Highly efficient and bending durable perovskite solar cosource

Energy and Environmental Science 8, 916-921 DOI: 10.1039/c4ee02441a

Citation Report

#	Article	IF	CITATIONS
3	Controllable Perovskite Crystallization by Water Additive for Highâ€Performance Solar Cells. Advanced Functional Materials, 2015, 25, 6671-6678.	7.8	321
4	16.1% Efficient Hysteresisâ€Free Mesostructured Perovskite Solar Cells Based on Synergistically Improved ZnO Nanorod Arrays. Advanced Energy Materials, 2015, 5, 1500568.	10.2	222
5	Mechanically Recoverable and Highly Efficient Perovskite Solar Cells: Investigation of Intrinsic Flexibility of Organic–Inorganic Perovskite. Advanced Energy Materials, 2015, 5, 1501406.	10.2	131
6	Perovskite Solar Cells: Potentials, Challenges, and Opportunities. International Journal of Photoenergy, 2015, 2015, 1-13.	1.4	65
7	Study on hole-transport-material-free planar TiO ₂ /CH ₃ NH ₃ PbI ₃ heterojunction solar cells: the simplest configuration of a working perovskite solar cell. Journal of Materials Chemistry A, 2015, 3, 14902-14909.	5.2	40
8	Efficient Carrier Separation and Intriguing Switching of Bound Charges in Inorganic–Organic Lead Halide Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 2355-2362.	2.1	64
9	Wearable Doubleâ€Twisted Fibrous Perovskite Solar Cell. Advanced Materials, 2015, 27, 3831-3835.	11.1	184
10	In-situ flexural OPV measurements on flexible glass substrate. , 2015, , .		1
11	New Hybrid Hole Extraction Layer of Perovskite Solar Cells with a Planar p–i–n Geometry. Journal of Physical Chemistry C, 2015, 119, 27285-27290.	1.5	71
12	TiO ₂ quantum dots as superb compact block layers for high-performance CH ₃ NH ₃ Pbl ₃ perovskite solar cells with an efficiency of 16.97%. Nanoscale, 2015, 7, 20539-20546.	2.8	87
13	Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites. Materials Horizons, 2015, 2, 378-405.	6.4	110
14	Lead-Halide Perovskite Solar Cells by CH ₃ NH ₃ I Dripping on PbI ₂ –CH ₃ NH ₃ l–DMSO Precursor Layer for Planar and Porous Structures Using CuSCN Hole-Transporting Material. Journal of Physical Chemistry Letters, 2015, 6, 881-886.	2.1	78
15	Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy and Environmental Science, 2015, 8, 1160-1189.	15.6	725
16	Fatigue resistance of a flexible, efficient, and metal oxide-free perovskite solar cell. Journal of Materials Chemistry A, 2015, 3, 9241-9248.	5.2	100
17	Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al ₂ O ₃ layers prepared by atomic layer deposition. Journal of Materials Chemistry A, 2015, 3, 5360-5367.	5.2	307
18	Identifying the optimum thickness of electron transport layers for highly efficient perovskite planar solar cells. Journal of Materials Chemistry A, 2015, 3, 16445-16452.	5.2	91
19	Solution processed flexible and bending durable heterojunction colloidal quantum dot solar cell. Nanoscale, 2015, 7, 11520-11524.	2.8	28
20	Recent advances in flexible perovskite solar cells. Chemical Communications, 2015, 51, 14696-14707.	2.2	78

#	Article	IF	CITATIONS
21	Effects of organic inorganic hybrid perovskite materials on the electronic properties and morphology of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and the photovoltaic performance of planar perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 15897-15904.	5.2	85
22	Core–shell heterostructured metal oxide arrays enable superior light-harvesting and hysteresis-free mesoscopic perovskite solar cells. Nanoscale, 2015, 7, 12812-12819.	2.8	51
23	High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nature Communications, 2015, 6, 7410.	5.8	417
24	Efficient fiber-shaped perovskite photovoltaics using silver nanowires as top electrode. Journal of Materials Chemistry A, 2015, 3, 19310-19313.	5.2	70
25	Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10, 355-396.	6.2	891
26	Recent progress in efficient hybrid lead halide perovskite solar cells. Science and Technology of Advanced Materials, 2015, 16, 036004.	2.8	87
27	Transparent Conductive Oxide-Free Perovskite Solar Cells with PEDOT:PSS as Transparent Electrode. ACS Applied Materials & Interfaces, 2015, 7, 15314-15320.	4.0	201
28	Efficient, durable and flexible perovskite photovoltaic devices with Ag-embedded ITO as the top electrode on a metal substrate. Journal of Materials Chemistry A, 2015, 3, 14592-14597.	5.2	63
29	Highâ€Performance Fully Printable Perovskite Solar Cells via Bladeâ€Coating Technique under the Ambient Condition. Advanced Energy Materials, 2015, 5, 1500328.	10.2	294
30	Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates. Journal of Materials Chemistry A, 2015, 3, 9141-9145.	5.2	133
31	Highly Efficient Hybrid Photovoltaics Based on Hyperbranched Threeâ€Dimensional TiO ₂ Electron Transporting Materials. Advanced Materials, 2015, 27, 2859-2865.	11.1	83
32	Radically grown obelisk-like ZnO arrays for perovskite solar cell fibers and fabrics through a mild solution process. Journal of Materials Chemistry A, 2015, 3, 9406-9410.	5.2	77
33	An electron beam evaporated TiO ₂ layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates. Journal of Materials Chemistry A, 2015, 3, 22824-22829.	5.2	116
34	High efficiency flexible perovskite solar cells using superior low temperature TiO ₂ . Energy and Environmental Science, 2015, 8, 3208-3214.	15.6	519
35	A general fabrication procedure for efficient and stable planar perovskite solar cells: Morphological and interfacial control by in-situ-generated layered perovskite. Nano Energy, 2015, 18, 165-175.	8.2	92
36	Improved photovoltaic performance in perovskite solar cells based on CH ₃ NH ₃ PbI ₃ films fabricated under controlled relative humidity. RSC Advances, 2015, 5, 93957-93963.	1.7	29
37	Flexible luminescent waveguiding photovoltaics exhibiting strong scattering effects from the dye aggregation. Nano Energy, 2015, 15, 729-736.	8.2	23
38	In-situ fabrication of dual porous titanium dioxide films as anode for carbon cathode based perovskite solar cell. Journal of Energy Chemistry, 2015, 24, 736-743.	7.1	23

#	Article	IF	CITATIONS
39	Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures. ACS Nano, 2015, 9, 10287-10295.	7.3	335
40	Single-Walled Carbon Nanotube Film as Electrode in Indium-Free Planar Heterojunction Perovskite Solar Cells: Investigation of Electron-Blocking Layers and Dopants. Nano Letters, 2015, 15, 6665-6671.	4.5	179
41	Screening effect on photovoltaic performance in ferroelectric CH ₃ NH ₃ PbI ₃ perovskite thin films. Journal of Materials Chemistry A, 2015, 3, 20352-20358.	5.2	22
42	Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications. Nature Communications, 2015, 6, 8932.	5.8	398
43	Electro-spray deposition of a mesoporous TiO ₂ charge collection layer: toward large scale and continuous production of high efficiency perovskite solar cells. Nanoscale, 2015, 7, 20725-20733.	2.8	36
44	Perovskite Solar Cells: From Materials to Devices. Small, 2015, 11, 10-25.	5.2	1,210
46	Improving Performance and Stability of Flexible Planarâ€Heterojunction Perovskite Solar Cells Using Polymeric Holeâ€Transport Material. Advanced Functional Materials, 2016, 26, 4464-4471.	7.8	136
47	Amorphous Inorganic Electronâ€Selective Layers for Efficient Perovskite Solar Cells: Feasible Strategy Towards Roomâ€Temperature Fabrication. Advanced Materials, 2016, 28, 1891-1897.	11.1	115
48	Stability Comparison of Perovskite Solar Cells Based on Zinc Oxide and Titania on Polymer Substrates. ChemSusChem, 2016, 9, 687-695.	3.6	101
49	Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Advanced Materials, 2016, 28, 4373-4395.	11.1	1,033
50	Transparent Conductive Oxideâ€Free Grapheneâ€Based Perovskite Solar Cells with over 17% Efficiency. Advanced Energy Materials, 2016, 6, 1501873.	10.2	206
51	Solvent Engineering Boosts the Efficiency of Paintable Carbonâ€Based Perovskite Solar Cells to Beyond 14%. Advanced Energy Materials, 2016, 6, 1502087.	10.2	306
52	Solar cell as wings of different sizes for flapping-wing micro air vehicles. International Journal of Micro Air Vehicles, 2016, 8, 209-220.	1.0	6
53	Silver Nanowire Top Electrodes in Flexible Perovskite Solar Cells using Titanium Metal as Substrate. ChemSusChem, 2016, 9, 31-35.	3.6	90
54	Maximized performance of dye solar cells on plastic: a combined theoretical and experimental optimization approach. Energy and Environmental Science, 2016, 9, 2061-2071.	15.6	19
55	Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells. Nano Energy, 2016, 26, 208-215.	8.2	419
56	Low thermal budget, photonic-cured compact TiO ₂ layers for high-efficiency perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 9685-9690.	5.2	46
57	Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency. Energy and Environmental Science, 2016, 9, 2262-2266.	15.6	265

#	Article	IF	CITATIONS
58	A controllable fabrication of grain boundary PbI2 nanoplates passivated lead halide perovskites for high performance solar cells. Nano Energy, 2016, 26, 50-56.	8.2	151
59	Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. Journal of Photonics for Energy, 2016, 6, 022001.	0.8	218
60	Computational Analysis of a Thermoelectric Generator for Waste-Heat Harvesting in Wearable Systems. Journal of Electronic Materials, 2016, 45, 2957-2966.	1.0	6
61	Wearable Chemical Sensors: Present Challenges and Future Prospects. ACS Sensors, 2016, 1, 464-482.	4.0	596
62	Tailoring of Electron-Collecting Oxide Nanoparticulate Layer for Flexible Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 1845-1851.	2.1	93
63	All-in-one energy harvesting and storage devices. Journal of Materials Chemistry A, 2016, 4, 7983-7999.	5.2	245
64	All-Solid-State Stretchable Pseudocapacitors Enabled by Carbon Nanotube Film-Capped Sandwich-like Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 25243-25250.	4.0	11
65	A tailored TiO2 electron selective layer for high-performance flexible perovskite solar cells via low temperature UV process. Nano Energy, 2016, 28, 380-389.	8.2	116
66	Amorphous TiO ₂ Compact Layers via ALD for Planar Halide Perovskite Photovoltaics. ACS Applied Materials & Interfaces, 2016, 8, 24310-24314.	4.0	61
67	Progress, challenges and perspectives in flexible perovskite solar cells. Energy and Environmental Science, 2016, 9, 3007-3035.	15.6	345
68	lonâ€Exchangeâ€Induced 2D–3D Conversion of HMA _{1â^'<i>x</i>} FA _{<i>x</i>} Pbl ₃ Cl Perovskite into a Highâ€Quality MA _{1â^'<i>x</i>} FA _{<i>x</i>} Pbl ₃ Perovskite. Angewandte Chemie - International Edition, 2016, 55, 13460-13464.	7.2	80
69	Transparent Indium Tin Oxide Electrodes on Muscovite Mica for High-Temperature-Processed Flexible Optoelectronic Devices. ACS Applied Materials & Interfaces, 2016, 8, 28406-28411.	4.0	83
70	Ionâ€Exchangeâ€Induced 2D–3D Conversion of HMA _{1â^'<i>x</i>} FA _{<i>x</i>} PbI ₃ Cl Perovskite into a Highâ€Quality MA _{1â^'<i>x</i>} FA _{<i>x</i>} PbI ₃ Perovskite. Angewandte Chemie, 2016, 128, 13658-13662.	1.6	9
71	Transparent ITO mechanical crack-based pressure and strain sensor. Journal of Materials Chemistry C, 2016, 4, 9947-9953.	2.7	87
72	Flexible and efficient ITO-free semitransparent perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 157, 660-665.	3.0	57
73	Indium tin oxide (ITO)-free, top-illuminated, flexible perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 14017-14024.	5.2	53
74	Integration of Photonic Crystals into Flexible Dye Solar Cells: A Route toward Bendable and Adaptable Optoelectronic Devices Displaying Structural Color and Enhanced Efficiency. Advanced Optical Materials, 2016, 4, 464-471.	3.6	29
75	Flexible Perovskite Solar Cell. , 2016, , 325-341.		2

