 644827.	1.8	12
282	Genetic diversity analysis of Chinese Leishmania isolates and development of L. donovani complex-specific markers by RAPD. BMC Infectious Diseases, 2021, 21, 464.	1.3	1
283	Domestic mammals as reservoirs for <i>Leishmania donovani</i> on the Indian subcontinent: Possibility and consequences on elimination. Transboundary and Emerging Diseases, 2022, 69, 268-277.	1.3	18
284	A Systematic Review (1990–2021) of Wild Animals Infected with Zoonotic Leishmania. Microorganisms, 2021, 9, 1101.	1.6	31
285	Rickettsial agents detected in the genus Psathyromyia (Diptera:Phlebotominae) from a Biosphere Reserve of Veracruz, Mexico. Parasitology International, 2021, 82, 102286.	0.6	8
286	Genetic diversity of Leishmania tropica: Unexpectedly complex distribution pattern. Acta Tropica, 2021, 218, 105888.	0.9	10
287	Palaeoclimatic modelsÂ- predicted changes in the potential Neogene distribution patterns of Phlebotomus similis and Phlebotomus sergenti (Insecta: Diptera: Psychodidae). Palaeobiodiversity and Palaeoenvironments, 2022, 102, 149-172.	0.6	4
288	Spatial and Temporal Variability of Visceral Leishmaniasis in Colombia, 2007 to 2018. American Journal of Tropical Medicine and Hygiene, 2021, 105, 144-155.	0.6	4
289	Organic Lightâ€Emitting Diodes as an Innovative Approach for Treating Cutaneous Leishmaniasis. Advanced Materials Technologies, 2021, 6, 2100395.	3.0	11
290	Dipeptidyl peptidase III as a DNA marker to investigate epidemiology and taxonomy of Old World Leishmania species. PLoS Neglected Tropical Diseases, 2021, 15, e0009530.	1.3	1
291	A Cytokine Network Balance Influences the Fate of LeishmaniaÂ(Viannia)Âbraziliensis Infection in a Cutaneous Leishmaniasis Hamster Model. Frontiers in Immunology, 2021, 12, 656919.	2.2	5
292	Molecular Identification of Leishmania Species in an Outbreak of Re-Emerged Cutaneous Leishmaniasis in Southwestern Iran During 2015 - 2016. Archives of Clinical Infectious Diseases, 2021, 16, .	0.1	1
293	Serine proteases profiles of Leishmania (Viannia) braziliensis clinical isolates with distinct susceptibilities to antimony. Scientific Reports, 2021, 11, 14234.	1.6	5

#	Article	IF	CITATIONS
294	A comparative approach on the activation of the three complement system pathways in different hosts of Visceral Leishmaniasis after stimulation with Leishmania infantum. Developmental and Comparative Immunology, 2021, 120, 104061.	1.0	7
295	Density assessment and reporting for Phlebotomus perniciosus and other sand fly species in periurban residential estates in Spain. Parasitology Research, 2021, 120, 3091-3103.	0.6	6
296	Amino-Substituted 3-Aryl- and 3-Heteroarylquinolines as Potential Antileishmanial Agents. Journal of Medicinal Chemistry, 2021, 64, 12152-12162.	2.9	5
297	Efficacy of green synthesized silver nanoparticles via ginger rhizome extract against Leishmania major in vitro. PLoS ONE, 2021, 16, e0255571.	1.1	15
298	Reptile vector-borne diseases of zoonotic concern. International Journal for Parasitology: Parasites and Wildlife, 2021, 15, 132-142.	0.6	28
300	Determination of sand fly fauna and molecular detection of Leishmania in sand flies in Antalya Province, Southern Turkey. Parasitology Research, 2021, 120, 3105-3111.	0.6	1
301	Canine and Feline Parasitology: Analogies, Differences, and Relevance for Human Health. Clinical Microbiology Reviews, 2021, 34, e0026620.	5.7	31
302	The First Record of Zoonotic Genes of Cutaneous Leishmaniasis among Human, Dogs, and Sandflies by Nested Polymerase Chain Reaction and Phylogenetic Analyses. Open Access Macedonian Journal of Medical Sciences, 2021, 9, 610-621.	0.1	2
303	Comparative analysis of the transcriptional responses of five Leishmania species to trivalent antimony. Parasites and Vectors, 2021, 14, 419.	1.0	3
304	Thermal shift assays of marine-derived fungal metabolites from <i>Aspergillus fischeri</i> MMERU 23 against <i>Leishmania major</i> pteridine reductase 1 and molecular dynamics studies. Journal of Biomolecular Structure and Dynamics, 2022, 40, 11968-11976.	2.0	4
305	Epidemiological features of cutaneous leishmaniasis and distribution of sand flies in an endemic area in southeast of Iran. Parasite Epidemiology and Control, 2021, 14, e00220.	0.6	2
306	Is the Prevalence of Leishmania infantum Linked to Breeds in Dogs? Characterization of Seropositive Dogs in Ibiza. Animals, 2021, 11, 2579.	1.0	13
307	Recurrence and Driving Factors of Visceral Leishmaniasis in Central China. International Journal of Environmental Research and Public Health, 2021, 18, 9535.	1.2	7
308	Phlebotominae Fauna (Diptera: Psychodidae) and Molecular Detection of <i>Leishmania</i> (Kinetoplastida: Trypanosomatidae) in Urban Caves of Belo Horizonte, Minas Gerais, Brazil. Journal of Medical Entomology, 2022, 59, 257-266.	0.9	3
