CERAPP: Collaborative Estrogen Receptor Activity Pred

Environmental Health Perspectives 124, 1023-1033 DOI: 10.1289/ehp.1510267

Citation Report

#	Article	IF	CITATIONS
1	CERAPP: Collaborative Estrogen Receptor Activity Prediction Project. Environmental Health Perspectives, 2016, 124, 1023-1033.	6.0	264
2	The Next Generation of Risk Assessment Multi-Year Study—Highlights of Findings, Applications to Risk Assessment, and Future Directions. Environmental Health Perspectives, 2016, 124, 1671-1682.	6.0	74
3	A Rat α-Fetoprotein Binding Activity Prediction Model to Facilitate Assessment of the Endocrine Disruption Potential of Environmental Chemicals. International Journal of Environmental Research and Public Health, 2016, 13, 372.	2.6	15
4	Phytoestrogens and Mycoestrogens Induce Signature Structure Dynamics Changes on Estrogen Receptor α. International Journal of Environmental Research and Public Health, 2016, 13, 869.	2.6	11
5	Consensus Modeling for Prediction of Estrogenic Activity of Ingredients Commonly Used in Sunscreen Products. International Journal of Environmental Research and Public Health, 2016, 13, 958.	2.6	17
6	In Silico Prediction of Cytochrome P450-Drug Interaction: QSARs for CYP3A4 and CYP2C9. International Journal of Molecular Sciences, 2016, 17, 914.	4.1	50
7	In Silico Mining for Antimalarial Structure-Activity Knowledge and Discovery of Novel Antimalarial Curcuminoids. Molecules, 2016, 21, 853.	3.8	16
8	ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology. Chemical Research in Toxicology, 2016, 29, 1225-1251.	3.3	456
9	Mind the Gap! A Journey towards Computational Toxicology. Molecular Informatics, 2016, 35, 294-308.	2.5	25
10	Evaluation of food-relevant chemicals in the ToxCast high-throughput screening program. Food and Chemical Toxicology, 2016, 92, 188-196.	3.6	53
11	ToxCast EPA <i>in Vitro</i> to <i>in Vivo</i> Challenge: Insight into the Rank-I Model. Chemical Research in Toxicology, 2016, 29, 768-775.	3.3	25
12	Coupled molecular design diagrams to guide safer chemical design with reduced likelihood of perturbing the NRF2-ARE antioxidant pathway and inducing cytotoxicity. Green Chemistry, 2016, 18, 6387-6394.	9.0	7
13	Prediction of Estrogenic Bioactivity of Environmental Chemical Metabolites. Chemical Research in Toxicology, 2016, 29, 1410-1427.	3.3	26
14	An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modelling. SAR and QSAR in Environmental Research, 2016, 27, 911-937.	2.2	89
15	Trust, but Verify II: A Practical Guide to Chemogenomics Data Curation. Journal of Chemical Information and Modeling, 2016, 56, 1243-1252.	5.4	228
16	In Silico Study of In Vitro GPCR Assays by QSAR Modeling. Methods in Molecular Biology, 2016, 1425, 361-381.	0.9	14
17	A renaissance of neural networks in drug discovery. Expert Opinion on Drug Discovery, 2016, 11, 785-795.	5.0	182
18	Integrated Framework for Identifying Toxic Transformation Products in Complex Environmental Mixtures Environmental Science and Technology Letters, 2017, 4, 32-43	8.7	47

#	Article	IF	CITATIONS
19	A comprehensive review of regulatory test methods for endocrine adverse health effects. Critical Reviews in Toxicology, 2017, 47, 440-488.	3.9	29
20	Integration of in silico methods and computational systems biology to explore endocrine-disrupting chemical binding with nuclear hormone receptors. Chemosphere, 2017, 178, 99-109.	8.2	29
21	In vitro cardiotoxicity assessment of environmental chemicals using an organotypic human induced pluripotent stem cell-derived model. Toxicology and Applied Pharmacology, 2017, 322, 60-74.	2.8	62
22	Prediction of Hydrolysis Products of Organic Chemicals under Environmental pH Conditions. Environmental Science & Technology, 2017, 51, 5008-5016.	10.0	48
23	Assessment of several machine learning methods towards reliable prediction of hormone receptor binding affinity. Chemical Data Collections, 2017, 9-10, 114-124.	2.3	6
24	Computational analysis of the ToxCast estrogen receptor agonist assays to predict vitellogenin induction by chemicals in male fish. Environmental Toxicology and Pharmacology, 2017, 53, 177-183.	4.0	6
25	Chemical Risk Assessment: Traditional vs Public Health Perspectives. American Journal of Public Health, 2017, 107, 1032-1039.	2.7	38
26	In Silico Prediction of Physicochemical Properties of Environmental Chemicals Using Molecular Fingerprints and Machine Learning. Journal of Chemical Information and Modeling, 2017, 57, 36-49.	5.4	106
27	High-throughput screening of chemicals as functional substitutes using structure-based classification models. Green Chemistry, 2017, 19, 1063-1074.	9.0	66
28	Identifying known unknowns using the US EPA's CompTox Chemistry Dashboard. Analytical and Bioanalytical Chemistry, 2017, 409, 1729-1735.	3.7	89
29	Predictive Structure-Based Toxicology Approaches To Assess the Androgenic Potential of Chemicals. Journal of Chemical Information and Modeling, 2017, 57, 2874-2884.	5.4	24
30	ChemBCPP: A freely available web server for calculating commonly used physicochemical properties. Chemometrics and Intelligent Laboratory Systems, 2017, 171, 65-73.	3.5	8
31	A systematic evaluation of analogs and automated read-across prediction of estrogenicity: A case study using hindered phenols. Computational Toxicology, 2017, 4, 22-30.	3.3	15
32	Ligand efficiency metrics in drug discovery: the pros and cons from a practical perspective. Expert Opinion on Drug Discovery, 2017, 12, 1087-1104.	5.0	75
33	QSAR models for thyroperoxidase inhibition and screening of U.S. and EU chemical inventories. Computational Toxicology, 2017, 4, 11-21.	3.3	16
34	Navigating through the minefield of read-across tools: A review of in silico tools for grouping. Computational Toxicology, 2017, 3, 1-18.	3.3	80
35	Predicting Organ Toxicity Using <i>in Vitro</i> Bioactivity Data and Chemical Structure. Chemical Research in Toxicology, 2017, 30, 2046-2059.	3.3	49
36	Rigorous 3-dimensional spectral data activity relationship approach modeling strategy for ToxCast estrogen receptor data classification, validation, and feature extraction. Environmental Toxicology and Chemistry, 2017, 36, 823-830.	4.3	4