#	Article	IF	CITATIONS
76	Advances in the Application of Atomic Layer Deposition for Organometal Halide Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600505.	1.9	18
77	High-Performance Flexible Thermoelectric Power Generator Using Laser Multiscanning Lift-Off Process. ACS Nano, 2016, 10, 10851-10857.	7.3	199
78	Advances in Perovskite Solar Cells. Advanced Science, 2016, 3, 1500324.	5.6	482
79	Photoluminescence Blinking of Single-Crystal Methylammonium Lead Iodide Perovskite Nanorods Induced by Surface Traps. ACS Omega, 2016, 1, 148-159.	1.6	76
80	Flexible organic-inorganic hybrid perovskite solar cells. Science China Materials, 2016, 59, 495-506.	3.5	7
81	Organic-Inorganic Halide Perovskite Photovoltaics. , 2016, , .		115
82	Nanoengineering Energy Conversion and Storage Devices via Atomic Layer Deposition. Advanced Energy Materials, 2016, 6, 1600468.	10.2	63
83	Parallelized Nanopillar Perovskites for Semitransparent Solar Cells Using an Anodized Aluminum Oxide Scaffold. Advanced Energy Materials, 2016, 6, 1601055.	10.2	95
84	Solar photovoltaics: current state and trends. Physics-Uspekhi, 2016, 59, 727-772.	0.8	79
85	Trapped charge-driven degradation of perovskite solar cells. Nature Communications, 2016, 7, 13422.	5.8	464
86	Crystallization of HC(NH ₂) ₂ PbI ₃ Black Polymorph by Solvent Intercalation for Low Temperature Solution Processing of Perovskite Solar Cells. Journal of Physical Chemistry C, 2016, 120, 26710-26719.	1.5	29
87	Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime?. Energy and Environmental Science, 2016, 9, 3650-3656.	15.6	239
88	Mesoporous perovskite solar cells and the role of nanoscale compact layers for remarkable all-round high efficiency under both indoor and outdoor illumination. Nano Energy, 2016, 30, 460-469.	8.2	103
89	Color tunable nanopaper solar cells using hybrid CH3NH3PbI3â^xBrx perovskite. Solar Energy, 2016, 139, 458-466.	2.9	33
91	Hysteresisâ€Suppressed Highâ€Efficiency Flexible Perovskite Solar Cells Using Solidâ€State Ionicâ€Liquids for Effective Electron Transport. Advanced Materials, 2016, 28, 5206-5213.	11.1	387
92	An all-solid-state fiber-type solar cell achieving 9.49% efficiency. Journal of Materials Chemistry A, 2016, 4, 10105-10109.	5.2	77
93	Hybrid crystalline-ITO/metal nanowire mesh transparent electrodes and their application for highly flexible perovskite solar cells. NPG Asia Materials, 2016, 8, e282-e282.	3.8	89
94	Relationships among growth mechanism, structure and morphology of PEALD TiO ₂ films: the influence of O ₂ plasma power, precursor chemistry and plasma exposure mode. Nanotechnology, 2016, 27, 305701.	1.3	35

#	Article	IF	CITATIONS
95	Initiating crystal growth kinetics of α-HC(NH2)2PbI3 for flexible solar cells with long-term stability. Nano Energy, 2016, 26, 438-445.	8.2	35
96	Recent advances and challenges of stretchable supercapacitors based on carbon materials. Science China Materials, 2016, 59, 475-494.	3.5	83
97	Highâ€Efficiency Flexible Solar Cells Based on Organometal Halide Perovskites. Advanced Materials, 2016, 28, 4532-4540.	11.1	102
98	A high-performance, flexible and robust metal nanotrough-embedded transparent conducting film for wearable touch screen panels. Nanoscale, 2016, 8, 3916-3922.	2.8	76
99	Recent progress in electron transport layers for efficient perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 3970-3990.	5.2	472
100	Recent progress and challenges of organometal halide perovskite solar cells. Reports on Progress in Physics, 2016, 79, 026501.	8.1	107
101	Efficient, flexible and mechanically robust perovskite solar cells on inverted nanocone plastic substrates. Nanoscale, 2016, 8, 4276-4283.	2.8	99
102	Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chemical Society Reviews, 2016, 45, 655-689.	18.7	1,285
103	Crystal, optical, and electrical characteristics of transparent conducting gallium-doped zinc oxide films deposited on flexible polyethylene naphthalate substrates using radio frequency magnetron sputtering. Materials Research Bulletin, 2016, 79, 90-96.	2.7	28
104	Structure and Growth Control of Organic–Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals. Advanced Science, 2016, 3, 1500392.	5.6	193
105	Organohalide Lead Perovskites for Photovoltaic Applications. Journal of Physical Chemistry Letters, 2016, 7, 851-866.	2.1	159
106	A general non-CH ₃ NH ₃ X (X = I, Br) one-step deposition of CH ₃ NH ₃ PbX ₃ perovskite for high performance solar cells. Journal of Materials Chemistry A, 2016, 4, 3245-3248.	5.2	47
107	Preparation of flexible perovskite solar cells by a gas pump drying method on a plastic substrate. Journal of Materials Chemistry A, 2016, 4, 3704-3710.	5.2	87
108	Facile fabrication of three-dimensional TiO 2 structures for highly efficient perovskite solar cells. Nano Energy, 2016, 22, 499-506.	8.2	40
109	Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body. Applied Energy, 2016, 164, 57-63.	5.1	272
110	High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nature Communications, 2016, 7, 10214.	5.8	534
111	Highly efficient low temperature solution processable planar type CH ₃ NH ₃ PbI ₃ perovskite flexible solar cells. Journal of Materials Chemistry A, 2016, 4, 1572-1578.	5.2	223
112	Recent advancements in perovskite solar cells: flexibility, stability and large scale. Journal of Materials Chemistry A, 2016, 4, 6755-6771.	5.2	137

#	Article	IF	CITATIONS
113	In situ direct growth of single crystalline metal (Co, Ni) selenium nanosheets on metal fibers as counter electrodes toward low-cost, high-performance fiber-shaped dye-sensitized solar cells. Nanoscale, 2016, 8, 2304-2308.	2.8	28
114	An efficient titanium foil based perovskite solar cell: using a titanium dioxide nanowire array anode and transparent poly(3,4-ethylenedioxythiophene) electrode. RSC Advances, 2016, 6, 2778-2784.	1.7	51
115	Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy and Environmental Science, 2016, 9, 12-30.	15.6	449
116	Room-temperature processible TiO2 electron selective layers with controllable crystallinity for high efficiency perovskite photovoltaics. Solar Energy Materials and Solar Cells, 2017, 163, 15-22.	3.0	14
117	Carbon Nanotubes in TiO ₂ Nanofiber Photoelectrodes for Highâ€Performance Perovskite Solar Cells. Advanced Science, 2017, 4, 1600504.	5.6	83
118	High Speed Epitaxial Perovskite Memory on Flexible Substrates. Advanced Materials, 2017, 29, 1605699.	11.1	74
119	Flexible photovoltaic power systems: integration opportunities, challenges and advances. Flexible and Printed Electronics, 2017, 2, 013001.	1.5	41
120	Inverted CH ₃ NH ₃ PbI ₃ perovskite hybrid solar cells with improved flexibility by introducing a polymeric electron conductor. Journal of Materials Chemistry C, 2017, 5, 2883-2891.	2.7	20
121	Efficient planar n-i-p type heterojunction flexible perovskite solar cells with sputtered TiO ₂ electron transporting layers. Nanoscale, 2017, 9, 3095-3104.	2.8	92
122	Effect of the Microstructure of the Functional Layers on the Efficiency of Perovskite Solar Cells. Advanced Materials, 2017, 29, 1601715.	11.1	104
123	23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy, 2017, 2, .	19.8	1,204
124	Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges. Sustainable Energy and Fuels, 2017, 1, 30-55.	2.5	150
125	Tuning the work function of indium-tin-oxide electrodes for low-temperature-processed, titanium-oxide-free perovskite solar cells. Organic Electronics, 2017, 44, 120-125.	1.4	25
126	Multichannel Interdiffusion Driven FASnI ₃ Film Formation Using Aqueous Hybrid Salt/Polymer Solutions toward Flexible Leadâ€Free Perovskite Solar Cells. Advanced Materials, 2017, 29, 1606964.	11.1	137
127	Metalâ€Nanowireâ€Electrodeâ€Based Perovskite Solar Cells: Challenging Issues and New Opportunities. Advanced Energy Materials, 2017, 7, 1602751.	10.2	62
128	Toward Joint Compression–Transmission Optimization for Green Wearable Devices: An Energy-Delay Tradeoff. IEEE Internet of Things Journal, 2017, 4, 1006-1018.	5.5	10
129	Plasma-assisted atomic layer deposition of TiO2 compact layers for flexible mesostructured perovskite solar cells. Solar Energy, 2017, 150, 447-453.	2.9	37
130	Recent progress in hybrid perovskite solar cells based on n-type materials. Journal of Materials Chemistry A 2017 5 10092-10109	5.2	136

#	Article	IF	CITATIONS
131	Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy from human sweat. Energy and Environmental Science, 2017, 10, 1581-1589.	15.6	309
132	Efficient solid-state perovskite solar cells based on nanostructured zinc oxide designed by strategic low temperature water oxidation. Journal of Materials Chemistry C, 2017, 5, 8059-8070.	2.7	45
133	Flexible NIR-transparent perovskite solar cells for all-thin-film tandem photovoltaic devices. Journal of Materials Chemistry A, 2017, 5, 13639-13647.	5.2	68
134	Discontinuous SnO 2 derived blended-interfacial-layer in mesoscopic perovskite solar cells: Minimizing electron transfer resistance and improving stability. Nano Energy, 2017, 38, 358-367.	8.2	47
135	Perovskite solar cells - An overview of critical issues. Progress in Quantum Electronics, 2017, 53, 1-37.	3.5	132
136	Tailoring morphology and thickness of perovskite layer for flexible perovskite solar cells on plastics: The role of CH 3 NH 3 I concentration. Solar Energy, 2017, 147, 222-227.	2.9	17
137	An embedded-PVA@Ag nanofiber network for ultra-smooth, high performance transparent conducting electrodes. Journal of Materials Chemistry C, 2017, 5, 4198-4205.	2.7	35
138	Biaxial Stretchability and Transparency of Ag Nanowire 2D Mass-Spring Networks Prepared by Floating Compression. ACS Applied Materials & Interfaces, 2017, 9, 10865-10873.	4.0	39
139	Boron Doping of Multiwalled Carbon Nanotubes Significantly Enhances Hole Extraction in Carbon-Based Perovskite Solar Cells. Nano Letters, 2017, 17, 2496-2505.	4.5	184
140	A transparent poly(3,4-ethylenedioxylenethiophene):poly(styrene sulfonate) cathode for low temperature processed, metal-oxide free perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 6974-6980.	5.2	60
141	Selfâ€Encapsulating Thermostable and Airâ€Resilient Semitransparent Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1602599.	10.2	129
142	Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Advances, 2017, 7, 17044-17062.	1.7	317
143	Advanced Biowasteâ€Based Flexible Photocatalytic Fuel Cell as a Green Wearable Power Generator. Advanced Materials Technologies, 2017, 2, 1600191.	3.0	22
144	Highly flexible organometal halide perovskite quantum dot based light-emitting diodes on a silver nanowire–polymer composite electrode. Journal of Materials Chemistry C, 2017, 5, 531-538.	2.7	80
145	Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3 perovskite solar cells. Journal of Power Sources, 2017, 341, 340-347.	4.0	86
146	Device architecture for efficient, low-hysteresis flexible perovskite solar cells: Replacing TiO2 with C60 assisted by polyethylenimine ethoxylated interfacial layers. Solar Energy Materials and Solar Cells, 2017, 161, 338-346.	3.0	49
147	Research progress on large-area perovskite thin films and solar modules. Journal of Materiomics, 2017, 3, 231-244.	2.8	75
148	Low temperature perovskite solar cells with an evaporated TiO2 compact layer for perovskite silicon tandem solar cells. Energy Procedia, 2017, 124, 567-576.	1.8	21

