Regeneration of dental pulp/dentine complex with a the stem-cell sheet-derived pellet

Journal of Tissue Engineering and Regenerative Medicine 10, 261-270

DOI: 10.1002/term.1686

Citation Report

#	Article	IF	CITATIONS
1	Three-dimensional spheroid culture promotes odonto/osteoblastic differentiation of dental pulp cells. Archives of Oral Biology, 2014, 59, 310-317.	0.8	56
2	Three-Dimensional Printed Multiphase Scaffolds for Regeneration of Periodontium Complex. Tissue Engineering - Part A, 2014, 20, 1342-1351.	1.6	161
3	Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after inÂvivo transplantation. Biomaterials, 2014, 35, 6332-6343.	5.7	139
4	Tissue engineering in dentistry. Journal of Dentistry, 2014, 42, 915-928.	1.7	167
5	Dental Stem Cells in Pulp Regeneration: Near Future or Long Road Ahead?. Stem Cells and Development, 2015, 24, 1610-1622.	1.1	33
6	Current Advance and Future Prospects of Tissue Engineering Approach to Dentin/Pulp Regenerative Therapy. Stem Cells International, 2016, 2016, 1-13.	1.2	100
7	Nanomaterials for Tissue Engineering In Dentistry. Nanomaterials, 2016, 6, 134.	1.9	76
8	The Neurovascular Properties of Dental Stem Cells and Their Importance in Dental Tissue Engineering. Stem Cells International, 2016, 2016, 1-17.	1.2	40
9	Pulp Regeneration: Current Approaches and Future Challenges. Frontiers in Physiology, 2016, 7, 58.	1.3	94
10	Dental cell sheet biomimetic tooth bud model. Biomaterials, 2016, 106, 167-179.	5.7	34
11	Composite cell sheet for periodontal regeneration: crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration. Stem Cell Research and Therapy, 2016, 7, 168.	2.4	55
12	<i>In vitro</i> assessment of a collagen/alginate composite scaffold for regenerative endodontics. International Endodontic Journal, 2017, 50, 48-57.	2.3	25
13	Advances and perspectives in tooth tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2443-2461.	1.3	50
14	China's landscape in regenerative medicine. Biomaterials, 2017, 124, 78-94.	5.7	18
15	Electrospinning of fucoidan/chitosan/poly(vinyl alcohol) scaffolds for vascular tissue engineering. Fibers and Polymers, 2017, 18, 922-932.	1.1	26
16	Microbial Modulation of Stem Cells and Future Directions in Regenerative Endodontics. Journal of Endodontics, 2017, 43, S95-S101.	1.4	73
17	Human Umbilical Cord MSCs as New Cell Sources for Promoting Periodontal Regeneration in Inflammatory Periodontal Defect. Theranostics, 2017, 7, 4370-4382.	4.6	50
18	Vascularization. , 2017, , 367-383.		1