309	Detection of Leishmania (Viannia) braziliensis in bats from EspÃrito Santo, Brazil (2018–2019). Parasitology Research, 2021, 120, 3857-3863.	0.6	3
310	Anti-Leishmanial Activity of Artemisia persica, A. spicigera, and A. fragrance against Leishmania major. Iranian Journal of Parasitology, 2021, 16, 464-473.	0.6	8
311	Prophylactic effect of cutaneous leishmaniasis against COVID-19: a case-control field assessment. International Journal of Infectious Diseases, 2022, 122, 155-161.	1.5	14
312	The Comparison of the IFN-ɤTNF-α and IL-10 Cytokines in Healing and Non-healing Cutaneous Leishmaniasis. Iranian Journal of Parasitology, 2021, 16, 490-498.	0.6	4

# 313	ARTICLE Clinical, epidemiological and climatic factors related to the occurrence of cutaneous leishmaniasis in an endemic area in northeastern Brazil. Brazilian Journal of Biology, 2021, 81, 557-565.	IF 0.4	CITATIONS
314	Electrochemical sensing of trypanosome- and flavivirus-related neglected tropical diseases. Current Opinion in Electrochemistry, 2021, 30, 100838.	2.5	6
315	Cysteine proteases as potential targets for anti-trypanosomatid drug discovery. Bioorganic and Medicinal Chemistry, 2021, 46, 116365.	1.4	3
316	Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done?. Pathogens, 2021, 10, 1124.	1.2	10
317	18S rRNA gene sequence-structure phylogeny of the Trypanosomatida (Kinetoplastea, Euglenozoa) with special reference to Trypanosoma. European Journal of Protistology, 2021, 81, 125824.	0.5	9
318	Recent advancements in anti-leishmanial research: Synthetic strategies and structural activity relationships. European Journal of Medicinal Chemistry, 2021, 223, 113606.	2.6	22
319	Sand fly fauna and molecular detection of Leishmania species and blood meal sources in different rural environments in western Amazon. Acta Tropica, 2021, 224, 106150.	0.9	7
320	Integration of phlebotomine ecological niche modelling, and mapping of cutaneous leishmaniasis surveillance data, to identify areas at risk of under-estimation. Acta Tropica, 2021, 224, 106122.	0.9	3
321	Canine leishmaniasis in Balkan – A review of occurrence and epidemiology. Acta Tropica, 2021, 224, 106110.	0.9	6
322	First case of canine visceral leishmaniasis in the midwestern of Santa Catarina State, Brazil. Brazilian Journal of Biology, 2021, 82, e241162.	0.4	2
323	A comprehensive overview on sandfly fever. Journal of Acute Disease, 2021, 10, 98.	0.0	3
324	Pyrrolidine-based 3-deoxysphingosylphosphorylcholine analogs as possible candidates against neglected tropical diseases (NTDs): identification of hit compounds towards development of potential treatment of <i>Leishmania donovani</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 1922-1930	2.5	16
325	Tongue Nodule as Primary Manifestation of American Cutaneous Leishmaniasis in an Immunocompetent Patient. Head and Neck Pathology, 2021, 15, 1069-1073.	1.3	1
326	Review on natural products as an alternative to contemporary anti-leishmanial therapeutics. Journal of Proteins and Proteomics, 2020, 11, 135-158.	1.0	17
327	Pathophysiology of Leishmania Infection during Pregnancy. Trends in Parasitology, 2017, 33, 935-946.	1.5	22
330	Proteins involved in the biosynthesis of lipophosphoglycan in Leishmania: a comparative genomic and evolutionary analysis. Parasites and Vectors, 2020, 13, 44.	1.0	9
332	Isolation of Novel Trypanosomatid, Zelonia australiensis sp. nov. (Kinetoplastida: Trypanosomatidae) Provides Support for a Gondwanan Origin of Dixenous Parasitism in the Leishmaniinae. PLoS Neglected Tropical Diseases, 2017, 11, e0005215.	1.3	55
333	Pre-clinical antigenicity studies of an innovative multivalent vaccine for human visceral leishmaniasis. PLoS Neglected Tropical Diseases, 2017, 11, e0005951.	1.3	36

#	Article	IF	CITATIONS
334	Tegumentary leishmaniasis and coinfections other than HIV. PLoS Neglected Tropical Diseases, 2018, 12, e0006125.	1.3	33
335	Antimony susceptibility of Leishmania isolates collected over a 30-year period in Algeria. PLoS Neglected Tropical Diseases, 2018, 12, e0006310.	1.3	27
336	CRISPR/Cas9 in Leishmania mexicana: A case study of LmxBTN1. PLoS ONE, 2018, 13, e0192723.	1.1	27
337	Cutaneous Leishmaniasis in Erbil Governorate: Clinical manifestations and disease course. Medical Journal of the Islamic Republic of Iran, 2018, 32, 411-413.	0.9	2
338	Molecular Detection of Leishmania major in Hemiechinus auritus, A Potential Reservoir of Zoonotic Cutaneous Leishmaniasis in Damghan, Iran. Iranian Journal of Arthropod-borne Diseases, 0, , .	0.8	2