#	Article	IF	CITATIONS
149	Highly flexible, high-performance perovskite solar cells with adhesion promoted AuCl ₃ -doped graphene electrodes. Journal of Materials Chemistry A, 2017, 5, 21146-21152.	5.2	92
150	Advanced Photonic Processes for Photovoltaic and Energy Storage Systems. Advanced Materials, 2017, 29, 1700335.	11.1	61
151	Novel Low-Temperature Process for Perovskite Solar Cells with a Mesoporous TiO ₂ Scaffold. ACS Applied Materials & Interfaces, 2017, 9, 30567-30574.	4.0	36
152	Water Vapor Treatment of Low-Temperature Deposited SnO ₂ Electron Selective Layers for Efficient Flexible Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 2118-2124.	8.8	161
153	A Highly Stretchable and Washable All-Yarn-Based Self-Charging Knitting Power Textile Composed of Fiber Triboelectric Nanogenerators and Supercapacitors. ACS Nano, 2017, 11, 9490-9499.	7.3	419
154	Wearable Large cale Perovskite Solarâ€Power Source via Nanocellular Scaffold. Advanced Materials, 2017, 29, 1703236.	11.1	152
155	Efficient and thermally stable inverted perovskite solar cells by introduction of non-fullerene electron transporting materials. Journal of Materials Chemistry A, 2017, 5, 20615-20622.	5.2	74
156	Nucleation and Crystallization Control via Polyurethane to Enhance the Bendability of Perovskite Solar Cells with Excellent Device Performance. Advanced Functional Materials, 2017, 27, 1703061.	7.8	175
157	ITO-Free Flexible Perovskite Solar Cells Based on Roll-to-Roll, Slot-Die Coated Silver Nanowire Electrodes. Solar Rrl, 2017, 1, 1700059.	3.1	78
158	Trapping charges at grain boundaries and degradation of CH ₃ NH ₃ Pb(I _{1â^'<i>x</i>} Br <i>_x</i>) ₃ perovskite solar cells. Nanotechnology, 2017, 28, 315402.	1.3	23
159	Metal Oxides as Efficient Charge Transporters in Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1602803.	10.2	147
160	Morphological zinc stannate: synthesis, fundamental properties and applications. Journal of Materials Chemistry A, 2017, 5, 20534-20560.	5.2	85
161	Efficient and Hysteresisâ€Free Perovskite Solar Cells Based on a Solution Processable Polar Fullerene Electron Transport Layer. Advanced Energy Materials, 2017, 7, 1701144.	10.2	114
162	Simultaneous Top and Bottom Perovskite Interface Engineering by Fullerene Surface Modification of Titanium Dioxide as Electron Transport Layer. ACS Applied Materials & amp; Interfaces, 2017, 9, 29654-29659.	4.0	14
163	Fabrication-Method-Dependent Excited State Dynamics in CH3NH3PbI3 Perovskite Films. Scientific Reports, 2017, 7, 16516.	1.6	5
164	Room-Temperature and Solution-Processable Cu-Doped Nickel Oxide Nanoparticles for Efficient Hole-Transport Layers of Flexible Large-Area Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 41887-41897.	4.0	171
165	Mild solution-processed metal-doped TiO2 compact layers for hysteresis-less and performance-enhanced perovskite solar cells. Journal of Power Sources, 2017, 372, 235-244.	4.0	66
166	Silicotungstate, a Potential Electron Transporting Layer for Low-Temperature Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 25257-25264.	4.0	12

#	Article	IF	CITATIONS
167	Room-Temperature Processing of TiO _{<i>x</i>} Electron Transporting Layer for Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 3206-3210.	2.1	36
168	Factors Influencing the Mechanical Properties of Formamidinium Lead Halides and Related Hybrid Perovskites. ChemSusChem, 2017, 10, 3740-3745.	3.6	80
169	Near-neutral-colored semitransparent perovskite films using a combination of colloidal self-assembly and plasma etching. Solar Energy Materials and Solar Cells, 2017, 160, 193-202.	3.0	47
170	Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy and Environmental Science, 2017, 10, 337-345.	15.6	391
171	Inducing swift nucleation morphology control for efficient planar perovskite solar cells by hot-air quenching. Journal of Materials Chemistry A, 2017, 5, 3812-3818.	5.2	61
172	Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO 2 layer. Nano Energy, 2017, 31, 462-468.	8.2	244
173	Mesoscopic CH ₃ NH ₃ PbI ₃ perovskite solar cells using TiO ₂ inverse opal electron-conducting scaffolds. Journal of Materials Chemistry A, 2017, 5, 1972-1977.	5.2	39
174	Performance variation of bendable polymer electrolyte fuel cell based on Ag nanowire current collector under mixed bending and twisting load. International Journal of Hydrogen Energy, 2017, 42, 1884-1890.	3.8	32
175	W(Nb)O x -based efficient flexible perovskite solar cells: From material optimization to working principle. Nano Energy, 2017, 31, 424-431.	8.2	85
176	Low-temperature easy-processed carbon nanotube contact for high-performance metal- and hole-transporting layer-free perovskite solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332, 265-272.	2.0	25
177	Recent advances of flexible hybrid perovskite solar cells. Journal of the Korean Physical Society, 2017, 71, 593-607.	0.3	16
178	Towards Flexible Transparent Electrodes Based on Carbon and Metallic Materials. Micromachines, 2017, 8, 12.	1.4	42
179	Ultrasonic Spray-Coating of Large-Scale TiO2 Compact Layer for Efficient Flexible Perovskite Solar Cells. Micromachines, 2017, 8, 55.	1.4	27
180	Helical Piezoelectric Energy Harvester and Its Application to Energy Harvesting Garments. Micromachines, 2017, 8, 115.	1.4	35
181	Semitransparent and flexible perovskite solar cell with high visible transmittance based on ultrathin metallic electrodes. Optics Letters, 2017, 42, 1958.	1.7	32
182	Effects of organic solvents for the phenyl-C61-butyric acid methyl ester layer on the performance of inverted perovskite solar cells. Organic Electronics, 2018, 56, 247-253.	1.4	5
183	Energy-harvesting materials for smart fabrics and textiles. MRS Bulletin, 2018, 43, 214-219.	1.7	29
184	Bending Durable and Recyclable Mesostructured Perovskite Solar Cells Based on Superaligned ZnO Nanorod Electrode. Solar Rrl, 2018, 2, 1700194.	3.1	25

#	Article	IF	CITATIONS
186	Inorganic perovskite light emitting diodes with ZnO as the electron transport layer by direct atomic layer deposition. Organic Electronics, 2018, 57, 60-67.	1.4	16
187	Evolution of organometal halide solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 74-107.	5.6	32
188	Tin oxide (SnO2) as effective electron selective layer material in hybrid organic–inorganic metal halide perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 962-970.	7.1	39
189	Multifunctional Wearable Electronic Textiles Using Cotton Fibers with Polypyrrole and Carbon Nanotubes. ACS Applied Materials & Interfaces, 2018, 10, 13783-13795.	4.0	152
190	Efficient, stable and flexible perovskite solar cells using two-step solution-processed SnO2 layers as electron-transport-material. Organic Electronics, 2018, 58, 126-132.	1.4	31
191	Recent developments of truly stretchable thin film electronic and optoelectronic devices. Nanoscale, 2018, 10, 5764-5792.	2.8	91
192	Enhancement of photovoltaic performance of flexible perovskite solar cells by means of ionic liquid interface modification in a low temperature all solution process. Applied Surface Science, 2018, 440, 1116-1122.	3.1	36
193	Al2O3-Interlayer-Enhanced Performance of All-Inorganic Silicon-Quantum-Dot Near-Infrared Light-Emitting Diodes. IEEE Transactions on Electron Devices, 2018, 65, 577-583.	1.6	15
194	Effect of layer number on flexible perovskite solar cells employing multiple layers of graphene as transparent conductive electrodes. Journal of Alloys and Compounds, 2018, 744, 404-411.	2.8	25
195	Self-Powered Wearable Electrocardiography Using a Wearable Thermoelectric Power Generator. ACS Energy Letters, 2018, 3, 501-507.	8.8	226
196	Low-temperature processed non-TiO ₂ electron selective layers for perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 4572-4589.	5.2	65
197	Highly Bendable Flexible Perovskite Solar Cells on a Nanoscale Surface Oxide Layer of Titanium Metal Plates. ACS Applied Materials & Interfaces, 2018, 10, 4697-4704.	4.0	45
198	Selfâ€Doping Fullerene Electrolyteâ€Based Electron Transport Layer for Allâ€Roomâ€Temperatureâ€Processed Highâ€Performance Flexible Polymer Solar Cells. Advanced Functional Materials, 2018, 28, 1705847.	7.8	54
199	All arbonâ€Electrodeâ€Based Endurable Flexible Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1706777.	7.8	242
200	Wearable energy sources based on 2D materials. Chemical Society Reviews, 2018, 47, 3152-3188.	18.7	226
201	Metal Oxides in Photovoltaics: All-Oxide, Ferroic, and Perovskite Solar Cells. , 2018, , 267-356.		34
202	Structural design of a flexible thermoelectric power generator for wearable applications. Applied Energy, 2018, 214, 131-138.	5.1	171
203	The stable perovskite solar cell prepared by rapidly annealing perovskite film with water additive in ambient air. Solar Energy Materials and Solar Cells, 2018, 176, 280-287.	3.0	22

#	Article	IF	Citations
204	Allâ€Solutionâ€Processed Silver Nanowire Window Electrodeâ€Based Flexible Perovskite Solar Cells Enabled with Amorphous Metal Oxide Protection. Advanced Energy Materials, 2018, 8, 1702182.	10.2	108
205	A MiniÂReview: Can Graphene Be a Novel Material for Perovskite Solar Cell Applications?. Nano-Micro Letters, 2018, 10, 27.	14.4	65
206	Spinel Co ₃ O ₄ nanomaterials for efficient and stable large area carbon-based printed perovskite solar cells. Nanoscale, 2018, 10, 2341-2350.	2.8	106
207	Recent advances of flexible perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 673-689.	7.1	75
208	Amorphous Metal Oxide Blocking Layers for Highly Efficient Low-Temperature Brookite TiO ₂ -Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 2224-2229.	4.0	104
209	Nanocrystalline Titanium Metal–Organic Frameworks for Highly Efficient and Flexible Perovskite Solar Cells. ACS Nano, 2018, 12, 4968-4975.	7.3	125
210	Enhanced Crystallization by Methanol Additive in Antisolvent for Achieving Highâ€Quality MAPbl ₃ Perovskite Films in Humid Atmosphere. ChemSusChem, 2018, 11, 2348-2357.	3.6	70
211	Study of carbon-based hole-conductor-free perovskite solar cells. International Journal of Hydrogen Energy, 2018, 43, 11403-11410.	3.8	11
212	A unified theoretical model for Triboelectric Nanogenerators. Nano Energy, 2018, 48, 391-400.	8.2	96
213	Surface Fluorination of ALD TiO ₂ Electron Transport LayerÂfor Efficient Planar Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1701456.	1.9	27
214	15% efficient carbon based planar-heterojunction perovskite solar cells using a TiO ₂ /SnO ₂ bilayer as the electron transport layer. Journal of Materials Chemistry A, 2018, 6, 7409-7419.	5.2	85
215	ZnO/ZnS core-shell composites for low-temperature-processed perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 1461-1467.	7.1	26
216	Fully Solutionâ€Processed TCOâ€Free Semitransparent Perovskite Solar Cells for Tandem and Flexible Applications. Advanced Energy Materials, 2018, 8, 1701569.	10.2	77
217	Stability of Molecular Devices: Halide Perovskite Solar Cells. Green Chemistry and Sustainable Technology, 2018, , 477-531.	0.4	1
218	Frontiers, opportunities, and challenges in perovskite solar cells: A critical review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 1-24.	5.6	329
219	Silver bismuth iodides in various compositions as potential Pb-free light absorbers for hybrid solar cells. Sustainable Energy and Fuels, 2018, 2, 294-302.	2.5	81
220	Recent progress in flexible perovskite solar cells: Materials, mechanical tolerance and stability. Renewable and Sustainable Energy Reviews, 2018, 82, 3127-3151.	8.2	66
221	Recent progress in organohalide lead perovskites for photovoltaic and optoelectronic applications. Coordination Chemistry Reviews, 2018, 373, 258-294.	9.5	67