#	Article	IF	CITATIONS
37	Development of Decision Forest Models for Prediction of Drug-Induced Liver Injury in Humans Using A Large Set of FDA-approved Drugs. Scientific Reports, 2017, 7, 17311.	3.3	84
38	Relationship Between Adverse Outcome Pathways and Chemistry-Based <i>In Silico</i> Models to Predict Toxicity. Applied in Vitro Toxicology, 2017, 3, 286-297.	1.1	26
39	Grouping of CoMPARA data with respect to compounds from the carcinogenic potency database. SAR and QSAR in Environmental Research, 2017, 28, 801-813.	2.2	4
40	Evaluation of estrogen receptor alpha activation by glyphosate-based herbicide constituents. Food and Chemical Toxicology, 2017, 108, 30-42.	3.6	111
41	Critical Assessment of Small Molecule Identification 2016: automated methods. Journal of Cheminformatics, 2017, 9, 22.	6.1	122
42	Public (Q)SAR Services, Integrated Modeling Environments, and Model Repositories on the Web: State of the Art and Perspectives for Future Development. Molecular Informatics, 2017, 36, 1600082.	2.5	32
43	High-Performance Prediction of Human Estrogen Receptor Agonists Based on Chemical Structures. Molecules, 2017, 22, 675.	3.8	22
44	<i>In silico</i> identification of protein targets for chemical neurotoxins using ToxCast <i>in vitro</i> data and read-across within the QSAR toolbox. Toxicology Research, 2018, 7, 423-431.	2.1	10
45	Predictive Models in Ecotoxicology: Bridging the Gap Between Scientific Progress and Regulatory Applicability. Integrated Environmental Assessment and Management, 2018, 14, 601-603.	2.9	2
46	Mapping of Activity through Dichotomic Scores (MADS): A new chemoinformatic approach to detect activityâ€rich structural regions. Journal of Chemometrics, 2018, 32, e2994.	1.3	1
48	A workflow for identifying metabolically active chemicals to complement in vitro toxicity screening. Computational Toxicology, 2018, 6, 71-83.	3.3	4
49	Integrating tools for non-targeted analysis research and chemical safety evaluations at the US EPA. Journal of Exposure Science and Environmental Epidemiology, 2018, 28, 411-426.	3.9	148
50	Assessment of the Endocrine-Disrupting Effects of Trichloroethylene and Its Metabolites Using in Vitro and in Silico Approaches. Environmental Science & Technology, 2018, 52, 1542-1550.	10.0	27
51	Dark matter in host-microbiome metabolomics: Tackling the unknowns–A review. Analytica Chimica Acta, 2018, 1037, 13-27.	5.4	108
52	OPERA models for predicting physicochemical properties and environmental fate endpoints. Journal of Cheminformatics, 2018, 10, 10.	6.1	326
53	Quantitative Structure–Activity Relationship Models for Predicting Risk of Drug-Induced Liver Injury in Humans. Methods in Pharmacology and Toxicology, 2018, , 77-100.	0.2	16
54	High-throughput in-silico prediction of ionization equilibria for pharmacokinetic modeling. Science of the Total Environment, 2018, 615, 150-160.	8.0	19
55	Molecular dynamics simulations and applications in computational toxicology and nanotoxicology. Food and Chemical Toxicology, 2018, 112, 495-506.	3.6	59

#	Article	IF	CITATIONS
56	Strategies of Virtual Screening in Medicinal Chemistry. International Journal of Quantitative Structure-Property Relationships, 2018, 3, 134-160.	0.5	12
57	Guidance for the identification of endocrine disruptors in the context of Regulations (EU) NoÂ528/2012 and (EC) NoÂ1107/2009. EFSA Journal, 2018, 16, e05311.	1.8	204
58	Computational prediction models for assessing endocrine disrupting potential of chemicals. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2018, 36, 192-218.	2.9	20
59	Machine learning models for predicting endocrine disruption potential of environmental chemicals. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2018, 36, 237-251.	2.9	12
60	A new semi-automated workflow for chemical data retrieval and quality checking for modeling applications. Journal of Cheminformatics, 2018, 10, 60.	6.1	56
61	New approach methods for testing chemicals for endocrine disruption potential. Current Opinion in Toxicology, 2018, 9, 40-47.	5.0	14
62	Beyond the RfD: Broad Application of a Probabilistic Approach to Improve Chemical Dose–Response Assessments for Noncancer Effects. Environmental Health Perspectives, 2018, 126, 067009.	6.0	48
63	Exploring non-linear distance metrics in the structure–activity space: QSAR models for human estrogen receptor. Journal of Cheminformatics, 2018, 10, 47.	6.1	21
64	Uncertainty quantification in ToxCast high throughput screening. PLoS ONE, 2018, 13, e0196963.	2.5	37
65	Conditional Toxicity Value (CTV) Predictor: An <i>In Silico</i> Approach for Generating Quantitative Risk Estimates for Chemicals. Environmental Health Perspectives, 2018, 126, 057008.	6.0	52
66	Impact of Molecular Descriptors on Computational Models. Methods in Molecular Biology, 2018, 1825, 171-209.	0.9	34
67	"MS-Ready―structures for non-targeted high-resolution mass spectrometry screening studies. Journal of Cheminformatics, 2018, 10, 45.	6.1	59
68	Rapid experimental measurements of physicochemical properties to inform models and testing. Science of the Total Environment, 2018, 636, 901-909.	8.0	17
69	Multi-Descriptor Read Across (MuDRA): A Simple and Transparent Approach for Developing Accurate Quantitative Structure–Activity Relationship Models. Journal of Chemical Information and Modeling, 2018, 58, 1214-1223.	5.4	43
70	Detecting the bioaccumulation patterns of chemicals through data-driven approaches. Chemosphere, 2018, 208, 273-284.	8.2	14
71	Molecular Docking for Predictive Toxicology. Methods in Molecular Biology, 2018, 1800, 181-197.	0.9	11
72	QSAR Modeling of ToxCast Assays Relevant to the Molecular Initiating Events of AOPs Leading to Hepatic Steatosis. Journal of Chemical Information and Modeling, 2018, 58, 1501-1517.	5.4	61
73	Novel application of normalized pointwise mutual information (NPMI) to mine biomedical literature for gene sets associated with disease: Use case in breast carcinogenesis. Computational Toxicology, 2018, 7, 46-57.	3.3	9