339	Identification of Sand Flies (Diptera: Psychodidae) Collected from Cutaneous Leishmaniasis Endemic Focus in the Ho Municipality, Ghana. International Annals of Science, 2020, 10, 33-44.	0.4	2
340	Antimicrobial Peptides-based Nanostructured Delivery Systems: An Approach for Leishmaniasis Treatment. Current Pharmaceutical Design, 2019, 25, 1593-1603.	0.9	1
341	Nanoparticles Loaded with a New Thiourea Derivative: Development and In vitro Evaluation Against Leishmania amazonensis. Current Drug Delivery, 2020, 17, 694-702.	0.8	4
342	Comparison of Leishmania typing results obtained from 16 European clinical laboratories in 2014. Eurosurveillance, 2016, 21, .	3.9	22
343	Identification of Clinical Infections of Leishmania Imported into Australia: Revising Speciation with Polymerase Chain Reaction-RFLP of the Kinetoplast Maxicircle. American Journal of Tropical Medicine and Hygiene, 2019, 101, 590-601.	0.6	5
344	The In Vitro Effect of Hydroalcoholic Extract of Artemisia absinthium on the Growth of Leishmania major (MRHO/IR/75/ER) in Peritoneal Macrophages from BALB/c Mice. Jundishapur Journal of Microbiology, 2018, In Press, .	0.2	1
345	Economic Burden Evaluation of Cutaneous Leishmaniasis in Iran. Shiraz E Medical Journal, 2019, 20, .	0.1	6
346	Global genome diversity of the Leishmania donovani complex. ELife, 2020, 9, .	2.8	90
347	The sand fly (Diptera: Psychodidae) fauna of the urban area of Lassance, Northeast Minas Gerais, Brazil. PLoS ONE, 2021, 16, e0257043.	1.1	3
348	Amphotericin-B-loaded polymer-functionalized reduced graphene oxides for Leishmania amazonensis chemo-photothermal therapy. Colloids and Surfaces B: Biointerfaces, 2022, 209, 112169.	2.5	6
349	Vaccines against leishmaniasis: using controlled human infection models to accelerate development. Expert Review of Vaccines, 2021, 20, 1407-1418.	2.0	10
350	Repeated Sand Fly Bites of Infected BALB/c Mice Enhance the Development of Leishmania Lesions. Frontiers in Tropical Diseases, 2021, 2, .	0.5	4
351	Invertebrates for vertebrate biodiversity monitoring: Comparisons using three insect taxa as iDNA samplers. Molecular Ecology Resources, 2022, 22, 962-977.	2.2	14

#	Article	IF	CITATIONS
352	Infection with Leishmania (Leishmania) infantum Changes the Morphology and Myenteric Neurons of the Jejunum of Golden Hamsters. Parasitologia, 2021, 1, 225-237.	0.6	2
353	Leishmania 360°: Guidelines for Exosomal Research. Microorganisms, 2021, 9, 2081.	1.6	2
354	Leishmania antimony resistance/ susceptibility in Algerian foci. Open Journal of Tropical Medicine, 2017, 1, 024-032.	0.2	3
355	Comportamiento epidemiológico, distribución geográfica y manejo clÃnico inicial de la leishmaniasis cutánea en Boyacá. 2008-2015. Revista Facultad De Medicina, 2018, 66, 159-169.	0.0	0
356	Important Protozoan Diseases in the Lower Mekong River Basin. Parasitology Research Monographs, 2019, , 205-220.	0.4	0
358	In vitro and in vivo Assessment of Anti-Leishmanial Efficacy of Leaf, Fruit, and Fractions of Juniperus excelsa Against Axenic Amastigotes of Leishmania major and Topical Formulation in BALB/c Mice. Iranian Red Crescent Medical Journal, 2019, 21, .	0.5	2
360	Monitoring of Laboratory Reared of Phlebotomus papatasi (Diptera: Psychodidae), Main Vector of Zoonotic Cutaneous Leishmaniasis to Different Imagicides in Hyper endemic Areas, Esfahan Province, Iran. Iranian Journal of Arthropod-borne Diseases, 2020, 14, 116-125.	0.8	8
361	An investigation of the effects of environmental and ecologic factors on cutaneous leishmaniasis in the old world: a systematic review study. Reviews on Environmental Health, 2021, 36, 117-128.	1.1	15
362	Development of Various Leishmania (Sauroleishmania) tarentolae Strains in Three Phlebotomus Species. Microorganisms, 2021, 9, 2256.	1.6	11
363	Transfersomes as alternative topical nanodosage forms for the treatment of skin disorders. Nanomedicine, 2021, 16, 2465-2489.	1.7	9
364	Metabolic characterization and biomarkers screening for visceral leishmaniasis in golden hamsters. Acta Tropica, 2022, 225, 106222.	0.9	5
365	Insights into the proteomic profile and gene expression of Lutzomyia longipalpis-derived Lulo cell line. Memorias Do Instituto Oswaldo Cruz, 2020, 115, e200113.	0.8	1
367	TRsandflies: A Web-Based Software for the Morphometric Identification of Sand Flies in Turkey. Journal of Medical Entomology, 2021, 58, 1149-1156.	0.9	0
368	A cross-sectional approach including dog owner characteristics as predictors of visceral leishmaniasis infection in dogs. Memorias Do Instituto Oswaldo Cruz, 2020, 115, e190349.	0.8	5
369	Phlebotomine Sand Flies (Diptera, Psychodidae, Phlebotominae). , 2022, , 819-836.		1
370	Relevance of epidemiological surveillance in travelers: an imported case of Leishmania tropica in Mexico. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2020, 62, e41.	0.5	3
