Evaluating Agronomic Responses of Camelina to Seedin

Agronomy Journal 108, 349-357

DOI: 10.2134/agronj2015.0153

Citation Report

#	ARTICLE	IF	CITATIONS
1	Irrigation response and water productivity of deficit to fully irrigated spring camelina. Agricultural Water Management, 2016, 177, 46-53.	2.4	24
2	Camelina uses, genetics, genomics, production, and management. Industrial Crops and Products, 2016, 94, 690-710.	2.5	252
3	Coalâ€Bed Methane Water: Effects on Soil Properties and Camelina Productivity. Journal of Environmental Quality, 2017, 46, 641-648.	1.0	6
4	Comparative Farm-Gate Life Cycle Assessment of Oilseed Feedstocks in the Northern Great Plains. BioPhysical Economics and Resource Quality, 2017, 2, 1.	2.4	17
5	Camelina Seed Yield and Fatty Acids as Influenced by Genotype and Environment. Agronomy Journal, 2017, 109, 947-956.	0.9	42
6	Camelina – An Alternative Oil Crop. , 2018, , 259-275.		7
7	Camelina sativa as a fallow replacement crop in wheat-based crop production systems in the US Great Plains. Industrial Crops and Products, 2018 , 111 , $22-29$.	2.5	34
8	Seed-specific suppression of ADP-glucose pyrophosphorylase in Camelina sativa increases seed size and weight. Biotechnology for Biofuels, 2018, 11, 330.	6.2	22
9	Bioactive Compounds, Nutritional Quality and Oxidative Stability of Cold-Pressed Camelina (Camelina) Tj ETQq0	0	Overlock 10 T
10	Growing camelina as a second crop in France: A participatory design approach to produce actionable knowledge. European Journal of Agronomy, 2018, 101, 78-89.	1.9	25
11	Analysis of yield and genetic similarity of Polish and Ukrainian Camelina sativa genotypes. Industrial Crops and Products, 2018, 123, 667-675.	2.5	28
12	Winter Camelina: Crop Growth, Seed Yield, and Quality Response to Cultivar and Seeding Rate. Crop Science, 2018, 58, 2089-2098.	0.8	42
13	Nitrogen source and rate effects on grain and potential biodiesel production of camelina in the semiarid environment of northern Nevada. GCB Bioenergy, 2018, 10, 861-876.	2.5	13
14	Overwintering assessment of camelina (Camelina sativa) cultivars and congeneric species in the northeastern US. Industrial Crops and Products, 2019, 139, 111532.	2.5	16
15	Sowing date and sowing method influence on camelina cultivars grain yield, oil concentration, and biodiesel production. Food and Energy Security, 2019, 8, e00166.	2.0	15
16	Seed yield and oil quality as affected by Camelina cultivar and planting date. Journal of Crop Improvement, 2019, 33, 202-222.	0.9	21
17	Mapping quantitative trait loci for seed traits in Camelina sativa. Theoretical and Applied Genetics, 2019, 132, 2567-2577.	1.8	11
18	Performance and Potentiality of Camelina (Camelina sativa L. Crantz) Genotypes in Response to Sowing Date under Mediterranean Environment. Agronomy, 2020, 10, 1929.	1.3	21

#	Article	IF	CITATIONS
19	Camelina and Crambe Oil Crops for Bioeconomyâ€"Straw Utilisation for Energy. Energies, 2020, 13, 1503.	1.6	15
20	Camelina production parameters response to different irrigation regimes. Industrial Crops and Products, 2020, 148, 112286.	2.5	15
21	Five-Year Field Trial of Eight Camelina sativa Cultivars for Biomass to be Used in Biofuel under Irrigated Conditions in a Semi-Arid Climate. Agronomy, 2020, 10, 562.	1.3	14
22	Winter camelina root characteristics and yield performance under contrasting environmental conditions. Field Crops Research, 2020, 252, 107794.	2.3	22
23	Stability and Variability of Camelina sativa (L.) Crantz Economically Valuable Traits in Various Eco-Geographical Conditions of the Russian Federation. Agronomy, 2021, 11, 332.	1.3	8
24	Optimal and Suitable Conditions for Prospective Spring Camelina Cultivation in Slovakia – Screening by the System of Soil Climatic Units. Agriculture, 2021, 67, 42-46.	0.2	0
25	Nitrogen and sulfur application effects on camelina seed yield, fatty acid composition, and nutrient removal. Canadian Journal of Plant Science, 2021, 101, 353-365.	0.3	2
26	Winter camelina seed quality in different growing environments across Northern America and Europe. Industrial Crops and Products, 2021, 169, 113639.	2.5	19
27	Exogenously used boron and 24-epibrassinolide improved oil quality and mitigate late-season water deficit stress in camelina. Industrial Crops and Products, 2021, 171, 113885.	2.5	11
28	Agricultural, Economic and Societal Importance of Brassicaceae Plants. , 2020, , 45-128.		7
29	Differential physio-biochemical and yield responses of Camelina sativa L. under varying irrigation water regimes in semi-arid climatic conditions. PLoS ONE, 2020, 15, e0242441.	1.1	8
30	Ketencik (Camelina sativa L. Crantz) Bitkisinin Verim ve Kalitesi Üzerine Farklı Ekim Zamanları ve Fosfor Uygulamalarının Etkileri. Yuzuncu Yil University Journal of Agricultural Sciences, 0, , 274-281.	0.1	O
31	EFFECTS OF SOWING DATE AND GENOTYPE ON OIL CONTENT AND MAIN FATTY ACID COMPOSITION IN CAMELINA [Camelina sativa L. (Crantz)]. Turkish Journal of Field Crops, 2020, 25, 227-235.	0.2	3
32	Use of Camelina sativa and By-Products in Diets for Dairy Cows: A Review. Animals, 2022, 12, 1082.	1.0	11
33	Agronomic evaluation of a Chinese camelina [Camelina sativa (L.) Crantz] cultivar in multiple semi-arid locations of northern China. Italian Journal of Agronomy, 2022, 17, .	0.4	1
34	Engineered Cleistogamy in <i>Camelina sativa</i> for bioconfinement. Horticulture Research, 2023, 10, .	2.9	2
35	Changing Climate Scenario: Perspectives of Camelina sativa as Low-Input Biofuel and Oilseed Crop. , 2022, , 197-236.		0
36	Exogenous Application of Thiourea Improves the Growth, Seed Yield, and Seed Fatty Acid Profile in Late Sown Camelina. Journal of Soil Science and Plant Nutrition, 2023, 23, 1306-1325.	1.7	7