#	Article	IF	CITATIONS
19	iRoot FM exerts an antibacterial effect on <i>Porphyromonas endodontalis</i> and improves the properties of stem cells from the apical papilla. International Endodontic Journal, 2018, 51, 1139-1148.	2.3	16
20	A Comparative Evaluation of Concentrated Growth Factor and Platelet-rich Fibrin on the Proliferation, Migration, and Differentiation of Human Stem Cells of the Apical Papilla. Journal of Endodontics, 2018, 44, 977-983.	1.4	55
21	Vascularization in Craniofacial Bone Tissue Engineering. Journal of Dental Research, 2018, 97, 969-976.	2.5	58
22	Pulp Regeneration by 3-dimensional Dental Pulp Stem Cell Constructs. Journal of Dental Research, 2018, 97, 1137-1143.	2.5	101
23	Scaffold-free tissue engineering of functional corneal stromal tissue. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 59-69.	1.3	42
24	Effect of Light Activation of Pulp-Capping Materials and Resin Composite on Dentin Deformation and the Pulp Temperature Change. Operative Dentistry, 2018, 43, 71-80.	0.6	8
25	Depletion of HOXA5 inhibits the osteogenic differentiation and proliferation potential of stem cells from the apical papilla. Cell Biology International, 2018, 42, 45-52.	1.4	8
26	The role of stem cell therapy in regeneration of dentine-pulp complex: a systematic review. Progress in Biomaterials, 2018, 7, 249-268.	1.8	45
27	Scaffold-Free Biofabrication. , 2018, , 431-450.		4
28	Candidate bioinks for 3D bioprinting soft tissue. , 2018, , 145-172.		9
29	Mesenchymal stem cells and extracellular matrix scaffold promote muscle regeneration by synergistically regulating macrophage polarization toward the M2 phenotype. Stem Cell Research and Therapy, 2018, 9, 88.	2.4	77
30	Pulp Regeneration Concepts for Nonvital Teeth: From Tissue Engineering to Clinical Approaches. Tissue Engineering - Part B: Reviews, 2018, 24, 419-442.	2.5	32
31	Stem Cells From the Apical Papilla (SCAP) as a Tool for Endogenous Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 2018, 6, 103.	2.0	84
32	Embryonicâ€Like Mineralized Extracellular Matrix/Stem Cell Microspheroids as a Bone Graft Substitute. Advanced Healthcare Materials, 2018, 7, 1800705.	3.9	10
33	Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth. Science Translational Medicine, 2018, 10, .	5.8	300
34	Dental Tissue Engineering. , 2019, , 907-921.		3
35	<p>Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering</p> . International Journal of Nanomedicine, 2019, Volume 14, 5753-5783.	3.3	130
36	Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the Human Apical Papilla via the Processes of Mechanosensing and Mechanotransduction. ACS Applied Materials & Interfaces, 2019, 11, 26448-26459.	4.0	29

CITATION REPORT

#	Article	IF	CITATIONS
37	Cyclic Adenosine Monophosphate Promotes Odonto/Osteogenic Differentiation of Stem Cells from the Apical Papilla via Suppression of Transforming Growth Factor Beta 1 Signaling. Journal of Endodontics, 2019, 45, 150-155.	1.4	9
38	Advances of toothâ€derived stem cells in neural diseases treatments and nerve tissue regeneration. Cell Proliferation, 2019, 52, e12572.	2.4	39
39	Dentinogenesis and Tooth-Alveolar Bone Complex Defects in <i>BMP9/GDF2</i> Knockout Mice. Stem Cells and Development, 2019, 28, 683-694.	1.1	34
40	Stem Cells from the Apical Papilla: A Promising Source for Stem Cell-Based Therapy. BioMed Research International, 2019, 2019, 1-8.	0.9	87
41	Angiogenin production in response to hypoxia and l â€mimosine in periodontal fibroblasts. Journal of Periodontology, 2019, 90, 674-681.	1.7	8
42	Pulp Stem Cell–Mediated Functional Pulp Regeneration. Journal of Dental Research, 2019, 98, 27-35.	2.5	92
43	Tooth and Dental Pulp Regeneration. , 2019, , 367-392.		3
44	Strategies for MSC expansion and MSC-based microtissue for bone regeneration. Biomaterials, 2019, 196, 67-79.	5.7	84
45	Contraction dynamics ofÂdental pulp cell rodÂmicrotissues. Clinical Oral Investigations, 2020, 24, 631-638.	1.4	4
46	Ageing affects the proliferation and mineralization of rat dental pulp stem cells under inflammatory conditions. International Endodontic Journal, 2020, 53, 72-83.	2.3	22
47	Enhancer of zeste homolog 2 enhances the migration and chemotaxis of dental mesenchymal stem cells. Journal of International Medical Research, 2020, 48, 030006051988214.	0.4	3
48	MiR-497-5p Regulates Osteo/Odontogenic Differentiation of Stem Cells From Apical Papilla via the Smad Signaling Pathway by Targeting Smurf2. Frontiers in Genetics, 2020, 11, 582366.	1.1	14
49	SHED promote angiogenesis in stem cell-mediated dental pulp regeneration. Biochemical and Biophysical Research Communications, 2020, 529, 1158-1164.	1.0	31
50	Tissue Engineering Strategies for Tooth and Dento-alveolar Region with Engineered Biomaterial and Stem Cells. , 2020, , 31-54.		0
51	Scaffold-based and Scaffold-free Strategies in Dental Pulp Regeneration. Journal of Endodontics, 2020, 46, S81-S89.	1.4	30
52	Dentin-Pulp Tissue Regeneration Approaches in Dentistry: An Overview and Current Trends. Advances in Experimental Medicine and Biology, 2020, 1298, 79-103.	0.8	14
53	Irradiation with blue light-emitting diode enhances osteogenic differentiation of stem cells from the apical papilla. Lasers in Medical Science, 2020, 35, 1981-1988.	1.0	14
54	Substrate mechanics dictate cell-cell communication by gap junctions in stem cells from human apical papilla. Acta Biomaterialia, 2020, 107, 178-193.	4.1	35