#	Article	IF	CITATIONS
74	Molecular Descriptors for Structure–Activity Applications: A Hands-On Approach. Methods in Molecular Biology, 2018, 1800, 3-53.	0.9	28
75	A combination of ternary classification models and reporter gene assays for the comprehensive thyroid hormone disruption profiles of 209 polychlorinated biphenyls. Chemosphere, 2018, 210, 312-319.	8.2	19
76	Comparing Multiple Machine Learning Algorithms and Metrics for Estrogen Receptor Binding Prediction. Molecular Pharmaceutics, 2018, 15, 4361-4370.	4.6	120
77	Predictive models for acute oral systemic toxicity: A workshop to bridge the gap from research to regulation. Computational Toxicology, 2018, 8, 21-24.	3.3	62
78	Cheminformatics Approaches to Study Drug Polypharmacology. Methods in Pharmacology and Toxicology, 2018, , 3-25.	0.2	2
79	Ternary classification models for predicting hormonal activities of chemicals via nuclear receptors. Chemical Physics Letters, 2018, 706, 360-366.	2.6	1
80	Bisphenol S modulates concentrations of bisphenol A and oestradiol in female and male mice. Xenobiotica, 2019, 49, 540-548.	1.1	9
81	Determining the endocrine disruption potential of industrial chemicals using an integrative approach: Public databases, in vitro exposure, and modeling receptor interactions. Environment International, 2019, 131, 104969.	10.0	22
82	An Approach for Using In Vitro and In Silico Data to Identify Pharmaceuticals with Potential (Antiâ€)Estrogenic Activity in Aquatic Vertebrates at Environmentally Relevant Concentrations. Environmental Toxicology and Chemistry, 2019, 38, 2154-2168.	4.3	3
83	Novel Consensus Architecture To Improve Performance of Large-Scale Multitask Deep Learning QSAR Models. Journal of Chemical Information and Modeling, 2019, 59, 4613-4624.	5.4	47
84	In Silico Predictions of Endocrine Disruptors Properties. Endocrinology, 2019, 160, 2709-2716.	2.8	34
85	Integrating in silico models and read-across methods for predicting toxicity of chemicals: A step-wise strategy. Environment International, 2019, 131, 105060.	10.0	68
86	Ensemble QSAR Modeling to Predict Multispecies Fish Toxicity Lethal Concentrations and Points of Departure. Environmental Science & Technology, 2019, 53, 12793-12802.	10.0	30
87	Toxicity profiling and prioritization of plant-derived antimalarial agents. SAR and QSAR in Environmental Research, 2019, 30, 801-824.	2.2	3
88	Open-source QSAR models for pKa prediction using multiple machine learning approaches. Journal of Cheminformatics, 2019, 11, 60.	6.1	90
89	Homology models of mouse and rat estrogen receptor-α ligand-binding domain created by in silico mutagenesis of a human template: Molecular docking with 17β-estradiol, diethylstilbestrol, and paraben analogs. Computational Toxicology, 2019, 10, 1-16.	3.3	18
90	Machine Learning Consensus To Predict the Binding to the Androgen Receptor within the CoMPARA Project. Journal of Chemical Information and Modeling, 2019, 59, 1839-1848.	5.4	36
91	Molecular Modeling Method Applications: Probing the Mechanism of Endocrine Disruptor Action. Challenges and Advances in Computational Chemistry and Physics, 2019, , 315-335.	0.6	2