372	Antileishmanial, antibacterial and cytotoxicity activity of the extracts, fractions, and compounds from the fruits and stem bark extracts of Pentadesma butyracea Sabine. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2021, .	0.3	1
374	Modelling habitat suitability in Jordan for the cutaneous leishmaniasis vector (Phlebotomus papatasi) using multicriteria decision analysis. PLoS Neglected Tropical Diseases, 2020, 14, e0008852.	1.3	6

#	Article	IF	CITATIONS
375	Synergistic effect of Eucalyptus camaldulensis essential oil with glucantime against cutaneous Leishmaniasis in vitro and in vivo. Meta Gene, 2020, 25, 100717.	0.3	2
376	Extract Induces Apoptosis in Promastigotes. Iranian Journal of Parasitology, 2016, 11, 339-349.	0.6	24
377	Host-parasite Responses Outcome Regulate the Expression of Antimicrobial Peptide Genes in the Skin of BALB/c and C57BL/6 Murine Strains Following MRHO/IR/75/ER Infection. Iranian Journal of Parasitology, 2018, 13, 515-523.	0.6	17
378	Molecular Detection of in : A Potential Reservoir of Zoonotic Cutaneous Leishmaniasis in Damghan, Iran. Journal of Arthropod-Borne Diseases, 2019, 13, 334-343.	0.9	5
379	Comparison of Three Commonly Used Genetic Markers for Detection of : An Experimental Study. Ethiopian Journal of Health Sciences, 2021, 31, 725-730.	0.2	0
380	Pediatric cutaneous leishmaniasis: A clinico-epidemiological study from North India. Indian Dermatology Online Journal, 2021, 12, 852.	0.2	1
381	Cutaneous Leishmaniasis Associated With the Level of Poverty of the Andean Rural Population: A Five-Year Single-Center Study. Electronic Journal of General Medicine, 2021, 18, em335.	0.3	3
382	Molecular Detection of Bartonella sp. in Psathyromyia shannoni and Lutzomyia cruciata From Northeastern Mexico. Frontiers in Tropical Diseases, 2021, 2, .	0.5	1
383	Assay development in leishmaniasis drug discovery: a comprehensive review. Expert Opinion on Drug Discovery, 2022, 17, 151-166.	2.5	7
384	Engineering a multi-epitope vaccine candidate against Leishmania infantum using comprehensive Immunoinformatics methods. Biologia (Poland), 2022, 77, 277-289.	0.8	4
385	Investigating in Vivo and in Vitro Effects of Ethanolic and Aqueous Extracts of Myrtle (Myrtus) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 342
386	Proteomic Analysis of the Promastigote Secretome of Seven <i>Leishmania</i> Species. Journal of Proteome Research, 2022, 21, 30-48.	1.8	13
387	Analyses of Leishmania-LRV Co-Phylogenetic Patterns and Evolutionary Variability of Viral Proteins. Viruses, 2021, 13, 2305.	1.5	14
388	Leishmania infantum Infection Modulates the Jak-STAT Pathway in Lutzomyia longipalpis LL5 Embryonic Cells and Adult Females, and Affects Parasite Growth in the Sand Fly. Frontiers in Tropical Diseases, 2021, 2, .	0.5	9
389	Whole-Genome Sequencing of Leishmania infantum chagasi Isolates from Honduras and Brazil. Microbiology Resource Announcements, 2021, 10, e0047121.	0.3	7
390	Sand fly behavior: much more than weak-flying. Memorias Do Instituto Oswaldo Cruz, 2021, 116, e210230.	0.8	3
391	High-resolution melting analysis identifies reservoir hosts of zoonotic Leishmania parasites in Tunisia. Parasites and Vectors, 2022, 15, 12.	1.0	3
392	Diversity and Geographical Distribution of Sand Flies Phlebotomus papatasi (Diptera: Phlebotominae) by using Geometric Morphometric Technique from two Iraqi Provinces. Baghdad Science Journal, 2020, 17, 0754.	0.4	0

#	Article	IF	CITATIONS
393	<i>Leishmania</i> spp. in Squamata reptiles from the Mediterranean basin. Transboundary and Emerging Diseases, 2022, 69, 2856-2866.	1.3	16
394	N-modification of 7-Deazapurine nucleoside analogues as Anti-Trypanosoma cruzi and anti-Leishmania agents: Structure-activity relationship exploration and InÂvivo evaluation. European Journal of Medicinal Chemistry, 2022, 231, 114165.	2.6	7
395	Recent Progress in the Development of Indole-Based Compounds Active against Malaria, Trypanosomiasis and Leishmaniasis. Molecules, 2022, 27, 319.	1.7	17
396	In Silico Research of New Therapeutics Rotenoids Derivatives against Leishmania amazonensis Infection. Biology, 2022, 11, 133.	1.3	1
397	Mutation Characteristics and Phylogenetic Analysis of Five Leishmania Clinical Isolates. Animals, 2022, 12, 321.	1.0	0
398	Detection of Wolbachia and Leishmania DNA in sand flies (Diptera: Psychodidae, Phlebotominae) from a focus of cutaneous leishmaniasis in Tabasco, Mexico. Parasitology Research, 2022, 121, 513-520.	0.6	7
399	Investigation of Leishmania (Viannia) braziliensis Infection in Wild Mammals in Brazil. Acta Parasitologica, 2022, 67, 648-657.	0.4	1
