ERICA: prevalence of dyslipidemia in Brazilian adolesce

Revista De Saude Publica 50, 10s DOI: 10.1590/s01518-8787.2016050006723

Citation Report

#	Article	IF	CITATIONS
1	Effect of Euterpe oleracea Mart. (AçaÃ) Oil on Dyslipidemia Caused by Cocos nucifera L. Saturated Fat in Wistar Rats. Journal of Medicinal Food, 2017, 20, 830-837.	0.8	10
2	Phytosterol-enriched milk lowers LDL-cholesterol levels in Brazilian children and adolescents: Double-blind, cross-over trial. Nutrition, Metabolism and Cardiovascular Diseases, 2017, 27, 971-977.	1.1	32
3	Polymorphisms in PPARG and APOE: relationships with lipid profile of adolescents with cardiovascular risk factors. Nutrire, 2017, 42, .	0.3	2
4	Prevalence of high cholesterol levels suggestive of familial hypercholesterolemia in Brazilian adolescents: Data from the study of cardiovascular risk in adolescents. Journal of Clinical Lipidology, 2018, 12, 403-408.	0.6	6
5	Dyslipidemia in Adolescents Seen in a University Hospital in the city of Rio de Janeiro/Brazil: Prevalence and Association. Arquivos Brasileiros De Cardiologia, 2018, 112, 147-151.	0.3	7
7	Dietary patterns are associated with blood lipids at 18-year-olds: a cross-sectional analysis nested in the 1993 Pelotas (Brazil) birth cohort. Nutrition Journal, 2018, 17, 77.	1.5	11
8	Relationship of lipid regulatory gene polymorphisms and dyslipidemia in a pediatric population: the CASPIAN III study. Hormones, 2018, 17, 97-105.	0.9	5
9	Health promotion initiatives at school related to overweight, insulin resistance, hypertension and dyslipidemia in adolescents: a cross-sectional study in Recife, Brazil. BMC Public Health, 2018, 18, 223.	1.2	18
10	Proposition of decision limits for serum lipids in Brazilian children aged one to 13 years. Jornal De Pediatria (Versão Em Português), 2019, 95, 173-179.	0.2	0
11	Consumption of ultraprocessed foods, nutritional status, and dyslipidemia in schoolchildren: a cohort study. European Journal of Clinical Nutrition, 2019, 73, 1194-1199.	1.3	7
12	Proposition of decision limits for serum lipids in Brazilian children aged one to 13 years. Jornal De Pediatria, 2019, 95, 173-179.	0.9	4
13	Metabolic health in Brazil: trends and challenges. Lancet Diabetes and Endocrinology,the, 2020, 8, 937-938.	5.5	10
14	Study of Cardiovascular Risk Factors in Adolescents: Association between Intake of Vitamins A and E and Lipid Profile. Current Nutrition and Food Science, 2021, 17, 321-327.	0.3	1
15	The Cardiovascular Health Integrated Lifestyle Diet (CHILD) Lowers LDL-Cholesterol Levels in Brazilian Dyslipidemic Pediatric Patients. Journal of the American College of Nutrition, 2022, 41, 352-359.	1.1	2
16	Ãndices de Castelli I e II como preditores robustos na estimativa do risco cardiovascular de adolescentes com excesso de peso. Research, Society and Development, 2021, 10, e34610414330.	0.0	1
17	Dietary inflammatory index scores are associated with atherogenic risk in Brazilian schoolchildren. Public Health Nutrition, 2021, 24, 6191-6200.	1.1	7
18	Mortalidade por Doença Isquêmica do Coração no Brasil – Disparidades no Nordeste. Arquivos Brasileiros De Cardiologia, 2021, 117, 61-62.	0.3	1
19	Percentage of energy contribution according to the degree of industrial food processing and associated factors in adolescents (EVA-JF study, Brazil). Public Health Nutrition, 2021, 24, 4220-4229.	1.1	7