#	Article	IF	CITATIONS
222	Perovskite/Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] Bulk Heterojunction for High-Efficient Carbon-Based Large-Area Solar Cells by Gradient Engineering. ACS Applied Materials & Interfaces, 2018, 10, 42328-42334.	4.0	37
223	Recent advancements in compact layer development for perovskite solar cells. Heliyon, 2018, 4, e00912.	1.4	20
224	Communication—Fabrication of Imprinted ITO-Free Perovskite Solar Cells. ECS Journal of Solid State Science and Technology, 2018, 7, P651-P653.	0.9	1
225	Ambient Fabrication of 126 μm Thick Complete Perovskite Photovoltaic Device for High Flexibility and Performance. ACS Applied Energy Materials, 2018, 1, 6741-6747.	2.5	30
226	The Impact of Nano―and Microstructure on the Stability of Perovskite Solar Cells. Small, 2018, 14, e1802573.	5.2	42
227	Recent Advances in Synthesis and Properties of Hybrid Halide Perovskites for Photovoltaics. Nano-Micro Letters, 2018, 10, 68.	14.4	50
228	Fully solution-processed indium tin oxide-free textile-based flexible solar cells made of an organic–inorganic perovskite absorber: Toward a wearable power source. Journal of Power Sources, 2018, 402, 327-332.	4.0	34
229	Nature of Power Generation and Output Optimization Criteria for Triboelectric Nanogenerators. Advanced Energy Materials, 2018, 8, 1802190.	10.2	90
230	Flexible single-strand fiber-based woven-structured triboelectric nanogenerator for self-powered electronics. APL Materials, 2018, 6, 101106.	2.2	29
231	Flexible and transparent IWO films prepared by plasma arc ion plating for flexible perovskite solar cells. AIP Advances, 2018, 8, .	0.6	14
232	Novel efficient C60-based inverted perovskite solar cells with negligible hysteresis. Electrochimica Acta, 2018, 288, 115-125.	2.6	40
233	Effects of mixed solvent on morphology of CH3NH3PbI3 absorption layers and photovoltaic performance of perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2018, 29, 18868-18877.	1.1	2
234	Recent progressive efforts in perovskite solar cells toward commercialization. Journal of Materials Chemistry A, 2018, 6, 12215-12236.	5.2	56
235	<i>In situ</i> generation of CoS _{1.097} nanoparticles on S/N co-doped graphene/carbonized foam for mechanically tough and flexible all solid-state supercapacitors. Journal of Materials Chemistry A, 2018, 6, 11966-11977.	5.2	55
236	High-performance electrothermal and anticorrosive transparent heating stickers. Journal of Materials Chemistry A, 2018, 6, 11790-11796.	5.2	13
237	Flexible Allâ€Solidâ€State Supercapacitors of High Areal Capacitance Enabled by Porous Graphite Foams with Diverging Microtubes. Advanced Functional Materials, 2018, 28, 1800601.	7.8	27
238	A flexible tube-based triboelectric–electromagnetic sensor for knee rehabilitation assessment. Sensors and Actuators A: Physical, 2018, 279, 694-704.	2.0	22
239	The effect of bromine doping on the perovskite solar cells modified by PVP/PEG polymer blends. Superlattices and Microstructures, 2018, 120, 279-287.	1.4	4

#	Article	IF	CITATIONS
240	Novel Plasma-Assisted Low-Temperature-Processed SnO ₂ Thin Films for Efficient Flexible Perovskite Photovoltaics. ACS Energy Letters, 2018, 3, 1482-1491.	8.8	75
241	Organic–Inorganic Hybrid Halide Perovskites for Memories, Transistors, and Artificial Synapses. Advanced Materials, 2018, 30, e1704002.	11.1	205
242	Alcohol based vapor annealing of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) layer for performance improvement of inverted perovskite solar cells. Nanoscale, 2018, 10, 11043-11051.	2.8	20
243	Use of Graphene for Solar Cells. Journal of the Korean Physical Society, 2018, 72, 1442-1453.	0.3	21
244	Hole Conductor–Free Perovskite Solar Cells. , 2018, , 289-321.		1
245	Flexible Perovskite Solar Cells. , 2018, , 341-371.		4
246	Perovskite Photovoltaics. , 2018, , 447-480.		7
247	Magnesium-Doped MAPbI ₃ Perovskite Layers for Enhanced Photovoltaic Performance in Humid Air Atmosphere. ACS Applied Materials & Interfaces, 2018, 10, 24543-24548.	4.0	79
248	High-performance inverted two-dimensional perovskite solar cells using non-fullerene acceptor as electron transport layer. Organic Electronics, 2018, 62, 189-194.	1.4	13
249	Allâ€Inorganic CsPb _{1â^'<i>x</i>} Ge _{<i>x</i>} I ₂ Br Perovskite with Enhanced Phase Stability and Photovoltaic Performance. Angewandte Chemie, 2018, 130, 12927-12931.	1.6	31
250	Highly-flexible perovskite photodiodes employing doped multilayer-graphene transparent conductive electrodes. Nanotechnology, 2018, 29, 425203.	1.3	13
251	Metal-based semiconductor nanomaterials for thin-film solar cells. , 2018, , 153-185.		2
252	Nanostructured ZnO electron transporting materials for hysteresis-free perovskite solar cells. Solar Energy, 2018, 173, 496-503.	2.9	23
253	High Bending Durability of Efficient Flexible Perovskite Solar Cells Using Metal Oxide Electron Transport Layer. Journal of Physical Chemistry C, 2018, 122, 17088-17095.	1.5	28
254	Efficient planar heterojunction perovskite solar cells employing a solution-processed Zn-doped NiOX hole transport layer. Electrochimica Acta, 2018, 284, 253-259.	2.6	37
255	Allâ€Inorganic CsPb _{1â^`<i>x</i>} Ge _{<i>x</i>} I ₂ Br Perovskite with Enhanced Phase Stability and Photovoltaic Performance. Angewandte Chemie - International Edition, 2018, 57, 12745-12749.	7.2	157
256	Record Efficiency Stable Flexible Perovskite Solar Cell Using Effective Additive Assistant Strategy. Advanced Materials, 2018, 30, e1801418.	11.1	377
257	Integrating a Triboelectric Nanogenerator and a Zincâ€lon Battery on a Designed Flexible 3D Spacer Fabric. Small Methods, 2018, 2, 1800150.	4.6	78

#	Article	IF	CITATIONS
258	Top Illuminated Hysteresis-Free Perovskite Solar Cells Incorporating Microcavity Structures on Metal Electrodes: A Combined Experimental and Theoretical Approach. ACS Applied Materials & Interfaces, 2018, 10, 17973-17984.	4.0	31
259	Enhanced Performance and Flexibility of Perovskite Solar Cells Based on Microstructured Multilayer Transparent Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 18141-18148.	4.0	23
260	Indium-doped ZnO mesoporous nanofibers as efficient electron transporting materials for perovskite solar cells. Surface and Coatings Technology, 2018, 352, 231-237.	2.2	34
261	All-Solution-Processed Thermally and Chemically Stable Copper–Nickel Core–Shell Nanowire-Based Composite Window Electrodes for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 30337-30347.	4.0	24
262	Seamless Interfacial Formation by Solution-Processed Amorphous Hydroxide Semiconductor for Highly Efficient Electron Transport. ACS Applied Energy Materials, 2018, 1, 4564-4571.	2.5	16
263	Interface Design of Hybrid Electron Extraction Layer for Relieving Hysteresis and Retarding Charge Recombination in Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800993.	1.9	31
264	Electrosprayed Polymer-Hybridized Multidoped ZnO Mesoscopic Nanocrystals Yield Highly Efficient and Stable Perovskite Solar Cells. ACS Omega, 2018, 3, 9648-9657.	1.6	17
265	High-performance metal oxide-free inverted perovskite solar cells using poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) as the hole transport layer. Journal of Materials Chemistry C, 2018, 6, 6975-6981.	2.7	51
266	Flexible and Stretchable Perovskite Solar Cells: Device Design and Development Methods. Small Methods, 2018, 2, 1800031.	4.6	71
267	Low-Temperature Processable Charge Transporting Materials for the Flexible Perovskite Solar Cells. Electronic Materials Letters, 2018, 14, 657-668.	1.0	17
268	Electrochemical Corrosion of Ag Electrode in the Silver Grid Electrodeâ€Based Flexible Perovskite Solar Cells and the Suppression Method. Solar Rrl, 2018, 2, 1800118.	3.1	37
269	Facile Surface Engineering of Nickel Oxide Thin Film for Enhanced Power Conversion Efficiency of Planar Heterojunction Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 15495-15503.	3.2	23
270	Co-harvesting Light and Mechanical Energy Based on Dynamic Metal/Perovskite Schottky Junction. Matter, 2019, 1, 639-649.	5.0	77
271	Real time observation of photo-instability of ternary-halide mixed CH3NH3Pb(Br1-x-yClxly)3 perovskite: Preferential diffusion of small halide ions. Journal of Alloys and Compounds, 2019, 808, 151716.	2.8	5
272	Excitation dynamics of MAPb(I1-xBrx)3 during phase separation by photoirradiation: Evidence of sink, band filling, and Br-Rich phase coarsening. Journal of Alloys and Compounds, 2019, 806, 1180-1187.	2.8	7
273	Sweat sensing in the smart wearables era: Towards integrative, multifunctional and body-compliant perspiration analysis. Sensors and Actuators A: Physical, 2019, 296, 200-221.	2.0	82
274	Device Physics of the Carrier Transporting Layer in Planar Perovskite Solar Cells. Advanced Optical Materials, 2019, 7, 1900407.	3.6	34
275	Functional Oxides for Photoneuromorphic Engineering: Toward a Solar Brain. Advanced Materials Interfaces, 2019, 6, 1900471.	1.9	31