400	Leishmania diversity in bats from an endemic area for visceral and cutaneous leishmaniasis in Southeastern Brazil. Acta Tropica, 2022, 228, 106327.	0.9	8
401	Causative Agents of American Tegumentary Leishmaniasis Are Able to Infect 3T3-L1 Adipocytes In Vitro. Frontiers in Cellular and Infection Microbiology, 2022, 12, 824494.	1.8	4
402	Leishmanicidal activity of fungal bioproducts: A systematic review. Fungal Biology Reviews, 2022, 40, 91-113.	1.9	1
403	Paradoxical immune response in leishmaniasis: The role of tollâ€like receptors in disease progression. Parasite Immunology, 2022, 44, e12910.	0.7	7
404	miR-294 and miR-410 Negatively Regulate Tnfa, Arginine Transporter Cat1/2, and Nos2 mRNAs in Murine Macrophages Infected with Leishmania amazonensis. Non-coding RNA, 2022, 8, 17.	1.3	5
406	Leishmaniasis: Molecular Aspects of Parasite Dimorphic Forms Life Cycle. , 0, , .		1
407	Some Good and Some Bad: Sand Fly Salivary Proteins in the Control of Leishmaniasis and in Autoimmunity. Frontiers in Cellular and Infection Microbiology, 2022, 12, 839932.	1.8	3
408	Metagenomic Insights Into the Changes of Antibiotic Resistance and Pathogenicity Factor Pools Upon Thermophilic Composting of Human Excreta. Frontiers in Microbiology, 2022, 13, 826071.	1.5	6
409	ROLE OF ANTIDEPRESSANTS AGAINST LEISHMANIASIS. International Journal of Pharmacy and Pharmaceutical Sciences, 0, , 1-7.	0.3	Ο
410	Sand flies: Basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Communications Biology, 2022, 5, 305.	2.0	59
411	Investigation of the possible role of the Central Paratethys as a migration route and speciation area of the ancestors of Mediterranean Larroussius, Paraphlebotomus and Phlebotomus species. Palaeobiodiversity and Palaeoenvironments, 2023, 103, 165-192.	0.6	1

#	Article	IF	CITATIONS
412	Sex under pressure: stress facilitates Leishmania in vitro hybridization. Trends in Parasitology, 2022, 38, 274-276.	1.5	2
413	Utilizing Quantitative Proteomics to Identify Species-Specific Protein Therapeutic Targets for the Treatment of Leishmaniasis. ACS Omega, 2022, 7, 12580-12588.	1.6	5
414	Pediatric Cutaneous Leishmaniasis in Hormozgan Province, Southeast Iran during 2016-2020: A Descriptive Epidemiological Study. Journal of Occupational Health and Epidemiology, 2021, 10, 224-230.	0.1	0
415	Amputation of a type II diabetic patient with cutaneous leishmaniasis due to Leishmania major. BMC Infectious Diseases, 2021, 21, 1227.	1.3	Ο
417	High genome plasticity and frequent genetic exchange in Leishmania tropica isolates from Afghanistan, Iran and Syria. PLoS Neglected Tropical Diseases, 2021, 15, e0010110.	1.3	8
418	Culicoides Latreille (Diptera: Ceratopogonidae) as potential vectors for Leishmania martiniquensis and Trypanosoma sp. in northern Thailand. PLoS Neglected Tropical Diseases, 2021, 15, e0010014.	1.3	15
419	Amino acid ionic liquid-catalyzed synthesis, anti-Leishmania activity, molecular docking, molecular dynamic simulation, and ADME study of 3,4-dihydropyrimidin-2(1 <i>H</i>)-(thio)ones. Synthetic Communications, 2022, 52, 190-204.	1.1	7
420	Plant-Based Alternative Treatment for Leishmaniasis: A Neglected Tropical Disease. , 0, , .		Ο
421	Sand Flies and Their Microbiota. Parasitologia, 2022, 2, 71-87.	0.6	3
422	Novel Insights Into Leishmania (Viannia) braziliensis In Vitro Fitness Guided by Temperature Changes Along With Its Subtilisins and Oligopeptidase B. Frontiers in Cellular and Infection Microbiology, 2022, 12, 805106.	1.8	3
443	Efficacy of imidacloprid/flumethrin collar in preventing canine leishmaniosis in Brazil. Transboundary and Emerging Diseases, 2022, 69, .	1.3	1
444	In silico and in vitro antileishmanial effects of gamma-terpinene: Multifunctional modes of action. Chemico-Biological Interactions, 2022, 361, 109957.	1.7	4
445	Identification of Immunodominant Antigens From a First-Generation Vaccine Against Cutaneous Leishmaniasis. Frontiers in Immunology, 2022, 13, .	2.2	4
446	Discriminator for Cutaneous Leishmaniasis Using MALDI-MSI in a Murine Model. Journal of the American Society for Mass Spectrometry, 2022, , .	1.2	Ο
447	Exploration of 6-methyl-7-(Hetero)Aryl-7-Deazapurine ribonucleosides as antileishmanial agents. European Journal of Medicinal Chemistry, 2022, 237, 114367.	2.6	4
448	Revisiting the caveâ€dwelling sand flies (Diptera, Psychodidae, Phlebotominae) from Brazil: Diversity and potential role in the transmission of <i>Leishmania</i> Ross, 1903 (Kinetoplastida: Trypanosomatidae). Medical and Veterinary Entomology, 2022, 36, 408-423.	0.7	4
449	A molecular phylogeny and phylogeography of Greek Aegean Island sand flies of the genus Phlebotomus (Diptera: Psychodidae). Arthropod Systematics and Phylogeny, 0, 80, 137-154.	5.5	7