	Сітат	CITATION REPORT	
#	Article	IF	Citations
92	Predicting estrogen receptor activation by a group of substituted phenols: An integrated approach to testing and assessment case study. Regulatory Toxicology and Pharmacology, 2019, 106, 278-291.	2.7	17
93	Predicting estrogen receptor binding of chemicals using a suite of in silico methods – Complementary approaches of (Q)SAR, molecular docking and molecular dynamics. Toxicology and Applied Pharmacology, 2019, 378, 114630.	2.8	37
94	Combining in Silico Tools with Multicriteria Analysis for Alternatives Assessment of Hazardous Chemicals: A Case Study of Decabromodiphenyl Ether Alternatives. Environmental Science & Technology, 2019, 53, 6341-6351.	10.0	17
95	Estimating uncertainty in the context of new approach methodologies for potential use in chemical safety evaluation. Current Opinion in Toxicology, 2019, 15, 40-47.	5.0	14
96	Development of a suspect screening prioritization tool for organic compounds in water and biota. Chemosphere, 2019, 222, 904-912.	8.2	16
97	The Next Generation Blueprint of Computational Toxicology at the U.S. Environmental Protection Agency. Toxicological Sciences, 2019, 169, 317-332.	3.1	225
98	<i>In Silico</i> Prediction of Endocrine Disrupting Chemicals Using Single-Label and Multilabel Models. Journal of Chemical Information and Modeling, 2019, 59, 973-982.	5.4	22
99	Predictive models in ecotoxicology: Bridging the gap between scientific progress and regulatory applicability—Remarks and research needs. Integrated Environmental Assessment and Management, 2019, 15, 345-351.	2.9	5
100	Development, validation and integration of in silico models to identify androgen active chemicals. Chemosphere, 2019, 220, 204-215.	8.2	23
101	Towards accurate high-throughput ligand affinity prediction by exploiting structural ensembles, docking metrics and ligand similarity. Bioinformatics, 2020, 36, 160-168.	4.1	19
102	A deep neural network combined with molecular fingerprints (DNN-MF) to develop predictive models for hydroxyl radical rate constants of water contaminants. Journal of Hazardous Materials, 2020, 383, 121141.	12.4	70
103	Twenty years of transcriptomics, 17alpha-ethinylestradiol, and fish. General and Comparative Endocrinology, 2020, 286, 113325.	1.8	30
104	Binding interactions of halo-benzoic acids, halo-benzenesulfonic acids and halo-phenylboronic acids with human transthyretin. Chemosphere, 2020, 242, 125135.	8.2	8
105	OECD approaches and considerations for regulatory evaluation of endocrine disruptors. Molecular and Cellular Endocrinology, 2020, 504, 110675.	3.2	28
106	Toxicity testing in the 21st century: progress in the past decade and future perspectives. Archives of Toxicology, 2020, 94, 1-58.	4.2	209
107	The role of fit-for-purpose assays within tiered testing approaches: A case study evaluating prioritized estrogen-active compounds in an in vitro human uterotrophic assay. Toxicology and Applied Pharmacology, 2020, 387, 114774.	2.8	10
108	Chemometrics for QSAR Modeling. , 2020, , 599-634.		6
109	Comparison of Machine Learning Models for the Androgen Receptor. Environmental Science & Technology, 2020, 54, 13690-13700.	10.0	17

#	Article	IF	CITATIONS
110	Toward a Computational Ecotoxicity Assay. Journal of Chemical Information and Modeling, 2020, 60, 3792-3803.	5.4	5
111	Comparing Machine Learning Models for Aromatase (P450 19A1). Environmental Science & Technology, 2020, 54, 15546-15555.	10.0	5
112	Selecting a minimal set of androgen receptor assays for screening chemicals. Regulatory Toxicology and Pharmacology, 2020, 117, 104764.	2.7	15
113	Structures of Endocrine-Disrupting Chemicals Determine Binding to and Activation of the Estrogen Receptor α and Androgen Receptor. Environmental Science & Technology, 2020, 54, 11424-11433.	10.0	45
114	Machine Learning Models for Estrogen Receptor Bioactivity and Endocrine Disruption Prediction. Environmental Science & Technology, 2020, 54, 12202-12213.	10.0	28
115	Reaction Library to Predict Direct Photochemical Transformation Products of Environmental Organic Contaminants in Sunlit Aquatic Systems. Environmental Science & Technology, 2020, 54, 7271-7279.	10.0	16
116	In Silico Guidance for In Vitro Androgen and Glucocorticoid Receptor ToxCast Assays. Environmental Science & Technology, 2020, 54, 7461-7470.	10.0	6
117	Computer-Aided Ligand Discovery for Estrogen Receptor Alpha. International Journal of Molecular Sciences, 2020, 21, 4193.	4.1	33
118	Single-Cell Distribution Analysis of AR Levels by High-Throughput Microscopy in Cell Models: Application for Testing Endocrine-Disrupting Chemicals. SLAS Discovery, 2020, 25, 684-694.	2.7	4
119	The TTC Data Mart: An interactive browser for threshold of toxicological concern calculations. Computational Toxicology, 2020, 15, 100128.	3.3	3
120	An integrated chemical environment with tools for chemical safety testing. Toxicology in Vitro, 2020, 67, 104916.	2.4	37
121	Review and analysis of the potential for glyphosate to interact with the estrogen, androgen and thyroid pathways. Pest Management Science, 2020, 76, 2886-2906.	3.4	9
122	Navigating the Minefield of Computational Toxicology and Informatics: Looking Back and Charting a New Horizon. Frontiers in Toxicology, 2020, 2, 2.	3.1	5
123	Tautomer Standardization in Chemical Databases: Deriving Business Rules from Quantum Chemistry. Journal of Chemical Information and Modeling, 2020, 60, 3781-3791.	5.4	5
124	Systematic Green Solvent Selection for the Hydroformylation of Long-Chain Alkenes. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	7
125	CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity. Environmental Health Perspectives, 2020, 128, 27002.	6.0	120
126	Consensus versus Individual QSARs in Classification: Comparison on a Large-Scale Case Study. Journal of Chemical Information and Modeling, 2020, 60, 1215-1223.	5.4	26
127	Value and limitation of structure-based profilers to characterize developmental and reproductive toxicity potential. Archives of Toxicology, 2020, 94, 939-954.	4.2	5