#	Article	IF	CITATIONS
276	Waterproof, Breathable, and Antibacterial Selfâ€Powered eâ€Textiles Based on Omniphobic Triboelectric Nanogenerators. Advanced Functional Materials, 2019, 29, 1904350.	7.8	85
277	Stable power output (PCE>19%) of planar perovskite solar cells with PbCl2 modification at the interface of SnO2/CH3NH3Pbl3. Organic Electronics, 2019, 74, 52-58.	1.4	10
278	High Power UV-Light Irradiation as a New Method for Defect Passivation in Degraded Perovskite Solar Cells to Recover and Enhance the Performance. Scientific Reports, 2019, 9, 9448.	1.6	21
279	Waterâ€Resistant and Flexible Perovskite Solar Cells via a Glued Interfacial Layer. Advanced Functional Materials, 2019, 29, 1902629.	7.8	89
280	A Mechanically Robust Conducting Polymer Network Electrode for Efficient Flexible Perovskite Solar Cells. Joule, 2019, 3, 2205-2218.	11.7	175
281	Ternary diagrams of the phase, optical bandgap energy and photoluminescence of mixed-halide perovskites. Acta Materialia, 2019, 181, 460-469.	3.8	14
283	Toward clean production of plastic perovskite solar cell: Composition-tailored perovskite absorber made from aqueous lead nitrate precursor. Nano Energy, 2019, 65, 104036.	8.2	15
284	Photo-annealed amorphous titanium oxide for perovskite solar cells. Nanoscale, 2019, 11, 19488-19496.	2.8	12
285	High Efficient Large-area Perovskite Solar Cells Based on Paintable Carbon Electrode with NiO Nanocrystal-carbon Intermediate Layer. Chemistry Letters, 2019, 48, 734-737.	0.7	8
286	Flexible Perovskite Solar Cells. Joule, 2019, 3, 1850-1880.	11.7	242
286 287	Flexible Perovskite Solar Cells. Joule, 2019, 3, 1850-1880. Facile Interfacial Engineering of Mesoporous TiO2 for Low-Temperature Processed Perovskite Solar Cells. Nanomaterials, 2019, 9, 1220.	11.7	242 7
	Facile Interfacial Engineering of Mesoporous TiO2 for Low-Temperature Processed Perovskite Solar		
287	Facile Interfacial Engineering of Mesoporous TiO2 for Low-Temperature Processed Perovskite Solar Cells. Nanomaterials, 2019, 9, 1220. Achieving efficient flexible perovskite solar cells with room-temperature processed tungsten oxide	1.9	7
287 288	 Facile Interfacial Engineering of Mesoporous TiO2 for Low-Temperature Processed Perovskite Solar Cells. Nanomaterials, 2019, 9, 1220. Achieving efficient flexible perovskite solar cells with room-temperature processed tungsten oxide electron transport layer. Journal of Power Sources, 2019, 440, 227157. Nacre-inspired crystallization and elastic "brick-and-mortarâ€-structure for a wearable perovskite 	1.9 4.0	7 24
287 288 289	 Facile Interfacial Engineering of Mesoporous TiO2 for Low-Temperature Processed Perovskite Solar Cells. Nanomaterials, 2019, 9, 1220. Achieving efficient flexible perovskite solar cells with room-temperature processed tungsten oxide electron transport layer. Journal of Power Sources, 2019, 440, 227157. Nacre-inspired crystallization and elastic "brick-and-mortarâ€-structure for a wearable perovskite solar module. Energy and Environmental Science, 2019, 12, 979-987. Atomic layer deposition for efficient and stable perovskite solar cells. Chemical Communications, 	1.9 4.0 15.6	7 24 114
287 288 289 290	Facile Interfacial Engineering of Mesoporous TiO2 for Low-Temperature Processed Perovskite Solar Cells. Nanomaterials, 2019, 9, 1220. Achieving efficient flexible perovskite solar cells with room-temperature processed tungsten oxide electron transport layer. Journal of Power Sources, 2019, 440, 227157. Nacre-inspired crystallization and elastic "brick-and-mortarâ€-structure for a wearable perovskite solar module. Energy and Environmental Science, 2019, 12, 979-987. Atomic layer deposition for efficient and stable perovskite solar cells. Chemical Communications, 2019, 55, 2403-2416. Recent Progress of Flexible Perovskite Solar Cells. Physica Status Solidi - Rapid Research Letters, 2019,	1.9 4.0 15.6 2.2	7 24 114 76
287 288 289 290 291	Facile Interfacial Engineering of Mesoporous TiO2 for Low-Temperature Processed Perovskite Solar Cells. Nanomaterials, 2019, 9, 1220. Achieving efficient flexible perovskite solar cells with room-temperature processed tungsten oxide electron transport layer. Journal of Power Sources, 2019, 440, 227157. Nacre-inspired crystallization and elastic "brick-and-mortarâ€-structure for a wearable perovskite solar module. Energy and Environmental Science, 2019, 12, 979-987. Atomic layer deposition for efficient and stable perovskite solar cells. Chemical Communications, 2019, 55, 2403-2416. Recent Progress of Flexible Perovskite Solar Cells. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800566. Energy scavenging from ultra-low temperature gradients. Energy and Environmental Science, 2019, 12,	1.9 4.0 15.6 2.2 1.2	7 24 114 76 36

# 296	ARTICLE Waterâ€Assisted Liftoff of Polycrystalline CdS/CdTe Thin Films Using Heterogeneous Interfacial Engineering. Advanced Materials Interfaces, 2019, 6, 1900300.	IF 1.9	CITATIONS
297	Pyridine-Functionalized Fullerene Electron Transport Layer for Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 23982-23989.	4.0	40
298	Spin-Coating Process for 10 cm × 10 cm Perovskite Solar Modules Enabled by Self-Assembly of SnO ₂ Nanocolloids. ACS Energy Letters, 2019, 4, 1845-1851.	8.8	56
299	A bionic stretchable nanogenerator for underwater sensing and energy harvesting. Nature Communications, 2019, 10, 2695.	5.8	413
300	Graphene and carbon nanotube-based solar cells. , 2019, , 603-660.		2
301	An Excellent Modifier: Carbon Quantum Dots for Highly Efficient Carbonâ€Electrodeâ€Based Methylammonium Lead Iodide Solar Cells. Solar Rrl, 2019, 3, 1900146.	3.1	27
302	Chemical Bath Deposition of Coâ€Doped TiO ₂ Electron Transport Layer for Hysteresisâ€Suppressed Highâ€Efficiency Planar Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900176.	3.1	36
303	Multi-functional transparent electrode for reliable flexible perovskite solar cells. Journal of Power Sources, 2019, 435, 226768.	4.0	23
304	Low-Temperature Processed TiOx/Zn1â^'xCdxS Nanocomposite for Efficient MAPbIxCl1â^'x Perovskite and PCDTBT:PC70BM Polymer Solar Cells. Polymers, 2019, 11, 980.	2.0	4
306	Ultraflexible and biodegradable perovskite solar cells utilizing ultrathin cellophane paper substrates and TiO2/Ag/TiO2 transparent electrodes. Solar Energy, 2019, 188, 158-163.	2.9	32
307	Metal Oxide Charge Transport Layers for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1900455.	7.8	186
308	Dependence of ITOâ€Coated Flexible Substrates in the Performance and Bending Durability of Perovskite Solar Cells. Advanced Engineering Materials, 2019, 21, 1900288.	1.6	32
309	Nanomechanical Approach for Flexibility of Organic–Inorganic Hybrid Perovskite Solar Cells. Nano Letters, 2019, 19, 3707-3715.	4.5	42
310	Vacuum-free fabrication of high-performance semitransparent perovskite solar cells via e-glue assisted lamination process. Science China Chemistry, 2019, 62, 875-882.	4.2	7
311	Study of perovskite solar cells based on mixed-organic-cation FA _x MA _{1â^'x} Pbl ₃ absorption layer. Physical Chemistry Chemical Physics, 2019, 21, 11822-11828.	1.3	14
312	Cableâ€Shaped Lithium–Sulfur Batteries Based on Nitrogenâ€Đoped Carbon/Carbon Nanotube Composite Yarns. Macromolecular Materials and Engineering, 2019, 304, 1900201.	1.7	5
313	Enhancing the optical properties using hemisphere TiO2 photonic crystal as the electron acceptor for perovskite solar cell. Applied Surface Science, 2019, 487, 409-415.	3.1	25
314	Controlling the transformation of intermediate phase under near-room temperature for improving the performance of perovskite solar cells. Solar Energy, 2019, 186, 225-232.	2.9	10

	Сіта	ATION REPORT	
#	Article	IF	CITATIONS
315	Flexible Sensors—From Materials to Applications. Technologies, 2019, 7, 35.	3.0	139
316	Non-hydrolytic sol-gel route to synthesize TiO2 nanoparticles under ambient condition for highly efficient and stable perovskite solar cells. Solar Energy, 2019, 185, 307-314.	2.9	25
317	Flexible and Highly Durable Perovskite Solar Cells with a Sandwiched Device Structure. ACS Applied Materials & Interfaces, 2019, 11, 17475-17481.	4.0	13
318	Highly flexible, robust, stable and high efficiency perovskite solar cells enabled by van der Waals epitaxy on mica substrate. Nano Energy, 2019, 60, 476-484.	8.2	66
319	Real-time <i>in situ</i> ellipsometric monitoring of aluminum nitride film growth via hollow-cathode plasma-assisted atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	19
320	Recent Advances in Mechanically Robust and Stretchable Bulk Heterojunction Polymer Solar Cells. Chemical Record, 2019, 19, 1008-1027.	2.9	43
321	A C ₆₀ /TiO _x bilayer for conformal growth of perovskite films for UV stable perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 11086-11094.	5.2	64
322	Toward an alternative approach for the preparation of low-temperature titanium dioxide blocking underlayers for perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 10729-10738.	5.2	13
323	Perovskite photo-detectors (PVSK-PDs) for visible light communication. Organic Electronics, 2019, 69, 220-226.	1.4	25
324	High-performance flexible Bi2Te3 films based wearable thermoelectric generator for energy harvesting. Energy, 2019, 175, 292-299.	4.5	104
325	Pinhole-free TiO ₂ /Ag _(O) /ZnO configuration for flexible perovskite solar cells with ultralow optoelectrical loss. RSC Advances, 2019, 9, 9160-9170.	1.7	25
326	Wearable Power Source: A Newfangled Feasibility for Perovskite Photovoltaics. ACS Energy Letters, 2019, 4, 1065-1072.	8.8	45
327	Review Article: Atomic layer deposition of optoelectronic materials. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, .	0.6	48
328	Black body-like radiative cooling for flexible thin-film solar cells. Solar Energy Materials and Solar Cells, 2019, 194, 222-228.	3.0	56
329	Wearable biosensors for healthcare monitoring. Nature Biotechnology, 2019, 37, 389-406.	9.4	1,895
330	Co-axial electrospray: a versatile tool to fabricate hybrid electron transporting materials for high efficiency and stable perovskite photovoltaics. Nanoscale Advances, 2019, 1, 1297-1304.	2.2	4
331	Wearable and Implantable Electronics: Moving toward Precision Therapy. ACS Nano, 2019, 13, 12280-12286.	7.3	150
332	Highly efficient walking perovskite solar cells based on thermomechanical polymer films. Journal of Materials Chemistry A, 2019, 7, 26154-26161.	5.2	12

#	Article	IF	CITATIONS
333	Ultra-flexible perovskite solar cells with crumpling durability: toward a wearable power source. Energy and Environmental Science, 2019, 12, 3182-3191.	15.6	136
334	Flexible high-efficiency CZTSSe solar cells on stainless steel substrates. Journal of Materials Chemistry A, 2019, 7, 24891-24899.	5.2	27
335	Pulsed laser deposition of amorphous InGaZnO ₄ as an electron transport layer for perovskite solar cells. Journal of Advanced Dielectrics, 2019, 09, 1950042.	1.5	4
336	A complete tattoo-based wireless biofuel cell using lactate directly from sweat as fuel. Journal of Physics: Conference Series, 2019, 1407, 012028.	0.3	11
337	Singleâ€Walled Carbon Nanotubes in Emerging Solar Cells: Synthesis and Electrode Applications. Advanced Energy Materials, 2019, 9, 1801312.	10.2	86
338	Recent advancements in and perspectives on flexible hybrid perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 888-900.	5.2	60
339	Improved stability of perovskite solar cells with enhanced moisture-resistant hole transport layers. Electrochimica Acta, 2019, 296, 508-516.	2.6	17
340	Effective control of the length of ZnO-TiO2 nanorod arrays as electron transport layer of perovskite solar cells with enhanced performance. Materials Science in Semiconductor Processing, 2019, 91, 66-72.	1.9	12
341	Melamine Hydroiodide Functionalized MAPbI ₃ Perovskite with Enhanced Photovoltaic Performance and Stability in Ambient Atmosphere. Solar Rrl, 2019, 3, 1800275.	3.1	18
342	2D photonic crystal nanodisk array as electron transport layer for highly efficient perovskite solar cells. Nano Energy, 2019, 56, 365-372.	8.2	39
343	Highâ€Efficient Flexible Perovskite Solar Cells with Low Temperature TiO ₂ Layer via UV/Ozone Photoâ€Annealing Treatment. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800669.	0.8	14
344	Thin film flexible/bendable acoustic wave devices: Evolution, hybridization and decoupling of multiple acoustic wave modes. Surface and Coatings Technology, 2019, 357, 587-594.	2.2	26
345	Ni–P and TiO2 codeposition on silk textile via supercritical CO2 promoted electroless plating for flexible and wearable photocatalytic devices. Electrochimica Acta, 2019, 294, 68-75.	2.6	28
346	High-performance metal-oxide-free perovskite solar cells based on organic electron transport layer and cathode. Organic Electronics, 2019, 64, 195-201.	1.4	12
347	High performance of low-temperature processed perovskite solar cells based on a polyelectrolyte interfacial layer of PEI. Organic Electronics, 2019, 65, 19-25.	1.4	13
348	Wearable and durable triboelectric nanogenerators via polyaniline coated cotton textiles as a movement sensor and self-powered system. Nano Energy, 2019, 55, 305-315.	8.2	117
349	Hybrid dual-functioning electrodes for combined ambient energy harvesting and charge storage: Towards self-powered systems. Biosensors and Bioelectronics, 2019, 126, 275-291.	5.3	28
350	Flexible Perowskitâ€Solarzellen: Herstellung und Anwendungen. Angewandte Chemie, 2019, 131, 4512-4530.	1.6	27