450	Modulating aryl substitution: Does it play a role in the anti-leishmanial activity of a series of tetra-aryl Sb(V) fluorinated carboxylates?. Journal of Inorganic Biochemistry, 2022, 234, 111864.	1.5	3

#	Article	lF	CITATIONS
451	Establish an allele-specific real-time PCR for Leishmania species identification. Infectious Diseases of Poverty, 2022, 11, .	1.5	1
453	Epigenetic paradigms/exemplars of the macrophage: inflammasome axis in Leishmaniasis. Molecular and Cellular Biochemistry, 0, , .	1.4	0
454	Point Prevalence Studies Are Necessary as First Steps in Studying the Epidemiology of Viruses and Other Pathogens Transmitted by Arthropods. Viruses, 2022, 14, 1244.	1.5	0
455	Characterization of <i>Leishmania (L.) amazonensis</i> Oligopeptidase B and its role in macrophage infection. Parasitology, 0, , 1-33.	0.7	0
456	Leishmania guyanensis M4147 as a new LRV1-bearing model parasite: Phosphatidate phosphatase 2-like protein controls cell cycle progression and intracellular lipid content. PLoS Neglected Tropical Diseases, 2022, 16, e0010510.	1.3	7
457	Canine Cytokines Profile in an Endemic Region of L. infantum: Related Factors. Veterinary Sciences, 2022, 9, 305.	0.6	5
458	Phlebotomine sand flies (Diptera, Psychodidae) from Spain: an updated checklist and extended distributions. ZooKeys, 0, 1106, 81-99.	0.5	7
459	Therapeutic effects of Lucilia sericata larval excretion/secretion products on Leishmania major under in vitro and in vivo conditions. Parasites and Vectors, 2022, 15, .	1.0	3
460	Assembly of a Large Collection of Maxicircle Sequences and Their Usefulness for Leishmania Taxonomy and Strain Typing. Genes, 2022, 13, 1070.	1.0	5
461	Molecular detection of Leishmania infantum in rats and sand flies in the urban sewers of Barcelona, Spain. Parasites and Vectors, 2022, 15, .	1.0	3
462	<i>Leishmania tarentolae</i> : A new frontier in the epidemiology and control of the leishmaniases. Transboundary and Emerging Diseases, 2022, 69, .	1.3	9
463	Isothermal Nucleic Acid Amplification to Detect Infection Caused by Parasites of the Trypanosomatidae Family: A Literature Review and Opinion on the Laboratory to Field Applicability. International Journal of Molecular Sciences, 2022, 23, 7543.	1.8	6
464	Hit-to-lead optimization of novel phenyl imidazole carboxamides that are active against Leishmania donovani. European Journal of Medicinal Chemistry, 2022, 240, 114577.	2.6	4
465	Concurrent molecular characterization of sand flies and Leishmania parasites by amplicon-based next-generation sequencing. Parasites and Vectors, 2022, 15, .	1.0	2
467	Bone Lesions in a Young Dog and a NEEM (Azadirachta indica) Spray as the Only Preventive Measure against Leishmaniasis: A Case Report. , 2022, 2, 95-110.		0
468	Leishmania (Sauroleishmania) tarentolae isolation and sympatric occurrence with Leishmania (Leishmania) infantum in geckoes, dogs and sand flies. PLoS Neglected Tropical Diseases, 2022, 16, e0010650.	1.3	11
469	Experimental infections of sand flies and geckos with Leishmania (Sauroleishmania) adleri and Leishmania (S.) hoogstraali. Parasites and Vectors, 2022, 15, .	1.0	3
471	Quantum Biochemistry Screening and In Vitro Evaluation of Leishmania Metalloproteinase Inhibitors. International Journal of Molecular Sciences, 2022, 23, 8553.	1.8	1

#	Article	IF	CITATIONS
472	Proteome and morphological analysis show unexpected differences between promastigotes of Leishmania amazonensis PH8 and LV79 strains. PLoS ONE, 2022, 17, e0271492.	1.1	1
473	In-silico design of an immunoinformatics based multi-epitope vaccine against Leishmania donovani. BMC Bioinformatics, 2022, 23, .	1.2	13
474	Epidemiological features and spatial-temporal clustering of visceral leishmaniasis in mainland China from 2019 to 2021. Frontiers in Microbiology, 0, 13, .	1.5	4
475	Morphological description of Pintomyia (Pifanomyia) veintemillasi n. sp., a new sand fly species from the sub-Andean region of Bolivia. Parasites and Vectors, 2022, 15, .	1.0	0
476	A new species of the genus <i>Sergentomyia</i> França and Parrot (Diptera: Psychodidae) from Iriomote Island, Ryukyu Archipelago, Japan. Medical Entomology and Zoology, 2022, 73, 125-129.	0.0	0
477	Leishmania major Strain-Dependent Macrophage Activation Contributes to Pathogenicity in the Absence of Lymphocytes. Microbiology Spectrum, 0, , .	1.2	4
479	G-Quadruplex DNAzyme-Substrated CRISPR/Cas12 Assay for Label-Free Detection of Single-Celled Parasitic Infection. ACS Sensors, 2022, 7, 2968-2977.	4.0	9
480	Phlebotomine sand flies (Diptera: Psychodidae) and sand fly-borne pathogens in the Greater Mekong Subregion: a systematic review. Parasites and Vectors, 2022, 15, .	1.0	5
