Metabolomic Analysis Revealed Differential Adaptation Kentucky Bluegrass (Poa pratensis)

Plant Molecular Biology Reporter 33, 56-68 DOI: 10.1007/s11105-014-0722-4

Citation Report

ARTICLE

Metabolic acclimation of source and sink tissues to salinity stress in bermudagrass (<i>Cynodon) Tj ETQq0 0 0 rgB5/2 Verlock 10 Tf 50 2

2	Trehalose Accumulation Triggers Autophagy during Plant Desiccation. PLoS Genetics, 2015, 11, e1005705.	3.5	94
3	Exogenous glycinebetaine alleviates the detrimental effect of Cd stress on perennial ryegrass. Ecotoxicology, 2015, 24, 1330-1340.	2.4	55
4	Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum). Frontiers in Plant Science, 2016, 7, 179.	3.6	66
5	Overexpression of <i><scp>GsGSTU13</scp></i> and <i><scp>SCMRP</scp></i> in <i>Medicago sativa</i> confers increased salt–alkaline tolerance and methionine content. Physiologia Plantarum, 2016, 156, 176-189.	5.2	40
6	Metabolomics Analysis Reveals the Salt-Tolerant Mechanism in Glycine soja. Journal of Plant Growth Regulation, 2017, 36, 460-471.	5.1	76
7	Characterization of the primary metabolome during the long-term response to NaHCO3-derived alkalinity in Lotus japonicus ecotypes Gifu B-129 and Miyakojima MG-20. Acta Physiologiae Plantarum, 2017, 39, 1.	2.1	5
8	Concentrations and nitrogen isotope compositions of free amino acids in Pinus massoniana (Lamb.) needles of different ages as indicators of atmospheric nitrogen pollution. Atmospheric Environment, 2017, 164, 348-359.	4.1	14
9	Nutrient deficiency and hypoxia as constraints to <i>Panicum coloratum</i> growth in alkaline soils. Grass and Forage Science, 2017, 72, 640-653.	2.9	12
10	Comparison of Salt Tolerance in Soja Based on Metabolomics of Seedling Roots. Frontiers in Plant Science, 2017, 8, 1101.	3.6	71
11	Comparative Proteomics of Contrasting Maize Genotypes Provides Insights into Salt-Stress Tolerance Mechanisms. Journal of Proteome Research, 2018, 17, 141-153.	3.7	49
12	Elucidating the molecular mechanisms mediating plant saltâ€stress responses. New Phytologist, 2018, 217, 523-539.	7.3	894
14	Exogenous myo-inositol alleviates salinity-induced stress in Malus hupehensis Rehd. Plant Physiology and Biochemistry, 2018, 133, 116-126.	5.8	61
15	Genomic Roadmaps for Augmenting Salinity Stress Tolerance in Crop Plants. , 2018, , 189-216.		7
17	Phytoremediation of Cd and Pb interactive polluted soils by switchgrass (<i>Panicum virgatum</i> L.). International Journal of Phytoremediation, 2019, 21, 1486-1496.	3.1	26
18	Metabolomics and physiological analyses reveal β-sitosterol as an important plant growth regulator inducing tolerance to water stress in white clover. Planta, 2019, 250, 2033-2046.	3.2	28
19	Metabolomic changes associated with elevated CO2-regulation of salt tolerance in Kentucky bluegrass. Environmental and Experimental Botany, 2019, 165, 129-138.	4.2	6
20	MdINT1 enhances apple salinity tolerance by regulating the antioxidant system, homeostasis of ions, and osmosis. Plant Physiology and Biochemistry, 2020, 154, 689-698.	5.8	9