#	Article	IF	CITATIONS
351	Recent Advances in Flexible Perovskite Solar Cells: Fabrication and Applications. Angewandte Chemie - International Edition, 2019, 58, 4466-4483.	7.2	290
352	Integrating a photovoltaic storage system in one device: A critical review. Progress in Photovoltaics: Research and Applications, 2019, 27, 346-370.	4.4	81
353	Enhanced efficiency and stability of perovskite solar cells using polymer-coated bilayer zinc oxide nanocrystals as the multifunctional electronâ€ŧransporting layer. Journal of Colloid and Interface Science, 2019, 538, 426-432.	5.0	10
354	A solution-processed cobalt-doped nickel oxide for high efficiency inverted type perovskite solar cells. Journal of Power Sources, 2019, 412, 425-432.	4.0	55
355	Solution-processed barium hydroxide modified boron-doped ZnO bilayer electron transporting materials: Toward stable perovskite solar cells with high efficiency of over 20.5%. Journal of Colloid and Interface Science, 2019, 535, 353-362.	5.0	15
356	Atomic layer deposition enabling higher efficiency solar cells: A review. Nano Materials Science, 2020, 2, 204-226.	3.9	44
357	Thermoelectric generators for wearable body heat harvesting: Material and device concurrent optimization. Nano Energy, 2020, 67, 104265.	8.2	65
358	Flexible perovskite solar cells: device design and perspective. Flexible and Printed Electronics, 2020, 5, 013002.	1.5	17
359	Atomic Layer Deposition of Functional Layers in Planar Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900332.	3.1	46
360	Concave and Convex Bending Influenced Mechanical Stability in Flexible Perovskite Solar Cells. Journal of Physical Chemistry C, 2020, 124, 2340-2345.	1.5	14
361	Air-processed and mixed-cation single crystal engineering-based perovskite films for efficient and air-stable perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2020, 31, 2167-2176.	1.1	11
362	Highly Transparent, Thermally Stable, and Mechanically Robust Hybrid Cellulose-Nanofiber/Polymer Substrates for the Electrodes of Flexible Solar Cells. ACS Applied Energy Materials, 2020, 3, 785-793.	2.5	23
363	Recent Advances of Device Components toward Efficient Flexible Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900485.	3.1	29
364	Chlorineâ€modified SnO ₂ electron transport layer for highâ€efficiency perovskite solar cells. InformaÄnÃ-Materiály, 2020, 2, 401-408.	8.5	48
365	Toward Highâ€Throughput Texturing of Polymer Foils for Enhanced Light Trapping in Flexible Perovskite Solar Cells Using Rollâ€ŧoâ€Roll Hot Embossing. Advanced Engineering Materials, 2020, 22, 1901217.	1.6	24
366	Stability of materials and complete devices. , 2020, , 197-215.		1
367	Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Applied Energy, 2020, 258, 114069.	5.1	356
368	Large-Area Exfoliated Lead-Free Perovskite-Derivative Single-Crystalline Membrane for Flexible Low-Defect Photodetectors. ACS Applied Materials & Interfaces, 2020, 12, 9141-9149.	4.0	36

#	Article	IF	CITATIONS
369	Improving the performance of lead-acetate-based perovskite solar cells using solvent controlled crystallization process. Organic Electronics, 2020, 78, 105552.	1.4	12
370	ALD Al2O3 on hybrid perovskite solar cells: Unveiling the growth mechanism and long-term stability. Solar Energy Materials and Solar Cells, 2020, 205, 110289.	3.0	33
371	Thermal-assisted photo-annealed TiO2 thin films for perovskite solar cells fabricated under ambient air. Applied Surface Science, 2020, 530, 147221.	3.1	5
372	UV–O ₃ treated annealing-free cerium oxide as electron transport layers in flexible planar perovskite solar cells. Nanoscale Advances, 2020, 2, 4062-4069.	2.2	15
373	Inkâ€Based Additive Nanomanufacturing of Functional Materials for Humanâ€integrated Smart Wearables. Advanced Intelligent Systems, 2020, 2, 2000117.	3.3	17
374	TiO ₂ Colloidâ€5pray Coated Electronâ€Transporting Layers for Efficient Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2001799.	10.2	45
375	Embedded Nickelâ€Mesh Transparent Electrodes for Highly Efficient and Mechanically Stable Flexible Perovskite Photovoltaics: Toward a Portable Mobile Energy Source. Advanced Materials, 2020, 32, e2003422.	11.1	62
376	A Flexible Microâ€Thermoelectric Generator Sticker with Trapezoidalâ€Shaped Legs for Large Temperature Gradient and Highâ€Power Density. Advanced Materials Technologies, 2020, 5, 2000486.	3.0	10
377	Choose Your Own Adventure: Fabrication of Monolithic Allâ€Perovskite Tandem Photovoltaics. Advanced Materials, 2020, 32, e2003312.	11.1	39
378	Applications of atomic layer deposition and chemical vapor deposition for perovskite solar cells. Energy and Environmental Science, 2020, 13, 1997-2023.	15.6	102
379	Efficient Flexible Perovskite Solar Cells Using Low-Cost Cu Top and Bottom Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 26050-26059.	4.0	26
380	Electrospinning Combined with Atomic Layer Deposition to Generate Applied Nanomaterials: A Review. ACS Applied Nano Materials, 2020, 3, 6186-6209.	2.4	23
381	Electron Transport Materials: Evolution and Case Study for Highâ€Efficiency Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000136.	3.1	32
382	Flexible optoelectronic devices based on metal halide perovskites. Nano Research, 2020, 13, 1997-2018.	5.8	52
383	Critical review of recent progress of flexible perovskite solar cells. Materials Today, 2020, 39, 66-88.	8.3	169
384	Highly efficient bifacial semitransparent perovskite solar cells based on molecular doping of CuSCN hole transport layer*. Chinese Physics B, 2020, 29, 078801.	0.7	12
385	Buckling Instability Control of 1D Nanowire Networks for a Largeâ€Area Stretchable and Transparent Electrode. Advanced Functional Materials, 2020, 30, 1910214.	7.8	42
386	Solution-Processed Polymeric Thin Film as the Transparent Electrode for Flexible Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 15456-15463.	4.0	16

		REPORT	
#	Article	IF	CITATIONS
387	Advances in stable and flexible perovskite solar cells. Current Applied Physics, 2020, 20, 720-737.	1.1	20
388	Smart Textiles for Electricity Generation. Chemical Reviews, 2020, 120, 3668-3720.	23.0	644
389	Beneficial Effect of Manganese(II) Ions on the Morphology of Polyol Synthesised Silver Nanowires. Electronic Materials Letters, 2020, 16, 264-275.	1.0	4
390	Effect of Annealing Temperature on Spatial Atomic Layer Deposited Titanium Oxide and Its Application in Perovskite Solar Cells. Nanomaterials, 2020, 10, 1322.	1.9	17
391	Rational Interface Design and Morphology Control for Blade oating Efficient Flexible Perovskite Solar Cells with a Record Fill Factor of 81%. Advanced Functional Materials, 2020, 30, 2001240.	7.8	77
392	Recent trends in efficiency-stability improvement in perovskite solar cells. Materials Today Energy, 2020, 17, 100449.	2.5	43
393	Reliability of R2R-printed, flexible electrodes for e-clothing applications. Npj Flexible Electronics, 2020, 4, .	5.1	25
394	Low-Temperature Solution-Processed Amorphous Titania Nanowire Thin Films for 1 cm ² Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 11450-11458.	4.0	9
395	Bending fatigue damage reduction in indium tin oxide (ITO) by polyimide and ethylene vinyl acetate encapsulation for flexible solar cells. Engineering Research Express, 2020, 2, 015022.	0.8	10
396	Surface Engineering of Low-Temperature Processed Mesoporous TiO ₂ via Oxygen Plasma for Flexible Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 12648-12655.	4.0	33
397	Polyolefin Elastomer as the Anode Interfacial Layer for Improved Mechanical and Air Stabilities in Nonfullerene Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 10706-10716.	4.0	24
398	Solution-Processed Transparent Electrodes for Emerging Thin-Film Solar Cells. Chemical Reviews, 2020, 120, 2049-2122.	23.0	152
399	High-Efficiency Flexible Perovskite Solar Cells Enabled by an Ultrafast Room-Temperature Reactive Ion Etching Process. ACS Applied Materials & Interfaces, 2020, 12, 7125-7134.	4.0	8
400	Progress of Highâ€Throughput and Lowâ€Cost Flexible Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900556.	3.1	43
401	Recent progress in flexible–wearable solar cells for self-powered electronic devices. Energy and Environmental Science, 2020, 13, 685-743.	15.6	340
402	Balanced strain-dependent carrier dynamics in flexible organic–inorganic hybrid perovskites. Journal of Materials Chemistry C, 2020, 8, 3374-3379.	2.7	20
403	Surface Functionalization of a Graphene Cathode to Facilitate ALD Growth of an Electron Transport Layer and Realize High-Performance Flexible Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 4208-4216.	2.5	18
404	Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator. Nano Energy, 2020, 73, 104773.	8.2	135

#	Article	IF	CITATIONS
405	Recent advances on synthesis and applications of lead- and tin-free perovskites. Journal of Alloys and Compounds, 2020, 835, 155112.	2.8	19
406	Highly efficient flexible perovskite solar cells made via ultrasonic vibration assisted room temperature cold sintering. Chemical Engineering Journal, 2020, 394, 124887.	6.6	23
407	Spray-coated SnO2 electron transport layer with high uniformity for planar perovskite solar cells. Frontiers of Chemical Science and Engineering, 2021, 15, 180-186.	2.3	18
408	Review on applications of PEDOTs and PEDOT:PSS in perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2021, 32, 12746-12757.	1.1	59
409	Current advancements on charge selective contact interfacial layers and electrodes in flexible hybrid perovskite photovoltaics. Journal of Energy Chemistry, 2021, 54, 151-173.	7.1	51
410	Anisotropic In Situ Strainâ€Engineered Halide Perovskites for High Mechanical Flexibility. Advanced Functional Materials, 2021, 31, 2007131.	7.8	22
411	Colored MAPbI3 perovskite solar cells based on SnO2–SiO2 distributed Bragg reflectors. Materials Letters, 2021, 282, 128828.	1.3	8
412	Progress in Materials Development for Flexible Perovskite Solar Cells and Future Prospects. ChemSusChem, 2021, 14, 512-538.	3.6	38
413	Lowâ€Temperatureâ€Deposited TiO ₂ Nanopillars for Efficient and Flexible Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2001512.	1.9	11
414	Review and perspective of materials for flexible solar cells. Materials Reports Energy, 2021, 1, 100001.	1.7	54
415	Highly thermo-conductive but electrically insulating filament via a volume-confinement self-assembled strategy for thermoelectric wearables. Chemical Engineering Journal, 2021, 421, 127764.	6.6	14
416	Recent cutting-edge strategies for flexible perovskite solar cells toward commercialization. Chemical Communications, 2021, 57, 11604-11612.	2.2	6
417	Mechanical ductile detwinning in CH ₃ NH ₃ PbI ₃ perovskite. Physical Chemistry Chemical Physics, 2021, 23, 21863-21873.	1.3	0
418	Recent advances in wearable self-powered energy systems based on flexible energy storage devices integrated with flexible solar cells. Journal of Materials Chemistry A, 2021, 9, 18887-18905.	5.2	47
419	Strategies of perovskite mechanical stability for flexible photovoltaics. Materials Chemistry Frontiers, 2021, 5, 7467-7478.	3.2	9
420	Power generation for wearable systems. Energy and Environmental Science, 2021, 14, 2114-2157.	15.6	178
421	M13 bacteriophage-templated gold nanowires as stretchable electrodes in perovskite solar cells. Materials Advances, 2021, 2, 488-496.	2.6	10
422	Foldable Perovskite Solar Cells Using Carbon Nanotubeâ€Embedded Ultrathin Polyimide Conductor. Advanced Science, 2021, 8, 2004092.	5.6	60