481	Sex in protists: A new perspective on the reproduction mechanisms of trypanosomatids. Genetics and Molecular Biology, 2022, 45, .	0.6	0
482	The value of Metagenomic Next-Generation Sequencing in Leishmaniasis Diagnosis: A Case Series and Literature Review. Open Forum Infectious Diseases, 0, , .	0.4	1
483	Spatiotemporal Distribution of Leishmaniasis in an Endemic Area of Northeast Brazil: Implications for Intervention Actions. Journal of Medical Entomology, 0, , .	0.9	0
484	Decoding the anti-Leishmania braziliensis activity of 1,10-phenanthroline-5,6-dione and its silver- and copper-based complexes: In vitro and in vivo approaches. European Journal of Medicinal Chemistry Reports, 2022, , 100093.	0.6	0
485	Assessing the effects of Leishmania (Leishmania) infantum and L. (L.) amazonensis infections in macrophages using a quantitative proteome approach. Experimental Parasitology, 2022, 243, 108413.	0.5	1
487	Antileishmanial Anthracene Endoperoxides: Efficacy In Vitro, Mechanisms and Structure-Activity Relationships. Molecules, 2022, 27, 6846.	1.7	0
488	MALDI-TOF MS Limits for the Identification of Mediterranean Sandflies of the Subgenus Larroussius, with a Special Focus on the Phlebotomus perniciosus Complex. Microorganisms, 2022, 10, 2135.	1.6	2
489	Antileishmanial Activity of 4,8-Dimethoxynaphthalenyl Chalcones on Leishmania amazonensis. Antibiotics, 2022, 11, 1402.	1.5	6
490	Virion structure of Leishmania RNA virus 1. Virology, 2022, 577, 149-154.	1.1	1
491	Case Report: Autochthonous Disseminated Cutaneous, Mucocutaneous, and Visceral Leishmaniasis Caused by Leishmania martiniquensis in a Patient with HIV/AIDS from Northern Thailand and Literature Review. American Journal of Tropical Medicine and Hygiene, 2022, 107, 1196-1202.	0.6	8

#	Article	IF	CITATIONS
492	Chronic Systemic Infection of Mice with Leishmania infantum Leads to Increased Bone Mass. Journal of Bone and Mineral Research, 2020, 38, 86-102.	3.1	1
493	Serum levels and genetic variations of cytokines in two canine breeds (Ibizan hound and boxer) in the Mediterranean region, in terms of Leishmania infantum infection. Comparative Immunology, Microbiology and Infectious Diseases, 2022, 90-91, 101908.	0.7	1
494	In vitro and in vivo study on antiprotozoal activity of calcium oxide (CaO) and magnesium oxide (MgO) nanoparticles on promastigote and amastigote forms of Leishmania major. Acta Tropica, 2023, 238, 106788.	0.9	2
495	Influence of anthropic changes and environmental characteristics on the occurrence of Tegumentary Leishmaniasis in Montes Claros, Minas Gerais, Brazil, between 2012 and 2019. Acta Tropica, 2023, 238, 106787.	0.9	0
496	Antileishmania and immunomodulatory potential of cashew nut shell liquid and cardanol. Toxicology in Vitro, 2023, 87, 105524.	1.1	2
497	Man's best friend and our shared infectious diseases. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	0.6	0
498	Case Report: Simple Nodular Cutaneous Leishmaniasis Caused by Autochthonous Leishmania (Mundinia) orientalis in an 18-Month-Old Girl: The First Pediatric Case in Thailand and Literature Review. American Journal of Tropical Medicine and Hygiene, 2023, 108, 44-50.	0.6	3
499	Comparative Genomic Analyses of New and Old World Viscerotropic Leishmanine Parasites: Further Insights into the Origins of Visceral Leishmaniasis Agents. Microorganisms, 2023, 11, 25.	1.6	5
500	Leishmania spp. in indigenous populations: A mini-review. Frontiers in Public Health, 0, 10, .	1.3	2
501	A systematic review and global analysis of the seasonal activity of Phlebotomus (Paraphlebotomus) sergenti, the primary vectors of L. tropica. PLoS Neglected Tropical Diseases, 2022, 16, e0010886.	1.3	3
502	ls Psathyromyia shannoni (Diptera: Psychodidae: Phlebotominae) a species complex? Retrospective study of genetic diversity of COI gene, pathogens and geographic distribution. Acta Tropica, 2023, 238, 106807.	0.9	5
503	Seroprevalence of canine leishmaniosis in asymptomatic dogs in Kosovo. Parasitology Research, 2023, 122, 607-614.	0.6	3
504	Photo timeline of localized cutaneous leishmaniasis, Colombia. , 2023, 2, 63-63.		0
506	Natural products in the treatment of Leishmaniasis. , 2023, , 417-428.		0
507	Deciphering Diets and Lifestyles of Prehistoric Humans through Paleoparasitology: A Review. Genes, 2023, 14, 303.	1.0	1
508	Leishmaniasis: Tissue Tropism in Relation to the Species Diversity. , 2023, , 133-153.		3
509	Bioecological Study on the Sand Flies (Diptera: Psychodidae, Phlebotominae) in Sari County, North of Iran. Iranian Journal of Arthropod-borne Diseases, 0, , .	0.8	0
510	Computer-aided drug design approaches applied toÂscreen natural product's structural analogs targeting arginase in Leishmania spp. F1000Research, 0, 12, 93.	0.8	0