# 128	ARTICLE QSAR without borders. Chemical Society Reviews, 2020, 49, 3525-3564.	IF 38.1	CITATIONS
129	Discriminant models on mitochondrial toxicity improved by consensus modeling and resolving imbalance in training. Chemosphere, 2020, 253, 126768.	8.2	19
130	The Tox21 10K Compound Library: Collaborative Chemistry Advancing Toxicology. Chemical Research in Toxicology, 2021, 34, 189-216.	3.3	145
131	Predictive modeling of estrogen receptor agonism, antagonism, and binding activities using machine- and deep-learning approaches. Laboratory Investigation, 2021, 101, 490-502.	3.7	29
132	Binary and multi-class classification for androgen receptor agonists, antagonists and binders. Chemosphere, 2021, 262, 128313.	8.2	22
133	Organophosphate ester flame retardants have antiandrogenic potential and affect other endocrine related endpoints inÂvitro and in silico. Chemosphere, 2021, 263, 127703.	8.2	36
134	Development of classification models for predicting inhibition of mitochondrial fusion and fission using machine learning methods. Chemosphere, 2021, 273, 128567.	8.2	12
135	Visualization and Analysis of the REACHâ€chemical Space with Generative Topographic Mapping. Molecular Informatics, 2021, 40, 2000232.	2.5	2
136	High-throughput toxicogenomic screening of chemicals in the environment using metabolically competent hepatic cell cultures. Npj Systems Biology and Applications, 2021, 7, 7.	3.0	28
137	FutureTox IV Workshop Summary: <i>Predictive Toxicology for Healthy Children</i> . Toxicological Sciences, 2021, 180, 198-211.	3.1	15
138	Molecular fingerprint-based machine learning assisted QSAR model development for prediction of ionic liquid properties. Journal of Molecular Liquids, 2021, 326, 115212.	4.9	41
139	Epigenetic Target Fishing with Accurate Machine Learning Models. Journal of Medicinal Chemistry, 2021, 64, 8208-8220.	6.4	22
140	Integrating endocrine-related health effects into comparative human toxicity characterization. Science of the Total Environment, 2021, 762, 143874.	8.0	10
141	Predicting Potential Endocrine Disrupting Chemicals Binding to Estrogen Receptor α (ERα) Using a Pipeline Combining Structure-Based and Ligand-Based in Silico Methods. International Journal of Molecular Sciences, 2021, 22, 2846.	4.1	6
142	CATMoS: Collaborative Acute Toxicity Modeling Suite. Environmental Health Perspectives, 2021, 129, 47013.	6.0	63
143	Deep Learning Model for Identifying Critical Structural Motifs in Potential Endocrine Disruptors. Journal of Chemical Information and Modeling, 2021, 61, 2187-2197.	5.4	17
144	Developing QSAR Models with Defined Applicability Domains on PPARÎ ³ Binding Affinity Using Large Data Sets and Machine Learning Algorithms. Environmental Science & Technology, 2021, 55, 6857-6866.	10.0	61
145	Prioritizing Direct Photolysis Products Predicted by the Chemical Transformation Simulator: Relative Reasoning and Absolute Ranking. Environmental Science & amp; Technology, 2021, 55, 5950-5958.	10.0	5

#	Article	IF	CITATIONS
146	Rapid Screening of Human Transthyretin Disruptors through a Tiered <i>in Silico</i> Approach. ACS Sustainable Chemistry and Engineering, 2021, 9, 5661-5672.	6.7	8
147	Identification of active and inactive agonists/antagonists of estrogen receptor based on Tox21 10K compound library: Binomial analysis and structure alert. Ecotoxicology and Environmental Safety, 2021, 214, 112114.	6.0	6
148	Curated Data In — Trustworthy <i>In Silico</i> Models Out: The Impact of Data Quality on the Reliability of Artificial Intelligence Models as Alternatives to Animal Testing. ATLA Alternatives To Laboratory Animals, 2021, 49, 73-82.	1.0	20
149	Combined NaÃ ⁻ ve Bayesian, Chemical Fingerprints and Molecular Docking Classifiers to Model and Predict Androgen Receptor Binding Data for Environmentally- and Health-Sensitive Substances. International Journal of Molecular Sciences, 2021, 22, 6695.	4.1	4
150	Mining of Consumer Product Ingredient and Purchasing Data to Identify Potential Chemical Coexposures. Environmental Health Perspectives, 2021, 129, 67006.	6.0	23
151	Prediction of second-order rate constants between carbonate radical and organics by deep neural network combined with molecular fingerprints. Chinese Chemical Letters, 2022, 33, 438-441.	9.0	11
152	Revealing Adverse Outcome Pathways from Public High-Throughput Screening Data to Evaluate New Toxicants by a Knowledge-Based Deep Neural Network Approach. Environmental Science & Technology, 2021, 55, 10875-10887.	10.0	29
153	Endocrine disruptors of sex hormone activities. Molecular and Cellular Endocrinology, 2022, 539, 111415.	3.2	22
154	SepPCNET: Deeping Learning on a 3D Surface Electrostatic Potential Point Cloud for Enhanced Toxicity Classification and Its Application to Suspected Environmental Estrogens. Environmental Science & Technology, 2021, 55, 9958-9967.	10.0	22
155	Application of an <i>in Vitro</i> Assay to Identify Chemicals That Increase Estradiol and Progesterone Synthesis and Are Potential Breast Cancer Risk Factors. Environmental Health Perspectives, 2021, 129, 77003.	6.0	17
156	Elucidation of Agonist and Antagonist Dynamic Binding Patterns in ER-α by Integration of Molecular Docking, Molecular Dynamics Simulations and Quantum Mechanical Calculations. International Journal of Molecular Sciences, 2021, 22, 9371.	4.1	9
157	Cardiotoxicity Hazard and Risk Characterization of ToxCast Chemicals Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes from Multiple Donors. Chemical Research in Toxicology, 2021, 34, 2110-2124.	3.3	20
158	Machine Learning: New Ideas and Tools in Environmental Science and Engineering. Environmental Science & Technology, 2021, 55, 12741-12754.	10.0	140
159	Safety assessment of natural products in Malaysia: current practices, challenges, and new strategies. Reviews on Environmental Health, 2022, 37, 169-179.	2.4	5
160	Structure-Based Prediction of hERG-Related Cardiotoxicity: A Benchmark Study. Journal of Chemical Information and Modeling, 2021, 61, 4758-4770.	5.4	33
161	Sourcing data on chemical properties and hazard data from the US-EPA CompTox Chemicals Dashboard: A practical guide for human risk assessment. Environment International, 2021, 154, 106566.	10.0	33
162	A toxicogenomic data space for system-level understanding and prediction of EDC-induced toxicity. Environment International, 2021, 156, 106751.	10.0	8
163	Application of new approach methodologies: ICE tools to support chemical evaluations. Computational Toxicology, 2021, 20, 100184.	3.3	31