#	Article	IF	CITATIONS
423	Low-temperature-processed metal oxide electron transport layers for efficient planar perovskite solar cells. Rare Metals, 2021, 40, 2730-2746.	3.6	34
424	An organic-inorganic hybrid hole transport bilayer for improving the performance of perovskite solar cells. Chemical Physics, 2021, 542, 111061.	0.9	9
425	Charge Transporting Materials Grown by Atomic Layer Deposition in Perovskite Solar Cells. Energies, 2021, 14, 1156.	1.6	4
426	Piezoelectric energy harvesting for selfâ€powered wearable upper limb applications. Nano Select, 2021, 2, 1459-1479.	1.9	72
427	Skin Electronics: Nextâ€Generation Device Platform for Virtual and Augmented Reality. Advanced Functional Materials, 2021, 31, 2009602.	7.8	100
428	A self-sustainable wearable multi-modular E-textile bioenergy microgrid system. Nature Communications, 2021, 12, 1542.	5.8	164
429	Moistureâ€Triggered Selfâ€Healing Flexible Perovskite Photodetectors with Excellent Mechanical Stability. Advanced Materials, 2021, 33, e2100625.	11.1	63
430	Rapid fabrication of high-performance transparent electrodes by electrospinning of reactive silver ink containing nanofibers. Journal of Industrial and Engineering Chemistry, 2021, 95, 109-119.	2.9	16
431	Strong dark current suppression in flexible organic photodetectors by carbon nanotube transparent electrodes. Nano Today, 2021, 37, 101081.	6.2	50
432	Highly efficient and stable flexible perovskite solar cells enabled by using plasma-polymerized-fluorocarbon antireflection layer. Nano Energy, 2021, 82, 105737.	8.2	46
433	Electrical degradation and recovery of NiO/ZnO visible-light-transparent flexible solar cells. Japanese Journal of Applied Physics, 2021, 60, 064001.	0.8	0
434	Flexible Hybrid Photo-Thermoelectric Generator Based on Single Thermoelectric Effect for Simultaneously Harvesting Thermal and Radiation Energies. ACS Applied Materials & Interfaces, 2021, 13, 21401-21410.	4.0	24
435	Comparative performance analysis of mixed halide perovskite solar cells with different transport layers and back metal contacts. Semiconductor Science and Technology, 2021, 36, 065010.	1.0	22
436	All-yarn triboelectric nanogenerator and supercapacitor based self-charging power cloth for wearable applications. Nanotechnology, 2021, 32, 315404.	1.3	22
437	Halide Perovskites: A New Era of Solutionâ€Processed Electronics. Advanced Materials, 2021, 33, e2005000.	11.1	138
438	Energy Solutions for Wearable Sensors: A Review. Sensors, 2021, 21, 3806.	2.1	47
439	Merging Biology and Photovoltaics: How Nature Helps Sun atching. Advanced Energy Materials, 2021, 11, 2100520.	10.2	15
440	N-doped anatase TiO2 as an efficient electron-transporting layer for mesoporous perovskite solar cells. Applied Physics Express, 0, , .	1.1	3

#	Article	IF	CITATIONS
441	Bioinspired liquid-repelling sealing films for flexible perovskite solar cells. Materials Today Energy, 2021, 20, 100622.	2.5	5
442	3D Heterogeneous Device Arrays for Multiplexed Sensing Platforms Using Transfer of Perovskites. Advanced Materials, 2021, 33, e2101093.	11.1	33
443	Progress on Self-Powered Wearable and Implantable Systems Driven by Nanogenerators. Micromachines, 2021, 12, 666.	1.4	23
444	Solid-State Double-Network Hydrogel Redox Electrolytes for High-Performance Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13, 34168-34177.	4.0	16
445	A Liquid-Metal-Based Freestanding Triboelectric Generator for Low-Frequency and Multidirectional Vibration. Frontiers in Materials, 2021, 8, .	1.2	4
446	Flexible Perovskite Solar Cells with High Power-Per-Weight: Progress, Application, and Perspectives. ACS Energy Letters, 2021, 6, 2917-2943.	8.8	100
447	Nature-inspired self-powered cellulose nanofibrils hydrogels with high sensitivity and mechanical adaptability. Carbohydrate Polymers, 2021, 264, 117995.	5.1	43
448	A Review on Emerging Barrier Materials and Encapsulation Strategies for Flexible Perovskite and Organic Photovoltaics. Advanced Energy Materials, 2021, 11, 2101383.	10.2	57
449	Defect Passivation Effect of Chemical Groups on Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 34161-34170.	4.0	33
450	Recent progress of flexible perovskite solar cells. Nano Today, 2021, 39, 101155.	6.2	61
		0.2	
451	Immediate and Temporal Enhancement of Power Conversion Efficiency in Surface-Passivated Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 39178-39185.	4.0	10
451 452			10 43
	Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 39178-39185.	4.0	
452	Solar Cells. ACS Applied Materials & amp; Interfaces, 2021, 13, 39178-39185. Mechanics-coupled stability of metal-halide perovskites. Matter, 2021, 4, 2765-2809. Research on thermal properties of flexible electronic devices under solar radiation. AIP Advances,	4.0 5.0	43
452 453	Solar Cells. ACS Applied Materials & amp; Interfaces, 2021, 13, 39178-39185. Mechanics-coupled stability of metal-halide perovskites. Matter, 2021, 4, 2765-2809. Research on thermal properties of flexible electronic devices under solar radiation. AIP Advances, 2021, 11, 095309. High power density of radiative-cooled compact thermoelectric generator based on body heat	4.0 5.0 0.6	43 0
452 453 454	Solar Cells. ACS Applied Materials & amp; Interfaces, 2021, 13, 39178-39185. Mechanics-coupled stability of metal-halide perovskites. Matter, 2021, 4, 2765-2809. Research on thermal properties of flexible electronic devices under solar radiation. AIP Advances, 2021, 11, 095309. High power density of radiative-cooled compact thermoelectric generator based on body heat harvesting. Nano Energy, 2021, 87, 106180. Washable, breathable, and stretchable e-textiles wirelessly powered by omniphobic silk-based coils.	4.0 5.0 0.6 8.2	43 0 68
452 453 454 455	Solar Cells. ACS Applied Materials & amp; Interfaces, 2021, 13, 39178-39185. Mechanics-coupled stability of metal-halide perovskites. Matter, 2021, 4, 2765-2809. Research on thermal properties of flexible electronic devices under solar radiation. AIP Advances, 2021, 11, 095309. High power density of radiative-cooled compact thermoelectric generator based on body heat harvesting. Nano Energy, 2021, 87, 106180. Washable, breathable, and stretchable e-textiles wirelessly powered by omniphobic silk-based coils. Nano Energy, 2021, 87, 106155. Low-Temperature-Processed Transparent Electrodes Based on Compact and Mesoporous Titanium	4.0 5.0 0.6 8.2 8.2	43 0 68 27

#	Article	IF	CITATIONS
459	Ultrafast photo-induced carrier dynamics of FAPbI3-MAPbBr3 perovskite films fabricated with additives and a hole transport material. Chemical Physics Letters, 2021, 784, 139100.	1.2	4
460	W-doped TiO2 as electron transport layer for high performance solution-processed perovskite solar cells. Applied Surface Science, 2021, 563, 150298.	3.1	15
461	Wearable self-powered human motion sensors based on highly stretchable quasi-solid state hydrogel. Nano Energy, 2021, 88, 106272.	8.2	58
462	Highly stable inverted non-fullerene OSCs by surface modification of SnO2 with an easy-accessible material. Chemical Engineering Journal, 2021, 426, 131583.	6.6	8
463	Metal Oxides for Perovskite Solar Cells. , 2021, , 197-233.		3
464	Enhanced resistive switching performance in yttrium-doped CH ₃ NH ₃ Pbl ₃ perovskite devices. Physical Chemistry Chemical Physics, 2021, 23, 21757-21768.	1.3	12
465	Aligned carbon nanotube fibers for fiber-shaped solar cells, supercapacitors and batteries. RSC Advances, 2021, 11, 6628-6643.	1.7	10
466	Foldable solar cells: Structure design and flexible materials. Nano Select, 2021, 2, 865-879.	1.9	1
467	Textile triboelectric nanogenerators for self-powered biomonitoring. Journal of Materials Chemistry A, 2021, 9, 19149-19178.	5.2	55
468	Flexible solar-rechargeable energy system. Energy Storage Materials, 2020, 32, 356-376.	9.5	23
469	A stable, efficient textile-based flexible perovskite solar cell with improved washable and deployable capabilities for wearable device applications. RSC Advances, 2017, 7, 54361-54368.	1.7	51
470	Flexible and highly efficient perovskite solar cells with a large active area incorporating cobalt-doped poly(3-hexylthiophene) for enhanced open-circuit voltage. Journal of Materials Chemistry A, 2017, 5, 12158-12167.	5.2	54
471	Hole transport free flexible perovskite solar cells with cost-effective carbon electrodes. Nanotechnology, 2021, 32, 105205.	1.3	7
472	Progress and Prospect on Stability of Perovskite Photovoltaics. Journal of Modern Materials, 2017, 4, 16-30.	0.8	9
474	Recent Progress in Flexible Perovskite Solar Cell Development. Journal of the Korean Ceramic Society, 2018, 55, 325-336.	1.1	15
475	Bio-inspired strategies for next-generation perovskite solar mobile power sources. Chemical Society Reviews, 2021, 50, 12915-12984.	18.7	15
476	Room-Temperature-Grown amorphous Indium-Tin-Silicon-Oxide thin film as a new electron transporting layer for perovskite solar cells. Applied Surface Science, 2022, 581, 151570.	3.1	2
477	Progress in flexible perovskite solar cells with improved efficiency. Journal of Semiconductors, 2021, 42, 101605.	2.0	16

#	Article	IF	CITATIONS
478	Two-dimensional flexible thermoelectric devices: Using modeling to deliver optimal capability. Applied Physics Reviews, 2021, 8, .	5.5	29
479	Indium tin oxide-free perovskite solar cells with high flexibility and mechanical stability based on the ultrathin Au electrodes. Optical Engineering, 2019, 58, 1.	0.5	2
480	Recent Progress in Graphene Research for the Solar Cell Application. Carbon Nanostructures, 2019, , 81-111.	0.1	1
481	Optimization of Flexible, Transparent TiO2/Cu/ZnO Electrodes by Simultaneous Suppression of Optoelectrical Losses and Pinhole Formation. Journal of Korean Institute of Metals and Materials, 2019, 57, 316-323.	0.4	2
482	Solar elements based on organic and organo-inorganic materials. Surface, 2019, 11(26), 270-343.	0.4	0
483	Influence of elongation and washing on double-layer R2R-printed flexible electrodes for smart clothing applications. , 2020, , .		1
484	Organometal Halide Perovskite-Based Materials and Their Applications in Solar Cell Devices. , 2020, , 259-281.		1
485	Comparing the planar and porous Nb-doped TiO2 photoanode of triple cation perovskite solar cells. Materials Science in Semiconductor Processing, 2022, 138, 106259.	1.9	6
486	Role of Ultrathin Electron Transport Layers in Performance of Dye-Sensitized and Perovskite Solar Cells. Materials Horizons, 2020, , 479-505.	0.3	0
487	A COMPREHENSIVE REVIEW OF PHOTOVOLTAIC DEVICES BASED ON PEROVSKITES. Open Journal of Engineering Science, 2020, 1, 26-52.	0.0	0
488	Review on Tailoring PEDOT:PSS Layer for Improved Device Stability of Perovskite Solar Cells. Nanomaterials, 2021, 11, 3119.	1.9	35
489	Developments on Perovskite Solar Cells (PSCs): A Critical Review. Applied Sciences (Switzerland), 2022, 12, 672.	1.3	25
490	Real-time resistance characterization of ITO film electrode on flexible substrate under periodic impact. Materials Science in Semiconductor Processing, 2022, 140, 106388.	1.9	1
491	High-specific-power flexible transition metal dichalcogenide solar cells. Nature Communications, 2021, 12, 7034.	5.8	84
492	Oxide free materials for perovskite solar cells. , 2022, , 287-306.		2
493	Designing wearable microgrids: towards autonomous sustainable on-body energy management. Energy and Environmental Science, 2022, 15, 82-101.	15.6	48
494	Carbon nanotubes in perovskite-based optoelectronic devices. Matter, 2022, 5, 448-481.	5.0	19
495	Room-temperature processed hole-transport layer in flexible inverted perovskite solar cell module. Chemical Engineering Journal, 2022, 435, 134805.	6.6	16

#	ARTICLE

496 å∰Œ–物é'™é'›çŸ¿è–"膜çš"宿¸©ç»"æ™¶ä,Žç¨³å®šæ€§ç"ç©¶. Scientia Sinica: Physica, Mechanica Et Astronouzica, 2022, , .