ARTICLE IF CITATIONS Phenotypical Differences between Leishmania (Leishmania) amazonensis PH8 and LV79 Strains May 511 1.2 2 Impact Survival in Mammal Host and in Phlebotomine Sand Flies. Pathogens, 2023, 12, 173. Malaria and leishmaniasis: Updates on co-infection. Frontiers in Immunology, 0, 14, . 2.2 Data-driven predictions of potential Leishmania vectors in the Americas. PLoS Neglected Tropical 513 1.3 1 Diseases, 2023, 17, e0010749. The role of sand flies as vectors of viruses other than phleboviruses. Journal of General Virology, 514 1.3 2023, 104, . Genetic diversity and haplotype analysis of Leishmania tropica identified in sand fly vectors of the 515 genera Phlebotomus and Sergentomyia using next-generation sequencing technology. Parasitology 0.6 0 Research, O, , . Alpha-galactosylceramide as adjuvant induces protective cell-mediated immunity against Leishmania mexicana infection in vaccinated BALB/c mice. Cellular Immunology, 2023, 386, 104692. 1.4 Molecular detection of Wolbachia and Bartonella as part of the microbiome of phlebotomine sand 517 0.6 2 flies from Chiapas, Mexico. Parasitology Research, 2023, 122, 1293-1301. Immunological profile of two canine breeds in an endemic region of Leishmania infantum. Veterinary 518 0.3 Parasitology: Regional Studies and Reports, 2023, 40, 100861. A short-term method to evaluate anti-leishmania drugs by inhibition of stage differentiation in 519 0.5 0 Leishmania mexicana using flow cytometry. Experimental Parasitology, 2023, 249, 108519. Diversity and geographical distribution of Leishmania species and the emergence of Leishmania (Leishmania) infantum and L. (Viannia) panamensis in Central-Western Venezuela. Acta Tropica, 2023, 242, 106901. Giftige Arthropoden und Ektoparasiten., 2022, , 277-401. 521 0 Leishmania tarentolae: a vaccine platform to target dendritic cells and a surrogate pathogen for next generation vaccine research in leishmaniases and viral infections. Parasites and Vectors, 2023, 16, . Epoxy-α-lapachone (2,2-Dimethyl-3,4-dihydro-spiro[2H-naphtho[2,3-b]pyran-10,2â€2-oxirane]-5(10H)-one): a 523 promising molecule to control infections caused by protozoan parasites. Brazilian Journal of 0.3 2 Infectious Diseases, 2023, 27, 102743. The possible region of the Late Miocene split of the sandfly subgenus Transphlebotomus Artemiev and the early late Neogene to late Quaternary dispersal of the ancestor of Phlebotomus mascittii Grassi. Palaeobiodiversity and Palaeoenvironments, O, , . 524 Computational multiâ€target approach to target essential enzymes of <i>Leishmania donovani</i>) using comparative molecular dynamic simulations and MMPBSA analysis. Phytochemical Analysis, 2023, 34, 525 1.2 10 842-854. Interleukin 6 and interferon gamma haplotypes are related to cytokine serum levels in dogs in an endemic Leishmania infantum region. Infectious Diseases of Poverty, 2023, 12, . Recent Advances in the Development of Adenovirus-Vectored Vaccines for Parasitic Infections. 527 1.7 4 Pharmaceuticals, 2023, 16, 334. Advances in Leishmania Research: From Basic Parasite Biology to Disease Control. Microorganisms, 528 1.6 2023, 11, 696.

#	Article	IF	CITATIONS
529	A Review of Historical Phlebotominae Taxonomy (Diptera: Psychodidae). Neotropical Entomology, 2023, 52, 539-559.	0.5	11
530	Genomic analysis of two phlebotomine sand fly vectors of Leishmania from the New and Old World. PLoS Neglected Tropical Diseases, 2023, 17, e0010862.	1.3	4
531	Genetic haplotypes associated with immune response to Leishmania infantum infection in dogs. Veterinary Research Communications, 0, , .	0.6	0
536	Faunal richness and checklist of sandflies (Diptera: Pyschodidae) in India. Asian Pacific Journal of Tropical Medicine, 2023, 16, 193.	0.4	0
541	Chitinase from Basal Trypanosomatids and Its Relation to Marine Environment: New Insights on <i>Leishmania</i> Genus Evolutionary Theories. Biochemistry, 0, , .	0.8	0
546	Visceral Leishmaniasis: An Overview and Integrated Analysis of the Current Status, Geographical Distribution and Its Transmission. , 0, , .		0
554	Parasites and One Health. , 2023, , 73-89.		0
555	Is leishmaniasis the new emerging zoonosis in the world?. Veterinary Research Communications, 0, , .	0.6	1
564	Editorial: Understanding how the physiology of insect vectors influences vector-borne disease transmission. Frontiers in Physiology, 0, 14, .	1.3	0
595	The gut microbiota of insects: a potential source of bacteria and metabolites. International Journal of Tropical Insect Science, 2024, 44, 13-30.	0.4	0
599	Leishmania. , 2024, , 3061-3068.		0
599 603	Leishmania. , 2024, , 3061-3068. Essentials in Leishmaniasis Elimination. , 2023, , 43-62.		0