CITATION REPORT

#	Article	IF	CITATIONS
21	Mechanisms and Signaling Pathways of Salt Tolerance in Crops: Understanding from the Transgenic Plants. Tropical Plant Biology, 2020, 13, 297-320.	1.9	10
22	Role of Flavonol Synthesized by Nucleus FLS1 in <i>Arabidopsis</i> Resistance to Pb Stress. Journal of Agricultural and Food Chemistry, 2020, 68, 9646-9653.	5.2	17
23	Growth, ionic homeostasis, and physiological responses of cotton under different salt and alkali stresses. Scientific Reports, 2020, 10, 21844.	3.3	44
24	Secondary soil salinization in urban lawns: Microbial functioning, vegetation state, and implications for carbon balance. Land Degradation and Development, 2020, 31, 2591-2604.	3.9	19
25	Alfalfa MsCBL4 enhances calcium metabolism but not sodium transport in transgenic tobacco under salt and saline–alkali stress. Plant Cell Reports, 2020, 39, 997-1011.	5.6	24
26	Physiological and metabolomic responses of bermudagrass (<scp><i>Cynodon dactylon</i></scp>) to alkali stress. Physiologia Plantarum, 2021, 171, 22-33.	5.2	29
27	Intraspecific Variability Largely Affects the Leaf Metabolomics Response to Isosmotic Macrocation Variations in Two Divergent Lettuce (Lactuca sativa L.) Varieties. Plants, 2021, 10, 91.	3.5	4
28	Enhanced alkali tolerance of rhizobia-inoculated alfalfa correlates with altered proteins and metabolic processes as well as decreased oxidative damage. Plant Physiology and Biochemistry, 2021, 159, 301-311.	5.8	17
29	Comprehensive transcriptome and metabolome profiling reveal metabolic mechanisms of Nitraria sibirica Pall. to salt stress. Scientific Reports, 2021, 11, 12878.	3.3	30
30	Common response of dominant plants in typical grassland of Inner Mongolia to longâ€ŧerm overgrazing revealed by transcriptome analysis. Grassland Science, 2021, 67, 352.	1.1	1
31	The transcriptome of saline-alkaline resistant industrial hemp (Cannabis sativa L.) exposed to NaHCO3 stress. Industrial Crops and Products, 2021, 170, 113766.	5.2	8
32	Dissecting the proteome dynamics of the salt stress induced changes in the leaf of diploid and autotetraploid Paulownia fortunei. PLoS ONE, 2017, 12, e0181937.	2.5	15
33	Comparative Effects of Salt and Alkali Stress on Antioxidant System in Cotton (Gossypium Hirsutum L.) Leaves. Open Chemistry, 2019, 17, 1352-1360.	1.9	24
34	Comparative metabolomic profiling in the roots of salt-tolerant and salt-intolerant maize cultivars treated with NaCl stress. Biologia Plantarum, 0, 64, 569-577.	1.9	10
35	Defining key metabolic roles in osmotic adjustment and <scp>ROS</scp> homeostasis in the recretohalophyte <i>Karelinia caspia</i> under salt stress. Physiologia Plantarum, 2022, 174, e13663.	5.2	10
36	Metabolites Reprogramming and Na+/K+ Transportation Associated With Putrescine-Regulated White Clover Seed Germination and Seedling Tolerance to Salt Toxicity. Frontiers in Plant Science, 2022, 13, 856007.	3.6	5
37	Exogenous naphthaleneacetic acid alleviated alkalinity-induced morpho-physio-biochemical damages in Cyperus esculentus L. var. sativus Boeck. Frontiers in Plant Science, 0, 13, .	3.6	6
38	Comparative Physiological and Transcriptomic Analysis Provide New Insights of Crucial Pathways and Genes Regulating Kenaf Salt Tolerance. Journal of Plant Growth Regulation, 2023, 42, 3582-3605.	5.1	2

CITATION REPORT

#	Article	IF	CITATIONS
39	Biostimulants Promote the Sedimentation of Salts to Restore Tomato Plant Growth Under Salt Stress. Journal of Soil Science and Plant Nutrition, 0, , .	3.4	0
40	Salt Stress—Regulation of Root Water Uptake in a Whole-Plant and Diurnal Context. International Journal of Molecular Sciences, 2023, 24, 8070.	4.1	7
41	How Plants Tolerate Salt Stress. Current Issues in Molecular Biology, 2023, 45, 5914-5934.	2.4	14
42	Structural and functional traits underlying the capacity of Calotropis procera to face different stress conditions. Plant Physiology and Biochemistry, 2023, 203, 107992.	5.8	3
43	Salinity, alkalinity and their combined stress effects on germination and seedling growth attributes in oats (Avena sativa). Crop and Pasture Science, 2023, 74, 1094-1102.	1.5	2
44	Metabolomic Analysis of Arabidopsis ost1-4 Mutant Revealed the Cold Response Regulation Mechanisms by OPEN STOMATA 1 (OST1) at Metabolic Level. Agronomy, 2023, 13, 2567.	3.0	0
45	The miRNA–mRNA regulatory networks of the response to NaHCO3 stress in industrial hemp (Cannabis) Tj ETQ	9900 rgl	3T/Overlock

46	Metabolomic and physiological analysis of alfalfa (Medicago sativa L.) in response to saline and alkaline stress. Plant Physiology and Biochemistry, 2024, 207, 108338.	5.8	0
47	Spermidine or spermine pretreatment regulates organic metabolites and ions homeostasis in favor of white clover seed germination against salt toxicity. Plant Physiology and Biochemistry, 2024, 207, 108379.	5.8	0
48	Metabolomic characterization of alkali stress responses in rice. Current Plant Biology, 2024, 38, 100337.	4.7	0