	Citation Rei	PORT	
Article		IF	CITATIONS
A novel risk score-based prioritization method for pollutants in reclaimed water. Science Environment, 2021, 795, 148833.	ce of the Total	8.0	8
In Silico Methods to Predict Relevant Toxicological Endpoints of Bioactive Substances. Materials, 2021, , 649-676.	Engineering	0.6	2
Endocrine disruption: the noise in available data adversely impacts the models $\hat{a} \in \mathbb{M}$ per QSAR in Environmental Research, 2021, 32, 111-131.	formance. SAR and	2.2	4
QSAR/QSPR Revisited. , 0, , 465-495.			6
Predictive QSAR Modeling: Methods and Applications in Drug Discovery and Chemical , 2016, , 1-48.	Risk Assessment.		4
NURA: A curated dataset of nuclear receptor modulators. Toxicology and Applied Phar 407, 115244.	macology, 2020,	2.8	17

166	Endocrine disruption: the noise in available data adversely impacts the models' performance. SAR and QSAR in Environmental Research, 2021, 32, 111-131.	2.2	4
167	QSAR/QSPR Revisited. , 0, , 465-495.		6
168	Predictive QSAR Modeling: Methods and Applications in Drug Discovery and Chemical Risk Assessment. , 2016, , 1-48.		4
169	NURA: A curated dataset of nuclear receptor modulators. Toxicology and Applied Pharmacology, 2020, 407, 115244.	2.8	17
170	Combining <i>In Silico</i> Tools with Multicriteria Analysis for Alternatives Assessment of Hazardous Chemicals: Accounting for the Transformation Products of decaBDE and Its Alternatives. Environmental Science & Technology, 2021, 55, 1088-1098.	10.0	10
171	QSAR Methods to Screen Endocrine Disruptors. Nuclear Receptor Research, 2016, 3, .	2.5	6
172	Structure-Based Understanding of Binding Affinity and Mode of Estrogen Receptor α Agonists and Antagonists. PLoS ONE, 2017, 12, e0169607.	2.5	27
173	A tiered, Bayesian approach to estimating population variability for regulatory decision-making. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 377-388.	1.5	42
174	Workflow for Defining Reference Chemicals for Assessing Performance of In Vitro Assays. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 261-276.	1.5	11
175	Computer-aided prediction of biological activity spectra for chemical compounds: opportunities and limitation. Biomedical Chemistry Research and Methods, 2018, 1, e00004.	0.4	99
176	Development of estrogen receptor beta binding prediction model using large sets of chemicals. Oncotarget, 2017, 8, 92989-93000.	1.8	24
177	Ion Channels as Therapeutic Targets for Type 1 Diabetes Mellitus. Current Drug Targets, 2020, 21, 132-147.	2.1	7
178	Overview of the effects of chemical mixtures with endocrine disrupting activity in the context of realâ€ʻlife risk simulation (RLRS): An integrative approach (Review). World Academy of Sciences Journal, 2019, 1, 157-164.	0.6	25
180	A comparison between Bayes estimation and the estimation of the minimal unbiased quadratic Standard of the bi-division variance analysis model in the presence of interaction. Tikrit Journal of Pure Science, 2020, 25, 116.	0.1	5
181	Identification of known and novel nonpolar endocrine disruptors in human amniotic fluid. Environment International, 2022, 158, 106904.	10.0	10
182	Quantitative high-throughput phenotypic screening for environmental estrogens using the E-Morph Screening Assay in combination with in silico predictions. Environment International, 2022, 158, 106947.	10.0	5

#

164

#	Article	IF	CITATIONS
183	In Silico Ecotoxicological Modeling of Pesticide Metabolites and Mixtures. Methods in Pharmacology and Toxicology, 2020, , 561-589.	0.2	0
184	Strategies of Virtual Screening in Medicinal Chemistry. , 2020, , 194-225.		1
185	Early Prediction of Ecotoxicological Side Effects of Pharmaceutical Impurities Based on Open-Source Non-testing Approaches. Methods in Pharmacology and Toxicology, 2020, , 235-269.	0.2	1
186	Quantitative non-targeted analysis: Bridging the gap between contaminant discovery and risk characterization. Environment International, 2022, 158, 107011.	10.0	37
187	Implementing in vitro bioactivity data to modernize priority setting of chemical inventories. ALTEX: Alternatives To Animal Experimentation, 2021, , .	1.5	6
188	A tiered approach to population-based in vitro testing for cardiotoxicity: Balancing estimates of potency and variability. Journal of Pharmacological and Toxicological Methods, 2022, 114, 107154.	0.7	6
189	Toxicity prediction using locality-sensitive deep learner. Computational Toxicology, 2022, 21, 100210.	3.3	1
190	Machine learning models on chemical inhibitors of mitochondrial electron transport chain. Journal of Hazardous Materials, 2022, 426, 128067.	12.4	8
191	Regulatory Testing for Endocrine Disruptors; Need for Validated Methods and Integrated Approaches. Frontiers in Toxicology, 2021, 3, 821736.	3.1	6
192	ER/AR Multi-Conformational Docking Server: A Tool for Discovering and Studying Estrogen and Androgen Receptor Modulators. Frontiers in Pharmacology, 2022, 13, 800885.	3.5	1
193	Prediction of Carbonate Selectivity of PVC-Plasticized Sensor Membranes with Newly Synthesized Ionophores through QSPR Modeling. Chemosensors, 2022, 10, 43.	3.6	4
194	Chemical Screening in an Estrogen Receptor Transactivation Assay With Metabolic Competence. Toxicological Sciences, 2022, 187, 112-126.	3.1	4
195	A Quantitative High-Throughput Screening Data Analysis Pipeline for Activity Profiling. Methods in Molecular Biology, 2022, 2474, 133-145.	0.9	3
196	Advances in In Silico Toxicity Assessment of Nanomaterials and Emerging Contaminants. , 2022, , 325-347.		1
197	Quality Control for Single Cell Imaging Analytics Using Endocrine Disruptor-Induced Changes in Estrogen Receptor Expression. Environmental Health Perspectives, 2022, 130, 27008.	6.0	6
198	Predicting the binding of small molecules to nuclear receptors using machine learning. Briefings in Bioinformatics, 2022, 23, .	6.5	7
199	Current status and future directions for a neurotoxicity hazard assessment framework that integrates in silico approaches. Computational Toxicology, 2022, 22, 100223.	3.3	15
200	Guidance Document on Scientific criteria for grouping chemicals into assessment groups for human risk assessment of combined exposure to multiple chemicals. EFSA Journal, 2021, 19, e07033.	1.8	35

