Physical Layer Definition for a Long-Haul HF Antarctica

Remote Sensing 8, 380 DOI: 10.3390/rs8050380

Citation Report

#	Article	IF	CITATIONS
1	An FPGA Scalable Software Defined Radio Platform Design for Educational and Research Purposes. Electronics (Switzerland), 2016, 5, 27.	3.1	4
2	Flexible Low-Cost SDR Platform for HF Communications: Near vertical incidence skywave preliminary results. IEEE Antennas and Propagation Magazine, 2016, 58, 49-56.	1.4	12
3	Vertical and oblique ionospheric soundings performance comparison over the 12,760Âkm transequatorial HF link between Antarctica and Spain. Radio Science, 2017, 52, 498-510.	1.6	0
4	Polarization diversity in a longâ€haul transequatorial HF link from Antarctica to Spain. Radio Science, 2017, 52, 105-117.	1.6	4
5	Multiresolution acquisition scheme for the physical layer design of a direct sequence spread spectrum transequatorial HF ionospheric data link. IET Communications, 2017, 11, 1165-1172.	2.2	1
6	Design, implementation, and test of an SDR for NVIS communications. International Journal of Circuit Theory and Applications, 2019, 47, 1502-1512.	2.0	6
7	An Approach to Frequency Selectivity in an Urban Environment by Means of Multi-Path Acoustic Channel Analysis. Sensors, 2019, 19, 2793.	3.8	2
8	Advanced HF Communications for Remote Sensors in Antarctica. , 0, , .		4
9	Frequency Tunable Inverted-V HF Dipole Antenna Using Channel Extension Technique. , 2019, , .		1
10	Study of NVIS Channel for USN Protocol Definition in Antarctica. Electronics (Switzerland), 2020, 9, 1037.	3.1	3
11	Intelligent Channel Parameter Estimation System Based on Neural Network Regression Model. Mobile Networks and Applications, 2020, 25, 2291-2301.	3.3	1
12	Variation of Ionospheric Narrowband and Wideband Performance for a 12,760 km Transequatorial Link and Its Dependence on Solar and Ionospheric Activity. Remote Sensing, 2020, 12, 2750.	4.0	2
13	Ionospheric Narrowband and Wideband HF Soundings for Communications Purposes: A Review. Sensors, 2020, 20, 2486.	3.8	11
14	Escaping the Dead Zone: a Bottleneck in Humanitarian Ionospheric Radio Communications. , 2021, , .		1
	DTN Tructurethings for Dermofrest Telemetry Lot Network Demote Consing 2021, 12, 4402	4.0	4