#	Article	IF	Citations
20	Effect of Camellia sinensis teas on left ventricular hypertrophy and insulin resistance in dyslipidemic mice. Brazilian Journal of Medical and Biological Research, 2020, 53, e9303.	0.7	7
21	Association Between Abdominal Waist Circumference and Blood Pressure In Brazilian Adolescents With Normal Body Mass Index. Global Heart, 2020, 15, 27.	0.9	10
22	Updated Cardiovascular Prevention Guideline of the Brazilian Society of Cardiology - 2019. Arquivos Brasileiros De Cardiologia, 2019, 113, 787-891.	0.3	102
23	THE BAEPENDI "LITTLE HEART―STUDY: Strategies in Child Education Related to Cardiometabolic Risk Factors for Reducing Morbidity and Mortality in a Developing Country. Endocrinology&Metabolism International Journal, 2017, 5, .	0.1	0
24	The Olympic Experimental Gymnasium Program and its Association with the Prevalence of Cardiovascular Risk Factors in Adolescents: A Cross-Sectional Study. Arquivos Brasileiros De Cardiologia, 2019, 112, 775-781.	0.3	3
25	Evaluation of Lipid Profiles of Children and Youth from Basic Health Units in Campinas, SP, Brazil: A Cross‑Sectional Laboratory Study. Arquivos Brasileiros De Cardiologia, 2019, 114, 47-56.	0.3	7
26	Homocysteine levels and cardiovascular risk factors in children and adolescents: systematic review and meta-analysis. Nutrition Reviews, 2021, 79, 1067-1078.	2.6	6
27	Prevalence of dyslipidemia in children from 2 to 9 years old. Revista Brasileira De Enfermagem, 2020, 73, e20190759.	0.2	1
28	Dyslipidemia prevalence in adolescents in public schools. Revista Brasileira De Enfermagem, 2020, 73, e20180523.	0.2	4
29	Prevalence of Combined Lipid Abnormalities in Brazilian Adolescents and Its Association with Nutritional Status: Data from the Erica Study. Clobal Heart, 2020, 15, 23.	0.9	3
31	Dislipidemia na infância e adolescência: um olhar para educação em saúde. Research, Society and Development, 2020, 9, e3759119865.	0.0	0
33	Malay apple (Syzygium malaccense) promotes changes in lipid metabolism and a hepatoprotective effect in rats fed a high-fat diet. Food Research International, 2022, 155, 110994.	2.9	7
34	Prevalence of Dyslipidemia in Military Students and Military Personnel Attending Primary Care in Ecuador and Correlation with Anthropometric Values. Revista Med, 2022, 29, 11-18.	0.1	0
35	HDL-Cholesterol in Children and Adolescents with Congenital Heart Disease. International Journal of Cardiovascular Sciences, 2022, , .	0.0	0
36	Scientific evidence of the association between oral intake of OMEGA-3 and OMEGA-6 fatty acids and the metabolic syndrome in adolescents: A systematic review. Nutrition, Metabolism and Cardiovascular Diseases, 2022, 32, 2689-2704.	1.1	3
37	Total cholesterol and low-density lipoprotein alterations in children and adolescents from Brazil: a prevalence meta-analysis. Archives of Endocrinology and Metabolism, 2022, , .	0.3	2
38	Prevalence of Dyslipidemia among School-Age Children and Adolescents in Addis Ababa, Ethiopia. Journal of Laboratory Physicians, 2022, 14, 377-383.	0.4	1
39	Doenças crônicas e problemas de saúde de adolescentes: desigualdades segundo sexo. Revista Brasileira De Epidemiologia, 0, 26, .	0.3	0

CITATION REPORT

		CITATION REPORT		
#	Article		IF	CITATIONS
40	Individual and Socioeconomic Contextual Factors Associated with Obesity in Brazilian Ad VigiNUTRI Brasil. International Journal of Environmental Research and Public Health, 202	dolescents: 3, 20, 430.	1.2	1
41	New indices in predicting cardiometabolic risk and its relation to endothelial dysfunction adolescents: The HELENA study. Nutrition, Metabolism and Cardiovascular Diseases, 202	n in 23, 33, 1037-1048.	1.1	3
42	Comportamento Sedentário, Hábitos Alimentares e Risco Cardiometabólico em Crian Adolescentes Fisicamente Ativos. Arquivos Brasileiros De Cardiologia, 2023, 120, .	ças e	0.3	1
43	Ultra-Processed Food Consumption Is Related to Higher Trans Fatty Acids, Sugar Intake, Micronutrient-Impaired Status in Schoolchildren of Bahia, Brazil. Nutrients, 2023, 15, 38	and 1.	1.7	5