#		IE	CITATIONS
#	Structures of Endocrine-Disrupting Chemicals Correlate with the Activation of 12 Classic Nuclear	IF	CHAHONS
201	Receptors. Environmental Science & amp; Technology, 2021, 55, 16552-16562.	10.0	20
202	Evaluation of the Cumulative Pesticide Use and Toxicity in Ventura County, California and Association with Social and Economic Demographic Data. SSRN Electronic Journal, 0, , .	0.4	0
203	Predicting Prenatal Developmental Toxicity Based On the Combination of Chemical Structures and Biological Data. Environmental Science & amp; Technology, 2022, 56, 5984-5998.	10.0	11
204	Considerations for Improving Metabolism Predictions for In Vitro to In Vivo Extrapolation. Frontiers in Toxicology, 2022, 4, 894569.	3.1	10
205	Are preserved coastal water bodies in Spanish Mediterranean basin impacted by human activity? Water quality evaluation using chemical and biological analyses. Environment International, 2022, 165, 107326.	10.0	4
206	Orthogonal assay for validation of Tox21 PPARÎ ³ data and applicability to in silico prediction model. Toxicology in Vitro, 2022, 84, 105445.	2.4	0
207	Predicting toxicity of endocrine disruptors and blood–brain barrier permeability using chirality-sensitive descriptors and machine learning. Computational Toxicology, 2022, 24, 100240.	3.3	3
208	Computational toxicology studies on the interactions between environmental contaminants and biomacromolecules. Chinese Science Bulletin, 2022, 67, 4180-4191.	0.7	2
209	Profiling prediction of nuclear receptor modulators with multi-task deep learning methods: toward the virtual screening. Briefings in Bioinformatics, 2022, 23, .	6.5	7
210	A Population-Based Human In Vitro Approach to Quantify Inter-Individual Variability in Responses to Chemical Mixtures. Toxics, 2022, 10, 441.	3.7	7
211	Development, Validation, and Application of a Human Reproductive Toxicity Prediction Model Based on Adverse Outcome Pathway. Environmental Science & Technology, 2022, 56, 12391-12403.	10.0	9
212	A framework for establishing scientific confidence in new approach methodologies. Archives of Toxicology, 2022, 96, 2865-2879.	4.2	59
213	Evaluating structure-based activity in a high-throughput assay for steroid biosynthesis. Computational Toxicology, 2022, 24, 100245.	3.3	1
214	Racial and social disparities in Ventura County, California related to agricultural pesticide applications and toxicity. Science of the Total Environment, 2022, 853, 158399.	8.0	5
215	Practical application of the interim internal threshold of toxicological concern (iTTC): a case study based on clinical data. Archives of Toxicology, 0, , .	4.2	1
217	Review of in silico studies dedicated to the nuclear receptor family: Therapeutic prospects and toxicological concerns. Frontiers in Endocrinology, 0, 13, .	3.5	5
218	Novel machine learning models to predict endocrine disruption activity for high-throughput chemical screening. Frontiers in Toxicology, 0, 4, .	3.1	6
219	Ligand-based prediction of hERG-mediated cardiotoxicity based on the integration of different machine learning techniques. Frontiers in Pharmacology, 0, 13, .	3.5	7

#	Article	IF	CITATIONS
220	Estimating provisional margins of exposure for data-poor chemicals using high-throughput computational methods. Frontiers in Pharmacology, 0, 13, .	3.5	5
221	Bisphenol A analogues induce a feed-forward estrogenic response in zebrafish. Toxicology and Applied Pharmacology, 2022, 455, 116263.	2.8	1
222	Omics-based high throughput toxicity screening and risk assessment of pollutants. Chinese Science Bulletin, 2022, 67, 4159-4169.	0.7	2
223	Navigating Transcriptomic Connectivity Mapping Workflows to Link Chemicals with Bioactivities. Chemical Research in Toxicology, 2022, 35, 1929-1949.	3.3	3
224	Assessment of Endocrine Disruption Potential of Chemicals Using Combined Quantitative Structure-Activity Relationship Modeling of In Vitro and In Vivo Assays. Applied in Vitro Toxicology, 2022, 8, 139-146.	1.1	0
225	Predicting Endocrine Disruption Using Conformal Prediction – AÂPrioritization Strategy to Identify Hazardous Chemicals with Confidence. Chemical Research in Toxicology, 2023, 36, 53-65.	3.3	2
226	Mold2 Descriptors Facilitate Development of Machine Learning and Deep Learning Models for Predicting Toxicity of Chemicals. Computational Methods in Engineering & the Sciences, 2023, , 297-321.	0.3	0
227	How to integrate the "small and big―data into a complex adverse outcome pathway?. , 2023, , 99-114.		0
228	AOP-Based Machine Learning for Toxicity Prediction. Computational Methods in Engineering & the Sciences, 2023, , 141-157.	0.3	0
229	Modeling Tox21 Data for Toxicity Prediction and Mechanism Deconvolution. Computational Methods in Engineering & the Sciences, 2023, , 463-477.	0.3	2
230	Getting the SMILES right: identifying inconsistent chemical identities in the ECHA database, PubChem and the CompTox Chemicals Dashboard. Environmental Science Advances, 2023, 2, 612-621.	2.7	2
231	A method for in vitro data and structure curation to optimize for QSAR modelling of minimum absolute potency levels and a comparative use case. Environmental Toxicology and Pharmacology, 2023, 98, 104069.	4.0	1
232	New Approach Methodologies for the Endocrine Activity Toolbox: Environmental Assessment for Fish and Amphibians. Environmental Toxicology and Chemistry, 2023, 42, 757-777.	4.3	2
233	Cyclodienes. , 2024, , 385-397.		0
234	Estrogenicity of Major Organic Chemicals in Cigarette Sidestream Smoke Particulate Matter. Atmosphere, 2023, 14, 647.	2.3	0
235	Chemical representation learning for toxicity prediction. , 2023, 2, 674-691.		3
236	Chlorpyrifos. , 2024, , 1-13.		0
237	Predictive Models for Compound Binding to Androgen and Estrogen Receptors Based on Counter-Propagation Artificial Neural Networks. Toxics, 2023, 11, 486.	3.7	0