Сіта	CITATION REPORT	
ARTICLE Platelet-rich Fibrin Improves the Osteo-/Odontogenic Differentiation of Stem Cells from Apical Papilla via the Extracellular Signal–regulated Protein Kinase Signaling Pathway. Journal of Endodontics, 2020, 46, 648-654.	IF 1.4	CITATIONS
Regeneration of pulp-dentin complex using human stem cells of the apical papilla: in vivo interaction with two bioactive materials. Clinical Oral Investigations, 2021, 25, 5317-5329.	1.4	34
Which experimental models and explorations to use in regenerative endodontics? A comprehensive review on standard practices. Molecular Biology Reports, 2021, 48, 3799-3812.	1.0	1
Microenvironment Influences Odontogenic Mesenchymal Stem Cells Mediated Dental Pulp Regeneration. Frontiers in Physiology, 2021, 12, 656588.	1.3	22
Insights into the Role of Biopolymer Aerogel Scaffolds in Tissue Engineering and Regenerative Medicine. Polymers, 2021, 13, 1612.	2.0	55
Viability of Quercetin-Induced Dental Pulp Stem Cells in Forming Living Cellular Constructs for Soft Tissue Augmentation. Journal of Personalized Medicine, 2021, 11, 430.	1.1	5
Sinking Our Teeth in Getting Dental Stem Cells to Clinics for Bone Regeneration. International Journal of Molecular Sciences, 2021, 22, 6387.	1.8	11
3D Spheroid Formation Using BMP-Loaded Microparticles Enhances Odontoblastic Differentiation of Human Dental Pulp Stem Cells. Stem Cells International, 2021, 2021, 1-12.	1.2	4
Dental tissue-derived stem cell sheet biotechnology for periodontal tissue regeneration: A systematic review. Archives of Oral Biology, 2021, 129, 105182.	0.8	15
Regenerative therapy for the Cornea. Progress in Retinal and Eye Research, 2022, 87, 101011.	7.3	47
Dentin-Pulp Complex Tissue Regeneration via Three-Dimensional Cell Sheet Layering. Tissue Engineering - Part C: Methods, 2021, 27, 559-570.	. 1.1	6
Decellularized and biological scaffolds in dental and craniofacial tissue engineering: a comprehensive overview. Journal of Materials Research and Technology, 2021, 15, 1217-1251.	2.6	24
Angiogenesis in Regenerative Dentistry: Are We Far Enough for Therapy?. International Journal of Molecular Sciences, 2021, 22, 929.	1.8	10
Stem Cellâ€based Dental Pulp Regeneration: Insights From Signaling Pathways. Stem Cell Reviews and Reports, 2021, 17, 1251-1263.	1.7	33
Whole Tooth Engineering. , 2020, , 443-462.		3
Scaffold-Free Biofabrication. , 2017, , 1-20.		1

72	Origin and Clinical Applications of Neural Crest-Derived Dental Stem Cells. Chinese journal of dental research: the official journal of the Scientific Section of the Chinese Stomatological Association (CSA), The, 2018, 21, 89-100.	0.1	16
73	Current overview on challenges in regenerative endodontics. Journal of Conservative Dentistry, 2015, 18, 1.	0.3	27