497	Low-Temperature Microwave Processed TiO ₂ as an Electron Transport Layer for Enhanced Performance and Atmospheric Stability in Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 2679-2696.	2.5	11
498	Flexible Perovskite Solar Cells: From Materials and Device Architectures to Applications. ACS Energy Letters, 2022, 7, 1412-1445.	8.8	54
499	Roomâ€Temperature Spray Deposition of Largeâ€Area SnO ₂ Electron Transport Layer for High Performance, Stable FAPbI ₃ â€Based Perovskite Solar Cells. Small Methods, 2022, 6, e2101127.	4.6	22
500	Recent Advances in Sustainable Wearable Energy Devices with Nanoscale Materials and Macroscale Structures. Advanced Functional Materials, 2022, 32, .	7.8	43
501	Recent Advances in Materials Design Using Atomic Layer Deposition for Energy Applications. Advanced Functional Materials, 2022, 32, .	7.8	34
502	Low-Temperature Deposited Highly Flexible In–Zn–V–O Transparent Conductive Electrode for Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 234-248.	2.5	8
503	Mixed Solvent Engineering for Morphology Optimization of the Electron Transport Layer in Perovskite Photovoltaics. ACS Applied Energy Materials, 2022, 5, 387-396.	2.5	8
504	Triarylamine/Bithiophene Copolymer with Enhanced Quinoidal Character as Holeâ€Transporting Material for Perovskite Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	29
505	Near 90% Transparent ITOâ€Based Flexible Electrode with Doubleâ€Sided Antireflection Layers for Highly Efficient Flexible Optoelectronic Devices. Small, 2022, 18, e2201716.	5.2	4
506	Efficient Flexible Perovskite Solar Cells with Reduced Hysteresis Employing Cobalt Nitrate Treated SnO ₂ . Solar Rrl, 2022, 6, .	3.1	7
507	Triarylamine/Bithiophene Copolymer with Enhanced Quinoidal Character as Holeâ€Transporting Material for Perovskite Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	2
508	CHAPTER 9. Hybrid Solar Cells. RSC Nanoscience and Nanotechnology, 0, , 298-340.	0.2	0
509	Miniaturized Electrochemical (Bio)sensing Devices Going Wearable. , 2022, , 51-90.		1
510	Novel Agâ€Mesh Transparent Hybrid Electrodes for Highly Efficient and Mechanically Stable Flexible Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	5
511	Recent Progress of Electrode Materials for Flexible Perovskite Solar Cells. Nano-Micro Letters, 2022, 14, 117.	14.4	68
512	Basic understanding of perovskite solar cells and passivation mechanism. AIP Advances, 2022, 12, .	0.6	13
513	Tunableâ€Conductionâ€Band Inâ^'Znâ^'Oâ€based Transparent Conductive Oxide Deposited at Room Temperature Physica Status Solidi (A) Applications and Materials Science, 0, , .	^{2.} 0.8	1

#	Article	IF	CITATIONS
514	Flexible perovskite solar cells: Material selection and structure design. Applied Physics Reviews, 2022, 9, .	5.5	19
515	<i>In situ</i> monitoring atomic layer doping processes for Al-doped ZnO layers: Competitive nature of surface reactions between metal precursors. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	0.9	3
516	Performance improvement of organic solar cells using a hybrid hole transport layer of poly(triarylamine) and molybdenum trioxide. Organic Electronics, 2022, 107, 106565.	1.4	6
517	Influence/Effect of Deep-Level Defect of Absorber Layer and n/i Interface on the Performance of Antimony Triselenide Solar Cells by Numerical Simulation. Sustainability, 2022, 14, 6780.	1.6	7
519	lonogel-perovskite matrix enabling highly efficient and stable flexible solar cells towards fully-R2R fabrication. Energy and Environmental Science, 2022, 15, 3439-3448.	15.6	20
520	Fabrication and characteristics of double heterojunction bipolar transistor based on p-CuO/n-Si heterojunction. Applied Nanoscience (Switzerland), 2022, 12, 3637-3645.	1.6	1
521	Systematic review of molybdenum disulfide for solar cell applications: Properties, mechanism and application. Materials Today Communications, 2022, 32, 104078.	0.9	7
522	Environmentally Tolerant Ionic Hydrogel with High Power Density for Low-Grade Heat Harvesting. ACS Applied Materials & Interfaces, 2022, 14, 34714-34721.	4.0	13
523	Recent advancement in efficient metal oxide-based flexible perovskite solar cells: a short review. Materials Advances, 2022, 3, 7198-7211.	2.6	11
524	Solution-Processed SnO2 Quantum Dots for the Electron Transport Layer of Flexible and Printed Perovskite Solar Cells. Nanomaterials, 2022, 12, 2615.	1.9	12
525	Stability and efficiency issues, solutions and advancements in perovskite solar cells: A review. Solar Energy, 2022, 244, 516-535.	2.9	76
526	Van der Waals Force-Assisted Heat-Transfer Engineering for Overcoming Limited Efficiency of Flexible Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 2893-2903.	8.8	32
527	Self-Sustainable Biomedical Devices Powered by RF Energy: A Review. Sensors, 2022, 22, 6371.	2.1	9
528	A Review of Recent Developments in Smart Textiles Based on Perovskite Materials. Textiles, 2022, 2, 447-463.	1.8	6
529	Photovoltaic performance of flexible perovskite solar cells under bending state. Solar Energy, 2022, 245, 146-152.	2.9	12
530	An energy self-circulation system based on the wearable thermoelectric harvester for ART driver monitoring. Energy, 2023, 262, 125472.	4.5	8
531	Understanding the role of inorganic carrier transport layer materials and interfaces in emerging perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 15725-15780.	2.7	17
532	Macromonomer crosslinking polymerized scaffolds for mechanically robust and flexible perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 18762-18772.	5.2	17

#	Article	IF	CITATIONS
533	Single Wire Capacitive Wireless Power Transfer System for Wearable Biomedical Sensors Based on Flexible Graphene Film Material. IEEE Transactions on Biomedical Circuits and Systems, 2022, 16, 1337-1347.	2.7	7
534	Mechanical Properties of Solar Cell Structures. , 2022, , .		0
535	Simultaneous Enhancement of Thermoelectric Power Factor and Phase Stability of Tin-Based Perovskites by Organic Cation Doping. ACS Applied Energy Materials, 2022, 5, 11191-11199.	2.5	6
536	Stabilization of Perovskite Solar Cells: Recent Developments and Future Perspectives. Advanced Materials, 2022, 34, .	11.1	67
537	Novel low-carbon energy solutions for powering emerging wearables, smart textiles, and medical devices. Energy and Environmental Science, 2022, 15, 4928-4981.	15.6	30
538	Controlled Deposition of Perovskite Thin Layer with Electrospraying for Solar Cells. , 2022, , .		0
539	Three-Dimensional Nanopillar Arrays-Based Efficient and Flexible Perovskite Solar Cells with Enhanced Stability. Nano Letters, 2022, 22, 9586-9595.	4.5	12
540	Highly Efficient Flexible Perovskite Solar Cells through Pentylammonium Acetate Modification with Certified Efficiency of 23.35%. Advanced Materials, 2023, 35, .	11.1	58
541	3D stretchable and self-encapsulated multimaterial triboelectric fibers. Science Advances, 2022, 8, .	4.7	8
542	Scalable Production of High Performance Flexible Perovskite Solar Cells via Film-Growth-Megasonic-Spray-Coating System. International Journal of Precision Engineering and Manufacturing - Green Technology, 2023, 10, 1223-1234.	2.7	3
543	Recent Progress Toward Commercialization of Flexible Perovskite Solar Cells: From Materials and Structures to Mechanical Stabilities. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	10
544	Electrically Reliable Perovskite Photovoltaic Cells Against Instantaneous Kilovolt Stress. Advanced Energy Materials, 2023, 13, .	10.2	4
545	Scalable Photovoltaicâ€Electrochemical Cells for Hydrogen Production from Water ―Recent Advances. ChemElectroChem, 2022, 9, .	1.7	4
546	METAL OXIDE ELECTRON TRANSPORT MATERIALS IN PEROVSKITE SOLAR CELLS: A REVIEW. European Journal of Materials Science and Engineering, 2022, 7, 225-260.	0.3	0
547	Wearable and flexible electrochemical sensors for sweat analysis: a review. Microsystems and Nanoengineering, 2023, 9, .	3.4	98
548	Next-Generation IoT Devices: Sustainable Eco-Friendly Manufacturing, Energy Harvesting, and Wireless Connectivity. IEEE Journal of Microwaves, 2023, 3, 237-255.	4.9	16
549	Influence of the Fabric Topology on the Performance of a Textile-Based Triboelectric Nanogenerator for Self-Powered Monitoring. ACS Applied Polymer Materials, 2023, 5, 2323-2335.	2.0	11
550	Stability of perovskite solar cells: issues and prospects. RSC Advances, 2023, 13, 1787-1810.	1.7	65

#	Article	IF	CITATIONS
551	Highly flexible organo-metal halide perovskite solar cells based on silver nanowire–polymer hybrid electrodes. Nanoscale, 2023, 15, 5429-5436.	2.8	2
552	Novel Flexible Friction Layer Constructed from ZnO In Situ Grown on ZnSnO ₃ Nanocubes Toward Significantly Enhancing Output Performances of a Triboelectric Nanogenerator. ACS Applied Energy Materials, 0, , .	2.5	1
553	IR Spectroscopic Degradation Study of Thin Organometal Halide Perovskite Films. Molecules, 2023, 28, 1288.	1.7	8
554	Optical properties of flexible ceramic films. , 2023, , 129-168.		0
555	Exsolution on perovskite oxides: morphology and anchorage of nanoparticles. Chemical Communications, 2023, 59, 3948-3956.	2.2	9
556	Cellulose fiber-based, yarn-based, and textile-based hydroelectric nanogenerators: a mini-review. Cellulose, 2023, 30, 4071-4095.	2.4	3
557	Interface Regulation for Efficient and Stable Perovskite Solar Cells through Potassium Citrate Molecules. Chemistry - A European Journal, 2023, 29, .	1.7	1
558	Precisely adjusting the organic/electrode interface charge barrier for efficient and stable Ag-based regular perovskite solar cells with >23% efficiency. Chemical Engineering Journal, 2023, 463, 142445.	6.6	2
559	Low-temperature synthesis of crystalline vanadium oxide films using oxygen plasmas. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2023, 41, .	0.9	3
560	Enhanced mechanical stability of perovskite film by modulating the toughness of grain boundary. Organic Electronics, 2023, 117, 106778.	1.4	1
561	Polypyrrole-modified multi-functional coatings for improved electro-conductive, hydrophilic and flame-retardant properties of polyamide 66 textiles. Journal of Coatings Technology Research, 2023, 20, 1223-1234.	1.2	1
562	Functional Layers of Inverted Flexible Perovskite Solar Cells and Effective Technologies for Device Commercialization. Small Structures, 2023, 4, .	6.9	32
563	2D-3D perovskite memristor with low energy consumption and high stability for neural morphology calculation. Science China Materials, 2023, 66, 2013-2022.	3.5	4
564	Scalable, ultra-high stretchable and conductive fiber triboelectric nanogenerator for biomechanical sensing. Nano Energy, 2023, 109, 108291.	8.2	14
565	Synergistic Toughening and Selfâ€Healing Strategy for Highly Efficient and Stable Flexible Perovskite Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	21
566	Perovskite solar cells approaching 25% PCE using side chain terminated hole transport materials with low concentration in a non-halogenated solvent process. Journal of Materials Chemistry A, 2023, 11, 9608-9615.	5.2	5
567	Progress in Surface Modification of SnO ₂ Electron Transport Layers for Stable Perovskite Solar Cells. Small Science, 2023, 3, .	5.8	6
568	High-performance inverted ternary organic solar cells using solution-processed tin oxide as the electron transport layer. Organic Electronics, 2023, 120, 106828.	1.4	2

#	Article	IF	CITATIONS
569	Improvement of perovskite solar cell performance by oleylamine treatment of CuSCN hole-transport layer. Japanese Journal of Applied Physics, 2023, 62, 050902.	0.8	3
570	Electrochemical Sweat Sensors. Chemosensors, 2023, 11, 244.	1.8	7
571	Improved Perovskite Solar Cell Performance by LiSCN Doping of CuSCN Hole-transport Layer. Chemistry Letters, 2023, 52, 393-396.	0.7	1
586	Progress and Challenges Toward Effective Flexible Perovskite Solar Cells. Nano-Micro Letters, 2023, 15, .	14.4	6