#	Article	IF	CITATIONS
238	ProfhEX: AI-based platform for small molecules liability profiling. Journal of Cheminformatics, 2023, 15, .	6.1	1
239	Computational Toxicological Aspects in Drug Design and Discovery, Screening Adverse Effects. Challenges and Advances in Computational Chemistry and Physics, 2023, , 213-237.	0.6	0
240	High Throughput Read-Across for Screening a Large Inventory of Related Structures by Balancing Artificial Intelligence/Machine Learning and Human Knowledge. Chemical Research in Toxicology, 2023, 36, 1081-1106.	3.3	4
241	Application of QSAR models based on machine learning methods in chemical risk assessment and drug discovery. , 2023, , 245-258.		0
242	Development of QSAR models as reliable computational tools for regulatory assessment of chemicals for acute toxicity. , 2023, , 13-24.		0
243	Decision forest—a machine learning algorithm for QSAR modeling. , 2023, , 35-48.		0
244	EADBâ \in "A database providing curated data for developing QSAR models to facilitate the assessment of endocrine activity. , 2023, , 259-272.		0
245	Evaluation of new alternative methods for the identification of estrogenic, androgenic and steroidogenic effects: a comparative in vitro/in silico study. Archives of Toxicology, 2024, 98, 251-266.	4.2	1
246	Comparison between endocrine activity assessed using ToxCast/Tox21 database and human plasma concentration of sunscreen active ingredients/UV filters. Toxicological Sciences, 0, , .	3.1	0
247	A Graph Neural Network Model with a Transparent Decision-Making Process Defines the Applicability Domain for Environmental Estrogen Screening. Environmental Science & Technology, 0, , .	10.0	1
249	Utilizing Heteroatom Types and Numbers from Extensive Ligand Libraries to Develop Novel hERG Blocker QSAR Models Using Machine Learning-Based Classifiers. ACS Omega, 0, , .	3.5	0
250	Priority list of potential endocrine-disrupting chemicals in food chemical contaminants: a docking study and in vitro/epidemiological evidence integration. SAR and QSAR in Environmental Research, 2023, 34, 847-866.	2.2	0
251	Interpretable machine learning for the identification of estrogen receptor agonists, antagonists, and binders. Chemosphere, 2024, 347, 140671.	8.2	0
252	Review of machine learning and deep learning models for toxicity prediction. Experimental Biology and Medicine, 0, , .	2.4	1
253	Alternatives to PFASs for the Surfactant Role in Floor Polish. , 2023, , 81-109.		0
254	Effect of fennel seeds fortified crackers on various obesity biomarkers. Journal of Agriculture and Food Research, 2023, 14, 100906.	2.5	0
255	Where developmental toxicity meets explainable artificial intelligence: state-of-the-art and perspectives. Expert Opinion on Drug Metabolism and Toxicology, 0, , 1-17.	3.3	2
256	Computational modeling approaches for developing a synergistic effect prediction model of estrogen agonistic activity. Chemosphere, 2024, 349, 140926.	8.2	0

#	Article	IF	CITATIONS
257	Development and application of consensus in silico models for advancing high-throughput toxicological predictions. Frontiers in Pharmacology, 0, 15, .	3.5	0
258	Application of the Key Characteristics Framework to Identify Potential Breast Carcinogens Using Publicly Available <i>in Vivo</i> , <i>in Vitro</i> , and <i>in Silico</i> Data. Environmental Health Perspectives, 2024, 132, .	6.0	2
259	Protecting Human and Animal Health: The Road from Animal Models to New Approach Methods. Pharmacological Reviews, 2024, 76, 251-266.	16.0	0
260	Screening of the Antagonistic Activity of Potential Bisphenol A Alternatives toward the Androgen Receptor Using Machine Learning and Molecular Dynamics Simulation. Environmental Science & Technology, 2024, 58, 2817-2829.	10.0	0
261	Application of Evolving New Approach Methodologies for Chemical Safety Assessment. , 2024, , 977-1015.		0
262	Free and open-source QSAR-ready workflow for automated standardization of chemical structures in support of QSAR modeling. Journal of Cheminformatics, 2024, 16, .	6.1	Ο
263	Thermal proteome profiling and machine learning modeling for dissecting chemical-protein interactions in environmental toxicology: A mini-review and perspectives. Critical Reviews in Environmental Science and Technology, 0, , 1-23.	12.8	0
264	Deus Ex Machina? The Rise of Artificial Intelligence in Toxicology. Chemical Research in Toxicology, 2024, 37, 525-527.	3.3	0