#

CITATION REPORT

#	Article	IF	CITATIONS
74	Hard Tissue-Forming Ability and Ultra-Micro Structure of Newly Developed Sponges as Scaffolds Made with Sodium Alginate Gel and Chondroitin Sulfate. Journal of Biomedical Science and Engineering, 2018, 11, 289-306.	0.2	2
75	Dental stem cells: The role of biomaterials and scaffolds in developing novel therapeutic strategies. World Journal of Stem Cells, 2020, 12, 897-921.	1.3	31
76	MicroRNAs Regulation in Osteogenic Differentiation of Mesenchymal Stem Cells. Frontiers in Dental Medicine, 2021, 2, .	0.5	5
79	Dental stem cells in tooth repair: A systematic review. F1000Research, 0, 8, 1955.	0.8	0
80	Systemic BMSC homing in the regeneration of pulp-like tissue and the enhancing effect of stromal cell-derived factor-1 on BMSC homing. International Journal of Clinical and Experimental Pathology, 2015, 8, 10261-71.	0.5	18
82	Dental Mesenchymal Stem/Progenitor Cells: A New Prospect in Regenerative Medicine. , 2021, , 135-156.		1
83	Application of dental stem cells in three-dimensional tissue regeneration. World Journal of Stem Cells, 2021, 13, 1610-1624.	1.3	3
84	Prologue: Oro-Dental-Derived Stromal Cells for Cranio-Maxillo-Facial Tissue Engineering - Past, Present and Future. , 0, , .		0
85	Dental tissue engineering. , 2022, , 493-529.		1
86	The Application of Pulp Tissue Derived-Exosomes in Pulp Regeneration: A Novel Cell-Homing Approach. International Journal of Nanomedicine, 2022, Volume 17, 465-476.	3.3	15
87	Materials for Dentoalveolar Bioprinting: Current State of the Art. Biomedicines, 2022, 10, 71.	1.4	10
90	Development and challenges of cells- and materials-based tooth regeneration. Engineered Regeneration, 2022, 3, 163-181.	3.0	17
91	Carbon dots enhance extracellular matrix secretion for dentin-pulp complex regeneration through PI3K/Akt/mTOR pathway-mediated activation of autophagy. Materials Today Bio, 2022, 16, 100344.	2.6	9
92	Influencing factors of pulp-dentin complex regeneration and related biological strategies. Zhejiang Da Xue Xue Bao Yi Xue Ban = Journal of Zhejiang University Medical Sciences, 2022, 51, 350-361.	0.1	2
93	Effects of ethylenediaminetetraacetic acid on stem cells from the apical papilla: InÂvitro study. Journal of Dental Sciences, 2023, 18, 50-56.	1.2	2
94	Advances in neoteric modular tissue engineering strategies for regenerative dentistry. Journal of Science: Advanced Materials and Devices, 2022, 7, 100491.	1.5	2
95	Regenerating the Dental Pulp–Scaffold Materials and Approaches. Dental Clinics of North America, 2022, 66, 643-657.	0.8	2
96	Creating a Microenvironment to Give Wings to Dental Pulp Regeneration—Bioactive Scaffolds. Pharmaceutics, 2023, 15, 158.	2.0	1

		CITATION REPORT		
#	Article		IF	CITATIONS
97	Treated Dentin Matrix in Tissue Regeneration: Recent Advances. Pharmaceutics, 2023,	15, 91.	2.0	2
98	<scp>KDM4D</scp> enhances osteo/dentinogenic differentiation and migration of <sc via binding to <scp>RPS5</scp>. Oral Diseases, 0, , .</sc 	p>SCAPs	1.5	2
99	Mesenchymal condensation in tooth development and regeneration: a focus on transla of organogenesis. Physiological Reviews, 2023, 103, 1899-1964.	tional aspects	13.1	10
100	Microenvironmental Stiffness Directs Chondrogenic Lineages of Stem Cells from the Hu Papilla <i>via</i> Cooperation between ROCK and Smad3 Signaling. ACS Biomaterials S Engineering, 2023, 9, 4831-4845.	uman Apical Science and	2.6	4
104	Dentale mesenchymale Stamm-/Progenitorzellen: Eine neue Perspektive für die Reger 2023, , 149-172.	nerative Medizin. ,		0
105	Spatiotemporal cellular dynamics and molecular regulation of tooth root ontogeny. Into Journal of Oral Science, 2023, 15, .	ernational	3.6	0